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Abstract—We propose a new hash function Reinforced
Concrete for the proof systems that support lookup
tables, concretely Plookup based on KZG commitments
or FRI. It has two solid advantages over predecessors: (a)
Table lookups instead of (big) modular reductions are much
faster both in ZK and plain computations thus making
verifiable computation protocols based on recursive proofs
(current trend) much more efficient; (b) the security is no
longer solely based on (high) algebraic degree but rather on
more traditional AES-like components inheriting decades
of public scrutiny. Our design also employs a novel and fast
field-to-tables conversion, which is of independent interest
and can be used in other Plookup-friendly constructions.

The new hash function is suitable for a wide range
of applications like privacy-preserving cryptocurrencies,
verifiable encryption, protocols with state membership
proofs, or verifiable computation. It may serve as a drop-in
replacement for various prime-field hashes such as variants
of MiMC, Poseidon, Pedersen hash, and others.

Keywords: Hash functions, verifiable computation, zk-
snarks, finite fields.

I. INTRODUCTION

The recent years have been marked as a thrive or
distributed computations, in particular blockchain and
cryptocurrency protocols. To speed up consensus on
the result of those computations, these protocols use
extensively various zero knowledge proofs and verifiable
computation protocols, as those provide succinct proofs
of correctness. A number of schemes from different
cryptography areas, from MPC and proof systems to
hash functions, are required to run those protocols.
Applications of hash functions are are numerous, but
in this paper we develop an instrument that targets two
specific use-cases:
• Fast and efficient set membership proofs based

on Merkle tree accumulators. Immensely popular in
cryptocurrency protocols [3], [2], this case requires

Name Performance
Zero knowledge Plain

R1CS Plookup
(gates) (ms)

Poseidon-BLS/BN 243 438 19
Rescue-BLS/BN 288 364 415

Rescue-Prime-BLS/BN 252 321 362
Feistel-MiMC-BLS/BN 1326 1326 34

SHA-256 27534 ≈ 3000 0.37
Blake2s 21006 ≈ 2000 0.22

SINSEMILLA 869∗ 670 131
Reinforced Concrete-BN/BLS - 267 3.3
Reinforced Concrete-FRI - 265 1.03

TABLE I: Hashing 512 bits of data (two field elements)
with different functions. ∗ – as Pedersen hash.

a hash function for the tree such that its ZK circuit
has smallest number of gates, thus minimizing the
proof creation time.

• Verifiable computation based on recursive
proofs. The variant using FRI commitments em-
ploys a commit-reveal scheme with Merkle trees,
and paths in these trees are later proven valid. Here
we minimize both plain computation time and the
number of circuit constraints.

The new hash function, named Reinforced
Concrete, brings higher performance and improved
security compared to competitors.

a) Proof systems: A number of proof systems for
NP languages have appeared since 1990s, with the most
efficient ones being able to compute a proof in time
linear of the witness size with proof being constant
or logarithmic size [48], [36], [12], [28]. In order to
construct a proof for a program, it is first arithmetised
as a circuit over certain prime field. The circuit gates
that count towards the prover time are field multipli-
cations and additions, though custom polynomial gates



are also possible with some overhead. The most recent
enrichment is Plookup [27], which enables table lookup
gates. This extension is particularly interesting in our
usecase since traditional cryptographic hash functions
can be represented with a much smaller circuit when
lookup gates are possible (cf. columns 2 and 3 of Table I),
and thus enable a faster prover.

b) Existing Hash Functions in the Literature: There
already exist several hash functions crafted for the first
use-case with the number of circuit gates (or equivalently
low-degree polynomial constraints) being the primary
metric. Examples include prime-field (Feistel) MiMC
versions [6], [5], FRIDAY [8], POSEIDON [31], and
Rescue [7] (and its updated version Rescue-Prime [49]).
All these hash functions share some common features,
as the fact that the non-linear layer is instantiated via a
simple power map. Focusing on POSEIDON, it is based
on the HADES design strategy [32], which makes use of
an uneven distribution of the S-boxes, namely, full S-box
layers in the external rounds and partial S-box layers in
the middle ones, in order to minimize the multiplicative
complexity. The external rounds provide security against
statistical attacks, while the internal rounds have the goal
of increasing the degree of the permutation.

While most of them have withstood public scrutiny,
two issues have been raised:

1) as designing symmetric-key primitives in this do-
main is relatively new, several algebraic attacks
recently appeared in the literature [4], [15], [26],
[39], [35];

2) The plain performance is not satisfactory (see last
column of Table I), since each round of such
schemes requires a finite field multiplication, which
is relatively expensive (hundreds of CPU cycles)
compared to bit operations utilized in traditional
hash functions.

A rather recent addition to this set is SINSEMILLA [3,
Sec. 5.4.1.9], which is Pedersen hash function[3, Sec.
5.4.1.7] optimized for faster elliptic-curve exponentia-
tions using table lookups.

c) Our Contributions.: We present a new hash
function Reinforced Concrete, in short RC, over
Fp exploiting all the advantages of Plookup and suitable
for both membership proofs and verifiable computation.

The permutation that instantiated Reinforced
Concrete is based on the POSEIDON design strategy,
which means, it is composed of two different rounds: the
external rounds for preventing statistical attacks and the
internal ones for preventing algebraic attacks. However,
instead of using simple power maps as in POSEIDON
and Rescue, we decided to use a single round function
for the middle part with a complex algebraic structure.
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Fig. 1: A sponge hash function with a fixed-size output.

Such high-degree round function combines a layer of
substitution box (such as in AES) with a field element
decomposition in just a handful of small operations (or
table gates in the circuit), and it admits a very simple
representation when using look-up tables, as e.g. in the
case of AES [25] and AES-like ciphers. As a result, the
security argument we propose for preventing algebraic
attacks resembles the one well known and accepted in the
literature for AES and more generally AES-like ciphers,
for which the algebraic attacks can attack only a tiny frac-
tion of the rounds compared to the statistical attacks [23],
[22]. Also, compared to Pedersen hash/SINSEMILLA we
provide pre-image resistance in addition to collision
resistance, and do not rely on hardness assumptions that
are known to be weak in a world with practical quantum
computers.

Besides a different security argument with respect to
the one used by POSEIDON and Rescue, our hash func-
tion is faster in plain performance and simultaneously
has fewer gates as a circuit. The performance depends
on the field and we show how we can make it even better
for specially crafted field sizes. Concretely, using generic
prime fields (such as the scalar fields of the BLS12-381
or BN254 elliptic curves) Reinforced Concrete is
faster by a factor of 5 compared to POSEIDON and by
a factor of 125 compared to Rescue and 110 compared
to Rescue-Prime. Using specially crafted fields increases
these factors to 16, 348, and 285 respectively. RC is,
thereby, only by a factor of 5 slower than Blake2s, the
fastest traditional hash algorithm we benchmarked, but
requires 7 times less gates when encoded into a circuit.

II. REINFORCED CONCRETE IN A NUTSHELL

Reinforced Concrete, in short RC, is a family
of bijective transformations over a field Fp for a family of
primes p� 3 to be used in the Sponge framework [13]
(Fig. 1) in order to construct hash functions and authen-
ticated encryption schemes. The field Fp is supposed to
be in the order of magnitude of 2256, with scalar fields of
the curves BN254 [51] and BLS12-3811 being primary
instances, and a FRI-friendly prime p̂, crafted specially
for the verifiable computation case (Section VI).

1https://electriccoin.co/blog/new-snark-curve/
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Fig. 2: The Reinforced Concrete permutation.
The middle Br-C-B-C-Br part is secure against algebraic
attacks whereas C-Br-C-Br-C-Br-C-Br-C-Br-C is secure
against rebounds (more generally, statistical) attacks.

All RC permutations map F3
p to itself, and we reserve

1 field element for the capacity in sponge, thus aiming
for the 128-bit security against collision and preimage
attacks for all instances. A single call to RC thus suffices
for a 2-to-1 compression function. All the instances of
RC are identical in security properties and offer 128-bit
security against all known attacks on hash functions. The
performance, however, does depend on the underlying
field, and the pST instance is substantially faster.

a) Design: The RC design depicted at Figure 2 is
a modification of a traditional word-oriented SP-network
(SPN) for constructing (keyed or keyless) cryptographic
permutations. The RC design differs from a traditional
SPN in two aspects:

• the middle layer of the SP network is replaced
by a special component called Bars. This special
component effectively reinforces the permutation
against cryptanalytic approaches that would cover
many more rounds without Bars. It does not admit
a low-degree polynomial description but can be

implemented as a circuit with reasonable costs in
ZK.

• instead of applying independent non-linear trans-
formations on single words, RC uses (low-degree)
non-linear layers, called Bricks, that additionally
mix different words. It provides resistance against
statistical cryptanalysis and is cheap in the zero
knowledge, i.e. via gate counting.

The third component, Concrete, is an analog of the
traditional affine layer but over F. It ensures diffusion
to make statistical or algebraic properties expand to the
entire state, and is also cheap in ZK.

b) Layout: The Bricks and Concrete layers
interleave exactly as in traditional SPN designs [25].
As RC is used in a sponge framework, the Bricks
components at either end would bring no security against
collision or preimage attacks, so we start and end with
Concrete. The middle call to Bricks is replaced with
Bars. The rationale behind putting all Bar into a single
layer is that start-from-the-middle attacks are somewhat
easier to find and thus we plan to detect them all in the
design phase.

III. SECURITY REQUIREMENTS AND CLAIMS

Our high-level security claims, which determine the
parameter selection for RC, are the following.
• For the sponge hash function with RC, we aim for

a collision and preimage resistance up to 2128 field
operations for 256-bit fields. We want to be able to
instantiate a random oracle in protocols up to 2128

calls.
• For the authenticated encryption scheme using RC,

we aim for confidentiality and integrity up to 2128

encrypted messages for 256-bit fields.
• When using the RC in other future schemes, we

aim for a 1-element CICO security up to 2128 field
operations. More concretely, it should be infeasible
to find such x1, x2, y1, y2 such that

Reinforced Concrete(0, x1, x2) = (0, y1, y2)

As the properties above cannot be formally proven or
reduced to assumptions, we back them up with certain
requirements for the different components of our per-
mutation. In particular, we focus on the following two
classes of attacks, respectively statistical and algebraic
attacks. As already mentioned in the introduction, we
make use of the HADES/POSEIDON design strategy in
order to provide security:
• Statistical attacks (including differential, linear,

rebound, truncated, impossible, MiTM, boomerang)
cannot be mounted on RC even with the
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middle component Bricks-Concrete-Bars-
Concrete-Bricks replaced with a single
Bricks layer up 2128 field operations.

• The middle component Bricks-Concrete-
Bars-Concrete-Bricks resists invariant
subspace and algebraic (e.g., Gröbner basis) attacks
up to 2128 field operations. Due to the high degree
and because we are working over prime fields, we
also expect ample resistance against higher-order
differential attacks (e.g., zero-sum distinguishers or
cube attacks).

We give a detailed overview of statistical attack ap-
proaches in Appendix D, and we focus on algebraic
attacks in Appendix G.

IV. PRIMARY USE CASES

Our new hash function targets several usecases. Two
of them are depicted at Figure 3 as well as the usage of
RC:
• Verifiable computation and set membership proto-

cols (see a more formal description below) are at
the application level (top) and are exposed to users.
The set membership protocol uses a Merkle tree as
an accumulator, which uses RC to build the tree.

• In order to provide succinct proofs, both protocols
employ some Interactive Oracle Proof framework,
with Plookup [27] yielding the fastest prover when
RC is involved.

• The IOP uses a polynomial commitment scheme, of
which KZG [38] and FRI [11] are most popular. The
former brings succinct proofs but requires a trusted
setup. The latter uses Merkle tree for the commit-
reveal process, and RC is used to build the tree in
the verifiable computation usecase.

Now we give a more formal description of these con-
cepts.

a) Zero Knowledge Set Membership: A typical
usecase for set membership proofs is as follows. Parties
P1, P2, . . . , Pn add entries V1, V2, . . . , Vk to some public
accumulator A. Then at any point any party Pj can prove
that Vi ∈ A. For instance, in Zcash [3] Vi are unspent
transactions and A is a Merkle tree over them, so that
in order to spend transaction V an owner is required to
provide a proof of knowledge that V ∈ A as well as a
proof of knowledge of some secret committed within V .
In this usecase, RC would comprise the Merkle tree.

b) Verifiable Encryption.: In the same set of pro-
tocols as above, it may be legally required to accom-
pany a transaction of d coins from Alice to Bob with
C = EK(d,Alice,Bob) being the metadata encrypted
on the public key K of some Inspector. The encryption
should be verifiable i.e. there should be a proof that

Inspector can decrypt on his own secret key. In this
setting, RC provides an authenticated encryption scheme
so that a proof of encryption correctness together with
the proof that the AE symmetric key is derived from a
key agreement protocol with Inspector’s K.

c) Incrementally Verifiable Computation: Here we
assume that there is a computational chain of functions
F1, F2, . . . , Fk applied consecutively or by some ordered
graph. Starting with X , for each i Party Pi computes Fi

and carries an intermediate result and a proof of correct-
ness to the next Pi+1 so that the last Pk provides Y and
attests X

Fk◦Fk−1◦···◦F1−−−−−−−−−−→ Y being actually aware only
of their own computation and the proof of correctness
πk−1 from Pk−1. IVC frameworks such as Halo Infinite
[20] instruct that the proof πk asserts the correctness
of Fk and that the code Ck that verifies πk−1 outputs
a success. If the polynomial commitment scheme, used
within IVC, is Merkle-tree-based (such as FRI [11]), then
πk−1 consists of several Merkle tree openings, so that
Ck makes a number of calls to the hash function that
comprises the tree, for which we suggest RC. Therefore,
a hash function is used both for commitments and proofs
of openings, and both regular performance and the size
of hash function circuit determine the total performance.

V. PREFERRED IOP: PLOOKUP

The proof systems appeared in recent years are numer-
ous and are beyond the scope of this paper. Nevertheless,
a common complexity metric of a primitive implemented
within is its size as an arithmetic circuit, measured in
the number of gates, as the prover complexity is usually
an (almost) linear function of the latter. Within a single
proof statement, circuits of all its components must
operate in the same domain, typically prime field Fp.

The proof systems based on polynomial commitments
require the circuit wires to be encoded as a few poly-
nomials, so that a circuit is correct if certain algebraic
statement holds, with the later being proven using several
commitment openings. The Plonk proof system [28] is
known for relative simplicity and ability to use arbitrary
polynomial commitment scheme. If KZG pairing-based
commitments [38] are used then the Plonk proofs have
constant size and need a so-called universal trusted
setup, where the same reference string can be used for
all circuits of bounded size. If FRI Merkle tree-based
commitments [11] are used then the trusted setup is not
needed but proofs are bigger.

Plookup [27] is an extension to the Plonk proof
system [28]. Whereas Plonk uses arithmetic gates
only, Plookup supports table check gates of form
(x1, x2, . . . , xw) ∈ Ti where Ti is a table with w
columns. The same set of commitment schemes can be
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Fig. 3: Reinforced Concrete in set membership and verifiable computation protocols.

used, including KZG and FRI schemes. We are aware
of several implementations of Plookup, though none has
been claimed to be production-ready yet, so the syntax
and API vary. Here we list only the main features:

• Circuit is defined over prime field Fp with suffi-
ciently many (say 232) roots of unity.

• A single gate is either:
– table check (lookup) of a w-vector of circuit

variables, or
– degree-2 equation on circuit variables, public

inputs and constants with at most 1 multiplication
and w − 1 additions.

Plookup has reduced the circuit count for major
hash functions. For example, there were reported SHA-
256 circuits for Plookup with about 3K gates (in con-
trast to 27K gates for R1CS), but this number is still
much higher than for recent designs like POSEIDON
or Rescue. We refer to Table I, where the SHA-256
and Blake2s gate counts are from Hopwood’s notes2,
the zkSummit5 presentations by Gabizon3, and the
Reinforced Concrete gate counts are estimated in
Section VIII-A1.

VI. SPECIFICATION

The RC permutation illustrated in Fig. 2, can be
considered as a modified 7-round SP network, where
input, output and intermediate state elements are from

2https://www.zfnd.org/zcon/0/workshop-notes/Zcon0%20Circuit%
20Optimisation%20handout.pdf

3https://www.crowdcast.io/e/zksummit/8

F3
p for a prime number p. More formally,

RC := Concrete(8) ◦ Bricks ◦ Concrete(7)

◦ Bricks ◦ Concrete(6) ◦ Bricks
◦ Concrete(5) ◦ Bars ◦ Concrete(4)

◦ Bricks ◦ Concrete(3) ◦ Bricks
◦ Concrete(2) ◦ Bricks ◦ Concrete(1)

In the following, we refer to Concrete ◦ Bricks as
”round”.

A. The Bricks function
The function Bricks : F3

p → F3
p is a non-linear

permutation of degree d = 5 (with the requirement
gcd(p− 1, d) = 1). We define Bricks as

Bricks(x1, x2, x3)

= (xd1, x2(x21 + α1x1 + β1), x3(x22 + α2x2 + β2)),

where α1, α2, β1, β2 ∈ Fp such that α2
i − 4βi is not a

quadratic residue modulo p. The values of α1, α2, β1, β2
are given by
• p = pBLS381: (1,3,2,4).
• p = pBN254: (1,3,2,4)
• p = pST : (1,2,3,4).

B. The Concrete function
The function Concrete(j) : F3

p → F3
p denotes the

multiplication of the state by a 3× 3 MDS matrix M =
circ(2, 1, 1) with subsequent addition of the j-th round
constant vector c(j) ∈ F3

p, that is

Concrete(j)(x) :=

2 1 1
1 2 1
1 1 2

×
x1x2
x3

+ c(j).

Note that M is invertible and MDS for each p ≥ 3. The
elements c(j)1 , c

(j)
2 , c

(j)
3 are certain pseudo-random con-

stants, generated using e.g. SHAKE-128 with rejection
sampling.
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C. The Bars Function

The function Bars : F3
p → F3

p is defined as

Bars(x1, x2, x3) = (Bar(x1),Bar(x2),Bar(x3)).

The function Bar : Fp → Fp is designed to be a
permutation of Fp coming from n smaller permutations
acting independently on n smaller buckets Zs1 , . . . ,Zsn ,
where s1, . . . , sn are defined for each p separately in
the further text. The independence requirement is crucial
for the performance of Bar. For this we decompose a
field element x ∈ Fp into n smaller digits x1, . . . , xn
with xi ∈ Zsi , and then compose it back. Overall,
Bar : Fp → Fp is defined as

Bar = Comp ◦ SBox ◦ Decomp. (1)

In the following, we define all these components. The
invertibility of such a function is proved in Appendix B.

1) Decomposition and Composition: We choose the
standard representation Fp = {0, 1, . . . , p − 1} for Fp,
thus identifying an element x ∈ Fp with an integer 0 ≤
x ≤ p − 1. Our decomposition Decomp : Fp → Zs1 ×
. . .× Zsn expands x ∈ Fp as

x = x1 · s2s3 · · · sn + x2 · s3s4 · · · sn + · · ·

+ xn−1 · sn + xn =

n∑
i=1

xi
∏
j>i

sj .

with 0 ≤ xi < si and where the si are chosen such
that

∏n
i=1 si > p. The digits xi ∈ Zsi are determined

similarly to ordinary base-b expansion:

xn := x mod sn,

xi :=
x−

∑
j>i xj

∏
k>j sk∏

j>i sj
mod si.

(2)

It follows directly from the definition in Eq. (2) that the
digits xi are unique. Because of the strong analogy with
ordinary base-b expansion and for ease of notation in the
following part, we define for 1 ≤ i ≤ n the elements

bi :=
∏
j>i

sj = si+1si+2 . . . sn,

where bn is defined by the empty product and thus bn :=
1. The inverse process, the composition Comp : Zs1 ×
· · · × Zsn → Fp is computed as

Comp(y1, . . . , yn) :=

n∑
i=1

yibi mod p. (3)

2) SBox: Let (v1, v2, . . . , vn) = Decomp(p− 1) and
let p′ ≤ min1≤i≤n vi. Then xi is converted as follows:

yi := S(xi) =

{
f(xi) if xi < p′,

xi if xi ≥ p′,
(4)

where f denotes a permutation of Zp′ . In Lemma 3 we
prove that Bar is indeed a permutation of Fp. The value
p′ is selected for each p separately.

For the Bar function we choose a decomposition into
n = 27 small S-boxes for p being the order of BLS12-
381 or BN254 curves. The f function is derived from the
MiMC cipher (which implicitly requires p′ being prime)
and its table is given in full in the Appendix.

a) BLS12-381: The prime p is given by

pBLS381 = 0x73eda753299d7d483339d80809a1d80

553bda402fffe5bfeffffffff00000001.

The bucket sizes

s27, s26, . . . , s19,
s18, s17, . . . , s10,
s9, s8, . . . , s1,

for the Bar layer are given by

693, 696, 694, 668, 679, 695, 691, 693, 700,
688, 700, 694, 701, 694, 699, 701, 701, 701,
695, 698, 697, 703, 702, 691, 688, 703, 679.

If (v1, . . . , v27) denotes the decomposition of p − 1,
the largest prime p′ smaller than or equal to v =
min1≤i≤27 vi is p′ = 659. The values si were found
by a variant of branch-and-bound process where we
recursively determine from s27 to s1 under the constraint
that si − vi is not too large for any i.

b) BN254: The prime p is given by

pBN254 = 0x30644e72e131a029b85045b68181585

d2833e84879b9709143e1f593f0000001.

The bucket sizes for the Bar layer are given by

651, 658, 656, 666, 663, 654, 668, 677, 681,
683, 669, 681, 680, 677, 675, 668, 675, 683,
681, 683, 683, 655, 680, 683, 667, 678, 673.

If (v1, . . . , v27) denotes the decomposition of p − 1,
the largest prime p′ smaller than or equal to v =
min1≤i≤27 vi is p′ = 641. Decomposition was found in
the same way.

c) FRI prime: For FRI-based IVC we have crafted
a special prime, so that the decomposition and modular
reduction are extremely fast. Concretely, we found out
that a 250-bit prime

pST = 0x3fa000 . . . 001
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admits the following representation:

pST = 2250 − 3 · 2241 + 1 =

24∑
i=0

(210 − 6)210i + 1,

i.e.,

s2 = s3 = · · · = s24 = 1024, (5)
s25 = 1023, v1 = v2 = · · · = v25 = 1018. (6)

For this decomposition we first selected si to be almost
all powers of two, prepared constraints that (p − 1) is
divisible by 230 for DFT, and then tried a few values for
vi until we find a prime.

D. Sponge framework parameters

We suggest the bijective transformation RC being used
in the sponge framework [13] similarly to Poseidon [31]
and Rescue [7]. The parameters are as follows:
• Rate is two Fp elements, capacity is one Fp element.
• Claimed preimage and collision security level of

128 bits.
• The padding rule consists of adding 1 ∈ Fp to any

input, followed by the smallest number < 2 of zeros
so that the size is a multiple of 2.

VII. LOOKUP TABLES AND SYSTEM OF
CONSTRAINTS FOR BAR

In this section we create tables and a set of constraints
such that for x, y ∈ Fp it holds y = Bar(x) if and only if
this set of constraints is satisfied. We face two challenges:

1) The S-box Si acts on a domain of size si, which
makes each S-box potentially unique. If we specify
the behavior of each S-box separately, the table
would have

∑
i si entries, which renders it ineffi-

cient.
2) Since

∏
i si > p, there exist distinct elements

(x1, . . . , xn) 6= (x′1, . . . , x
′
n) in Zs1 × . . .Zsn that

produce the same x ∈ Fp, i.e., for which it holds

x = Comp(x1, . . . , xn) =

n∑
i=1

xibi mod p =

=

n∑
i=1

x′ibi mod p = Comp(x′1, . . . , x
′
n).

We have to ensure that our table and set of con-
straints prevents this collision from happening.

We address these challenges with two additional sets of
variables (z1, . . . , zn) and (c1, . . . , cn), respectively. The
variable zi encodes if xi < p′ (Si is non-linear function)
or xi ≥ p′ (Si is identity function) and is defined as

zi :=

{
0, if xi < p′;

1, if xi ≥ p′.
(7)

0 1 2

Fig. 4: Finite-state automaton A representing all valid
sequences c1, c2, . . . , cn.

The purpose of variables (c1, . . . , cn) is to indicate if a
tuple (x1, . . . , xn) ∈ Zs1 × . . . × Zsn has the property∑n

i=1 xibi ≥ p, or not. If
∑n

i=1 xibi ≥ p, the tuple
(x1, . . . , xn) “overflows” p and thus it is a potential
candidate for a collision since by definition composition
is unique for all (x1, . . . , xn) with

∑n
i=1 xibi < p. With

our set of constraints we need to exclude all those tuples
“overflowing” p. For (v1, . . . , vn) = Decomp(p−1), we
therefore define

ci :=


0, if xj = vj for all 1 ≤ j ≤ i;
1, if xi < vi;

2, if xi ≥ vi and xj 6= vj for some 1 ≤ j ≤ i;
(8)

By definition of ci, only sequences c1, c2, . . . , cn of
length n output by the finite-state automaton A in Fig. 4
are allowed; they characterize all tuples (x1, . . . , xn) ∈
Nn with

∑n
i=1 xibi < p.

We create the following 4-ary tables for our set of
constraints:

• Table T2 contains all binary sequences of length
4 (Fig. 5) thus providing a means to encode all
possible sequences (z1, . . . , zn) by concatenating as
many 4-ary sequences as needed;

• Table T3 contains all outputs of length 4 of the
finite-state automaton A in Fig. 4. They are chained
together with the last element of one 4-ary sequence
matching the first element of the next 4-ary se-
quence to encode all possible outputs of A of length
n, see constraints (10),(11);

• Table T1 encodes the output of the S-Boxes
S1, . . . , Sn and indicates whether for an input to
S-Box Si the non-linear function f or the identity
function is applied (Fig. 6).

We claim that y = Bar(x) holds if and only if
for x, y ∈ Fp and (x1, . . . , xn), (y1, . . . , yn) ∈ Nn the
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T2 =


0 0 0 0
0 0 0 1
0 0 1 0
· · ·
1 1 1 0
1 1 1 1

 ,

Fig. 5: Lookup Table T2.

T1 =



0 0 f(0) 1
1 0 f(1) 1
· · ·

p′ − 1 0 f(p′ − 1) 1
p′ 1 p′ 1

p′ + 1 1 p′ + 1 1
· · ·

v1 − 1 1 v1 − 1 1
v1 1 v1 0
p′ 2 p′ 1
· · ·

v2 − 1 2 v2 − 1 1
v2 2 v2 0
v2 2 v2 2

v2 + 1 2 v2 + 1 2
· · ·

s2 − 1 2 s2 − 1 2
· · ·
p′ n p′ 1
· · ·

vn − 1 n vn − 1 1
vn n vn 0
vn n vn 2

vn + 1 n vn + 1 2
· · ·

sn − 1 n sn − 1 2



, T3 =



0 0 0 0
0 0 0 1
0 0 1 1
0 0 1 2
0 1 1 1
0 1 1 2
0 1 2 1
0 1 2 2
1 1 1 1
1 1 1 2
1 1 2 1
1 1 2 2
1 2 1 1
1 2 1 2
1 2 2 1
1 2 2 2
2 1 1 1
2 1 1 2
2 1 2 1
2 1 2 2
2 2 1 1
2 2 1 2
2 2 2 1
2 2 2 2



Fig. 6: Lookup Tables T1 and T3.

following constraints are satisfied:

∀n ≥ i ≥ 1 : (xi, i · zi, yi, ci) ∈ T1, (9)
∀d(n− 1)/3e − 1 ≥ i ≥ 1 :

(c3i−2, c3i−1, c3i, c3i+1) ∈ T3, (10)
(cn−3, cn−2, cn−1, cn) ∈ T3, (11)
∀dn/4e − 1 ≥ i ≥ 1 :

(z4i−3, z4i−2, z4i−1, z4i) ∈ T2, (12)
(zn−3, zn−2, zn−1, zn) ∈ T2, (13)

x =

n∑
i=1

xibi mod p, (14)

y =

n∑
i=1

yibi mod p. (15)

In particular, we claim for x ∈ Fp there doesn’t ex-
ist any collision in Zs1 × . . .Zsn . I.e., there is ex-

actly one element (x1, . . . , xn) in Zs1 × . . .Zsn with
Comp(x1, . . . , xn) = x. We prove these assertions in
Lemma 1 and Lemma 2. As a result, the total number
of lookup constraints is

n+ d(n− 1)/3e+ dn/4e ≈ n+ n/3 + n/4 ≈ 1.59n

table lookups with tables of total size p′+
∑

i(si− p′+
1) + 16 + 23.

A. Soundness and Completeness

Lemma 1. The set of constraints (9) – (15) is complete,
i.e., for any x, y ∈ Fp with y = Bar(x) it is possible to
construct {xi, yi, ci, zi : 1 ≤ i ≤ n} that satisfy them.

Proof. We work with the standard representation of Fp,
that is, Fp = {0, 1, . . . , p− 1}. Suppose for x, y ∈ Fp it
holds y = Bar(x). Our proof works as follows:

1. We construct xi, yi and show that constraints (14)
and (15) are satisfied;

2. we define zi that satisfy constraints (12) and (13)
regarding Table T2;

3. we define ci that satisfy constraints (10) and (11)
regarding Table T3;

4. we show that (xi, i ·zi, yi, ci) satisfy the constraints
(9) regarding Table T1.

1st Step. We define (x1, . . . , xn) := Decomp(x)
and (y1, . . . , yn) := SBox(x1, . . . , xn) = (SBox ◦
Decomp)(x); then constraint (14) holds by definition of
Decomp and constraint (15) by definition of Bar, i.e.,

y = (Comp ◦ SBox ◦ Decomp)(x)

= Comp (SBox ◦ Decomp(x))

= Comp(y1, . . . , yn) =

n∑
i=1

yibi mod p.

2nd Step. Let p′ be according to the definition of the
Bar function, i.e., p′ is the largest prime smaller than
or equal to v = min1≤i≤n vi, where (v1, . . . , vn) =
Decomp(p− 1). For 1 ≤ i ≤ n we define

zi :=

{
0, if xi < p′;

1, if xi ≥ p′;

that indicate if xi < p′ or xi ≥ p′. The sequence
(z1, . . . , zn) is a binary sequence of length n, where
all 2n combinations are possible: every digit xi can be
strictly smaller or greater than p′. Since T2 contains all
binary sequences of length 4, we have that the constraints
(12) and (13) regarding T2 are satisfied .

3rd Step. If x = p− 1, or equivalently, if xi = vi for
all 1 ≤ i ≤ n, we define ci := 0, for all 1 ≤ i ≤ n.
Thus (c1, . . . , cn) = (0, . . . , 0) and the corresponding
constraints (10) and (11) in Table T3 are satisfied. If
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x < p−1, there exists at least one index 1 ≤ i ≤ n with
xi < vi. Let j be the minimal index with that property.
We set

ci :=


0, if i < j;

1, if i ≥ j and xi < vi;

2, if i > j and xi ≥ vi.

Note that the case i = j and xi ≥ vi cannot happen, since
this would on the one hand mean xj ≥ vj and on the
other hand xj < vj (by definition of j), a contradiction.
Thus, the above three cases cover all possible situations
regarding i. Next, we list all subsequences of c1, . . . , cn
that are not possible:

(a) (2, . . .); since c1 = 2 this would mean 1 ≤ j < i =
1, a contradiction.

(b) (. . . , 0, 2, . . .); this would imply i < j (ci = 0) and
i+ 1 > j (ci+1 = 2), a contradiction.

(c) (. . . , 1, 0, . . .); a contradiction, since i ≥ j (ci = 1)
and i+ 1 < j (ci+1 = 0).

(d) (. . . , 2, 0, . . .); a contradiction, since i > j (ci = 2)
and i+ 1 < j (ci+1 = 0).

We explicitly note, all other subsequences are valid. In
a next step, we model a finite-state automaton B whose
outputs of length n characterize all possible sequences
(c1, . . . , cn). Clearly, B has the states 0, 1, 2 with only
0, 1 being accepting states: due to (a) no sequence can
start with 2. According to (b), (c) and (d), all possible
transitions are given by

{(0, 0), (0, 1), (1, 1), (1, 2), (2, 1), (2, 2)}.

But this means, that automaton B is identical to au-
tomaton A depicted in Fig. 4. Hence we conclude, all
possible sequences (c1, . . . , cn) of elements as defined
above are precisely the outputs of length n of the finite-
state automatonA. If we divide the sequence (c1, . . . , cn)
into chunks of 4 elements such that the last element of
one chunk matches the first element of the next chunk,
we see that constraints (10) and (11) regarding T3 are
satisfied.

4th Step. Constraints (9) regarding T1 are satisfied as
well: by definition of xi, zi, yi, ci we have 0 ≤ xi ≤
si−1, zi ∈ {0, 1}, yi = Si(xi) and ci ∈ {0, 1, 2}, respec-
tively. This means, the domains of xi, i · zi, yi, ci agree
with the general conditions in T1. Not all combinations
are allowed, however. The following arguments show that
indeed all possible 4-ary chunks (xi, i · zi, yi, ci) satisfy
the constraints in T1. As in the 3rd Step, for x = p− 1
we define ci := 0 and thus have (xi, i · zi, yi, ci) =
(vi, i, vi, 0) for 1 ≤ i ≤ n. Hence, for x = p − 1 the
corresponding constraints (9) in Table T1 are satisfied.

Therefore let x < p− 1 and let again j be the minimal
index with xi < vi.

• For 0 ≤ xi < p′, we have zi = 0, i · zi = 0,
yi = S(xi) = f(xi) and ci = 1 (since xi < p′ ≤ vi)
by construction of xi, zi, yi and ci, respectively.
Thus the first p′ constraints in T1 are satisfied.

• For p′ ≤ xi = vi two cases can happen: if i < j,
then ci = 0; if i > j, then ci = 2. In both cases
the corresponding 4-ary chunk xi, i · zi = i, yi =
xi, ci ∈ {0, 2} is contained in T1. We note, the
case xi = vi and i = j cannot happen due to the
definition of j.

• For p′ ≤ xi < vi, we have zi = 1, i · zi = i,
yi = S(xi) = xi and ci = 1 (since xi < vi).
Thus the corresponding vi−p′ constraints in T1 are
satisfied.

• For vi + 1 ≤ xi ≤ si − 1 it holds zi = 1, i · zi = i,
yi = S(x) = xi and ci = 2, which shows that
the corresponding si − vi − 1 constraints in T1 are
fulfilled.

Specifically, for i = 1 there is no entry (x1, i · z1, y1, 2)
in T1, therefore we have to argue that this case cannot
happen; this is clear, however, since we have already
shown that automaton B, which represents all valid
sequences (c1, . . . , cn), guarantees c1 ∈ {0, 1}.

Lemma 2. The set of constraints (9)–(15) is sound, i.e.,
for any x, y ∈ Fp and any {xi, yi, zi, ci ∈ N : 1 ≤ i ≤
n} that satisfy them all it holds y = Bar(x).

Proof. We work with the standard representation of Fp.
For R := Zs1 × . . .× Zsn let

R<p := {(z1, . . . , zn) ∈ R :

n∑
i=1

zibi < p}.

Our proof consists of the following parts:

1) Show that (x1, . . . , xn) is a valid decomposition of
x, i.e., (x1, . . . , xn) = Decomp(x).

2) Show that for all 1 ≤ i ≤ n we have yi = Si(xi)
according to (4) and deduce (y1, . . . , yn) = (SBox◦
Decomp)(x).

3) Use the above two facts and deduce y = Bar(x).
1st Step. Let (x′1, . . . , x

′
n) := Decomp(x) and

x̂ :=
∑n

i=1 xibi. Suppose x̂ < p, or in other words
(x1, . . . , xn) ∈ R<p. Then by (14) we have x̂ = x̂ mod
p =

∑n
i=1 xibi mod p = x < p, and thus

Decomp(x) = Decomp

(
n∑

i=1

xibi mod p

)
= (Decomp ◦ Comp)(x1, . . . , xn) = (x1, . . . , xn).
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The last equality uses the fact, that Decomp and Comp
are inverse to each other on R<p and Fp; we proved this
in more detail in Lemma 3.

We show that the case x̂ ≥ p leads to a contradiction.
For this, suppose x̂ ≥ p. This implies that there exists
1 ≤ k ≤ n with

xi = vi for all 1 ≤ i < k and xk > vk.

Note that k > 1 as x1 ≤ v1 by Table T1 (constraint
(9)). Also, by constraint (9) it holds ci ∈ {0, 2} for all
1 ≤ i < k and in particular c1 = 0. Therefore, constraints
(10) and (11) regarding Table T3 ensure that actually all
ci = 0 for 1 ≤ i < k since there is no sequence with
(. . . , 0, 2, . . .) in T3. Therefore, again by constraints (10)
and (11), we have that ck ∈ {0, 1}. By constraint (9) this
is only possible if xk ≤ vk. A contradiction.

2nd Step. Let 1 ≤ i ≤ n. We show yi = S(xi). By
constraints (12) and (13) it holds zi ∈ {0, 1}. If zi = 0
then i · zi = 0 and by constraint (9) we have xi < p′

and yi = f(xi). If zi = 1, we have i · zi = i > 1, and
again by constraint (9) it holds xi ≥ p′ and yi = xi.
Altogether we get that yi = Si(xi) and thus

(y1, . . . , yn) = SBox(x1, . . . , xn)
Part1
= SBox(Decomp(x)) = (SBox ◦ Decomp)(x).

(16)

3rd Step. For the last part we use the definition of
Bar, Part 2, the definition of Comp and constraint (15),
which yields

Bar(x)
(1)
= (Comp ◦ SBox ◦ Decomp)(x)

= Comp(SBox ◦ Decomp(x))
Part 2
= Comp(y1, . . . , yn)

(3)
=

n∑
i=1

yibi mod p
(15)
= y.

VIII. PERFORMANCE

In this section we consider performance of plain and
zero knowledge implementations of RC. As the applica-
tion, we consider a single call to permutation RC, which
corresponds to hashing of two F elements, or computing
one node of a Merkle tree.

A. Proof System Performance

1) Gate count:
a) RC: We can make a gate estimate for the

Plookup proof system with 4-ary addition and 4-ary table
for the BLS/BN primes.
• Bricks: 7 gates per round;
• Concrete: 1 gate per element, 3 per round.

• Bars: 68 gates per element, 204 per round
– decomposition: 13 add gates
– composition: 13 add gates
– table: 42 gates.

Total: 7 · 6 + 3 · 7 + 204 = 267 gates to process two Fp

elements of data. The pST case uses only 25 si so the
total number of gates is 265.

b) Poseidon: Poseidon-128 [31] with 2 inputs,
which needs 438 gates for the same setting: each full
round needs 9 quadratic gates and 3 addition gates,
whereas each partial round needs 3 quadratic and 3
addition gates. Total count is 12 · 8 + 57 · 6 = 438.

c) Rescue: Rescue with 2 inputs requires 16 full
founds, which together utilize 268 quadratic gates. In
addition, each (out of 16) round carries two matrix multi-
plications, i.e. 6 4-ary additions. The total Plonk/Plookup
gate count is then 364. Rescue-Prime, a new variant
of Rescue, requires only 14 rounds and, thus, is 12%
cheaper.

d) Sinsemilla: SINSEMILLA is parameterized by k
that determines the lookup table length 2k and the same
number of EC generators P0, P1, . . . , P2k−1. A hash of
tk-bit M = (M1,M2, . . . ,Mt), t < 254 is defined as

H(M) = (Q+
∑
i≤t

[2t−i]PMi)x,

where Q is some EC point, + is EC addition, [a] is the
EC scalar multiplication by a, ()x is the x-coordinate of
the curve.

The SINSEMILLA authors provide only a gate count
tailored to a concrete IVC framework Halo2 (which is
certainly possible for RC as well). In order to compare
apples to apples, we take their system4 of 5t quadratic
equations and a single t-ary addition of message de-
composition. Accounting for 4-ary addition gates, we
obtain that SINSEMILLA needs 7t + t/2 addition gates,
5t multiplication gates, and t lookup gates. For k = 10
and t = 51 we obtain 510-bit message input, for which
the total gate count is about 370+250+50 = 670 regular
Plookup gates.

B. Plain Implementation Performance

We implemented RC in pure Rust using the ff ce
library5 for field operations. Further, we re-implemented
POSEIDON and Rescue with a statesize of 3 words and
Feistel-MiMC using ff ce to compare them to RC in
a fair setting. We further compare RC to pure Rust
implementations of traditional hash algorithms6, and

4https://zcash.github.io/orchard/design/circuit/gadgets/sinsemilla.
html

5https://docs.rs/ff ce/0.13.1/ff ce/
6https://github.com/RustCrypto/hashes
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compare it to SINSEMILLA using an implementation
found in the Zcash/Orchard repository on Github, and
to a Pedersen Hash implementation from librustzcash7.
We benchmark input sizes of at least 512-bit (i.e., two
field elements). We, thus, benchmark one permutation
call for all symmetric hash functions, except for Feistel-
MiMC for which we require two. All benchmarks where
obtained on a Linux Desktop PC with an Intel i7-
4790 CPU (3.9 GHz) and 16 GB RAM using stable Rust
version 1.53 and the target-cpu=native flag. The
resulting benchmarks can be found in Table II, code to
reproduce them is publicly available [1].

TABLE II: Plain performance comparison of different
hash functions in Rust.

Hashing algorithm BN BLS ST
ns ns ns ns

Reinforced Concrete - 3 284 3 262 1 032
Concrete Layer - 44.8 44.4 36.8
Bricks Layer - 146.0 157.0 93.4
Bars Layer - 1 982 1 980 214.1

POSEIDON - 19 464 18 564 17 643
Rescue - 415 230 446 980 359 510
Rescue-Prime - 362 870 391 560 294 660
Feistel-MiMC - 33 800 35 847 28 594

SINSEMILLA 131 460 - - -
Pedersen Hash 39 807 - - -
SHA-256 366.5 - - -
Blake2b 245.1 - - -
Blake2s 219.5 - - -
SHA3-256 392.3 - - -

As Table II shows, the plain performance of RC
highly depends on the choice of the prime field, more
specifically, how elements can be decomposed. The bars
layer for pST can be evaluated by using only one
biginteger division8, whereas a generic decomposition,
i.e., for pBN254 and pBLS12, requires significantly more.
The result is a runtime difference by a factor of 3 for the
total hashing time. Compared to the previous state-of-the-
art one can observe that RC is significantly faster. More
concretely, RC is faster than the previously fastest hash
function over finite fields (i.e., POSEIDON) by a factor
of 5 for pBN254 and pBLS12, and by a factor 12 for the
pST prime field. The SINSEMILLA hash algorithm, which
also leverages lookup tables for a faster plain evaluation,
is thereby slower than RC by a factor of up to 125,
while the traditional Pedersen Hash is only slower by
a factor of 37. Compared to fast binary hash function,
RC is only slower by a factor of 5 than Blake2s, the

6https://github.com/zcash/orchard, slightly modified to actually use
the lookup tables in plain evaluation.

7https://github.com/zcash/librustzcash
8We implemented divisions using precomputed reciprocals for all

prime fields.

fastest benchmarked hashing algorithm. Blake2s in turn
however requires 7 times more Plookup gates than RC.
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APPENDIX

A. Bijectivity of Bricks

Given α1, α2, β1, β2 ∈ Fp such that

α2
i − 4 · βi is a non-quadratic residue mod p,

for each i ∈ {1, 2}, the generalized Bricks function is
defined as follows:

Bricks(x1, x2, x3)

= (xd1, x2(x21 + α1x1 + β1), x3(x22 + α2x2 + β2)).
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This function is invertible. Indeed, given
Bricks(x1, x2, x3) = (y1, y2, y3), we have

x1 = y
1/d
1 , x2 =

y2
(x21 + α1 · x1 + β1)

,

x3 =
y3

(x22 + α2 · x2 + β2)
,

where
(1) x 7→ xd is invertible due to the assumption on d,
(2) z2 + αi · z + βi 6= 0 for each z ∈ Fp due to the

definition of αi, βi. In particular, the only possible
solutions of this equation would be

z± =

(
−αi ±

√
α2
i − 4 · βi

)
/2,

which do not exist due to the fact that α2
i − 4 · βi

is not a square.

B. Bijectivity of Bar

Lemma 3. The function Bar permutes Fp.

Proof. We work with the standard representations of Fp

and Zs1 , . . . ,Zsn . For R := Zs1 × . . .× Zsn let

R<p := {(z1, . . . , zn) ∈ R :

n∑
i=1

zibi < p}.

The idea of the proof reads as follows: we show that

1) Decomp is injective and Decomp(Fp) ⊆ R<p;
2) SBox(R<p) ⊆ R<p and deduce that SBox per-

mutes R<p;
3) Comp is injective on R<p.

With these statements, it follows at once that the function
Bar : Fp → Fp given by

Bar = Comp ◦ SBox ◦ Decomp

is injective and hence surjective as well. In particular, we
see that Decomp and Comp are indeed inverse functions
over R<p and Fp.

Ad (1), (3): the statement Decomp(Fp) ⊆ R<p is
a direct consequence of the definition of Decomp. For
the injectivity of Decomp we show that it has a left
inverse function on R<p which is precisely given by
Comp restricted to R<p. Indeed, for x ∈ Fp it holds

(Comp ◦ Decomp)(x) = Comp(x1, . . . , xn)

=

n∑
i=1

xibi mod p =

n∑
i=1

xibi = x.

The second equality is just the definition of Comp, the
third equality uses the fact that Decomp(Fp) ⊆ R<p,

and the fourth equality is true by definition of Decomp.
Similarly, we obtain for (z1, . . . , zn) ∈ R<p

(Decomp ◦ Comp)(z1, . . . , zn)

= Decomp(

n∑
i=1

zibi mod p)

= Decomp(

n∑
i=1

zibi) = (z1, . . . , zn)

and hence that Comp restricted to R<p has the left
inverse Decomp.

Ad (2): Since SBox is the parallel application of n
smaller bijections it is clearly injective. The only asser-
tion to prove is hence the inclusion SBox(R<p) ⊆ R<p.
Let (x1, x2, . . . , xn) ∈ R<p and let (y1, . . . , yn) =
(S(x1), . . . , S(xn)) denote the image under SBox. Now
recall that v = mini vi where (v1, v2, . . . , vn) =
Decomp(p − 1), and let m be the smallest index such
that xm < v. If there is no such m, then all S-boxes S
are identity functions and the assertion holds. If such an
m exists, then for all i < m we have yi = S(xi) = xi by
the definition of the Si. Moreover, for i = m we have
ym = S(xm) < v ≤ vm . For the remaining part we
highlight the following property of our decomposition
(which has an analogous counterpart in ordinary base-b
expansion): for every 1 ≤ k ≤ n it holds

n∑
i=k+1

(si − 1)bi =

n∑
i=k+1

(si − 1)
∏
l>i

sl

=

n∑
i=k+1

( ∏
l>i−1

sl −
∏
l>i

sl

)
=
∏
l>k

sl − 1 = bk − 1.

Informally speaking, this translates to the statement “the
sum of the maximal values of the first l = n − k least
significant positions equals the value of the next greater
significant position minus 1”. We use this fact and deduce

n∑
i=1

yibi =

m−1∑
i=1

yibi + ymbm +

n∑
i=m+1

yibi︸ ︷︷ ︸
<bm

<

m−1∑
i=1

xibi + (ym + 1)bm ≤
m−1∑
i=1

xibi + vmbm

≤
m−1∑
i=1

vibi + vmbm ≤ p− 1.

Hence, SBox(x1, . . . , xn) ∈ R<p which implies that
SBox permutes R<p. The second last inequality uses the
property that for u ∈ Fp with u ≤ p−1, the decomposi-
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tions (u1, . . . , un) and (v1, . . . , vn) = Decomp(p−1) ∈
R satisfy for any 1 ≤ k ≤ n the inequality

k∑
i=1

uibi ≤
k∑

i=1

vibi.

In other words, “if u is smaller than or equal to v, the
sum of the values of any first k most significant digits
of u is smaller than or equal to the corresponding sum
for v.” For u = v, the statement is obvious. For u 6= v,
there is at least one index 1 ≤ i ≤ n with ui < vi; let
t denote the minimal index with this property. If k < t,
then

∑k
i=1 uibi =

∑k
i=1 vibi by definition of t. If k ≥ t

then
k∑

i=1

uibi =

t−1∑
i=1

uibi + utbt +

k∑
i=t+1

uibi

<

t−1∑
i=1

uibi + (ut + 1)bt ≤
t−1∑
i=1

vibi + vtbt

≤
k∑

i=1

vibi.

C. The SBox function

In Eq. (4), f : Fp′ → Fp′ denotes the non-identity part
of each S-box Si. Since Si shall be a permutation of Zsi ,
we also need f to be a permutation of Fp′ . In particular,
when f is represented as a univariate polynomial over
Fp′ it needs to have a high degree and a dense polyno-
mial description (i.e., many non-zero coefficients). Other
properties (e.g., high nonlinearity) are not needed in
this context, because security against the corresponding
attacks is already achieved using the Bricks layer
(through large-word operations). We apply the following
technique to choose the function f .

1) We choose the smallest d ∈ N such that d is prime,
d = 2n − 1 for some n ∈ N, and gcd(d, p′ − 1) =
1. The last requirement ensures that the resulting
polynomial is a permutation polynomial over Fp′ .

2) we compute the r-fold composition

f(X) := (fr ◦ fr−1 ◦ · · · ◦ f1)(X) ∈ Fp′ [X] ,

where fi(X) := (X + ci)
d for random ci ∈ Fp′ .

In the second step, we set r = 2 dlogd(p′)e, and we want
to reach a degree of p′−2 and p′−1 non-zero coefficients.
If either of these conditions is not fulfilled, we sample
a new set of r constants c1, c2, . . . , cr and apply the
above function f again until the resulting polynomial is
dense and of maximum degree. In our experiments, both
conditions are fulfilled after only a small number of trials.

We note that the final representation of f is similar to
the polynomial representation of the MiMC permutation
[6], where the key is set to a known constant.

We practically evaluated the algebraic properties of
the resulting S-box Si when embedded in Fn′

2 , where
n′ := dlog2(p′)e. As expected, in our experiments we
observed that the algebraic degree of Si is n′ (note that
Si embedded in Fn′

2 is not a permutation).9

For the sake of completeness, the full S-box definition
is given in auxiliary files.

In this section, we analyze the security of our design
against known attacks on bijective transformations rele-
vant in the hash function and encryption settings.

D. Statistical Attacks

Firstly, we show that our design is secure against
statistical attacks, including the differential one and its
variants, the linear attack and the rebound attack. In
order to achieve this goal, we make use of the same
strategy originally proposed for HADESMiMC and PO-
SEIDON. That is, we make use only of the Bricks
and of the Concrete components in order to guarantee
security against statistical attack. In particular, here we
consider a variant of the RC permutation denoted by RC′

in which the middle component Bricks-Concrete-
Bars-Concrete-Bricks is replaced with a single
Bricks, i.e.,

RC′ := Concrete(8) ◦ Bricks ◦ Concrete(7)

◦ Bricks ◦ Concrete(6) ◦ Bricks ◦ Concrete(3)

◦ Bricks ◦ Concrete(2) ◦ Bricks ◦ Concrete(1).

We claim that if a sponge hash function instantiated with
RC′ is secure against the statistical attacks proposed in
this section, then it is also secure if it is instantiated with
the full RC permutation RC instead. This is a reasonable
assumption, since RC exhibits the same structure, but
increases the number of nonlinear components.

1) Differential Cryptanalysis: Differential cryptanaly-
sis [17], [18] and its variations are the most widely used
techniques to analyze symmetric-key primitives. Given
pairs of inputs with some fixed input differences, differ-
ential cryptanalysis considers the probability distribution
of the corresponding output differences produced by the
cryptographic primitive. Let δI , δO ∈ Ft

p be respectively
the input and the output differences through a function
F over Ft

p. The differential probability (DP) of having

9The algebraic degree refers to the maximum degree of all compo-
nent functions.
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a certain output difference δO given a particular input
difference δI is equal to

Prob(δI → δO) =
|{x ∈ Ft

p | F (x+ δI)− F (x) = δO}|
pt

.

As our design is an iterated scheme, a cryptanalyst
searches for ordered sequences of differences over any
number of rounds that are called differential character-
istics/trails. Assuming the independence of the rounds,
the DP of a differential trail is the product of the
DPs of its one-round differences. We claim that the
security against differential attacks is achieved if every
differential characteristic has a probability smaller than
p−2. This is due to the fact that many characteristics
can be used together in order to set up the attack, which
means that a probability of p−1 may not be sufficient to
provide security.

To show that our scheme is secure against this attack,
we start by considering the maximum differential prob-
ability (DPmax) of each component of the Bar. As it is
well known,

DPmax(x 7→ xd) = (d− 1)/p.

Instead, let us consider the other component.

Lemma 4. Let α, β ∈ Fp \ {0} such that α2− 4β is not
a square modulo p. Let F : F2

p → Fp be defined as

F (x, y) = x(y2 + αy + β).

For each input difference δI = (δI,x, δI,y) ∈ F2
p\{(0, 0)}

and output difference δO ∈ Fp, we have that

Prob(δI → δO) ≤


2
p if δI,y = 0

or δI,x = δO = 0,
p−1
p2 < 1

p otherwise.

In particular, if δI,y = 0, then δO cannot be equal to
zero.

Proof. Given δI = (δI,x, δI,y) and δO, we
look for the number of solutions (x, y) for

(δI,x + x)
(
(δI,y + y)2 + α(δI,y + y) + β

)
− x(y2 + αy + β)

= δI,x
(
δ2I,y + δI,y(2y + α) + (y2 + αy + β)

)
+ xδI,y

(
δI,y + (2y + α)

)
= ∆O.

We analyze separately the following cases:
1) If δI,y = 0 and δI,x 6= 0, we have

δI,x
(
y2 + αy + β

)
= δO. Since y2 + αy + β 6= 0,

y2 + α · y + β − (δO/δI,x) = 0

can have at most 2 solutions y (for each x). If δO =
0, no solution exists.

2) If δI,x = 0 and δI,y 6= 0, we have
xδI,y (δI,y + (2y + α)) = δO. If δO = 0, then this
equality is satisfied by x = 0 or δI,y+(2y+α) = 0,
for a total of 2p− 1 ≤ 2p solutions. If δO 6= 0 and
y 6= −(α+ δI,y)/2, the solutions are given by

x =
δO

δI,y · (δI,y + (2y + α))
.

As a result, (δI,x, δI,y) = (0, δ) 7→ δO with
probability at most (p − 1)/p2 ≤ 1/p. This result
holds also for δO = 0.

3) If δI,x 6= 0 and δI,y 6= 0, the solutions are given by

x =
δO − δI,x ·

(
δ2I,y + δI,y · (2y + α) + (y2 + α · y + β)

)
δI,y · (δI,y + (2y + α))

if y 6= −(α+ δI,y)/2. As before, (δI,x, δI,y) 7→ δO
holds with probability at most (p− 1)/p2 ≤ 1/p.

Here we show that the best differential characteristic
over two rounds has probability at most

4(d− 1)2

p4
� p−3.

Roughly speaking, this is due to the facts that
• at least four words are active (due to the branch

number of the matrix that defines the linear layer),
• each active word affects the overall probability by

a factor proportional to p−1.
Examples of differential characteristics that achieve a
probability of ≈ p−4 are the following.

1) The third word at the input of the first
round is active, while all words at the
input of the second round are active, i.e., 0

0
δ1

 Br.(·)−−−−→

 0
0
δ2

 Conc.(·)−−−−−→

 δ2
δ2
2δ2

 Br.(·)−−−−→

δ3δ4
δ5

 for

fixed differences δ1, . . . , δ5 ∈ Fp. Note that if δ2 is
not fixed, then the probability increases by a factor
p (but it is still much smaller than p−2);

2) At the input of both rounds, the second
and the third words are active, i.e., 0
δ1
δ2

 Br.(·)−−−−→

 0
δ3
δ4

 Conc.(·)−−−−−→

 δ3 + δ4
2δ3 + δ4
δ3 + 2δ4

 Br.(·)−−−−→

δ5δ6
δ7


for fixed differences δ1, . . . , δ7 ∈ Fp such that
δ3 + δ4 = δ5 = 0. Note that if δ3 is not fixed, then
the probability increases by a factor p (but it is still
much smaller than p−2);

3) The first word at the input of the first round
is active, while the second and the third words
at the input of the second round are active, i.e.,δ10

0

 Br.(·)−−−−→

δ2δ3
0

 Conc.(·)−−−−−→

2δ2 + δ3
δ2 + 2δ3
δ2 + δ3

 Br.(·)−−−−→

δ4δ5
δ6

 for
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fixed differences δ1, . . . , δ6 ∈ Fp such that 2 · δ2 +
δ3 = δ4 = 0. Note that if δ2 is not fixed, then the
probability increases by a factor p (but it is still
much smaller than p−2).

Note that this last case is consistent with the branch
number of the matrix. Indeed, note that if the first word
is active at the input of Bricks, then the two first words
in output are active. This means that the number of active
input and output words of the matrix is four.

If the difference in the first words is non-zero in both
rounds, then the probability of the differential charac-
teristic is much smaller than p−4, since at least other
three words (for a total of five active words) are active
at the input of the Bricks layer (in order to satisfy the
branch number of the matrix, and due to the definition
of the Bricks layer).

As a result, two (consecutive) rounds are sufficient to
provide security against differential attacks.

2) Truncated and Impossible Differential Attacks:
Truncated differential cryptanalysis [40] is a variant of
classical differential cryptanalysis, in which the attacker
can specify only part of the difference between pairs
of texts. Impossible differential cryptanalysis was intro-
duced by Biham et al. [16] and Knudsen [41]. It exploits
differentials that occur with probability zero.

Working over a single round, we have that 0
0

∆1

 Bricks(·)−−−−−−→

 0
0

∆2

 Concrete(·)−−−−−−−→

 ∆2

∆2

2 ·∆2


and∆1

0
0

 Bricks(·)−−−−−−→

∆2

∆3

0

 Concrete(·)−−−−−−−→

2 ·∆2 + ∆3

∆2 + 2 ·∆3

∆2 + ∆3


with probability 1 for (unknown) differences
∆1,∆2,∆3 ∈ Fp (the case in which the middle
word is active is analogous). In a similar way, if we
activate the second and the third words in input, we
have 0

∆1

∆2

 Bricks(·)−−−−−−→

 0
∆3

∆4

 Concrete(·)−−−−−−−→

 ∆3 + ∆4

2 ·∆3 + ∆4

∆3 + 2 ·∆4


with probability 1 for (unknown) differences
∆1, . . . ,∆4 ∈ Fp. If the two active words are in
a different position in the input, then no truncated
differential with probability 1 exists.

Note that in both these cases, we we have a linear rela-
tion among the output differences. Such linear relation is
then broken/lost after the next Bricks layer. The only
way to extend them is that one output word is equal to
zero. However, this happens with with probability 1/p,
exactly as in the case in which the outputs are generated

by a pseudo-random permutation (besides the fact that
p is our security level). Due to this fact and since the
Concrete layer is defined via the multiplication with
a MDS matrix, it is not possible to extend the truncated
differentials just given over more rounds (even when
working with a nonzero probability ∈ (1/p, 1)). See also
the analysis given in the previous section for the case of
differential cryptanalysis in which the middle differences
are not fixed.

At the same time, it is possible to set up an
impossible differential over two rounds, since 0

0
∆1

 Conc.◦Br.(·)−−−−−−−−→

 ∆2

∆2

2∆2

 6=
 0

0
∆3

 Conc.◦Br.(·)−−−−−−−−→

 ∆4

∆4

2∆4


holds with probability 0 for (unknown) differences
∆1, . . . ,∆4 ∈ Fp. It follows that three rounds are
sufficient to provide security against truncated and
impossibledifferential attacks.

3) Meet-in-the-Middle and Boomerang Attacks:
Meet-in-the-Middle and boomerang [50] distinguishers
(and their variants) rely on chaining two good differ-
ential/linear trails. Due to the differential/linear analysis
just proposed, we claim that our analyzed scheme RC′

with six rounds (composed of Bricks layers) is secure
against these attacks.

4) Rebound Attacks: Rebound attacks were first pre-
sented in [43], [47]. The goal of this attack is to find
two (input, output) pairs such that the two inputs satisfy a
certain (truncated) input difference and the corresponding
outputs satisfy a certain (truncated) output difference.
The rebound attack consists of two phases, called in-
bound and outbound phase. According to these phases,
the internal permutation of the hash function is split
into three subparts. Let P : Ft

p → Ft
p be the target

permutation, then P = Pfw ◦ Pin ◦ Pbw. The inbound
phase is in the middle of the permutation and the two
outbound phases are next to the inbound part. In this
inbound part, the attacker tries to cover a middle part
in the construction separately, which would otherwise be
expensive in a classical differential attack. Having found
input and output differences such that this part is covered
in the inbound phase, the attacker now extends the trail
in both directions in the outbound phase.

Here we show that RC′ (namely, the 6-round variant
of the RC permutation in which the middle component
Middle is replaced with a single Bricks layer) is
secure against the rebound attack.

a) Inbound Phase: From Appendix D2 we know
that there exist truncated differentials with a probability
of 1 over a single round. However, these cannot be
extended over more rounds, not even when considering
probabilities between 1/p and 1. Hence, using an inside-

16



out approach, the attacker can cover two rounds in the
inbound phase.

In order to apply the outbound phase and due to the
truncated differential trails that we found, it is desirable
that the difference in at least one word of the trail found
by the inbound phase is equal to zero. Again, this cannot
be achieved with a probability larger than 1/p. Hence,
we claim that the attacker cannot cover three (or more)
rounds in the inbound phase.

b) Outbound Phase: In order to extend the trails
found in the inbound phase, we make use of the results
regarding the truncated differentials presented before.
Since one round can always be covered with a truncated
differential characteristic of probability 1, the attacker
can skip two rounds (one in each direction).

c) Conclusion: Due to the analysis just proposed,
we claim that RC′ instantiated with six rounds is secure
against the rebound attack. Since the hash sponge func-
tion instantiated with this weaker permutation is secure
with respect to this attack, the same result holds when
considering the original permutation RC.

5) Linear and Zero-Correlation Cryptanalysis: In the
case of Boolean functions, linear cryptanalysis [46]
searches for a linear combination of input, output and (if
present) key bits that is unbalanced, i.e., biased towards
0 or towards 1. In the Fp case, linear cryptanalysis [9]
consists in the search of a linear combination of input,
output, and (if present) key words that is unbalanced, i.e.,
biased towards an element of Fp with probability higher
than 1/|Fp| = 1/p. Linear attacks pose no threat to
our design instantiated with the same number of rounds
previously defined for classical differential cryptanalysis.

Similar to impossible differential attack, zero-
correlation attacks are a variant of linear attacks that
exploit linear hulls with a zero correlation [19]. In
general, those linear hulls are found by a miss-in-the-
middle approach. E.g., the approach is to combine two
trails that propagate some deterministic properties in
order to ensure that the property cannot be fulfilled. Due
to our security analysis against linear and differential
cryptanalysis and since our analyzed scheme RC′ has
four Bricks layers, we claim that finding impossible
differentials or zero-correlation linear hulls is infeasible.

6) Square/Integral & Mixture Differential Attacks:
Integral cryptanalysis is an attack first applied
on SQUARE [24] and is particularly efficient
against block ciphers based on strong-aligned SPN
schemes [14], as AES and AES-like schemes. It
is based on the analysis the propagation of sums
of values. In the case of our scheme, only one

round can be covered with such an attack, e.g.10CC
A

 Bricks(·)−−−−−−→

CC
A

 Concrete(·)−−−−−−−→

AA
A

 Bricks(·)−−−−−−→

?
?
?

 , since

both Bricks and Concrete mix the components of
the state.

Other distinguishers that are particular efficient against
strong-aligned schemes are the “multiple-of-n” one [34]
and the mixture differential cryptanalysis [30]. By ap-
propriate choices of a number of input pairs (related by
particular linear/differential relations), it is possible to
make sure that the number of times that the difference
of the resulting output pairs lie in a particular subspace
is always a multiple of n. Since both Bricks and
Concrete mix the components of the state, we claim
that these attacks pose no threat to our design.

E. Invariant Subspace Attack and Fixed Points

1) Invariant Subspaces: Following [33], we say that
a subspace S ⊆ Ft

p is invariant for a function F over Ft
p

if and only if for each a ∈ Ft
p there exists b ∈ Ft

p such
that

F (S + a) = S + b.

For completeness, we mention that this definition is a
slightly different from the one proposed in [44], [45],
which is based on the existence of weak keys.

Here we analyze the security of our scheme against
this attack, since recent proposals have shown vulnera-
bilities [15], [35]. We start with the Bars layer. Since
Bars operates independently on each input word, we
have the following:
• All subspaces in which only a single word is active

(e.g., S = 〈(0, 1, 0)〉 are invariant through it. In
other words, if the difference in one word is equal
to zero, it remains equal to zero after Bars.

• The subspaces of the form 〈(1, 1, 0)〉, or 〈(1, 0, 1)〉,
or 〈(0, 1, 1)〉, or 〈(1, 1, 1)〉 are invariant since the
same function f defined in Eq. (4) is applied on
each word.

At the same time, note that the subspaces of the form e.g.
〈(1, a, 0)〉 for fixed a ∈ Fp \ {0, 1} cannot be invariant
due to the fact that the initial linear relation is destroyed
by the function SBox.

We point out that there are invariant affine subspaces
even if no word is fully active. In particular, remember
that Bars = Comp ◦ SBox ◦ Decomp, where
• both Comp : Zs1 × . . . × Zsn → Fp and
Decomp : Fp → Zs1 × . . . × Zsn are lin-
ear operations that works at word level, where

10We use the standard notation A,C,B, ? to denote respectively an
active word, a constant one, a balanced one, and an unknown one. We
recall that an active word is also balanced.
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Comp(x) = (x1, . . . , xn) ∈ Zs1 × . . . × Zsn and
where

∑n
i=1 xi · bi = x for given bi, and

• SBox operates independently on each xi.
Hence, the affine subspace I defined as

I :=

{∑
i

xi · bi ∈ Fp

∣∣∣∣∣ ∀x1 ∈ Zs1 and x2, . . . , xn fixed

}
is an invariant affine subspace through Bars (note that
the values of xi for i ≥ 2 change, but this would only
change the coset and not the subspace itself). Other
invariant affine subspaces can be defined similarly.

Due to the analysis just proposed, there is no invariant
subspace for Bricks. This means that our scheme is
secure against the invariant subspace attack.

2) Fixed Points: For completeness, we also discuss
the case of fixed points. We say that a function F over
Ft
p has a fixed point x ∈ Ft

p if F (x) = x.
The only fixed points for Bricks are (0, 0, 0),

(±1, 0, 0) and (±
√
−1, 0, 0). Indeed:

• the only fixed points for x 7→ x5 are the ones that
satisfy x · (x4 − 1) = 0, that is {0,±1,±

√
−1}.

Note that −1 is a quadratic residue modulo p if and
only if p = 1 mod 4, which is exactly the case of
pBLS381 and pBN254.

• the only fixed points for x 7→ x · (y2 + α · y + β)
for a given fixed y ∈ F3

p are (1) {(0, y) ∈ F2
p |

∀y ∈ Fp} and (2) {(x, y) ∈ F2
p | ∀x ∈ Fp and y ∈

Fp s.t. (y2 + α · y + β) = 1}. Since this second
condition is never satisfied for y ∈ {0,±1,±

√
−1}

(that is, the fixed points of the first component), it
follows that the only fixed points are the ones given
before.

In the case of Bar, there are several fixed points for
each S-box Si as defined in Eq. (4). In particular, the
input x of Si remains unchanged if x ≥ p′. Since there
are n independent S-boxes Si for each one of the three
words, it follows that the number of fixed points for Bar
are (

n∏
i=1

(si − p′)

)3

,

over p3. As a concrete example, when using pBLS381 ≈
2256, the probability for a random point to be a fixed
point is (

2134.54

2256

)3

≈ 2−364.4.

Recall that the Bar layer plays no role in our security
arguments for RC regarding statistical attacks. When
considering algebraic attacks on the middle layer, we
have not found a way to exploit these fixed points in
attacks on the middle part of RC. Since the fixed point

property is not described by a low-degree equation, we
expect that, for instance, finding a solution to the CICO
problem with Bar inputs being fixed points is much
higher than without these restrictions.

F. Gröbner Basis Cryptanalysis

Gröbner Basis Cryptanalysis usually proceeds in two
stages: first, one models the (cryptographic) permutation
as a system of equations with unknown parameters as
variables. Subsequently, a Gröbner basis for the (zero-
dimensional) ideal defined by the polynomials describing
the equation system is computed. In practice, the second
step is divided into a triad of computations, namely
(1) Compute a Gröbner basis for the (zero-dimensional)

ideal with respect to a fast term ordering, usually
degrevlex;

(2) convert the degrevlex-Gröbner basis into a lex-
Gröbner basis using the FGLM algorithm;

(3) factor the univariate polynomial in the lex-Gröbner
basis and determine the solutions for the corre-
sponding variable. Back-substitute those solutions,
if needed, to determine solutions for other variables.

Each of the above three steps comes with its own
complexity estimate. Under the assumption of a semi-
regular input system f1, . . . , fk in l variables with de-
grees d1, . . . , dm, it is well-known that the Hilbert series
of the ideal corresponding to the input system is related
to its Gröbner basis, see [10]. The first index with non-
positive coefficient of the expression

Sk,l(z) =

∏k
i=1(1− z)di

(1− z)l

is the degree of regularity dreg and it is an upper bound
for the highest degree element in a Gröbner basis with
respect to a graded ordering. Thus, dreg helps to establish
the following upper bound for the complexity C (count-
ing finite field operations) of computing a Gröbner basis
of a semi-regular input system:

CGB(l, dreg) ∈ O
((

l + dreg
l

)ω)
, (17)

where ω denotes the linear algebra constant. The terms
hidden by O(·) are relatively small, that’s why for our
analysis we drop the O(·) and use the expression directly.
Our security analysis consists of three steps:

1) We present a system of algebraic equations for the
Bar layer and count its contribution to the degree
of regularity dreg of a primitive that contains Bar.

2) We run a series of attacks on the three-layer ver-
sion Concrete ◦ Bar ◦ Concrete with a much
smaller prime p and argue that already for this
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weakened version the attack complexity is as high
as (CGB(l, dreg/3))1/2.

3) The Middle part based on the same small prime
can not be attacked (the GB computation does not
finish within reasonable time) so we expect that
attacking this part is significantly more expensive.
a) Algebraic Representation of Bar: For an alge-

braic model of Bar, we “embed” Zsi in Fp for all
1 ≤ i ≤ n. This embedding is not an embedding in
the strict mathematical sense of a structure preserving
injective map. Instead, given the respective standard
representations of Zsi and Fp, we treat the elements
0, 1, . . . , si− 1 ∈ Zsi as elements in Fp. As a result, we
suggest the following system of 2n+2 equations over Fp

in the 2n+ 2 variables x, y, x1, . . . , xn, y1, . . . , yn ∈ Fp

to model the Bar function:
x = x1b1 + x2b2 + · · ·+ xnbn

0 = psi(xi), 1 ≤ i ≤ n
yi = Li(xi), 1 ≤ i ≤ n
y = y1b1 + y2b2 + · · ·+ ynbn

,

where
• psi(xi) :=

∏si−1
k=0 (xi−k) is a polynomial of degree

si that vanishes at {0, 1, . . . , si−1}; psi ensures that
xi ∈ Zsi ;

• Li(xi) is the interpolation polynomial of degree si−
1 for S-box Si (“embedded” in Fp), i.e.

Li(xi) :=
∑

0≤k≤si−1

Si(k)
∏

0≤j≤si−1
j 6=k

xi − j
k − j

.

Under regularity assumptions, the entire system has an
expected degree of regularity

dBarreg = 1 +

n∑
i=1

(si − 1) +

n∑
i=1

(si − 2)

= 1− n+ 2

n∑
i=1

(si − 1) ≈ 2n n
√
p.

For our BN, BLS, and FRI cases we have dBarreg > 214.
b) Algebraic Representation of Concrete◦Bar◦

Concrete: In this part we argue that already the
computational cost of the first step (i.e., computing a de-
grevlex-Gröbner basis) of a truncated version (in essence,
Concrete ◦ Bar ◦ Concrete in the CICO-setting)
of RC far exceeds the 128-bit security requirement. Our
arguments are based on empirical observations on small-
scale instances of this truncated version.

We model the composition Concrete ◦ Bar ◦
Concrete in the CICO-setting11 and suggest the fol-

11See Appendix H1 for further details.

p 47 61 71 97 109 127 131
v 5 7 7 7 7 7 7

s1, s2 7,7 8,8 8,9 10,10 10,11 11,12 11,12
dreg 28 33 35 43 45 50 50
dmag 13 13 13 15 16 19 18

dreg : dmag 2.2 2.5 2.7 2.9 2.8 2.6 2.8
M (GiB) 0.07 0.1 0.46 0.46 1.44 2.66 2.13

log T (cycles) 37 38 41 42 43 43 43
Cbit : 2 28 28 28 30 31 34 33

TABLE III: Results of Gröbner basis computations on
small-scale instances of Concrete ◦Bar ◦Concrete
in the CICO-setting for various primes p and decomposi-
tions into n = 2 buckets Zs1 , . . . ,Zsn . The table contains
the degree of regularity dreg under the assumption that the
input system is semi-regular, the timings of the Gröbner
basis computations T in cycles, the memory usage M
in Giga-byte and the complexity estimate Cbit in bits
divided by 2.

lowing system of 6n + 8 equations in 6n + 6 variables
as algebraic model:

CBCcico =



y1 = Bar(x1)

y2 = Bar(x2)

y3 = Bar(x3)

0 = Concrete−1(x1, x2, x3)[1]

0 = Concrete(y1, y2, y3)[1]

,

Here, Concrete( · , · , ·)[i] denotes the i-th word of
the state (for 1 ≤ i ≤ 3) and n describes the number of
buckets Zs1 , . . . ,Zsn in the decomposition Decomp. The
variables x1, x2, x3 and y1, y2, y3, respectively, denote
the input and output to Bars.

c) Discussion of Practical Results: In our practical
experiments we computed Gröbner bases of small-scale
instances of CBCcico for various primes p and decom-
positions into n = 2 buckets.12 Table III we present
the results of our experiments. Instead of taking dreg
for establishing the complexity estimates, we computed
Gröbner basis of several small-scale instances and ob-
served the maximum degree dmag reached during these
computations using the CAS Magma. Subsituting dreg
with dmag in above expression, results in our complexity
estimate C. We use ω = 2 and, furthermore, we take
Cbit := log2(C) to write down the complexity estimates
in Table III. Note that Cbit/2 ∼ log2 T − 10.

Our practical findings can be summarized as follows:
(i) the maximum degree dmag reached during the Gröbner
basis computations is roughly 3 times smaller than the
theoretical estimate for the maximum degree dreg; (ii)

12We conducted our experiments on a machine with Intel R© CoreTM

i5-8265U CPU @ 1.60GHz (8 cores) and 8GB RAM under 64-bit
Ubuntu 21.04 using Magma V2.26-2.
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using the empirical value dmag for establishing complex-
ity estimates, we observed that our practical experiments
run about as fast as the square root of the complexity
estimates. This yields an estimate for attacking the CBC
layer with Groebner basis: (CGB(l = 150, dreg/3 =
212.5)1/2 > 212.5·150 = 21875 which far exceeds the
security level.

G. Algebraic Attacks

Here, we show that our design is secure against
other algebraic attacks, including interpolation as well as
higher-order differential distinguishers (we highlight that
we do not claim security against zero-sum partitions). To
achieve this goal, we argue that all mentioned methods
cannot penetrate Middle. In particular, this implies that
the full permutation provides security with respect to
above mentioned cryptanalytical methods.

To rule out algebraic attacks, we introduce the follow-
ing parameters:

• dB is the degree of the Bar transformation as an
operation over Fp.

• dS is the maximum degree of the component func-
tions of the Bricks layer as an operation over Fp.

1) Interpolation Analysis: In its basic form, inter-
polation analysis aims at constructing the polynomial
representation of a given (cryptographic) function [37].
To provide resistance against interpolation, a function
must exhibit maximal degree (or a degree close to its
maximum) and a dense polynomial representation (i.e.,
a description with many non-zero coefficients).

The total degree of one word of the permutation RC
over Fp is dB ·d6S . It is enough to require dB > 2127 for
128-bit security.

A heuristic argument that dB > 2127 is that the we
define Bars on at least p′27 points in a nonlinear way.
This accounts to at least 2251 points, so the degree
should exceed 2251. We also computed the degree dB
for small-scale instances of Bar with f(x) = x−1 as
internal function f for the small S-Boxes S1, . . . , Sn and
n = 2, 3. For every instance we tested, the degree of Bar
was maximal, i.e. p − 2, with almost all coefficients of
the polynomial being non-zero. Extrapolating this trend
and since log2(p) ≈ 256 for the full-scale permutation
RC, we conclude that above requirement is far exceeded.

2) Higher-Order Differential Attack and Zero-Sum
Distinguishers: Given a vectorial Boolean function F
over Fn

2 of degree d, the higher-order differential at-
tack [42], [40] exploits the fact that∑

x∈V+v

x =
∑

x∈V+v

F (x) = 0

for each affine subspace V + v ⊆ Fn
2 of dimension

strictly bigger than d (that is, dim(V) ≥ d + 1). The
corresponding attack in the case of a prime field Fp has
been recently proposed by Beyne et al. [15]. Since this
result is related to the degree of the polynomial that
describes the permutation, we claim that the security
against the interpolation attack implies security against
this attack as well.

A possible variant of higher-order sum in the case of
permutations is the zero-sum partition distinguisher [21].
Here we explicitly state that we do not make claims about
the security of our scheme against zero-sum partitions.
This choice is motivated by the gap present in the
literature between the number of rounds of the internal
permutation that can be covered by a zero-sum partition
and by the number of rounds in the corresponding sponge
hash function that can be broken e.g. via a preimage or
a collision attack.

H. Every Building Block is Necessary

1) The Necessity of Bars: We first focus on a design
which excludes the Bars layer, and we show that a much
higher number of rounds is needed to provide security.
In order to do this, we use a Gröbner basis approach.
Further, as our permutation is used in a Sponge setting,
we consider the CICO (constrained input, constrained
output) problem. More specifically, our goal is to find
t − k variables such that the first k words of both the
input and the output of RC are zero. For a good hash
transformation, we expect this to take a workload of pk

operations when working over Fp.
In more detail, we want that

x = 0‖ · · · ‖0‖xk+1‖ · · · ‖xt

is the input of the function (where ·‖· denotes the
concatenation) and

y = RC(x) = 0‖ · · · ‖0‖yk+1‖ · · · ‖yt

is the output, and our goal is to find xk+1, · · · , xt.
Focusing on our function with t = 3 and using a single

element of approximately 256 bits for the capacity (for
a 128-bit security level), let us consider k = 1. We then
have 2 variables and only one equation. This system is
underdetermined, but we can arbitrarily fix one of the
variables. In the end, we arrive at a single equation in a
single variable.

a) Full-Round Equations.: Using this straight-
forward approach, we note that our Bricks layer has a
degree of 3. Without further considering the density of
the resulting polynomials, our final goal is to find the
roots of a univariate equation of degree 3r, where r is
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the number of rounds. Since this cost is approximately
an element in O(d3) [29], we want that

33r ≥ p =⇒ r ≥ log27(p).

For example, if p ≈ 2256, this results in r ≥ 54, which
is much larger than what our current proposal needs.

b) Intermediate Variables and Equations.: Another
possible approach is to keep the degrees low by introduc-
ing additional variables. In order to do this, we introduce
3 new variables in each round and we arrive at a system
of degree-3 equations.

Let us again assume that we use r rounds. Then, we
introduce 3(r − 1) new variables and equations. In the
end, we arrive at ne = 3(r−1)+1 degree-3 equations and
the same number of variables nv (one additional equation
for the final zero element, and the original variable xt
at the beginning). Generically, the complexity of solving
such a system is then in

O
((

Dreg + nv
nv

)ω)
,

where we set ω = 2 and where

Dreg = 1 +

ne∑
i=1

2 = 1 + 2 · (3(r − 1) + 1).

In this case, we want that(
1 + 6(r − 1) + 2 + 3(r − 1) + 1

3(r − 1) + 1

)2

=

(
9r − 5

3r − 2

)2

≥ p,

which results in r ≥ 33 for p ≈ 2256. Note that we are
not exploiting the density and general structure of the
polynomials. Indeed, when using equations which cover
single rounds, we can assume that they do not exhibit
strong pseudo-random properties, which means that the
above estimation is actually a pessimistic one (from
the attacker’s perspective). However, this is sufficient to
show the efficiency of our current proposal, since any
faster attack would only further increase the number of
rounds needed for security in the design without the
Bars layer.

2) The Necessity of Concrete: Without the
Concrete layer, we would have a weaker diffusion
over the 3 words. In particular, note that the Bricks
layer does not provide any mixing in the first word.
Hence, when omitting the Concrete layer, the sub-
spaces 〈(0, 1, 0), (0, 0, 1)〉 and 〈(0, 0, 1)〉 are invariant
through the whole permutation, independent of the num-
ber of rounds.

3) The Necessity of Bricks: Without the Bricks
layer, an attacker could work with a system of equations
over the smaller fields of the Bars layer. Moreover,
the in-word diffusion (i.e., the diffusion in a single
word) would only happen in the Bars layer, which is
weak. Further, we need the Bricks layer for statistical
arguments, since e.g. in a rebound attack both outbound
phases would be linear otherwise (when considering the
Bars layer in the inbound phase).
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