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Abstract

This paper introduces Brakedown,1 the first built system that provides linear-time SNARKs for
NP, meaning the prover incurs O(N) finite field operations to prove the satisfiability of an N -sized
R1CS instance. Brakedown’s prover is faster, both concretely and asymptotically, than prior SNARK
implementations. Brakedown does not require a trusted setup and is plausibly post-quantum secure.
Furthermore, it is compatible with arbitrary finite fields of sufficient size; this property is new amongst
implemented arguments with sublinear proof sizes.

To design Brakedown, we observe that recent work of Bootle, Chiesa, and Groth (BCG, TCC 2020)
provides a polynomial commitment scheme that, when combined with the linear-time interactive proof
system of Spartan (CRYPTO 2020), yields linear-time IOPs and SNARKs for R1CS (a similar theoretical
result was previously established by BCG, but our approach is conceptually simpler, and crucial for
achieving high-speed SNARKs). A core ingredient in the polynomial commitment scheme that we distill
from BCG is a linear-time encodable code. Existing constructions of such codes are believed to be
impractical. Nonetheless, we design and engineer a new one that is practical in our context.

We also implement a variant of Brakedown that uses Reed-Solomon codes instead of our linear-time
encodable codes; we refer to this variant as Shockwave. Shockwave is not a linear-time SNARK, but it
provides shorter proofs and lower verification times than Brakedown (it also provides a faster prover than
prior plausibly post-quantum SNARKs).

As a modest additional contribution, we observe that one can render the aforementioned SNARK zero
knowledge and reduce the proof size and verifier time from O(

√
N) to polylog(N)—while maintaining a

linear-time prover—by outsourcing the verifier’s work via one layer of proof composition with an existing
zkSNARK as the “outer” proof system.

∗This manuscript is an update to [LSTW21]. It contains substantial new results and updated presentation, including the
design and implementation of a concretely efficient error-correcting code with linear-time encoding, and associated SNARK.

1In the Transformers universe, Brakedown and Shockwave are powerful (and fast) Decepticons.



1 Introduction

A SNARK [Kil92, Mic94, GW11, BCCT12] is a cryptographic primitive that enables a prover to prove to a
verifier the knowledge of a satisfying witness to an NP statement by producing a proof π such that the size
of π and the cost to verify it are both sub-linear (ideally, at most polylogarithmic) in the size of the witness.
Given their many applications, constructing SNARKs with excellent asymptotics and concrete efficiency is a
highly active area of research. Still, one of the key bottlenecks preventing application of existing SNARKs to
large NP statements is the prover’s asymptotic and concrete cost. This has limited practical uses of SNARKs
to applications in which NP statements of interest are relatively small (for example, cryptocurrencies).

As with much of the literature on SNARKs, we focus on the following NP-complete problems: rank-1
constraint satisfiability (R1CS)2 and arithmetic circuit satisfiability over a finite field F. These problems are
powerful “intermediate representations”, in that they are amenable to efficient checking via SNARKs and are
highly expressive. For example, in theory, any non-deterministic random access machine running in time
T can be transformed into an R1CS or an arithmetic-circuit-satisfiability instance of size “close” to T . In
practice, there exist efficient transformations and compiler toolchains to transform applications of interest to
these representations [SVP+12, PGHR13, BFR+13, BCGT13, WSR+15, SAGL18a, LNS20, OBW20].

Our focus in this work is designing SNARKs for these problems with the fastest possible prover. We also
wish to avoid a trusted setup, and desire a verifier that runs in time sub-linear in the size of the R1CS
instance. Since the verifier must at least read the statement that is being proven, we allow a one-time public
preprocessing phase for general (unstructured) R1CS or circuit-satisfiability instances. In this phase, the
verifier computes a computation commitment, a cryptographic commitment to the structure of a circuit or
R1CS instance [Set20]. After the pre-processing phase, the verifier must run in time sub-linear in the size
of the R1CS instance. Furthermore, the pre-processing phase should be at least as efficient as the SNARK
prover. Subsequent works to Spartan [Set20] refer to such public preprocessing to achieve fast verification as
leveraging holography [CHM+20, COS20, BCG20].3

A second focus of our work is designing SNARKs that can operate over arbitrary (sufficiently large) finite
fields. Prior SNARKs apply over fields that are “discrete-log friendly” or “FFT-friendly”, or otherwise require
one or many multiplicative or additive subgroups of specified sizes. Yet many cryptographic applications
naturally work over fields that do not satisfy these properties. Examples include proofs regarding encryption
or signature schemes that themselves work over fields that do not satisfy the properties needed by the SNARK.
Indeed, most practically relevant elliptic curve groups are defined over fields that are not FFT-friendly. Even
in applications where SNARK designers do have flexibility in field choice, field size restrictions can still create
engineering challenges or inconveniences, as well as performance overheads. For example, they may limit the
size of R1CS statements that can be handled over the chosen field, or force instance sizes to be padded to a
length corresponding to the size of a subgroup.

In this work we design transparent SNARKs that asymptotically have the fastest possible prover, are plausibly
post-quantum secure, and work over arbitrary (sufficiently large) finite fields. To the best of our knowledge,
this latter property is new amongst implemented arguments with sublinear proof size and even quasi linear
runtime. We optimize and implement these SNARKs, and demonstrate the fastest prover performance in the
SNARK literature (even compared to SNARKs that require FFT-friendly or discrete-log–friendly fields).

Formalizing “fastest possible” provers. How fast can we hope for the prover in a SNARK to be?
Letting N denote the size of the R1CS or arithmetic-circuit-satisfiability instance over an arbitrary finite
field F,4 a lower bound on the prover’s runtime is N operations in F. This is because any prover that knows
a witness w for the instance has to at least convince itself (much less the verifier) that w is valid. We refer to
this procedure as native evaluation of the instance. So the natural goal, roughly speaking, is to achieve a
SNARK prover that is only a constant factor slower than native evaluation. Such a prover is said to run in
linear-time.

2R1CS is implicit in the QAPs of Gennaro et al. [GGPR13], but was made explicit in subsequent works [SBV+13, BCR+19].
3For “structured” computations, our work, like several prior works, can avoid this pre-processing phase.
4The size of an arithmetic-circuit-satisfiability instance is the number of gates in the circuit. The size of an R1CS instance of

the form Az ◦Bz = Cz is the number of non-zero entries in A,B,C, where ◦ denotes the Hadamard (entry-wise) product.
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Achieving a linear-time prover may sound like a simple and well-defined goal, but it is in fact quite subtle to
formalize, because one must be precise about what operations can be performed in one “time-step”, as well
as the soundness error achieved and the choice of the finite field.

In known SNARKs, the bottleneck for the prover (both asymptotically and concretely) is typically one or
more of the following operations (we discuss exceptions later): (1) Performing an FFT over a vector of length
O(N). (2) Building a Merkle-hash tree over a vector consisting of O(N) elements of F. (3) Performing a
multiexponentiation of size O(N) in a cryptographic group G; in this case, the field F is of prime order p and
G is typically an elliptic curve group (or subgroup) of order p.

Should any of these operations count as “linear-time”?

FFTs. It is clear that an FFT of length Θ(N) over F should not count as linear-time, because the fastest
known algorithms require Θ(N logN) operations over F, which is a logN factor, rather than a constant
factor, larger than native evaluation.

However, the remaining operations are somewhat trickier to render judgment upon, because they do not refer
to field operations.

Merkle-hashing. Regarding (2), a first observation is that to build a Merkle tree over a vector of O(N)
elements of F, computing O(N) cryptographic hashes is necessary and sufficient, assuming the hash function
takes as input O(1) elements of F. However, this is only “linear-time” if hashing O(N) elements of F can be
done in time comparable to O(N) operations over F. It is not clear whether or not applying a standard hash
function such as SHA-256 or BLAKE to hash a field element should be considered comparable to performing
a single field operation.

Theoretical work of Bootle, Cerulli, Ghadafi, Groth, Hajiabadi and Jakobsen [BCG+17] sidesteps this issue
by observing that (assuming the intractability of certain lattice problems over F2, specifically finding a
low-Hamming vector in the kernel of a sparse matrix), a collision-resistant hash family of Applebaum,
Haramaty, Ishai, Kushilevitz, and Vaikuntanathan [AHI+17] is capable of hashing strings consisting of k � λ
bits in O(k) bit operations, with security parameter λ.5 This means that a vector of O(N) elements of F can
be Merkle-hashed in O(N log |F|) bit operations, which Bootle et al. [BCG+17] consider comparable to the
cost of O(N) operations in F.

The aforementioned hash functions appear to be of primarily theoretical interest because they can be orders
of magnitude slower than standard hash functions (e.g., SHA-256 or BLAKE). Hence, in this paper our
implementations make use of standard hash functions, and with this choice, Merkle-hashing is not the concrete
bottleneck in our implementations. Accordingly, and to simplify discussion, we consider our implemented
Merkle-hashing procedure to be linear-time, even if this may not be strictly justified from a theoretical
perspective for the reasons described above.

Multiexponentation. Pippenger’s algorithm can perform an O(N)-sized multiexponentiation in a group
G of size ∼ 2λ by performing O(N · λ/ log (N · λ)) group operations. Typically, one thinks of the security
parameter λ as ω(logN) (so that 2λ is superpolynomial in N , ensuring the intractability of problems such as
discrete logarithm in G), and so O(N · λ/ log (N · λ)) group operations is considered ω(N) group operations.
Each group operation is in practice at least as expensive (in fact, several times slower) than a field operation,6

and hence for purposes of this work, we do not consider this to be linear time.

However, note that for a fixed value of the security parameter λ, the cost of a multiexponentiation of size N
performed using Pippenger’s algorithm scales only linearly (in fact, sublinearly) with N . That is, Pippenger’s
algorithm incurs Θ(N · (λ/ log(Nλ))) = Θλ(N/ logN) group operations and in turn this cost is comparable
up to a constant factor to the same number of operations over a field of size exp(λ) (see Footnote 6). In
practice, protocol designers fix a cryptographic group (and hence fix λ), and then apply the resulting protocol
to R1CS instances of varying sizes N . For this reason, systems (such as Spartan [Set20]) whose dominant
prover cost is a multiexponentiation of size N will scale (sub-)linearly as a function of N . Specifically, in the

5The security of these hash functions is based on novel lattice assumptions.
6Typically, an operation in the elliptic-curve group G requires performing a constant number of field operations within a field

that is of similar size to, but different than, then prime-order field F over which the circuit or R1CS instance is defined.

2



experimental results [Set20], Spartan’s prover exhibits the behavior of a linear-time prover (as the cost of
native evaluation of the instance also scales linearly as a function of N).

Nonetheless, as a theoretical matter, λ should be thought of as ω(logN), and hence we do not consider a
multiexponentation of size N to be a linear-time operation.

In summary, in this paper we consider FFTs and multiexponentations of size O(N) not to be linear-time
operations, but do consider Merkle-hashing of vectors of size O(N) to be linear-time.

Related work. Closely related prior works are as follows (we cover additional related work in Section 10).

Building on Bootle et al. [BCG+17], Bootle, Chiesa, and Groth [BCG20] give an interactive oracle proof (IOP) [BCS16]
with constant soundness error, in which the prover’s work is O(N) finite field operations for an N -sized
R1CS instance over any finite field of size Ω(N).7,8 Applying standard transformations to their IOP, one can
obtain a SNARG in the random oracle model with similar prover costs, or an interactive argument assuming
linear-time computable cryptographic hash functions [AHI+17]. Unlike prior SNARGs (even those with a
quasi -linear time prover), the resulting protocol does not require the field to be FFT-friendly nor discrete-log
friendly. Their IOP construction does not achieve zero-knowledge nor polylogarithmic proofs and verification
times (the proof sizes and verification times are Oλ(N1/t), where t is a constant, and not Oλ(logN) or Oλ(1)).
Bootle, Chiesa, and Liu [BCL20] address these issues by achieving zero-knowledge as well as polylogarithmic
proof sizes and verification times (a more detailed discussion of the relationship between our results and those
of [BCL20] is in Section 10). Both [BCG20] and [BCL20] are theoretical in nature; they do not implement
their schemes nor report concrete performance results.

There is also very recent work related to our goal of working over arbitrary finite fields. Ben-Sasson, Carmon,
Kopparty, and Levit [BCKL21] improve the efficiency of FFT-like algorithms that apply over fields with no
smooth order root of unity, by a factor of exp(log∗N). An explicit motivation for their work is to improve
the efficiency of known SNARKs that perform FFTs (e.g., Fractal [COS20]) when operating over “non-FFT-
friendly” fields. These results do not eliminate the superlinearity of the prover’s runtime in their target
SNARKs. Depending on the SNARK used, this also does not totally eliminate the need to work over fields
possessing multiplicative or additive subgroups of appropriate sizes (e.g., SNARKs such as Fractal [COS20]
require a subgroup of size Θ(N) not only to perform FFTs, but for other reasons as well.) The algorithms
given in [BCKL21] also perform significant pre-computation that is field-specific. We seek (and achieve)
high-speed SNARKs that require only black-box access to the addition and multiplication operations of the
field, with the only additional information required being a lower bound on the field size to ensure soundness.

In summary, existing works leave open the problem of designing a concretely efficient SNARK that works
over arbitrary (sufficiently large) finite fields, much less one with a linear-time prover.

1.1 Results and contributions

We address the above problems with Brakedown, a new linear-time SNARK that we design, implement,
optimize, and experimentally evaluate. Concretely, Brakedown achieves the fastest SNARK prover in the
literature, with additional important properties such as the ability to prove and verify R1CS instances over
arbitrary fields and plausible post-quantum security. In addition, we implement and evaluate Shockwave, a
variant of Brakedown that reduces proof sizes and verification times at the cost of sacrificing a linear-time
prover, but nonetheless provides a faster prover than prior plausibly post-quantum secure SNARKs.

Design of linear-time SNARKs. We first distill from [BCG20] a polynomial commitment scheme with
a linear-time commitment procedure, and show that it satisfies extractability, a key property required in the

7An interactive oracle proof (IOP) [BCS16, RRR16] is a generalization of an interactive proof, where in each round, the
prover sends a string as an oracle, and the verifier may read one or more entries in the oracle.

8To achieve a soundness error that is negligible in the security parameter λ, one must restrict to R1CS instances over a
“sufficiently large” finite field i.e., where |F| = 2Θ(λ), or else sacrifice the linear-time prover. Since [BCG20] achieves a linear-time
prover only when |F| > exp(λ), the prover’s work in bit operations has an implicit dependence on λ. Of course, in this case
the cost of native evaluation in terms of bit operations has the same dependence on λ. The problem of achieving a linear-time
prover in an IOP or a SNARK for R1CS over arbitrary fields remains open.
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context of SNARKs (the commitment scheme itself is little more than a rephrasing of the results in [BCG20],
though [BCG20] did not analyze extractability).9 This improves over the prior state-of-the-art polynomial
commitment schemes [KZG10, ZGK+17, WTS+18, ZXZS20, BFS20, SL20, Lee20] by offering the first in
which the time to commit to a polynomial is linear in the size of the polynomial.

We then describe a linear-time polynomial IOP for R1CS that is implicit in Spartan [Set20], a work that
predates [BCG20]. Finally, we combine the linear-time polynomial IOP for R1CS with the linear-time
polynomial commitment scheme in a standard way [BFS20, CHM+20] to obtain linear-time SNARKs.

From an asymptotic perspective, the above methodology recovers the main result of [BCG20], namely an
IOP with a linear-time prover that, for security parameter λ, and for an N -sized R1CS instance over any field
of size exp(λ) and any fixed ε > 0 produces a proof of size Oλ(N ε) that can be verified in time Oλ(N ε)—after
a one-time preprocessing step, which requires O(N) finite field operations. As a secondary asymptotic result,
we observe that one can render the aforementioned SNARK zero knowledge and reduce the proof size and
verifier time to at most polylogarithmic—while maintaining a linear-time prover—by outsourcing the verifier’s
work via one layer of proof composition with an existing zkSNARK as the “outer” proof system.

We believe that our approach is simpler and more direct than [BCG20]. In particular, we are able to reuse an
existing high-speed, linear-time polynomial IOP for R1CS from Spartan [Set20]. This is important both for
simplicity and for concrete efficiency. Moreover, it means that our goal of building a concretely fast SNARK
prover boils down to optimizing our linear-time polynomial commitment scheme.

A new and concretely fast linear-time encodable code. A major component in the linear-time poly-
nomial commitment scheme that we distill from [BCG20] is a linear-time encodable linear code. Unfortunately,
to the best of our knowledge, existing linear-time encodable codes are highly impractical. We therefore
design a new linear-time encodable code that is concretely fast in our context. Our code is based on classic
results [GDP73, Spi96, DI14], but designing this code was non-trivial and represents a significant technical
contribution. We achieve a fast linear code that works over any (sufficiently large) field by leveraging the
following four observations: (1) In our setting, to achieve sublinear sized proofs, it is sufficient for the code
to achieve relative Hamming distance only a small constant, rather than very close to 1 (higher minimum
distance would improve Brakedown’s proof length by a constant factor, but would not meaningfully reduce
the prover time); (2) Efficient decoding is not necessary, as the prover and verifier only execute the encoding
procedure of the code (this observation also appears in prior work [BCG20]); (3) We can (and indeed want
to) work over large fields, say, of size at least 2127; and (4) We can use randomized constructions instead of
deterministic constructions of pseudorandom objects, so long as the probability that the construction fails to
satisfy the necessary distance properties is cryptographically small (e.g., ≤ 2−100).

Observations (1)–(4) together allow us to strip out much of the complexity of prior constructions. For example,
Spielman’s celebrated work [Spi96] is focused on achieving both linear-time encoding and decoding, while
Druk and Ishai [DI14] focus on improving the minimum distance of Spielman’s code. On top of the this, we
further optimize and simplify the code construction, and provide a detailed, quantitative analysis to show
that the probability our code fails to achieve the necessary minimum distance is cryptographically small.

Implementation, optimization, and experimental results. We implement the aforementioned linear-
time SNARK, yielding a system we call Brakedown. Because our linear-time code works over any (sufficiently
large) field, and the polynomial IOP from Spartan does as well, Brakedown also works over any field;
Brakedown is the first built system to achieve this property. It is also the first built system with a linear-time
prover and sub-linear proof sizes and verification times.

We also implement Shockwave,10 a variant of Brakedown that uses Reed-Solomon codes instead of the fast
linear-time code introduced above. Since Shockwave uses Reed-Solomon codes, it is not a linear-time SNARK
and requires an FFT-friendly finite field, but it provides concretely shorter proofs and lower verification times
than Brakedown and is faster than prior plausibly post-quantum secure SNARKs.

9We focus on multilinear polynomials, but the scheme generalizes to arbitrary polynomials such as univariate polynomials (see
e.g., [Lee20]).

10A prior version of this paper [LSTW21] referred to a (less optimized version) of Shockwave as Cerberus.
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Both Shockwave and Brakedown contain simple but crucial concrete optimizations to the polynomial
commitment scheme to reduce proof sizes. Neither Shockwave’s nor Brakedown’s implementations are
currently zero-knowledge. However, Shockwave can be rendered zero-knowledge using standard techniques
with minimal overhead [AHIV17, XZZ+19, CFS17]. Brakedown could be rendered zero-knowledge while
maintaining linear prover time by using one layer of recursive composition with zkShockwave (or another
zkSNARK); it is also plausible that it could be rendered zero-knowledge more directly using techniques from
[BCL20]. We leave the completion of zero-knowledge implementations to near-term future work.

In terms of experimental results, Brakedown achieves a faster prover than all prior SNARKs for R1CS. Its
primary downside relative to prior SNARKs is that its proofs are on the larger side, but they are still far
smaller than the size of the NP-witness for R1CS instance sizes beyond several million constraints. Shockwave
reduces Brakedown’s proof sizes and verification times by about a factor of 6×, at the cost of a slower prover
(both asymptotically and concretely). Nonetheless, Shockwave already features a concretely faster prover than
prior plausibly post-quantum SNARKs. Furthermore, although Shockwave’s proof sizes are somewhat larger
than most prior schemes with sublinear proof size, they are surprisingly competitive with prior post-quantum
schemes such as Fractal [COS20] and Aurora [BCR+19] that have lower asymptotic proof size (polylog(N)
rather than Θλ(

√
N)). Its verification times are competitive with discrete-logarithm based schemes, and in

fact superior to prior plausibly post-quantum SNARKs.

On knowledge soundness and extractable polynomial commitments. The work of Bootle, Chiesa,
and Groth [BCG20] is concerned only with obtaining an IOP for R1CS satisfying standard soundness; it
does not consider knowledge soundness. To transform the IOP into a succinct non-interactive argument of
knowledge (SNARK), one actually requires the IOP to satisfy knowledge soundness (equivalently, one requires
the polynomial commitment scheme that we derive from [BCG20] to satisfy a property called extractability).
As mentioned earlier, in this work, we observe that this is indeed the case.

The polynomial commitment scheme that we derive from [BCG20] makes use of any linear error-correcting
code with constant rate and relative distance. We provide two different knowledge extractors, depending
on whether or not the code used has a polynomial-time decoding procedure. The first knowledge extractor
uses the code’s decoding procedure, and is extremely simple and moreover “straight-line” (the extractor need
not rewind the prover). The second knowledge extractor is more complex and non-straight-line, but works
without invoking the code’s decoding procedure.

The Reed-Solomon code used in Shockwave does have efficient decoding (e.g., via the Berlekamp-Welch
algorithm) and hence Shockwave is a SNARK for which the knowledge extractor is straight-line. The code
used in Brakedown does not have a (known) efficient decoding procedure. However, Brakedown is still a
SNARK, but not via a straight-line extractor. Section 5 provides details.

1.2 Roadmap

Section 3 describes a linear-time polynomial IOP for R1CS implicit in Spartan [Set20]. Section 4 describes a
linear-time polynomial commitment scheme distilled from [BCG20] with proof size N ε for any desired constant
ε > 0. Section 5 gives a self-contained description and security analysis (including extractability) of the the
polynomial commitment scheme when ε = 1/2, along with important concrete optimizations. (Appendix A
provides a concretely improved security analysis of the polynomial commitment scheme when instantiated
with the Reed-Solomon code as used in one of our two implemented systems, namely Shockwave.) Section 6
describes the construction and analysis of our concretely efficient linear-time-encodable linear error-correcting
code used in our polynomial commitment scheme implementation within Brakedown. Section 7 extends the
polynomial commitment scheme to handle sparse polynomials efficiently using techniques from Spartan [Set20].
Section 8 obtains linear-time SNARKs for R1CS by combining the polynomial IOP from Spartan with the
polynomial commitment schemes derived in Sections 4-7.

Performance results for our implemented SNARKs (Brakedown and Shockwave) are detailed in Section 9.
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2 Preliminaries

We use F to denote a finite field, λ to denote the security parameter, and negl(λ) to denote a negligible
function in λ. Unless we specify otherwise, |F| = 2Θ(λ).

Polynomials. We recall a few basic facts about polynomials. Detailed treatment of these facts can be
found elsewhere [Tha20].

• A polynomial g over F is an expression consisting of a sum of monomials where each monomial is the
product of a constant (from F) and powers of one or more variables (which take values from F); all
arithmetic is performed over F.

• The degree of a monomial is the sum of the exponents of variables in the monomial; the (total) degree of
a polynomial g is the maximum degree of any monomial in g. Furthermore, the degree of a polynomial
g in a particular variable xi is the maximum exponent that xi takes in any of the monomials in g.

• A multivariate polynomial is a polynomial with more than one variable; otherwise it is called a univariate
polynomial. A multivariate polynomial is called a multilinear polynomial if the degree of the polynomial
in each variable is at most one.

• A multivariate polynomial g over a finite field F is called low-degree if the degree of g in each variable is
bounded above by a constant.

Definition 2.1. Suppose f : {0, 1}` → F is a function that maps `-bit strings to an element of F. A

polynomial extension of f is a low-degree `-variate polynomial f̃(·) such that f̃(x) = f(x) for all x ∈ {0, 1}`.

Definition 2.2. A multilinear extension (MLE) of a function f : {0, 1}` → F is a low-degree polynomial
extension where the extension is a multilinear polynomial.

It is well-known that every function f : {0, 1}` → F has a unique multilinear extension, and similarly every
`-variate multilinear polynomial of F extends a unique function mapping {0, 1}` → F . In the rest of the

document, for a function f , we use f̃ to denote the unique MLE of f .

For an `-variate multilinear polynomial f̃ extending a function f , let vf denote the 2`-dimensional vector

containing all 2` evaluations of f . We refer to vf as the representation of f̃ in the Lagrange basis, because the

entries of vf are the (unique) set of coefficients of f̃ when f̃ is expressed as a linear combination of Lagrange
basis polynomials.

The sum-check protocol. Recall that the sum-check protocol [LFKN90] is an interactive proof system
for proving claims of the form: T =

∑
x∈{0,1}` G(x), where G is `-variate polynomial over F with the degree

in each variable at most µ, and T ∈ F. In the sum-check protocol, the verifier VSC interacts with the prover
PSC over a sequence of ` rounds. At the end of this interaction, VSC must evaluate G(r) where r ∈R F` is
a vector of random field elements chosen by VSC . Other than evaluating G(r), VSC performs just O(` · µ)
field operations. As in prior work, it is natural to view the sum-check protocol as a mechanism to transform

claims of the form
∑
x∈{0,1}m G(x)

?
= T to the claim G(r)

?
= e, where e ∈ F. This is because in most cases,

the verifier uses an auxiliary protocol to verify the latter claim.

Rank-1 constraint satisfiability (R1CS). R1CS refers to the following problem.

Definition 2.3. An R1CS instance is a tuple (F, A,B,C,M,N, io), where A,B,C ∈ FM×M , M ≥ |io|+ 1,
io denotes the public input and output, and there are at most N = Ω(M) non-zero entries in each matrix.

We denote the set of R1CS (instance, witness) pairs as:

RR1CS = {〈(F, A,B,C, io,m, n), w〉 : A · (w, 1, io) ◦B · (w, 1, io) = C · (w, 1, io)}

In the rest of the manuscript, WLOG, we assume that M and N are powers of 2, and that M = |io| + 1.
Throughout this manuscript, all logarithms are to base 2.
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3 A linear-time polynomial IOP for R1CS from Spartan

This section recapitulates the results of Spartan [Set20] using a subsequent formalism, a polynomial IOP [BFS20].
This is a variant of IOPs [BCS16, RRR16] where in each round, the prover sends a polynomial as an oracle,
and the verifier query may request an evaluation of the polynomial at a point in its domain.

The following theorem formalizes the polynomial IOP at the core of Spartan.

For an R1CS instance, X = (F, A,B,C,M,N, io), we interpret the matrices A,B,C as functions mapping
domain {0, 1}logM × {0, 1}logM to F in the natural way. That is, an input in {0, 1}logM × {0, 1}logM is
interpreted as the binary representation of an index (i, j) ∈ [M ] × [M ], where [M ] := {1, . . . ,M} and the
function outputs the (i, j)’th entry of the matrix.

Theorem 1 ([Set20]). For any finite field F, there exists a polynomial IOP for RR1CS, with the following
parameters, where M denotes the dimension of the R1CS coefficient matrices, and N denotes the number of
non-zero entries in the matrices:

– soundness error is O(logM)/|F|

– round complexity is O(logM);

– at the start of the protocol, the prover sends a single (logM − 1)-variate multilinear polynomial W̃ , and

the verifier has a query access to three additional 2 logM -variate multilinear polynomials Ã, B̃, and C̃;

– the verifier makes a single evaluation query to each of the four polynomials W̃ , Ã, B̃, and C̃, and
otherwise performs O(logM) operations over F;

– the prescribed prover performs O(N) operations over F to compute its messages over the course of the

polynomial IOP (and to compute answers to the verifier’s four queries to W̃ , Ã, B̃, and C̃).

Proof. Let s = logM . For an R1CS instance, X = (F, A,B,C,M,N, io) and a purported witness W , let
Z = (W, 1, io). As explained prior to the theorem statement, we can interpret A,B,C as functions mapping
{0, 1}s × {0, 1}s to F, and similarly we interpret Z and (1, io) as functions with the following respective

signatures in the same manner: {0, 1}s → F and {0, 1}s−1 → F. It is easy to check that the MLE Z̃ of Z
satisfies

Z̃(X1, . . . , XlogM ) = (1−X1) · W̃ (X2, . . . , XlogM ) +X1 · (̃1, io)(X2, . . . , XlogM ) (1)

Indeed, the right hand side of Equation (1) is a multilinear polynomial, and it is easily checked that

Z̃(x1, . . . , xlogM ) = Z(x1, . . . , xlogM ) for all x1, . . . , xlogM (since the first half of the evaluations of Z are
given by W and the second half are given by the vector (1, io)). Hence, the right hand side of Equation (1)
must be the unique multilinear extension of Z.

From [Set20, Theorem 4.1], checking if (X,W ) ∈ RR1CS is equivalent, except for a soundness error of logM/|F|
over the choice of τ ∈ Fs, to checking if the following identity holds:

0
?
=

 ∑
x∈{0,1}s

ẽq(τ, x) ·

 ∑
y∈{0,1}s

Ã(x, y) · Z̃(y)

 ·
 ∑
y∈{0,1}s

B̃(x, y) · Z̃(y)

− ∑
y∈{0,1}s

C̃(x, y) · Z̃(y)

 ,

(2)
where ẽq is the MLE of eq : {0, 1}s × {0, 1}s → F:

eq(x, e) =

{
1 if x = e

0 otherwise.

That is, if (X,W ) ∈ RR1CS, then Equation (2) holds with probability 1 over the choice of τ , and if
(X,W ) 6∈ RR1CS, then Equation (2) holds with probability at most O(logM/|F|) over the random choice of τ .
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Consider computing the right hand side of Equation (2) by applying the sum-check protocol to the polynomial

g(x) := ẽq(τ, x) ·

 ∑
y∈{0,1}s

Ã(x, y) · Z̃(y)

 ·
 ∑
y∈{0,1}s

B̃(x, y) · Z̃(y)

− ∑
y∈{0,1}s

C̃(x, y) · Z̃(y)

.
From the verifier’s perspective, this reduces the task of computing the right hand side of Equation (2) to
the task of evaluating g at a random input rx ∈ Fs. Note that the verifier can evaluate ẽq(τ, rx) unassisted
in O(logM) field operations, as it is easily checked that ẽq(τ, rx) =

∏s
i=1 (τirx,i + (1− τi)(1− rx,i)). With

ẽq(τ, rx) in hand, g(rx) can be computed in O(1) time given the three quantities∑
y∈{0,1}s

Ã(rx, y) · Z̃(y),

∑
y∈{0,1}s

B̃(rx, y) · Z̃(y),

and ∑
y∈{0,1}s

C̃(rx, y) · Z̃(y).

These three quantities can be computed by applying the sum-check protocol three more times in parallel,
once to each of the following three polynomials (using the same random vector of field elements, ry ∈ Fs, in
each of the three invocations):

Ã(rx, y) · Z̃(y),

B̃(rx, y) · Z̃(y),

C̃(rx, y) · Z̃(y).

To perform the verifier’s final check in each of these three invocations of the sum-check protocol, it suffices for
the verifier to evaluate each of the above 3 polynomials at the random vector ry, which means it suffices for

the verifier to evaluate Ã(rx, ry), B̃(rx, ry), C̃(rx, ry), and Z̃(ry). The first three evaluations can be obtained

via the verifier’s assumed query access to Ã, B̃, and C̃. Z̃(ry) can be obtained from one query to W̃ and one

query to (̃1, io) via Equation (1).

In summary, we have the following polynomial IOP:

1. P → V: a (logM − 1)-variate multilinear polynomial W̃ as an oracle.

2. V → P: τ ∈R Fs

3. V ↔ P: run the sum-check reduction to reduce the check in Equation (2) to checking if the
following hold, where rx, ry are vectors in Fs chosen at random by the verifier over the course of
the sum-check protocol:

• Ã(rx, ry)
?
= vA, B̃(rx, ry)

?
= vB , and C̃(rx, ry)

?
= vC ; and

• Z̃(ry)
?
= vZ .

4. V:

• check if Ã(rx, ry)
?
= vA, B̃(rx, ry)

?
= vB , and C̃(rx, ry)

?
= vC , with one query to each of Ã, B̃, C̃;

• check if Z̃(ry)
?
= vZ by checking if: vZ = (1− ry[1]) · vW + ry[1] · (̃io, 1)(ry[2..]), where ry[2..]

refers to a slice of ry without the first element of ry, and vW ← W̃ (ry[2..]) via an oracle query
(see Equation (1)).
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Completeness. Perfect completeness follows from perfect completeness of the sum-check protocol and the
fact that Equation (2) holds with probability 1 over the choice of τ if (X,W ) ∈ RR1CS.

Soundness. Applying a standard union bound to the soundness error introduced by probabilistic check in
Equation (2) with the soundness error of the sum-check protocol [LFKN90], we conclude that the soundness
error for the depicted polynomial IOP as at most O(logM)/|F|.

Round and communication complexity. The sum-check protocol is applied 4 times (although 3 of the
invocations occur in parallel and in practice combined into one [Set20]). In each invocation, the polynomial
to which the sum-check protocol is applied has degree at most 3 in each variable, and the number of variables
is s = logM . Hence, the round complexity of the polynomial IOP is O(logM). Since each polynomial has
degree at most 3 in each variable, the total communication cost is O(logM) field elements.

Verifier time. The asserted bounds on the verifier’s runtime are immediate from the verifier’s runtime in
the sum-check protocol, and the fact that ẽq can be evaluated at any input (τ, rx) ∈ F2s in O(logM) field
operations.

Prover Time. [Set20] shows how to implement the prover’s computation in the polynomial IOP in O(N)
F-ops using prior techniques for linear-time sum-checks [Tha13, XZZ+19] (see also [Tha20, Section 7.5.2] for

an exposition). This includes the time required to compute Ã(rx, ry), B̃(rx, ry), C̃(rx, ry), and Z̃(ry) (i.e., to

compute answers to the verifier’s queries to the polynomials Ã, B̃, C̃, and Z̃).

4 Linear-time commitments for multilinear polynomials

Overview. In this section, we observe that a core technique in the work of Bootle, Chiesa, and Groth [BCG20]
can be used, in a straightforward manner, to build a non-interactive argument of knowledge for a specific
type of inner product relations between two vectors over F, where one of the vectors is committed with a
binding commitment and the other is the tensor product of a constant number of smaller vectors. Specifically,
an untrusted prover commits to a vector z ∈ FN by producing an Oλ(1)-sized commitment, and then later
proves that v = 〈q, z〉, where q ∈ FN is any vector that is a tensor product of t vectors of length N1/t (for a
constant t) and v ∈ F. For N -sized vectors, the cost to commit and to later prove an inner product relation
are both O(N) operations over F; the size of an evaluation proof and the time to verify are both Oλ(N1/t)
where λ is the security parameter (the verification time is sub-linear because it exploits the tensor structure
in q).

We further observe that the above non-interactive proof system implies a polynomial commitment scheme
for multilinear polynomials with efficiency characteristics stated earlier. In a nutshell, one can express the
evaluations of a multilinear polynomial using the special inner product operation (§4).11

Our focus here is on multilinear polynomials, but the scheme described here generalizes to other polynomials
such as univariate polynomials (see e.g., [Lee20]). Figure 1 compares the asymptotics of this scheme with
prior polynomial commitment schemes.

Background on tensor IOPs. Recall that an interactive oracle proof (IOP) [BCS16, RRR16] is a
generalization of an interactive proof (IP), in which in each round the i prover sends a (possibly long) message
string Πi, and the verifier is given query access to Πi. [BCG20] define a generalization of IOPs called tensor
IOPs. To distinguish tensor IOPs from the standard notion of IOPs that they generalize, [BCG20] refers to
standard IOPs as point-query IOPs.

Definition 4.1 ([BCG20]). A (F, k, t)-tensor IOP is an IOP except for the following modifications: (1) the
prover’s message in each round i consists of a message mi that the verifier reads in full, followed optionally

11A similar polynomial commitment scheme is implicit in earlier work of Rothblum and Ron-Zewi [RR20], albeit with a worse
dependence of polynomial evaluation proof lengths on both the security parameter λ and the constant parameter t.
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by a vector Πi ∈ Fkt ; and (2) a verifier query to Πi may request the value 〈q1 ⊗ q2 ⊗ . . .⊗ qt,Πi〉 for a chosen
round i and chosen vectors q1, . . . , qt ∈ Fk.

Polynomial evaluation as a tensor query to the coefficient vector. For an `-variate multilinear
polynomial g represented in the Lagrange basis via a vector z ∈ Fn (where n = 2`), given an evaluation point
r ∈ F`, g(r) can be evaluated using the following tensor product identity:

g(r) = 〈((r1, 1− r1)⊗ (r2, 1− r2)⊗ . . .⊗ (r`, 1− r`)), z〉.

The above equality expresses g(r) as the inner product of the coefficient vector z of the polynomial with
another vector described as a tensor product of dimensionality `. However, the identity generalizes to any
dimensionality t ≤ ` (for simplicity of presentation, we assume henceforth that t|`). Specifically, given r ∈ F`

and t ∈ (1, `), there always exist vectors q1, . . . , qt ∈ Fn1/t

(which can be computed from r using O(n1/t)
operations over F) such that the following holds:

(r1, 1− r1)⊗ (r2, 1− r2)⊗ . . .⊗ (r`, 1− r`) = (q1 ⊗ q2 ⊗ . . .⊗ qt). (3)

Equation (3) implies:
g(r) = 〈(q1 ⊗ q2 ⊗ . . .⊗ qt), z〉.

Indexed relations. The completeness and soundness requirements of IPs and IOPs are typically defined
with respect to a language L. For languages, completeness requires that for every input x ∈ L, there exists a
prover strategy that causes the verifier to output 1 with high probability. Soundness requires that for every
input x 6∈ L and for every prover strategy, the verifier outputs 0 with high probability.

Recall that a relation R is a set of tuples (X,W ), where X is the instance and W is the witness. Moreover, for
any relation R, there is a corresponding language LR, which is the set of X for which there exists a witness W
such that (X,W ) ∈ R. In this section, we consider a generalized notion of relations called indexed relations,
which are implicit in [Set20] but formalized in [COS20]. An indexed relation R is a set of triples (I,X,W ),
where I is the index, X is the instance, and W is the witness. Naturally, there is an indexed language LR
associated with an indexed relation, namely the set of tuples (I,X) for which there exists a witness W such
that (I,X,W ) ∈ R.

Tensor IOPs for multilinear polynomial evaluation. Consider the following indexed relation.

Definition 4.2 (Multilinear evaluation indexed relation). The indexed relation RMLE is the set of all triples

(I,X,W ) = ((F, Z), (`, r, e),⊥),

where F is a finite field, Z ∈ FN for n = 2`, r ∈ F`, v ∈ F, such that

e = 〈Z, (r1, 1− r1)⊗ (r2, 1− r2)⊗ . . .⊗ (r`, 1− r`)〉.

Theorem 2. For a finite field F and positive integers k, t, there exists a (F, k, t)-tensor IOP for RMLE with
the following parameters, where N = 2` = kt and ` is a parameter in an instance:

– soundness error is 0;

– round complexity is O(1);

– index length is O(N) elements in F;

– query complexity is O(1);

– the prover performs O(N) operations over F; and

– the verifier performs O(N1/t) operations over F, given a tensor-query access to the index.
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commit time commit size PEval πEval VEval assumptions

vSQL-VPD [ZGK+17]† O(N) G-exp Oλ(1) O(N) G-exp Oλ(logN) Oλ(logN) q-type
BP-PC [BBB+18, BGH19] O(N) G-exp Oλ(1) O(N) G-exp Oλ(logN) Oλ(N) DLOG

Hyrax-PC [WTS+18] O(N) G-exp Oλ(
√
N) O(N) F-ops Oλ(logN) Oλ(

√
N) DLOG

Virgo-VPD [ZXZS20] O(N logN) F-ops Oλ(1) O(N logN) F-ops Oλ(log2N) Oλ(log2N) CRHF

Kopis-PC [SL20] O(N) G-exp Oλ(1) O(N) F-ops Oλ(logN) Oλ(
√
N) SXDH

Dory-PC [Lee20] O(N) G-exp Oλ(1) O(N) F-ops Oλ(logN) Oλ(logN) SXDH

Scheme in Section 4 O(N) F-ops Oλ(1) O(N) F-ops Oλ(N1/t) Oλ(N1/t) CRHF
(distilled from [BCG20]) O(N) hashes

† Requires trusted setup

Figure 1: Asymptotic efficiency of prior polynomial commitment schemes. The depicted costs are for an `-variate
multilinear polynomial (N = 2`) over a finite field F, where |F| = exp(Θ(λ)) and λ ≥ ω(logN) is the security parameter.
F-ops refers to field multiplications or additions; G-exp refers to an exponentiation in a group G whose scalar field is
F. The parameter t refers to a constant. For non-interactivity, all schemes except vSQL-VPD [ZGK+17] assume the
random oracle model; vSQL-VPD assumes q-type, knowledge of exponent assumptions. Furthermore, to achieve a
linear-time commit time by using a linear-time hash function for Merkle hashes, our scheme requires assuming the
hardness of certain lattice problems, which are not listed in the “assumptions” column for brevity (§1). Finally, one
can reduce the verifier time and proof size in our scheme by using one layer of proof composition with an existing
zkSNARK [Gro16, Set20, SL20], but we do not depict those variants here.

Proof. Suppose that the evaluation point is r ∈ F`. Consider the following tensor IOP.

1. I: a vector Π specifying the coefficients of the `-variate multilinear polynomial in the Lagrange
basis.

2. V → P: a tensor query (q1, . . . , qt) to P, where (r1, 1 − r1) ⊗ (r2, 1 − r2) ⊗ . . . ⊗ (r`, 1 − r`) =
(q1 ⊗ q2 ⊗ . . .⊗ qt). This query is answered with an evaluation e ∈ F equal to 〈(q1, . . . , qt),Π〉.

The index consists of O(N) elements in F. The round complexity and the query complexity of the depicted
tensor IOP is O(1); soundness error is 0. In terms of time complexity, the verifier starts with an evaluation

point r ∈ F`, which it transforms to a set of vectors (q1, . . . qt), where each qi ∈ FN1/t

; this costs O(N1/t)
operations over F to the verifier. The prover performs O(N) operations over F to compute a response to the
tensor query.

The theorem below requires a linear code, and to achieve the stated asymptotics, the linear code must support
linear-time encoding. As noted in prior work, explicit constructions of such codes are known [Spi96, DI14].
One can also use Reed-Solomon codes, but it introduces a superlinear encoding time and hence a superlinear
prover. In fact, in the case of t = 2 and using Reed-Solomon codes, the tensor IOP (Theorem 3) and resulting
polynomial commitment scheme (Theorem 4) given below is implicit in Ligero [AHIV17] and explicitly
distilled in [Tha20, Section 9.6].

Theorem 3. For security parameter λ, given an (F, k, t)-tensor IOP for RMLE with N = 2` = kt (where
` is the size parameter) and fixed value of t, and a linear code over F with rate ρ = k/n, relative distance
δ = d/n, and encoding time k, there exists a point-query IOP for RMLE with the following parameters:

– soundness error is O(dt/|F|+ (1− δt

2 )λ);

– round complexity is O(1);

– index length is O(N) elements in F;

– query complexity is O(N1/t);

– the indexer performs O(N) operations over F;

– the prover performs O(N) operations over F; and
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– the verifier performs O(N1/t) operations over F.

Proof. Applying [BCG20, Theorem 3] to the tensor IOP from Theorem 2 provides the desired result.

Theorem 4. For security parameter λ and a positive integer t, given a hash function that can compute a
Merkle-hash of N elements of F with the same time complexity as O(N) F-ops, there exists a linear-time
polynomial commitment scheme for multilinear polynomials. Specifically, there exists an algorithm that, given
as input the coefficient vector of an `-variate multilinear polynomial over F over the Lagrange basis, with
N = 2`, commits to the polynomial, where:

– the size of the commitment is Oλ(1); and

– the running time of the commit algorithm is O(N) operations over F.

Furthermore, there exists a non-interactive argument of knowledge in the random oracle model to prove the
correct evaluation of a committed polynomial with the following parameters:

– the running time of the prover is O(N) operations over F;

– the running time of the verifier is Oλ(N1/t) operations over F; and

– the proof size is Oλ(N1/t).

Proof. The desired commit algorithm and its claimed efficiency follows from from applying the BCS trans-
form [BCS16] (with a linear-time hash function [AHI+17, BCG+17]) to the indexer in the point-query IOP
from Theorem 3 (obtained by using any linear-time encodable linear error-correcting code of constant rate
and relative distance). Similarly, the non-interactive argument of knowledge along with its claimed efficiency
follows from applying the BCS transform [BCS16] (with a linear-time hash function [AHI+17, BCG+17]) to
the point-query IOP from Theorem 3.

Theorem 4 obtains the claimed polynomial commitment scheme using the tensor-IOP-to-point-IOP trans-
formation of [BCG20] as a black box, and hence provides the reader with essentially no information about
how the polynomial commitment scheme actually operates. For concreteness, we provide a self-contained
description of the polynomial commitment scheme and a quantitative analysis for the case of t = 2 in Section 5,
which is the case used in our implementations. The analysis given there also considers extractability properties
of the commitment scheme, and describes several simple but crucial optimizations to the scheme that result,
concretely, in an orders-of-magnitude reduction in proof length relative to a naive implementation.

We remark that the case of t = 2 case suffices to achieve all of our results that make use of one layer of
recursive composition (as to achieve these results, it is sufficient for the proof length and verifier time12 of
the “inner SNARK” to be smaller than N by any factor that dominates λ/ logN). The distilled polynomial
commitment scheme for the t = 2 case is already arguably implicit in the argument system (for the arithmetic
circuit satisfiability problem) of [BCG+17], an ancestor of [BCG20].

5 Polynomial commitment scheme for t = 2

Notation. g is a multilinear polynomial with n coefficients. We assume for simplicity that n = m2 for some
integer m. Let u denote the coefficient vector of g in the Lagrange basis (equivalently, u is the vector of all
evaluations of g over inputs in {0, 1}logn). Recalling that [m] = {1, . . . ,m}, we can naturally index entries of
u by elements of the set [m]2. As per section 4, for any input r to g there exist vectors q1, q2 ∈ Fm such that

g(r) = 〈(q1 ⊗ q2), u〉.

For each i ∈ [m], let us view u as an m × m matrix, and let ui denote the ith row of this matrix, i.e.,
ui = {ui,j}j∈[m].

12More precisely, the size of the verifier’s checks when implemented as an R1CS instance.
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Let N = ρ−1 ·m, and let Enc : Fm → FN denote the encoding function of a linear code with constant rate
ρ > 0 and constant relative distance γ > 0. We assume that Enc runs in time proportional to that required to
perform O(N) operations over F. We assume for simplicity that Enc is systematic, since explicit systematic
codes with the properties we require are known [Spi96].

Commitment phase. Let û = {Enc(ui)}i∈[m] ∈
(
FN
)m

denote the vector obtained by encoding each row
of u. In the IOP setting, the commitment to u is just the vector û, i.e., the prover sends û to the verifier, and
the verifier is given point query access to û. In the derived polynomial commitment scheme in the plain or
random oracle model, the commitment to u will be the Merkle-hash of the vector û. As with u, we may view
û as a matrix, with ûi ∈ FN denoting the ith row of û for i ∈ [m].

Testing phase. Upon receiving the commitment message, the IOP verifier will interactively test it to
confirm that each “row” of u is indeed (close to) a codeword of Enc. We describe this process as occurring in
a separate “testing phase” so as to keep the commitment size constant in the plain or random oracle models.
In practice, the testing phase can occur during the commit phase, during the evaluation phase, or sometime
in between the two.

The verifier sends the prover a random vector r ∈ Fm, and the prover sends a vector u′ ∈ Fm claimed to
equal the random linear combination of the m rows of u, in which the coefficients of the linear combination
are given by r. The verifier reads u′ in its entirety.

Next, the verifier tests u′ for consistency with û. That is, the verifier will pick ` = Θ(λ) random entries of
the codeword Enc(u′) ∈ FN and confirm that Enc(u′) is consistent with v ∈ FN at those entries, where v is:

m∑
i=1

riûi ∈ FN . (4)

Observe that, by definition of v (Equation (4)), any individual entry vj of v can be learned by querying m
entries of û (we refer to these m entries as the “j’th column” of û). Meanwhile, since the verifier reads u′ in
its entirety; V can compute Enc(u′)j for all desired j ∈ [N ] in O(m) time.

Evaluation phase. Let q1, q2 ∈ Fm be such that

g(r) = 〈(q1 ⊗ q2), u〉.

The evaluation phase is identical to the testing phase, except that r is replaced with q1 (and the verifier uses
fresh randomness to choose the sets of coordinates used for consistency testing). Let u′′ ∈ Fm denote the
vector that the prover sends in this phase, which is claimed to equal

∑m
i=1 q1,i · ui. If the prover is honest,

then u′′ satisfies 〈u′′, q2〉 = 〈(q1 ⊗ q2), u〉. Hence, if the verifier’s consistency tests all pass in the testing and
evaluation phases, the verifier outputs 〈u′′, q2〉 as g(r).
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Description of polynomial commitment in the language of IOPs. Following standard transforma-
tions [Kil92, Mic94, Val08, BCS16], in the actual polynomial commitment scheme, vectors sent by
the prover in the IOP may be replaced with a Merkle-commitment to that vector, and each query
the verifier makes to a vector is answered by the prover along with Merkle-tree authentication path
for the answer. Each phase of the scheme can be rendered non-interactive using the Fiat-Shamir
transformation [FS86].

Commit phase.
• P → V: a vector û = (û1, . . . , ûm) ∈

(
FN
)m

. If P is honest, each “row” ûi of û contains a
codeword in Enc.

Testing phase.
• V → P : a random vector r ∈ Fm.
• P → V sends a vector u′ ∈ Fm claimed to equal v =

∑m
i=1 ri · ui ∈ Fm.

• //Now V probabilistically checks consistency between û and u′ (V reads u′ in entirety).
• V : chooses Q to be a random set of size ` = Θ(λ) with Q ⊆ [N ]. For each j ∈ Q:

– V queries all m entries of the corresponding “column” of û, namely û1,j , . . . , ûm,j .
– V confirms that Enc(u′)j =

∑m
i=1 ri · ûi,j , halting and rejecting if not.

Evaluation phase.
• Let q1, q2 ∈ Fm be such that g(r) = 〈(q1 ⊗ q2), z〉.
• The evaluation phase is identical to the testing phase, except that r is replaced with q1 (and

fresh randomness is used to choose a set Q′ of columns for use in consistency checking).
• If all consistency tests pass, then V outputs 〈u′, q2〉 as g(r).

Concrete optimizations to the commitment scheme. Here are optimizations that can reduce the
proof size in the testing and evaluation phases by large constant factors without affecting the correctness
guarantees of the commitment scheme.

• First, in settings where the evaluation phase will only be run once, the testing phase and evaluation
phase can be run in parallel and the same query set Q can be used for both testing and evaluation.
This saves roughly a factor of 2 in the proof size.

• Second, while for simplicity in this section we have described the commitment scheme in the setting
where u is indexed by [m]2, i.e., u was viewed as a square matrix, this is not a requirement, and the
proof size in the testing and evaluation phases can be substantially reduced by exploiting this flexibility.
Specifically, if r and c denote the number of rows and columns of u, so that the number of entries in u
is c · r = N , then the proof length of the commitment scheme is roughly 2c+ r · ` field elements where `
is the number of columns of the encoded matrix opened by the verifier. Here, the 2c term comes from
the prover sending two different linear combination of the rows of u, one in the commitment phase and
one in the evaluation phase, while the r · ` term comes from the verifier querying ` different columns of
u in the testing and evaluation phases. (This optimization appeared in Ligero [AHIV17] in the context
of the Reed-Solomon code).

To minimize proof length, one should set c ≈ r`/2, or equivalently, one should set r ≈
√

2/` ·
√
N

and c ≈
√
`/2 ·

√
N . This reduces the proof length from roughly ` ·

√
N if a square matrix is used, to

roughly
√

2` ·
√
N , a savings of a factor of

√
`/2. Asymptotically, this means the proof length falls from

Θ(λ
√
N) if a square matrix is used, down to Θ(

√
λN), a quadratic improvement in the dependence on

λ.

To achieve soundness error, say, 2−100, ` will be on the order of hundreds or thousands depending on
the relative Hamming distance of the code used, and hence this optimization will lead to a reduction in
proof length relative to the use of square matrices by one or more orders of magnitude.13

13An earlier version of this manuscript missed this optimization, and hence reported over 10x larger proof sizes than necessary
for our Reed-Solomon-based implementation, Shockwave.
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• Third, in settings where the commitment is trusted (e.g., applying the polynomial commitment to achieve
holography as per Section 7), the testing phase can be omitted. An additional concrete optimization
that applies when working over fields of size smaller than exp(λ) is described in appendix A.

• Fourth, if P naively commits to the vector û ∈ (FN )m with a Merkle-tree, then revealing all entries of `
columns of û in the Testing and Evaluation phases would require providing m · ` Merkle-authentication
paths. Naively, this may require P to send up to Θ(m · ` · logm) hash values. However, by arranging
the vector û in column-major order before Merkle-hashing it, the communication cost of revealing `
columns of û can be reduced to just the m · ` requested field elements plus O(logm) hash values (a
similar optimization appears in prior work [BBHR19]).

Soundness analysis for the testing phase. The following claim roughly states that if û = (û1, . . . , ûm) ∈(
FN
)m

, then if even a single ûi is far from all codewords in Enc, then a random linear combination of the
ûi’s is also far from all codewords with high probability.

Claim 1. (Ames, Hazay, Ishai, and Venkitasubramaniam [AHIV17], Roth and Zémor) Let û = (û1, . . . , ûm) ∈(
FN
)m

and for each i ∈ [m] let ci be the closest codeword in Enc to ûi. Let E with |E| ≤ (γ/3)N be a subset
of the columns j ∈ [N ] of û on which there is even one row i ∈ [m] such that ûi,j 6= ci,j. With probability at
least

1− (|E|+ 1)/|F| > 1−N/|F|

over the choice of r ∈ Fm,
∑m
i=1 ri · ûi has distance at least |E| from any codeword in Enc.

Lemma 1. If the prover passes all of the checks in the testing phase with probability at least

N/|F|+ (1− γ/3)`,

then there is a sequence of m codewords c1, . . . , cm in Enc such that

E := |{j ∈ [N ] : ∃i ∈ [m] such that ci,j 6= ûi,j}| ≤ (γ/3)N. (5)

Proof. Let d(b, c) denote the relative Hamming distance between two vectors b, c ∈ FN . Assume by way of
contradiction that Equation (5) does not hold. We explain that the prover passes the consistency tests during
the testing phase with probability less than N/|F|+ (1− γ/3)`.

Recall that v denotes
∑m
i=1 riûi. By Claim 1, the probability over the verifier’s choice of r that there exists a

codeword a satisfying d(a, v) > γ/3 is less than N/|F|. If no such a exists, then d(Enc(u′), v) ≥ γ/3. In this
event, all of the verifier’s consistency tests pass with probability at most (1− γ/3)`.

Completeness and binding of the polynomial commitment scheme. Completeness holds by design.

To argue binding, recall from the analysis of the testing phase that ci denotes the codeword in Enc that is
closest to row i of û, and let w :=

∑m
i=1 q1,i · ci. We show that, if the prover passes the verifier’s checks in the

testing phase with probability more than N/|F|+ (1− γ/3)` and passes the verifier’s checks in the evaluation

phase with probability more than (1− (2/3)γ)
`
, then w = Enc(u′′).

If w 6= Enc(u′′), then w and Enc(u′′) are two distinct codewords in Enc and hence they can agree on at most
(1− γ) ·N coordinates. Denote this agreement set by A. The verifier rejects in the evaluation phase if there is
any j ∈ Q′ such that j 6∈ A∪E, where E is as in Equation (5). |A∪E| ≤ |A|+ |E| ≤ (1− γ) ·N + (γ/3)N =
(1− (2/3)γ)N , and hence a randomly chosen column j ∈ [N ] is in A ∪E with probability at most 1− (2/3)γ.
It follows that u′′ will pass the verifier’s consistency checks in the evaluation phase with probability at most
(1− (2/3)γ)

`
.

In summary, we have shown that if the prover passes the verifier’s checks in the commitment phase with
probability at least

N/|F|+ (1− γ/3)`, (6)
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then, in the following sense, the prover is bound to the polynomial g∗ whose coefficients in the Lagrange basis
are given by c1,1, . . . , cm,m, where ci ∈ FN denotes the closest codeword to row i of the vector û sent in the
commitment phase: on evaluation query r, the verifier either outputs g∗(r), or else rejects in the evaluation
phase with probability at least

1− (1− (2/3)γ)
`
. (7)

The polynomial commitment scheme provides standard extractability properties. We show this by giving two
different extractors.

Extractability via efficient decoding. The first is a simple straight-line extractor that is efficient if the
error-correcting code Enc has a polynomial-time decoding procedure that can correct up to a γ/4 fraction of
errors. This is because with the IOP-to-succinct-argument transformation of [Kil92, Mic94, Val08, BCS16],
it is known that, given a prover P that convinces the argument-system verifier to accept with non-negligible
probability, there is an efficient straight-line extractor capable of outputting IOP proof string π that “opens”
the Merkle commitment sent by the argument system prover in the commitment phase. Moreover, there is an
IOP prover strategy P ′ for the testing and evaluation phases by which P ′ can convince the IOP verifier in
those phases to accept with non-negligible probability when the first IOP message is π (P ′ merely simulates
the argument-system prover P in those phases).

Our analysis of the testing phase of the polynomial commitment scheme (Lemma 1) then guarantees that
each row of the extracted string π has relative Hamming distance at most γ/3 from some codeword. Hence,
row-by-row decoding provides the coefficients of the multilinear polynomial that the prover is bound to. So
long as the decoding procedure runs in polynomial time, the resulting extractor is efficient.

Extractability without decoding. If the error-correcting code does not support efficient decoding, then
even though one can efficiently extract the IOP proof string π underlying the Merkle-comittment sent in the
commitment phase of the commitment scheme, one can not necessarily decode (each row of) the string to
efficiently extract from π the polynomial that the commiter is bound to.

Instead, the extractor can proceed as follows. We assume throughout the below that Expressions (6) and (7)
are negligible (say, exponentially small in the security parameter λ), which holds so long as |F| ≥ exp(λ) and
the number of column openings is ` = Θ(λ).

The testing phase of the commitment scheme can be viewed as a 3-move public-coin argument in which the
verifier moves first. First, the verifier sends a challenge vector r ∈ Fm. Second, the prover responds with
a vector claimed to equal

∑m
i=1 riui. Third, the verifier chooses a set Q of random columns to use in the

consistency test, and performs the consistency test by querying the committed proof string π at all entries of
the columns in Q.

Given any efficient prover strategy that passes the verifier’s checks in the testing phase with non-negligible
probability, we show in the following lemma that there is a polynomial-time extraction procedure capable of
outputting m linearly independent challenge vectors r1, . . . , rm ∈ Fm from the testing phase of the protocol,
and m response vectors u′1, . . . , u

′
m ∈ Fm of the prover, each of which pass the verifier’s consistency checks in

the testing phase with non-negligible probability.

Lemma 2. Suppose there is a deterministic prover strategy P that, following the commitment phase of
the polynomial commitment scheme, passes the verifier’s checks in the testing phase of the polynomial
commitment scheme with non-negligible probability ε. Then there is a randomized extraction procedure E that
runs in time poly(m, 1/ε) and such that the following holds. Given the ability to repeatedly rewind P to the
start of the testing phase, with probability at least 9/10, E outputs m linearly independent challenge vectors
r1, . . . , rm ∈ Fm from the testing phase, and m corresponding response vectors u′1, . . . , u

′
m ∈ Fm of the prover,

each of which pass the verifier’s checks in the testing phase with probability at least ε.

Before proving Lemma 2, we explain how to extract the desired polynomial given the extracted challenge
vectors r1, . . . , rm ∈ Fm and m response vectors u′1, . . . , u

′
m ∈ Fm. Observe that the testing phase and the

evaluation phase of the polynomial commitment scheme are identical up to how the challenge vector is
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selected. In addition, for each challenge ri the prover’s response u′i passes the verifier’s consistency checks with
non-negligible probability. Hence, the binding analysis for the commitment scheme implies that u′1, . . . , u

′
m

are all consistent with the evaluations of a fixed multilinear polynomial g∗, i.e., for i = 1, . . . ,m, u′i = rTi · C
where C is the coefficient matrix of g∗ in the Lagrange basis. Since the ri vectors are linearly independent,
these m linear equations uniquely specify C, and in fact C can be found in polynomial time using Gaussian
elimination.

Proof of Lemma 2. Fix the extracted proof string π = (π1, . . . , πm) ∈ (FN )m that “opens” the Merkle-
commitment sent by the committer during the commitment phase.

Observe that for any verifier challenge r′ ∈ Fm and prover response u′, one can efficiently compute the
probability (over the random choice of column set Q) that u′ will pass the verifier’s consistency checks.

Specifically, if η is the the number of columns i such that
(∑m

j=1 r
′
jπj

)
i

= u′i, and ` is the number of columns

selected by the verifier, then this probability is (η/N)` (here, for simplicity let us assume columns are selected
with replacement, but an exact expression can also be given when columns are selected without replacement).

Let T denote the set of all challenges r such that P’s response u to r passes the consistency checks with
probability at least ε/2. By averaging, since P passes all checks in the testing phase with probability at least
ε, |T | ≥ (ε/2) · |F|m. The extractor’s goal is to efficiently identify a subset S = {r1, . . . , rm} of T that spans
Fm.

The extractor E works by repeatedly picking challenge vectors r uniformly at random from Fm, and running
P on challenge r to get a response u; this enables E to determine whether r ∈ T , and if so, E adds r to S.
Since |T | ≥ (ε/2) · |F|m, with probability at least 9/10, E will identify at least m vectors to add to S after
trying at most 18/ε vectors r.

We now argue that with overwhelming probability, the first m vectors that E adds to S are linearly independent.
Denote these m vectors by r1, . . . , rm ∈ Fm. Observe that each vector ri is a random element of T . We
now explain that for each i = 2, . . . ,m, the probability that ri ∈ span(r1, . . . , ri−1) is negligible. To see this,
observe that since the dimension of span(r1, . . . , ri−1) is at most i−1, the span contains at most |F|i−1 vectors.
Since ri is a uniform random vector from T and |T | ≥ (ε/2) · Fm, the probability that ri ∈ span(r1, . . . , ri−1)
is at most (2/ε) · |F|i−1/|F|m ≤ (2/ε) · |F|−1.

The claim then follows by a union bound over all m − 1 vectors r2, . . . , rm. That is, the probability that
r1, . . . , rm are not linearly independent is at most (m− 1) · (2/ε) · |F|−1. This is negligible by our assumption
that ε is non-negligible while |F|−1 is negligible.

6 Practical Linear Codes with Linear-Time Encoding

This section describes our construction of practical linear codes with linear-time encoding that we use in
Brakedown’s implementation of the polynomial commitment scheme from Section 5.

Let q be a prime power, and F = Fq be the field of size q. For p ∈ [0, 1], by H(p) = −p log2(p)−(1−p) log2(1−p)
we denote the binary entropy function, where we adopt the convention that 0 log 0 = 0. For k ≤ n/2, we’ll use

the bound
∑

0≤i≤k
(
n
i

)
≤ 2nH(k/n). We’ll also use the bounds

(
n
k

)
≤ 2nH(k/n) and

(
n
k

)
≤
(
en
k

)k
for 0 ≤ k ≤ n.

Let Gn,m,d be a distribution of bipartite graphs with n vertices in the left part and m vertices in the right
part, where each vertex in the left part has d distinct uniformly random neighbors in the right part. Let
Mn,m,d be a distribution of matrices M ∈ Fn×m, where in each row d distinct uniformly random elements
are assigned uniformly random non-zero elements of F.

We construct a systematic linear code with efficient encoding procedure. The code uses the parameters
0 < α < 1, 0 < β < α/1.28, r > (1 + 2β)/(1− α) > 1, cn, dn ≥ 3 that will be specified later. For a constant
r > 1, in Algorithm 1 (see also Figure 2 for a visual depiction of the encoding procedure) we give a construction
of a linear map Encn : Fn → Frn such that every non-zero vector x ∈ Fn is mapped to a vector w ∈ Frn
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of Hamming weight at least ‖w‖0 ≥ βn. Moreover, the linear map Encn is systematic, that is, the first n
coordinates of w equal x. This guarantees that the constructed map has full rank, and, that it defines a
linear code of rank n, rate 1/r, and distance δ = βn/(rn) = β/r.

The map Encn works as follows. First we generate a random sparse matrix A←Mn,αn,cn for

cn =

⌈
min

(
max(1.28βn, βn+ 4),

1

β log2
α

1.28β

(
110

n
+H(β) + αH

(
1.28β

α

)))⌉
,

and compute y = x · A ∈ Fαn. Recall that the parameter α < 1, and, thus, we can recursively apply
the encoding procedure Enc to y: z = Encαn(y) ∈ Fαrn. Finally, we generate a random sparse matrix
B ←Mαrn,(r−1−rα)n,dn for

dn =

⌈
min

((
2β +

(r − 1) + 110/n

log2 q

)
n,

rαH(β/r) + µH(ν/µ) + 110/n

αβ log2
µ
ν

)⌉
,

where µ = r− 1− rα, ν = β +αβ + 0.03, and compute v = z ·B ∈ F(r−1−rα)n. The resulting codeword is the
concatenation of x, z, and v:

w = Enc(x) :=

xz
v

 ∈ Frn .

It is easy to see that the constructed code is linear and systematic, and has rate 1/r. Therefore, it remains to
show that this code has distance δ = β/r, and to estimate the running time of its encoding procedure. While
our analysis of the running time of the encoding procedure is asymptotic (in that it holds for large enough
values of n), our analysis of the code distance is concrete and holds for all values of n.

Algorithm 1 Encoding Algorithm Encn : Fn → Frn

Input: x ∈ Fn
Parameters: α, β, r, cn, dn
Output: w ∈ Frn

1: cn =
⌈
min

(
max(1.28βn, βn+ 4), 1

β log2
α

1.28β

(
110
n +H(β) + αH

(
1.28β
α

)))⌉
2: A←Mn,αn,cn

3: y = x ·A ∈ Fαn
4: z = Encαn(y) ∈ Fαrn

5: dn =
⌈
min

((
2β + (r−1)+110/n

log2 q

)
n, rαH(β/r)+µH(ν/µ)+110/n

αβ log2
µ
ν

)⌉
,

where µ = r − 1− rα, ν = β + αβ + 0.03
6: B ←Mαrn,(r−1−rα)n,dn

7: v = z ·B ∈ F(r−1−rα)n

8: w =

xz
v

 ∈ Frn

9: return w
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x

y = x ·A

A ∈Mn,αn,cn

z = Encαn(y)Apply Enc

x ∈ FnCopy

z ∈ FrαnCopy

v = z ·B ∈ F(r−1−rα)n

B ∈Mαrn,n(r−1−rα),dn

Figure 2: The encoding procedure Encn (with all but negligible probability) maps a non-zero vector x ∈ Fn

to a vector w = Enc(x) :=

xz
v

 ∈ Frn of Hamming weight at least ‖w‖0 ≥ βn, resulting in a linear code of

rate 1/r and distance δ = β/r.

Running time. We note that since the encoding procedure consists of a series of multiplications of vectors
by sparse matrices, the number of field additions is strictly less than the number of field multiplications.
Here we only estimate the number of field multiplications because it’s a more resource-intensive operation,
and it also gives an essentially tight estimate on the number of field additions. The encoding procedure for
a message of length n performs a multiplication of a vector of length n by a matrix of row-sparsity cn, a
multiplication of a vector of length αrn by a matrix of row-sparsity dn, and a recursive call for a vector of
length αn. Letting T (n) denote the running time of Encn, we have that

T (n) ≤ ncn + αrndn + T (αn) = n(cn + αrdn) + T (αn) .

By setting

c = lim
n→∞

cn =


H(β) + αH

(
1.28β
α

)
β log2

α
1.28β

 ,
d = lim

n→∞
dn =

⌈
rαH(β/r) + µH(ν/µ)

αβ log2
µ
ν

⌉
,

we have for all large enough n,

T (n) . n(c+ αrd) + T (αn) < n · c+ αrd

1− α
,

where the last inequality uses the infinite geometric series formula.

Code distance. We show that for certain choices of the parameters α, β, r, cn, and dn, the following holds
with all but negligible probability over the choices of random matrices A,B:
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(i) for every 0 < ‖x‖0 < βn, y = x ·A 6= 0;

(ii) for every αβn ≤ ‖z‖0 < βn, v = z ·B has ‖v‖0 ≥ βn.

Assuming that these two properties hold, we can show that Encn has distance δ = β/r, that is, for every
x 6= 0, w = Encn(x) satisfies ‖w‖0 ≥ βn. To this end, we consider the following three cases.

1. ‖x‖0 ≥ βn. In this case, w =

xz
v

 trivially satisfies ‖w‖0 ≥ ‖x‖0 ≥ βn.

2. z = Encαn(x ·A) satisfies ‖z‖0 ≥ βn. Again, since w contains z, we have ‖w‖0 ≥ ‖z‖0 ≥ βn.

3. 0 < ‖x‖0 < βn and ‖z‖0 < βn. In this case, by the Property (i) above, we have that y = x · A 6= 0.
By the code property of Encαn, we have that every non-zero vector y is mapped to z = Encαn(y) of
Hamming weight ‖z‖ ≥ δ · (αrn) = αβn. Now we have that αβn ≤ ‖z‖0 < βn, and by the Property (ii)
above, ‖v‖0 ≥ βn, which finishes the proof.

It remains to choose the values of the parameters α, β, r, cn, dn such that the Property (i) and (ii) are satisfied
with, say, probability at least 1− 2−100 over the choice of matrices A and B. We remark that once the code
is generated (that is, once we have generated matrices A and B for all relevant values of n), we have the
guarantee that with probability 1− 2−100, all non-zero messages x are mapped to vectors w of Hamming
weight ‖w‖ ≥ βn.

We bound the probability of not satisfying the Property (i) in two steps. First, for 0 < k < βn, let E
(1)
n,k be the

event that there exists a set of k coordinates of x ∈ Fn that doesn’t “expand” into b(k) = max(k + 4, 1.28k)

coordinates of y = x ·A. Formally, let E
(1)
n,k be the event that there exists a set of k rows of A that have fewer

than b(k) non-zero columns. Second, let E
(2)
n,k denote the event that, given that every set of size k expands

into a set of size at least b(k) (that is, conditioned on the complement of E
(1)
n,k), there exists an x of Hamming

weight ‖x‖0 = k such that y = x ·A = 0. We will choose the parameters α, β, and cn such that∑
n

0<k<βn

Pr[E
(1)
n,k] + Pr[E

(2)
n,k]� 2−100 .

This will guarantee that with probability at least 1 − 2−100, the Property (i) is satisfied: every x with
0 < ‖x‖ < βn is mapped to a y 6= 0.

We use a similar strategy to bound the probability that the constructed code doesn’t satisfy the Property (ii).

Let E
(3)
n,k be the event that there exists a set of k coordinates of z ∈ Fαrn that doesn’t expand into

b′(k) =
(
β + k/n+ (r−1)+110/n

log2 q

)
n coordinates of v = z ·B: there exists a set of k rows of B that have fewer

than b′(k) non-zero columns. Then we define E
(4)
n,k as the event that, given that all sets of size k expand into

at least b′(k) coordinates, there exists a z ∈ Fαrn of Hamming weight ‖z‖0 = k which is mapped to v = B · z
of Hamming weight ‖b‖0 < βn. We will choose the parameters to guarantee that∑

n
αβn≤k<βn

Pr[E
(3)
n,k] + Pr[E

(4)
n,k]� 2−100 .

This will imply that with probability at least 1− 2−100, the constructed code satisfies the Property (ii).

In Table 3 we provide several settings of the parameters and specify the corresponding provable guarantees.
These are the parameter settings we use in our implementation, Brakedown. We have chosen parameters in
this table to ensure that all guarantees hold for messages of length up to 230. Recall that in the polynomial
commitment scheme of Section 5, the messages to be encoded have length Θ(λ ·N1/2) where N is the size of
the polynomial to be committed. Concretely, messages of length 230 are sufficient for our SNARK to support
R1CS instances of size in excess of 240 with the stated failure probability of 2−100 of the code failing to satisfy
the asserted minimum distance property. Somewhat faster encoding times than those listed in Table 3 can be
achieved if one is satisfied with larger failure probability, smaller messages, larger field size, etc.
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Below, we also describe several conditions on the parameters sufficient for satisfying the Properties (i) and (ii)
with high probability. Namely, in Claims 2, 3, 4, and 5, we give conditions sufficient for bounding the

probabilities of the events E
(1)
n,k, E

(2)
n,k, E

(3)
n,k, and E

(4)
n,k, respectively. These claims may be useful for readers

who wish to optimize code parameters with less stringent requirements than ours (e.g., readers who are
satisfied with larger probability, or who need not support messages as large as we do, etc.).

n q Pr[failure] run-time distance rate α β r cn dn

≤ 230 ≥ 2127 � 2−100 13.2n 0.02 0.704 0.1195 0.0284 1.42 6 33
≤ 230 ≥ 2127 � 2−100 14.3n 0.03 0.68 0.138 0.0444 1.47 7 26
≤ 230 ≥ 2127 � 2−100 15.8n 0.04 0.65 0.178 0.061 1.521 7 22
≤ 230 ≥ 2127 � 2−100 17.8n 0.05 0.60 0.2 0.082 1.64 8 19
≤ 230 ≥ 2127 � 2−100 20.5n 0.06 0.61 0.211 0.097 1.616 9 21
≤ 230 ≥ 2127 � 2−100 23.9n 0.07 0.58 0.238 0.1205 1.72 10 20

Figure 3: Settings of the parameters leading to codes with small probabilities of error. n denotes the length
of the message to be encoded. The specified values of cn, dn, and running time hold for all large enough n.

Claim 2. Let

cn =

⌈
min

(
max(1.28βn, βn+ 4),

1

β log2
α

1.28β

(
110

n
+H(β) + αH

(
1.28β

α

)))⌉
.

If β < α/1.28, then for every n and 0 < k < βn,

Pr[E
(1)
n,k] ≤ max

(
2−110,

2nH(15/n)+αnH( 19.2
αn )−15cn log2( αn19.2 ),

max
cn−3≤k≤min(14,βn)

(
n
k

)(
αn
k+3

)(
k+3
cn

)k(
αn
cn

)k
)
.

Proof. First we note that

Pr[E
(1)
n,k] = Pr

G∈Gn,αn,cn
[G contains a set of k left vertices with fewer than b(k) neighbors] .

We will show that with all but negligible probability every set of size k < βn will expand into a set of size at
least b(k) = max(k + 4, 1.28k). If cn ≥ max(1.28βn, βn+ 4), then every vertex has cn ≥ b(βn) neighbors,
and, thus, every set of k < βn vertices has at least b(k) neighbors.

Now we assume that cn ≥ 1
β log2

α
1.28β

(
110
n +H(β) + αH

(
1.28β
α

))
. In order to show that every set of size

k expands into a set of size at least b(k) = max(k + 4, 1.28k) with high probability, we’ll first bound from
above the probability that there exists a set of k ≥ 15 vertices with at most 1.28k neighbors, and then we
will bound the probability that there exists a set of k ≤ 14 that has fewer than k + 4 neighbors.

The probability that a fixed set of size 15 ≤ k < βn has fewer than 1.28k neighbors is upper-bounded by(
αn

1.28k

)(
1.28k
cn

)k(
αn
cn

)k .

By the union bound over all sets of k left vertices,

Pr[E
(1)
n,k] ≤

(
n
k

)(
αn

1.28k

)(
1.28k
cn

)k(
αn
cn

)k ≤
(
n

k

)(
αn

1.28k

)(
1.28k

αn

)kcn
≤ 2nH(k/n) · 2αnH( 1.28k

αn ) · 2−kcn log2( αn
1.28k )

= 2n(H(k/n)+αH( 1.28k
αn )− cnkn log2( αn

1.28k )) . (8)
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Let f(x) = H(x) +αH(1.28x/α)− cnx log2( α
1.28x ) for x ∈ [15/n, β]. We’ll show that for our choice of cn, f(x)

is convex, and therefore it achieves its maximum at one of the end points of the interval x ∈ [15/n, β]. Indeed,

f ′′(x) = log2 e
x

(
cn − 1

1−x −
1.28α

α−1.28x

)
. In order to show that f(x) is convex, it’s sufficient to show that for

every x ≤ β, cn ≥ 1
1−x + 1.28α

α−1.28x . Letting g(x) = 1
1−x + 1.28α

α−1.28x , we have that g′(x) = 1.282α
(α−1.28x)2 + 1

(x−1)2 > 0.

Thus, g(x) is monotone, and it remains to verify that cn ≥ 1
1−x + 1.28α

α−1.28x for x = β. For our choice of cn, for
every β < α/1.28 it can be verified that

cn ≥
1

β log2
α

1.28β

(
110

n
+H(β) + αH

(
1.28β

α

))
>

1

β log2
α

1.28β

(
H(β) + αH

(
1.28β

α

))
≥ 1

1− β
+

1.28α

α− 1.28β
.

Now that we established that f(x) is convex, we upper bound the probability from (8) for k = 15 and k = βn
as follows. When k = βn,

2n(H(β)+αH( 1.28β
α )−βcn log2( α

1.28β )) ≤ 2n(−110/n) ≤ 2−110

by the choice of cn ≥ 1
β log2

α
1.28β

(
110
n +H(β) + αH

(
1.28β
α

))
. For the case of k = 15 (assuming that

k = 15 < βn), (8) gives us the following upper bound on the probability of failure

2nH(15/n)+αnH( 19.2
αn )−15cn log2( αn19.2 ) .

Finally, we show that with high probability every set of size k ≤ 14 has at least k+4 neighbors. For k ≤ cn−4,
this happens with certainty as every vertex has cn ≥ k+4 neighbors. For a set of size cn−3 ≤ k ≤ min(14, βn),

the probability of having at most k + 3 neighbors is bounded from above by
( αnk+3)(

k+3
cn

)
k

(αncn)
k . By the union bound

over all sets of size k, we obtain the following upper bound on the probability of failure:(
n
k

)(
αn
k+3

)(
k+3
cn

)k(
αn
cn

)k ,

which finishes the proof.

Claim 3. For every n ≤ 230 and every q ≥ 2127, for every n and k ≤ n,

Pr[E
(2)
n,k]� 2−100 .

Proof. Let x ∈ Fn and ‖x‖0 = k. Let K ⊆ [n] be the set of indices of non-zero elements of x. Let TK be
a random variable denoting the number of columns of A←Mn,αn,cn with at least one non-zero element in
the rows with indices from K.

Note that since the event E
(2)
n,k is conditioned on the complement of E

(1)
n,k, we have that Tk ≥ b(k) =

max(k + 4, 1.28k). We have that at least Tk coordinates of Ax are non-zero linear combinations of the
non-zero coordinates of x with indices from Kx. Since all the coordinates of the linear combinations are
uniform random non-zero elements of F, each such linear combination equals zero with probability at most
1/q, and all linear combinations equal zero with probability at most 1/qb(k). Now taking the union bound

over all <
(
n
k

)
qk vectors x of Hamming weight k, we have that Pr[E

(2)
n,k] <

(
n
k

)
qk−b(k).

For k ≥ 15, this implies that

Pr[E
(2)
n,k] ≤

(
n

k

)
q−0.28k ≤

(en
k

)k
· q−0.28k =

(
en

kq0.28

)k
≤ 2−120
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for every n ≤ 230 and q ≥ 2127.

For k ≤ 14, this gives us that

Pr[E
(2)
n,k] ≤

(
n

k

)
q−4 ≤

(en
k

)k
· q−4 ≤

(
e230

14

)14

· 2−127·4 ≤ 2−120

for every n ≤ 230 and q ≥ 2127.

Claim 4. Let µ = r − 1− rα, ν = β + αβ + 0.03, and

dn =

⌈
min

((
2β +

(r − 1) + 110/n

log2 q

)
n,

rαH(β/r) + µH(ν/µ) + 110/n

αβ log2
µ
ν

)⌉
.

Then for every n and αβn ≤ k < βn, if

(r − 1) + 110/n

log2 q
≤ 0.03 ,

2β + 0.03 ≤ r − 1− rα ,
β ≤ αr ,

then
Pr[E

(3)
n,k]� 2−100 .

Proof. We need to show that with overwhelming probability every set of k coordinates of z ∈ Fαrn expands

into at least b′(k) =
(
β + k/n+ (r−1)+110/n

log2 q

)
n coordinates of v ∈ F(1−r−rα)n. Note that

Pr[E
(3)
n,k] = Pr

G∈Gαrn,n(r−1−rα),dn
[G contains a set of k left vertices with fewer than b′(k) neighbors] .

First, if dn ≥
(

2β + (r−1)+110/n
log2 q

)
n, then every left vertex has at least dn ≥ b′(βn) neighbors. Then trivially

every set of k < βn left vertices has at least b′(k) neighbors.

Now we assume that dn ≥ rαH(β/r)+µH(ν/µ)+110/n
αβ log2

µ
ν

. Let k = γn for αβ ≤ γ < β. A fixed set of size γn

expands into a set of size less than b′(k) =
(
β + k/n+ (r−1)+110/n

log2 q

)
n ≤ (β + γ + 0.03)n with probability at

most (
(r − 1− rα)n

b′(k)

) (
b′(k)
dn

)γn(
(r−1−rα)n

dn

)γn ≤ ((r − 1− rα)n

b′(k)

)(
b′(k)

(r − 1− rα)n

)dnγn
≤ 2(r−1−rα)nH( β+γ+0.03

r−1−rα ) ·
(
β + γ + 0.03

r − 1− rα

)dnγn
= 2(r−1−rα)nH( β+γ+0.03

r−1−rα )−dnγn log2
r−1−rα
β+γ+0.03 ,

where in the second inequality we used β + γ + 0.03 ≤ 2β + 0.03 ≤ r − 1− rα.

Taking the union bound over all sets of size γn we have that

Pr[E
(3)
n,k] ≤

(
αrn

γn

)
2(r−1−rα)nH( β+γ+0.03

r−1−rα )−dnγn log2
r−1−rα
β+γ+0.03

≤ 2αrnH( γrα )+(r−1−rα)nH( β+γ+0.03
r−1−rα )−dnγn log2

r−1−rα
β+γ+0.03 ,
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where in the second inequality we used γ < β ≤ αr. By an argument similar to the argument in Claim 2, it’s
sufficient to consider the case γ = αβ, in which case we have

Pr[E
(3)
n,k] ≤ 2αrnH( βr )+(r−1−rα)nH( β+αβ+0.03

r−1−rα )−dnαβn log2
r−1−rα

β+αβ+0.03

= 2αrnH( βr )+µnH(ν/µ)−dnαβn log2
µ
ν

� 2−100

by the choice of dn ≥ rαH(β/r)+µH(ν/µ)+110/n
αβ log2

µ
ν

.

Claim 5. For every n and αβn ≤ k ≤ βn, if 2β + (r−1)+110/n
log2 q

≤ r − 1− rα, then

Pr[E
(4)
n,k]� 2−100 .

Proof. Assuming that every set of size k expands into a set of size at least b′(k) =
(
β + k/n+ (r−1)+110/n

log2 q

)
n,

we need to show that with overwhelming probability every z ∈ Fαrn of Hamming weight ‖z‖0 = k is mapped
to v = B · z ∈ F(r−1−rα)n of Hamming weight ‖v‖0 ≥ βn.

Fix a z ∈ Fαrn of Hamming weight ‖z‖0 = k. Similarly to Claim 3, since the set of its non-zero coordinates
expands into at least b′(k) coordinates, we have that at least b′(k) coordinates of v are non-zero linear
combinations of the non-zero coordinates of z. Each such linear combination equals zero with probability
≤ 1/q, therefore, for a fixed z, the probability that ‖v‖0 < βn is bounded from above by(

b′(k)
≥b′(k)−βn

)
qb′(k)−βn ≤

(
(r−1−rα)n

≥(r−1−rα)n−βn
)

qb′(k)−βn ≤ 2(r−1−rα)n

qb′(k)−βn ,

where we used b′(k) ≤
(

2β + (r−1)+110/n
log2 q

)
n ≤ (r − 1− rα)n. Taking the union bound over all z ∈ Fαrn of

Hamming weight ‖z‖0 = k, we have that

Pr[E
(4)
n,k] ≤

(
rαn

k

)
qk · 2(r−1−rα)n

qb′(k)−βn ≤
2rαn+(r−1−rα)n

qb′(k)−βn−k ≤ 2(r−1)n

q

(
(r−1)+110/n

log2 q

)
n
� 2−100 .

A practical consideration: when to stop recursing. One can modify Algorithm 1 such that for all
message sizes less than some parameter n0, it simply performs naive (quadratic-time) Reed-Solomon encoding
with an appropriate rate parameter (the reason we use naive quadratic-time Reed-Solomon encoding is to
avoid the need to perform FFTs, and thereby avoid all restrictions on the field used). For messages of length
n� n2

0, the use of quadratic-time encoding applied just once to a message of size n0 represents a low-order
cost in the total encoding time. In our implementation, we set n0 to roughly 30.

7 Linear-time commitments for sparse multilinear polynomials

To construct SNARKs from polynomial IOPs (§1), we need a commitment scheme for multilinear polynomials

Ã, B̃, and C̃ capturing the R1CS instance. Specifically, we desire a polynomial commitment scheme that
when applied to these polynomials, the time to commit and prove an evaluation are both O(N).

The previous section gave a commitment scheme for `-variate multilinear polynomials where the prover runs
in time O(2`). However, Ã, B̃, and C̃ are each defined over ` = 2 logM variables. So if the commitment
scheme is applied naively to these polynomials, the runtime of the committer is O(M2), which is superlinear
in the size of the R1CS instance (unless a constant fraction of the entries of the matrices A,B,C are non-zero).
We call this an efficient commitment scheme for “dense” polynomials, since the prover’s runtime is linear in
the number of coefficients of the polynomial, irrespective of how many of those coefficients are non-zero.
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Fortunately, for each of these three polynomials, only O(N) of coefficients over the Lagrange basis are
non-zero. If N �M2, we call such polynomials sparse. What we require is a commitment scheme for sparse
polynomials in which the committer runs in time proportional to the number of non-zero coefficients in
both the commitment phase and the evaluation phase. Spartan [Set20] gave a technique that transforms
any efficient polynomial commitment scheme for dense polynomials into an efficient polynomial commitment
scheme for sparse polynomials. By applying Spartan’s construction to the polynomial commitment scheme of
the previous section, we obtain our desired sparse polynomial commitment scheme.

A straw-man approach and a conceptual outline. The following is a natural approach to turning a
commitment scheme for dense polynomials into one for sparse polynomials. To commit to a sparse `-variate
multilinear polynomial q with k � 2` non-zero coefficients, the committer commits to a representation of the
non-zero coefficients q using a polynomial commitment for dense polynomials.

In more detail, associate each Lagrange basis polynomial with a bit-vector S in {0, 1}`, and let cS be the
coefficient of monomial S in q. Consider the vector v ∈ Fk(1+`) that simply lists all non-zero (coefficient,
monomial) pairs, i.e., v = {(cS , S) : cS 6= 0}. The committer commits to the multilinear extension of the
vector v using the dense polynomial commitment scheme, which takes O(k`) time. Then when the verifier
asks to evaluate the sparse polynomial q at an input r, one applies an interactive proof for the function that
takes as input the vector v that describes q and outputs q(r) (for example, one can apply the GKR protocol
[GKR08] to the circuit that takes as input v and outputs q(r) =

∑
S cS · χS(r), where χS is the Lagrange

basis polynomial corresponding to S). At the end of the interactive proof the verifier needs to evaluate
the multilinear extension of v at a random point and can obtain this evaluation from the dense polynomial
commitment scheme used to commit to this extension of v.

The problem with this polynomial commitment scheme is that the description of v that is used consists
of Θ(k`) field elements, which is superlinear in the number k of non-zero coefficients of q, and hence the
committer in this scheme runs in superlinear time. Spartan [Set20] identified a way to use memory-checking
techniques allowing to use a description of q consisting of only Θ(k) field elements, thereby obtaining a
linear-time committer. Details follow.

We first state the result from Spartan [Set20, Lemma 7.6] in a more general form; below, provide a detailed
proof of this result for completeness. An alternate perspective on this result is in [Tha20, §13].

Theorem 5 ([Set20]). Given a polynomial commitment scheme for logM-variate multilinear polynomials
with the following parameters (where M is a positive integer and WLOG a power of 2):

– the size of the commitment is c(M);

– the running time of the commit algorithm is tc(M);

– the running time of the prover to prove a polynomial evaluation is tp(M);

– the running time of the verifier to verify a polynomial evaluation is tv(M); and

– the proof size is p(M),

there exists a polynomial commitment scheme for 2 logM -variate multilinear polynomials that evaluate to a
non-zero value at at most N = Ω(M) locations over the Boolean hypercube {0, 1}2 logM , with the following
parameters, assuming that the commit algorithm is run by an honest entity:

– the size of the commitment is O(c(N));

– the running time of the commit algorithm is O(tc(N));

– the running time of the prover to prove a polynomial evaluation is O(tp(N));

– the running time of the verifier to verify a polynomial evaluation is O(tv(N)); and

– the proof size is O(p(N)).

The following corollary follows from applying the above theorem to the polynomial commitment scheme for
logM -variate multilinear polynomials (Theorem 4).
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Corollary 1. Given a polynomial commitment scheme for logM-variate multilinear polynomials with the
following parameters (where M is a positive integer and WLOG a power of 2, t is a constant, and λ is the
security parameter):

– the size of the commitment is Oλ(1);

– the running time of the commit algorithm is O(M) operations over F;

– the running time of the prover to prove a polynomial evaluation is O(M) operations over F;

– the running time of the verifier to verify a polynomial evaluation is Oλ(M1/t) operations over F; and

– the proof size is Oλ(M1/t),

there exists a polynomial commitment scheme for 2 logM -variate multilinear polynomials that evaluate to a
non-zero value at at most N = Ω(M) locations over the Boolean hypercube {0, 1}2 logM , with the following
parameters, assuming that the commit algorithm is run by an honest entity:

– the size of the commitment is Oλ(1);

– the running time of the commit algorithm is O(N) operations over F;

– the running time of the prover to prove a polynomial evaluation is O(N) operations over F;

– the running time of the verifier to verify a polynomial evaluation is Oλ(N1/t) operations over F; and

– the proof size is Oλ(N1/t).

Representing sparse polynomials with dense polynomials. Let D denote a 2 logM -variate multilin-
ear polynomial that evaluates to a non-zero value at at most N = Ω(M) locations over {0, 1}2 logM . For any
r ∈ F2 logM , we can express the evaluation of D(r) as follows. Interpret r ∈ F2 logM as a tuple (rx, ry) in a
natural manner, where rx, ry ∈ FlogM .

D(rx, ry) =
∑

(i,j)∈{0,1}logM×{0,1}logM : D(i,j) 6=0

D(i, j) · ẽq(i, rx) · ẽq(j, ry). (9)

Claim 6. Let b be the canonical injection from {0, 1}logM to F and b−1 be its inverse. Given a 2 logM -variate
multilinear polynomial D that evaluates to a non-zero value at at most N locations over {0, 1}2 logM , there
exist three logN -variate multilinear polynomials row, col, val such that the following holds for all rx, ry ∈ Fs.

D(rx, ry) =
∑

k∈{0,1}logN
val(k) · ẽq(b−1(row(k)), rx) · ẽq(b−1(col(k)), ry). (10)

Moreover, the polynomials’ coefficients in the Lagrange basis can be computed in O(N) time.

Proof. Since D evaluates to a non-zero value at at most N locations over {0, 1}2 logM , D can be represented
uniquely with N tuples of the form (i, j,D(i, j)) ∈ ({0, 1}logM , {0, 1}logM ,F). By using a natural injection
(call it b) from {0, 1}logM to F, we can view the first two entries in each of these tuples as elements of
F (let b−1 denote its inverse). Furthermore, these tuples can be represented with three N -sized vectors
R,C, V ∈ FN , where tuple k (for all k ∈ [N ]) is stored across the three vectors at the kth location in the
vector, i.e., the first entry in the tuple is stored in R, the second entry in C, and the third entry in V . Take
row as the unique MLE of R viewed as a function {0, 1}logN → F. Similarly, col is the unique MLE of C, and
val is the unique MLE of V . The claim holds by inspection since Equations (9) and (10) are both multilinear
polynomials in rx and ry and agree with each other at every pair rx, ry ∈ {0, 1}logM .

A first attempt at the commit phase. Here is a first attempt at designing the commit phase. To
commit to D, the committer can send commitments to the three logN -variate multilinear polynomials
row, col, val from Claim 6. Using the provided polynomial commitment scheme, this costs O(N) finite field
operations, and the size of the commitment to D is Oλ(1). As we will see, to aid in the evaluation phase, we
will ultimately have to extend the commit phase to include commitments to several additional polynomials.
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A first attempt at the evaluation phase. Given rx, ry ∈ FlogM , to prove an evaluation of a committed
polynomial, i.e., to prove that D(rx, ry) = v for a purported evaluation v ∈ F, consider the following
polynomial IOP, where assume that the verifier has oracle access to the three logN -variate multilinear
polynomial oracles that encode D (row, col, val):

1. P → V: two logN -variate multilinear polynomials Erx and Ery as oracles. These polynomials are
purported to respectively equal the multilinear extensions of the functions mapping k ∈ {0, 1}logN

to ẽq(b−1(row(k)), rx) and ẽq(b−1(col(k)), ry).

2. V ↔ P: run the sum-check reduction to reduce the check that

v =
∑

k∈{0,1}logN
val(k) · Erx(k) · Ery(k)

to checking if the following hold, where rz ∈ FlogN is chosen at random by the verifier over the
course of the sum-check protocol:

• val(rz)
?
= vval;

• Erx(rz)
?
= vErx and Ery(rz)

?
= vEry . Here, vval, vErx , and vEry are values provided by the prover

at the end of the sum-check protocol.

3. V: check if the three equalities hold with an oracle query to each of val, Erx, Ery.

If the prover is honest, it is easy to see that it can convince the verifier about the correct of evaluations of D.
Unfortunately, the two oracles that the prover sends in the first step of the depicted polynomial IOP can be
completely arbitrary. To fix, this, V must additionally check that the following two conditions hold.

• ∀k ∈ {0, 1}logN , Erx(k) = ẽq(b−1(row(k)), rx); and

• ∀k ∈ {0, 1}logN , Ery(k) = ẽq(b−1(col(k)), ry).

A core insight of Spartan [Set20] is to check these two conditions using memory-checking techniques [BEG+91].
In particular, the RHS in each of the above conditions can be viewed as N memory lookups over an M -sized
memory, initialized to contain the values {ẽq(i, rx) : i ∈ {0, 1}logM} and {ẽq(j, ry) : j ∈ {0, 1}logM} (note
that all of these values can be computed in O(M) total time using standard techniques).

Specifically, focusing on the RHS of the first condition, the M -sized memory memrx is initialized to satisfy
memrx[i] = ẽq(i, rx) for all i ∈ {0, 1}logM , and for memory lookup k ∈ [N ], the memory address that is read
is row(k). Similarly, in the second condition, the M -sized memory memry is the evaluations of ẽq(j, ry) for all
j ∈ {0, 1}logM , and for memory lookup k ∈ [N ], the memory address read is col(k).

We take a detour to introduce prior results that we rely on here.

Detour: offline memory checking. Recall that in the offline memory checking algorithm of [BEG+91],
a trusted checker issues operations to an untrusted memory. For our purposes, it suffices to consider only
operation sequences in which each memory address is initialized to a certain value, and all subsequent
operations are read operations. To enable efficient checking using set-fingerprinting techniques, the memory
is modified so that in addition to storing a value at each address, the memory also stores a timestamp with
each address. Moreover, each read operation is followed by a write operation that updates the timestamp
associated with that address (but not the value stored there). This is captured in the codebox below.

Local state of the checker:

• a timestamp counter ts initialized to 0;

• Two sets: RS and WS, which are initialized as follows.14 RS = {}, and for an M -sized memory, WS is

14The checker in [BEG+91] maintains a fingerprint of these sets, but for our exposition, we let the checker maintain full sets.
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initialized to the following set of tuples: for all i ∈ [M ], the tuple (i, vi, 0) is included in WS, where vi
is the value stored at address i, and the third entry in the tuple, 0, is an “initial timestamp” associated
with the value (intuitively capturing the notion that vi was written to address i at time step 0, i.e., at
initialization).

Read operations and an invariant. For a read operation at address a, suppose that the untrusted memory
responds with a value-timestamp pair (v, t). Then the checker updates its local state as follows:

1. RS ← RS ∪ {(a, v, t)};

2. ts← max(ts, t) + 1;

3. store (v, ts) at address a in the untrusted memory; and

4. WS ←WS ∪ {(a, v, ts)}.

The following claim captures the invariant maintained on the sets of the checker:

Claim 7. There exists a set S with cardinality M consisting of tuples of the form (k, vk, tk) for all k ∈ [M ]
such that WS = RS ∪ S if and only if for every read operation the untrusted memory returns the tuple last
written to that location.

Proof. A proof of a more general claim is at [SAGL18b, Lemma C.1].

Observe that if the untrusted memory is honest, S can be constructed trivially from the current state of the
memory. It is simply the current state of the memory viewed as a set of address-value-timestamp tuples.

Timestamp polynomials. To aid the polynomial evaluation proof of the sparse polynomial commitment
scheme, the commit algorithm of the sparse polynomial commitment commits to additional multilinear
polynomials, beyond val, row, and col. We now describe these additional polynomials and how they are
constructed.

Observe that given the size of memory M and a list of N addresses involved in read operations, one can
locally compute three vectors Tr ∈ FN , Tw ∈ FN , Tf ∈ FM defined as follows. For k ∈ [N ], Tr[k] stores
the timestamp that would have been returned by the untrusted memory if it were honest during the kth
read operation. Let Tw[k] store the timestamp that the checker stores in step (3) of its specification when
processing the kth read operation. Similarly, for k ∈ [M ], let Tf [k] store the final timestamp stored at memory
location k of the untrusted memory (if the untrusted memory were honest) at the termination of the N read
operations. Computing these three vectors requires computation comparable to O(N) operations over F.

Let read = T̃r,write = T̃w, final = T̃f . We refer these polynomials as timestamp polynomials, which are unique
for a given memory size M and a list of N addresses involved in read operations.

The actual commit algorithm. Given a 2 logM -variate multilinear polynomial D that evaluates to
a non-zero value at at most N locations over {0, 1}2 logM , the commitment algorithm commits to D by
committing to seven logN -variate multilinear polynomials (row, col, val, readrow,writerow, readcol,writecol), two
logM -variate multilinear polynomials (finalrow, finalcol), where row, col, val are described in Claim 6, and
(readrow,writerow, finalrow) and (readcol,writecol, finalcol) are respectively the timestamp polynomials for the N
addresses specified by row and col over a memory of size M .

There are two crucial subtleties unique to the setting of holography that we are exploiting in the above com-
mitment procedure. First, that the timestamp polynomials (readrow,writerow, finalrow, readcol,writecol, finalcol)
depend only on the sparse polynomial being committed, and in particular not on the evaluation point (rx, ry).
Second, in the holography context, the commit algorithm is run by an honest entity. This means that
the commit phase does not need to include any proof that the committed timestamp polynomials actually
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equal the polynomials T̃r, T̃w, and T̃f described above. This appears to be essential for avoiding superlinear
operations such as sorting.15

In total, using the provided polynomial commitment, the commit algorithm incurs O(N) finite field operations,
and the commitment size is Oλ(1).

The actual evaluation procedure. To prove the correct evaluation of a 2 logM -variate multilinear
polynomial D, in addition to performing the polynomial IOP depicted earlier in the proof, the core idea is to
check if the two oracles sent by the prover satisfy the conditions identified earlier using Claim 7.

Claim 8. Given a 2 logM -variate multilinear polynomial, suppose that (row, col, val, readrow,writerow, finalrow, readcol,
writecol, finalcol) denote multilinear polynomials committed by the commit algorithm. Then, for any rx ∈ FlogM ,
checking that ∀k ∈ {0, 1}logN , Erx(k) = ẽq(b−1(row(k)), rx) is equivalent to checking WS = RS ∪ S, where

• WS = {(i, ẽq(i, rx), 0) : i ∈ [M ]} ∪ {(row(k), Erx(k),writerow(k)) : k ∈ [N ]};

• RS = {(row(k), Erx(k), readrow(k)) : k ∈ [N ]}; and

• S = {(i, ẽq(i, rx), finalrow(i)) : i ∈ [M ]}.

Similarly, for any ry ∈ FlogM , checking that ∀k ∈ {0, 1}logN , Ery(k) = ẽq(b−1(col(k)), ry) is equivalent to
checking WS′ = RS′ ∪ S′, where

• WS′ = {(j, ẽq(j, ry), 0) : j ∈ [M ]} ∪ {(col(k), Ery(k),writecol(k)) : k ∈ [N ]};

• RS′ = {(col(k), Ery(k), readcol(k)) : k ∈ [N ]}; and

• S′ = {(j, ẽq(j, ry), finalcol(i)) : j ∈ [M ]}.

Proof. The desired result follows from a straightforward application of the invariant in Claim 7.

There is no direct way to prove that the checks on sets in Claim 8 hold. Instead, we rely on public-coin,
multiset hash functions to compress RS, WS, and S into a single element of F each. Specifically:

Claim 9 ([Set20]). Given two multisets A,B where each element is from F3, checking that A = B is
equivalent to checking the following, except for a soundness error of O(|A|+ |B|)/|F|) over the choice of γ, τ :
Hτ,γ(A) = Hτ,γ(B), where Hτ,γ(A) =

∏
(a,v,t)∈A (hγ(a, v, t)− τ), and hγ(a, v, t) = a · γ2 + v · γ + t. That is,

if A = B, Hτ,γ(A) = Hτ,γ(B) with probability 1 over randomly chosen values τ and γ in F, while if A 6= B,
then Hτ,γ(A) = Hτ,γ(B) with probability at most O(|A|+ |B|)/|F|).

We are now ready to depict a polynomial IOP for proving evaluations of a committed sparse multilinear
polynomial. Given rx, ry ∈ FlogM , to prove that D(rx, ry) = v for a purported evaluation v ∈ F, consider
the following polynomial IOP, where assume that the verifier has an oracle access to multilinear polynomial
oracles that encode D (namely, row, col, val, readrow,writerow, finalrow, readcol, writecol, finalcol).

1. P → V: two logN -variate multilinear polynomials Erx and Ery as oracles.

2. V ↔ P: run the sum-check reduction to reduce the check that

v =
∑

k∈{0,1}logN
val(k) · Erx(k) · Ery(k)

to checking that the following equations hold, where rz ∈ FlogN chosen at random by the verifier
over the course of the sum-check protocol:

15If desired in other contexts, such a proof can be produced with O(N logN) operations over F. We are unaware of a
mechanism to produce a proof faster than this. Straightforward approaches either require breaking field elements into their
binary representations (which introduces logN factor to the number of coefficients of the polynomials being committed) or
require the prover to sort a vector of timestamps, which is a superlinear-time operation. The challenging issue is to ensure
after every read operation, the timestamp associated with the memory location gets updated to the maximum of the returned
timestamp ts and the current timestamp t.
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• val(rz)
?
= vval; and

• Erx(rz)
?
= vErx and Ery(rz)

?
= vEry . Here, vval, vErx and vEry are values provided by the prover

at the end of the sum-check protocol.

3. V: check if the three obligations hold with an oracle query each to val, Erx, Ery.

4. // The following steps check if Erx is well-formed

5. V → P: τ, γ ∈R F.

6. V ↔ P: run the layered sum-check reduction for “grand products” [Tha13, §5.3.1] to reduce the
check that Hτ,γ(WS) = Hτ,γ(RS) · Hτ,γ(S), where RS,WS, S are as defined in Claim 8 and H
is defined in Claim 9 to checking if the following hold, where rM ∈ FlogM , rN ∈ FlogN chosen at
random by the verifier over the course of the sum-check protocol:

• ẽq(rM , rx)
?
= veq

• Erx(rN )
?
= vErx

• row(rN )
?
= vrow; writerow(rN )

?
= vwriterow ; readrow(rN )

?
= vreadrow ; and finalrow(rM )

?
= vfinalrow

7. V : directly check if the first equality holds, which can be done with O(logM) field operations; check
the remaining equations hold with an oracle query to each of Erx, row,writerow, readrow, finalrow.

8. // The following steps check if Ery is well-formed

9. V → P: τ ′, γ′ ∈R F.

10. V ↔ P: run the sum-check reduction for “grand products” [Tha13, SL20] to reduce the check
that Hτ ′,γ′(WS′) = Hτ ′,γ′(RS′) · Hτ ′,γ′(S′), where RS′,WS′, S′ are as defined in Claim 8 and H
is defined in Claim 9 to checking if the following hold, where r′M ∈ FlogM , r′N ∈ FlogN chosen at
random by the verifier over the course of the sum-check protocol:

• ẽq(r′M , ry)
?
= v′eq

• Ery(r′N )
?
= vEry

• col(r′N )
?
= vcol; writecol(r

′
N )

?
= vwritecol

; readcol(r
′
N )

?
= vreadcol

; and finalcol(r
′
M )

?
= vfinalcol

11. V: directly check if the first equality holds, which can be done with O(logM) field operations;
check the remaining equations hold with an oracle query to each of Ery, col,writecol, readcol, finalcol.

Completeness. Perfect completeness follows from perfect completeness of the sum-check protocol and the
fact that the multiset equality checks using their fingerprints hold with probability 1 over the choice of τ, γ if
the prover is honest.

Soundness. Applying a standard union bound to the soundness error introduced by probabilistic multiset
equality checks with the soundness error of the sum-check protocol [LFKN90], we conclude that the soundness
error for the depicted polynomial IOP as at most O(N)/|F|.

Round and communication complexity. There are three sum-check reductions. First, it is applied on
a polynomial with logN variables where the degree is at most 3 in each variable, so the round complexity is
O(logN) and the communication cost is O(logN) field elements.

Second, it is applied to compute four “grand products” in parallel. Two of the grand products are over
vectors of size M and the remaining two are over vectors of size N . We use the interactive proof for grand
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products of [Tha13], for which the round complexity is O(log2N) with a communication cost of O(log2N)
field elements.

Third, the depicted IOP runs four additional “grand products”, which incurs the same costs as above.

In total, the round complexity of the depicted IOP is O(log2N) and the communication cost is O(log2N)
field elements.16

Verifier time. The verifier’s runtime is dominated by its runtime in the grand product sum-check reductions,
which is O(log2N).

Prover Time. Using linear-time sum-checks [Tha13, XZZ+19] in all three sum-check reductions (and
exploiting the linear-time prover in the grand product interactive proof [Tha13]), the prover’s time is O(N)
finite field operations.

Finally, to prove Theorem 5, applying the compiler of [BFS20] to the depicted polynomial IOP with the given
polynomial commitment primitive, followed by the Fiat-Shamir transformation [FS86], provides the desired
non-interactive argument of knowledge for proving evaluations of committed sparse multilinear polynomials,
with efficiency claimed in the theorem statement.

8 Linear-time SNARKs for R1CS from polynomial commitments

This section describes our first route to construct linear-time SNARKs for R1CS (§1). The following theorem
captures our main result.

Theorem 6. Assuming that |F| = 2Θ(λ) there exists a preprocessing SNARK for RR1CS in the random oracle
model, with the following efficiency characteristics, where M denotes the dimensions of the R1CS matrices,
N denotes the number of non-zero entries, and a fixed positive integer t:

– the preprocessing cost to the verifier is O(N) F-ops;

– the running time of the prover is O(N) F-ops;

– the running time of the verifier is Oλ(N1/t) F-ops; and

– the proof size is Oλ(N1/t).

Proof. From applying [BFS20, Theorem 8] to the polynomial IOP in Theorem 1 using polynomial commitment
schemes from Theorem 4 and Corollary 1, there exists a public-coin interactive argument for RR1CS with
witness-extended emulation. Applying the Fiat-Shamir transform [FS86] to the public-coin interactive
argument results in the claimed SNARK for RR1CS.

The verifier, in a preprocessing step, commits to three 2 logM -variate polynomials that evaluate to a non-zero
value at at most N locations over the Boolean hypercube {0, 1}2 logM ; this costs O(N) F-ops.

The prover: (1) commits to a O(logM)-variate polynomial (which costs O(M) F-ops); (2) participates in the
sum-check protocol in the polynomial IOP in Theorem 1 (which costs O(N) F-ops); and (3) proves evaluations
of one (logM − 1)-variate multilinear polynomial and three 2 logM -variate multilinear polynomials from the
preprocessing step (which costs O(N) F-ops). Together, the prover incurs O(N) F-ops.

The verifier to verify a proof: (1) participates in the sum-check protocol in the polynomial IOP in Theorem 1
(which costs O(logM) F-ops); and (2) verifies the proofs of evaluations of one (logM − 1)-variate multilinear
polynomial and three 2 logM -variate multilinear polynomials from the preprocessing step (which costs
Oλ(N1/t) F-ops). Together, the verifier incurs Oλ(N1/t) F-ops.

16Employing the sum-check reduction for grand products in [SL20] results in a complexity of O(logN) with a communication
cost of O(logN) field elements and a verifier runtime of O(logN), though it requires the prover to send an additional polynomial
of size O(N).
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Finally, the proof size is the sum of the proof sizes from the sum-check protocol in the polynomial IOP
from Theorem 1 and the proof sizes from polynomial commitment schemes. In total, the proof size is
O(logM) +Oλ(N1/t) = Oλ(N1/t).

We obtain zkSNARKs with the cost profiles and cryptographic assumptions asserted in the final three rows of
Figure 18 by composing the SNARK of Theorem 8 with known zkSNARKs [Set20, SL20, Gro16]. Specifically,
the prover in the composed SNARKs proves that it knows a proof π that would convince the SNARK verifier
in Theorem 8 to accept. Perfect zero-knowledge of the resulting composed SNARK is immediate from the
zero-knowledge property of the SNARKs from these prior works [Set20, SL20, Gro16]. Perfect completeness
follows from the perfect completeness properties of these prior works and of Theorem 8. Knowledge soundness
follows from a standard argument [Val08, BCCT13]: one composes the knowledge extractors of the two
constituent SNARKs to get a knowledge extractor for the composed SNARK.

9 Evaluation

In this section, we evaluate the performance of two polynomial commitment schemes and two SNARKs
based on these schemes. Specifically, we evaluate two instantiations of the polynomial commitment scheme of
Section 5: Ligero-PC, which uses the Reed-Solomon code (this scheme is implicit in Ligero [AHIV17]), and
Brakedown-PC, which uses the new linear-time error-correcting code described in Section 6.

We answer the following questions:

1. How do the costs of Brakedown-PC and Ligero-PC compare? (§9.2)

2. How do the costs of Brakedown and Shockwave compare with prior SNARKs? (§9.3)

9.1 Implementation

We implement Ligero-PC and Brakedown-PC in ≈3500 lines of Rust. This includes an implementation of the
polynomial commitment of Section 5 that is generic over fields, error-correcting codes, and hash functions;
implementations of the Reed-Solomon code and our new linear-time code; and a fast parallelized FFT.

We also integrate these polynomial commitments with the open-source implementation of Spartan [liba],
yielding a SNARK library for R1CS. This took less than 100 lines of glue Rust code.

All experiments reported in this section use the BLAKE3 hash function [OANWO20]. Because Ligero-PC
needs to perform FFTs, our experiments use fields of characteristic p such that p− 1 is divisible by 240, which
ensures that reasonably large FFTs are possible in the field; we choose p at random.

As discussed in Section 1.1, our SNARK implementations are not currently zero-knowledge. We leave the
completion of a zero-knowledge implementation to near-term future work.

9.2 Polynomial commitment microbenchmarks

We begin the experimental evaluation by examining the costs of the polynomial commitment schemes
developed in this work. We report the prover’s time to commit to and open polynomials, the verifier’s time
to check an opening, and the communication cost, for multilinear polynomials having 13 to 29 variables (i.e.,
213 to 229 monomials) and univariate polynomials of degree between 213 to 229 (the implementations use
exactly the same code for the univariate and multilinear cases).

Parameters of the error-correcting codes. We instantiate Brakedown-PC with the parameters given
on the third line of Table 3. For Ligero-PC, the rate of the Reed-Solomon code used can be viewed as a knob
that allows one to tradeoff between prover runtime and verification costs. Roughly speaking, the smaller the
rate, the slower the prover, but the smaller the proof size and verification costs. To explore this tradeoff,
we test Ligero-PC with three different code rates: 38/39, 1/2, and 1/4. We choose 38/39 because it gives proof
sizes roughly matching Brakedown-PC, 1/2 because it gives smaller proofs than Brakedown-PC at roughly
comparable prover cost, and 1/4 because it gives even smaller proofs at the cost of greater prover computation.
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An important subtlety regarding rate parameter 38/39 is that it cannot be used in the Ligero-PC scheme when
applied to multilinear polynomials (as required by Shockwave, our SNARK for R1CS that uses Ligero-PC;
§9.3). Ligero-PC only supports multilinear polynomials when instantiated with rate ρ such that ρ−1 is a
power of two. This is a consequence of the fact that Ligero-PC’s FFT requires power-of-two–length codewords,
and multilinear polynomial evaluation can only be decomposed into tensor products with power-of-two–sized
tensors (see Section 5). Since ρ is the ratio of one tensor’s size to codeword length, ρ must be a power of two.
Thus, ρ = 1/2 is the highest rate Ligero-PC supports for multilinear polynomials.

Other parameters. We set parameters of the commitment schemes to obtain 128 bits of security (the one
exception to this is that the randomized code generation procedure in Brakedown-PC is configured to have
at most a 2−100 probability of failing to satisfy the requisite distance properties according to the analysis
of Section 6; this is acceptable because code generation occurs publicly, once for each instance size). To
achieve this, we set the number of columns opened in Brakedown-PC to 6593, in Ligero-PC-38/39 to 7054, in
Ligero-PC-1/2 to 309, and in Ligero-PC-1/4 to 189.

Setup and method. Our testbed for this section is an Azure Standard F64s v2 virtual machine (64 Intel
Xeon Platinum 8272CL vCPUs, 128 GiB memory) with Ubuntu 20.10. We measure single-threaded and
64-threaded speed for committing, opening, and verifying; and we also report communication cost. For each
experiment, we run the operation 10 times and report the average; in all cases, variation is negligible.

Results. Figure 4 reports the results. The dominant cost for the prover is committing to the polynomial. For
large enough polynomials, Brakedown-PC’s commitment computation is as fast or faster than Ligero-PC-1/2’s,
and roughly 2–3× faster than Ligero-PC-1/4’s. Computing commitments in Ligero-PC-38/39 is faster than in
Brakedown-PC, but Ligero-PC-38/39 does not support multilinear polynomials (see discussion above).

Ligero-PC-1/2 and Ligero-PC-1/4 have lower verification cost than the other two schemes, though this advantage
shrinks as instances grow. In terms of communication complexity, Brakedown-PC and Ligero-PC-38/39 have
(by design) nearly the same communication cost. Ligero-PC-1/2 has ≈5–15× less communication than
Brakedown-PC, and Ligero-PC-1/4 has ≈6–21× less than Brakedown-PC. As with verification time, the proof
size advantage of Ligero-PC-1/2 and Ligero-PC-1/4 over Brakedown-PC shrinks as the instance size grows,
with a 5×-6× difference for large instances.

The proof size and verification time comparison can roughly be be explained as follows. The total communi-
cation cost of each commitment scheme is Θ(

√
N · `) where ` is the number of columns that the verifier must

open. This number ` is about 21× bigger for Brakedown-PC than Ligero-PC-1/2 and about 35× bigger for
Brakedown-PC than Ligero-PC-1/4. As N grows large compared to `, Brakedown-PC’s proof size approaches
roughly

√
21 ≈ 4.6 times larger than Ligero-PC-1/2 and roughly

√
35 ≈ 5.9 times larger than Ligero-PC-1/4.

In all cases, hashing is a low-order cost for the provers. The same is true for multi-threaded verifiers (because
checking Merkle paths is embarassingly parallel) and for single-threaded Ligero-PC-1/4 and Ligero-PC-1/2. In
Ligero-PC-38/39 and Brakedown-PC, however, hashing is 30–50% of the verifier’s single-threaded cost (because
the prover opens many columns). Our sparse matrix library does not parallelize as well as our FFT library;
optimizing this should improve multi-threaded Brakedown-PC performance relative to Ligero-PC.

9.3 Evaluation of Brakedown and Shockwave SNARKs

Metrics, method, and baselines. As is standard in the SNARKs literature, our metrics are: (1) the
prover time to produce a proof; (2) the verifier time to verify a proof; (3) proof sizes; and (4) the verifier’s
preprocessing costs. As baselines, we consider two types of SNARKs: (1) schemes that achieve verification
costs sub-linear in the size of the statement (which implies sub-linear proof sizes); and (2) schemes that only
achieve sub-linear proof sizes. We refer to the latter type of schemes as 1

2 -SNARKs. Additionally, we focus on
schemes that do not require a trusted setup (we refer the reader to Spartan [Set20] for a comparison between
our baselines with state-of-the-art SNARKs with trusted setup).

The reader may wonder why we include results for our 1
2 -SNARK given that our implementation is not yet

zero-knowledge; after all, the verifier runtime in any non-zero-knowledge 1
2 -SNARK is commensurate with
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213 215 217 219 221 223 225 227 229

1 thread
Commit (seconds)

Brakedown-PC 0.013 0.038 0.123 0.491 2.14 8.91 36.0 150 605
Ligero-PC-38/39 0.007 0.022 0.076 0.293 1.23 5.19 22.1 92.6 405
Ligero-PC-1/2 0.007 0.028 0.115 0.492 2.08 8.75 39.9 169 717
Ligero-PC-1/4 0.015 0.058 0.244 1.04 4.46 19.7 83.9 356 1590

Open (seconds)
Brakedown-PC 0.022 0.028 0.048 0.113 0.271 0.935 3.21 13.0 48.6
Ligero-PC-38/39 0.019 0.027 0.050 0.102 0.291 0.911 3.25 12.3 48.1
Ligero-PC-1/2 0.002 0.005 0.014 0.051 0.214 0.799 3.11 12.4 50.0
Ligero-PC-1/4 0.002 0.004 0.014 0.052 0.209 0.793 3.13 12.5 51.6

Verify (seconds)
Brakedown-PC 0.025 0.035 0.056 0.148 0.298 0.613 0.703 2.56 2.96
Ligero-PC-38/39 0.021 0.030 0.046 0.077 0.143 0.280 0.559 1.11 2.34
Ligero-PC-1/2 0.003 0.006 0.011 0.021 0.044 0.093 0.196 0.402 0.846
Ligero-PC-1/4 0.004 0.008 0.017 0.036 0.077 0.160 0.338 0.714 1.57

64 threads
Commit (seconds)

Brakedown-PC 0.012 0.018 0.024 0.074 0.234 0.682 2.24 10.7 38.8
Ligero-PC-38/39 0.014 0.015 0.034 0.093 0.254 0.470 2.08 7.53 28.2
Ligero-PC-1/2 0.009 0.022 0.062 0.174 0.367 1.04 3.21 11.5 45.5
Ligero-PC-1/4 0.015 0.034 0.095 0.280 0.646 1.74 5.73 21.6 94.6

Open (seconds)
Brakedown-PC 0.025 0.028 0.039 0.067 0.105 0.189 0.281 0.931 2.05
Ligero-PC-38/39 0.026 0.029 0.038 0.056 0.095 0.161 0.332 0.792 2.13
Ligero-PC-1/2 0.005 0.005 0.006 0.010 0.022 0.048 0.146 0.449 1.54
Ligero-PC-1/4 0.004 0.004 0.006 0.009 0.019 0.049 0.140 0.421 1.51

Verify (seconds)
Brakedown-PC 0.010 0.017 0.031 0.120 0.270 0.558 0.551 2.37 2.40
Ligero-PC-38/39 0.008 0.012 0.020 0.031 0.051 0.088 0.164 0.325 0.647
Ligero-PC-1/2 0.012 0.006 0.010 0.014 0.022 0.035 0.058 0.106 0.201
Ligero-PC-1/4 0.006 0.009 0.013 0.018 0.027 0.043 0.075 0.136 0.278

Communication (kiB)
Brakedown-PC 4299 5198 6739 10010 15797 27112 49157 93767 181948
Ligero-PC-38/39 4225 5172 6799 9785 15487 26837 49270 93651 182359
Ligero-PC-1/2 279 432 727 1304 2446 4718 9250 18302 36394
Ligero-PC-1/4 203 321 551 1004 1901 3689 7256 14383 28631

Figure 4: Microbenchmark results (§9.2). Brakedown-PC is instantiated with the parameters given on the
third line of Table 3; Ligero-PC-38/39, Ligero-PC-1/2, and Ligero-PC-1/4 are instantiated with Reed-Solomon
rates of 38/39, 1/2, and 1/4, respectively.

that of the trivial proof system in which the prover explicitly sends the NP-witness to the verifier. The
answer is three-fold. First, our 1

2 -SNARK actually can save the verifier time relative to the trivial proof
system for structured R1CS instances. In particular, if the R1CS is data parallel, then the verifier can
run in time proportional to the size of a single sub-computation, independent of the number of times the
sub-computation is performed (this is entirely analogous to how prior proof systems save the verifier work for
structured computations [Tha13, BBHR19]). Second, since our 1

2 -SNARK can be rendered zero-knowledge
with minimal overhead, we expect that the reported performance results are indicative of the performance
of a future zero-knowledge implementation. Third, the proof length in our 1

2 -SNARK is smaller than the
witness size for sufficiently large instances (N ≥ 213 for Shockwave and N ≥ 218 for Brakedown).

Unless we specify otherwise, we run our experiments in this section on an Azure Standard F16s v2 virtual
machine (16 vCPUs, 32 GB memory) with Ubuntu 20.10. We report results from a single-threaded configura-
tion since not all our baselines leverage multiple cores. As with prior work [BCR+19, Set20, COS20, SL20],
we vary the size of the R1CS instance by varying the number of constraints and variables m and maintain
the ratio n/m to approximately 1.
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9.3.1 Performance of Shockwave’s and Brakedown’s 1
2 -SNARK scheme

Prior state-of-the-art schemes in this category include: Ligero [AHIV17], Bulletproofs [BBB+18], Au-
rora [BCR+19], SpartanNIZK [Set20], and Lakonia [SL20]. Note that for uniform computations (e.g.,
data-parallel circuits), Hyrax [WTS+18] and STARK [BBHR19] are SNARKs, but for computations without
any structure, they are 1

2 -SNARKs.17 We do not report results from Bulletproofs or STARK as they feature a
more expensive prover than other baselines considered here [BBB+18, BCR+19]. Hyrax [WTS+18] supports
only layered arithmetic circuits, so as used in prior work [Set20] for comparison purposes, we translate
R1CS to depth-1 arithmetic circuits (without any structure). None of the 1

2 -SNARKs we consider require a
preprocessing step for the verifier.

Later, we provide a rough comparison with Wolverine [WYKW20] and Mac’n’Cheese [BMRS20], which unlike
schemes considered here do not support proof sizes sub-linear in the instance size. Another potential baseline
is Virgo [ZXZS20], which like Hyrax [WTS+18] applies only to low-depth circuits as they both share the
same information-theoretic component [GKR08, CMT12, WJB+17, XZZ+19].

For Aurora and Ligero, we use their open-source implementations from libiop [libc], configured to provide
provable security. For Hyrax, we use its reference (i.e., unoptimized) implementation [libb]. For SpartanNIZK,
we use its open-source implementation [liba]. Unless we specify otherwise, we use 256-bit prime fields. Hyrax
uses curve25519 and SpartanNIZK uses ristretto255 [ris, Ham15] for a group where the discrete-log
problem is hard, so R1CS instances are defined over the scalar field of these curves. For Aurora and Ligero,
we use the 256-bit prime field option in libiop. Finally, our schemes use the scalar field of BLS12-381, which
supports FFTs (Brakedown does not need FFTs but Shockwave does). However, we note that none of these
implementations leverages the specifics of the prime field to speed up scalar arithmetic.

We first experiment with Brakedown and Shockwave and their baselines with varying R1CS instance sizes up
to 220 constraints defined over a 256-bit prime field. Figures 5, 6, and 7 depict respectively the prover time,
the proof sizes, and the verifier time from these experiments. We find the following from these experiments.

• Brakedown’s and Shockwave’s provers are the faster than prior work at all instance sizes we measure.
Compared to baseslines that are plausibly post-quantum secure (Ligero and Aurora), Brakedown’s and
Shockwave’s provers are over an order of magnitude faster.

• Brakedown’s proof size is larger than other depicted systems except for Ligero. Still, its proofs are
substantially smaller than the size of the NP-witness for instance sizes N ≥ 218. Shockwave provides
shorter proofs than Brakedown as well as prior post-quantum secure baselines (Ligero and Aurora18).
Shockwave’s proof sizes are smaller than that of the NP-witness for instance sizes N ≥ 213.

• Despite their larger proofs, Brakedown’s and Shockwave’s verifiers are competitive with those of
SpartanNIZK and Lakonia, and is well over an order of magnitude faster than the plausibly post-
quantum secure baselines.

210 211 212 213 214 215 216 217 218 219 220

Ligero? [AHIV17] 0.1 0.2 0.4 0.8 1.6 2 4 8 17 35 69
Hyrax [WTS+18] 1 1.7 2.8 5 9 18 36 61 117 244 486
Aurora? [BCR+19] 0.5 0.8 1.6 3.2 6.5 13.3 27 56 116 236 485
SpartanNIZK [Set20] 0.01 0.02 0.04 0.07 0.14 0.25 0.5 0.8 1.7 3 6
Lakonia [SL20] 0.2 0.2 0.4 0.5 0.8 1 2 3 6 10 19

Brakedown ( 1
2

-SNARK)? 0.008 0.012 0.02 0.04 0.07 0.12 0.2 0.4 0.8 1.5 3.1

Shockwave ( 1
2

-SNARK)? 0.005 0.008 0.02 0.03 0.06 0.1 0.3 0.5 1 2 4.1
? Provides plausible post-quantum security

Figure 5: Prover time (in seconds) for varying R1CS instance sizes under different schemes.

17We do not compare with Ligero++ [BFH+20] since its source code is not public. Broadly speaking, Ligero++ has shorter
proofs than Ligero at the cost of a slower prover, so its prover will be significantly slower than both Brakedown and Shockwave.

18Note that Aurora has asymptotically shorter proofs than Shockwave, and hence the proof size comparison would “cross over”
at larger instance sizes.
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210 211 212 213 214 215 216 217 218 219 220

Ligero? [AHIV17] 546 628 1,076 1,169 2,100 3,169 5,788 5,662 10,527 10,736 19,828
Hyrax [WTS+18] 14 16 17 20 21 26 28 37 38 56 58
Aurora? [BCR+19] 447 510 610 717 810 931 1,069 1,179 1,315 1,473 1,603
SpartanNIZK [Set20] 6 6 7 8 10 10 15 15 23 24 40
Lakonia [SL20] 7 7 8 8 9 9 10 10 11 11 11

Brakedown ( 1
2

-SNARK)? 1,279 1,597 1,974 2,200 2,710 3,165 3,926 4,824 6,122 7,899 10,230

Shockwave ( 1
2

-SNARK)? 72 95 122 160 210 284 386 523 721 990 1,384
? Provides plausible post-quantum security

Figure 6: Proof sizes (KBs) for Shockwave and its baselines.

210 211 212 213 214 215 216 217 218 219 220

Ligero? [AHIV17] 49 96 172 357 680 976 1,900 3,700 7,300 15,000 31,000
Hyrax [WTS+18] 195 229 262 317 388 502 510 1,200 1,900 3,500 7,700
Aurora? [BCR+19] 186 316 574 933 1,800 3,500 6,700 13,000 27,000 54,000 108,000
SpartanNIZK [Set20] 3 4 5 6 9 15 25 44 87 166 347
Lakonia [SL20] 27 29 34 38 48 60 85 115 179 281 517

Brakedown ( 1
2

-SNARK)? 16 20 28 31 49 60 101 130 231 339 660

Shockwave ( 1
2

-SNARK)? 2 3 4 8 11 21 35 69 121 241 466
? Provides plausible post-quantum security

Figure 7: Verifier time (in ms) under different schemes.

Performance for larger instance sizes. To demonstrate Brakedown’s and Shockwave’s scalability to
larger instance sizes, we experiment with them and SpartanNIZK for instance sizes beyond 220 constraints.

For these larger-scale experiments, we use an Azure Standard F32s v2 VM which has 32 vCPUs and 64 GB
memory. Figures 8, 9, and 10 depict results from these larger-scale experiments. Our findings from these
experiments are similar to results from the smaller-scale results.

Performance over small fields. To demonstrate flexibility with different field sizes, we also run Brakedown
and Shockwave with a prime field where the prime modulus is 128 bits. For the latter case, our choice
of parameters achieve at least 100 bits security. We depict these results together with results from our
larger-scale experiments (Figures 8, 9, and 10).

Recall that our asymptotic results require |F| > exp(Ω(λ)) to achieve a linear-time prover, because if the field
is smaller than this, certain parts of the protocol need to be repeated ω(1) times to drive the soundness error
below exp(−λ).19 However, Brakedown and Shockwave are quite efficient over small fields. The reason is
that only some parts of the protocol need to be repeated to drive the soundness error below exp(−λ) and
those repetitions produce only low-order effects on the prover’s runtime and the proof length. This means
that for a fixed security level, our prover is faster over small fields than large fields, because the effect of
faster field arithmetic dominates the overhead due to the need to repeat parts of the protocol to drive down
soundness error. Similar observations appear in prior work [BBHR19]. See Appendix A for details.

Comparison with Wolverine and Mac’n’Cheese. There does not appear to be open-source implemen-
tations of these baselines, so we rely on prior performance reports for this comparison. Since we do not
measure the performance of all schemes on the same hardware platform, one must treat this as a rough
comparison, distinct from the more rigorous comparison to other systems earlier in this section. Note,
moreover, that Wolverine and Mac’n’Cheese are targeted at circuits rather than R1CS (R1CS can simulate
circuits with addition and multiplication gates of fan-in two, with one R1CS constraint per multiplication
gate).

• Both baselines require interaction between the verifier and the prover, so unlike Brakedown and
Shockwave, they do not produce proofs that any verifier can verify. In other words, both baselines do

19To achieve constant soundness error, we in fact only need |F| � N (see Lemma 1 in Section 5 and Claim 10 in Appendix A).
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220 221 222 223 224 225 226

SpartanNIZK (256-bit field) 6 12 23 44 88 171 347

Brakedown ( 1
2

-SNARK)? (256-bit field) 3 6 13 25 52 103 210

Shockwave ( 1
2

-SNARK)? (256-bit field) 4 9 17 36 72 148 295

Brakedown ( 1
2

-SNARK)? (128-bit field) 1 2 5 10 20 40 81

Shockwave ( 1
2

-SNARK)? (128-bit field) 2 4 8 16 32 65 136
? Provides plausible post-quantum security

Figure 8: Prover time (in seconds) for varying R1CS instance sizes under Shockwave ( 1
2

-SNARK) and its baselines.

220 221 222 223 224 225 226

SpartanNIZK (256-bit field) 40 41 74 74 140 140 272

Brakedown ( 1
2

-SNARK)? (256-bit field) 10,230 13,737 18,145 25,068 33,685 47,385 64,399

Shockwave ( 1
2

-SNARK)? (256-bit field) 1,384 1,914 2,695 3,751 5,309 7,415 10,522

Brakedown ( 1
2

-SNARK)? (128-bit field) 6,644 8,164 11,003 13,983 19,457 25,280 36,021

Shockwave ( 1
2

-SNARK)? (128-bit field) 730 1,059 1,395 2,048 2,711 4,012 5,332
? Provides plausible post-quantum security

Figure 9: Proof sizes (in KBs) under Shockwave and its baselines.

220 221 222 223 224 225 226

SpartanNIZK (256-bit field) 0.3 0.7 1.3 2.6 5 10 20

Brakedown ( 1
2

-SNARK)? (256-bit field) 0.7 1.1 2.1 3.8 8 14 29

Shockwave ( 1
2

-SNARK)? (256-bit field) 0.5 0.9 1.7 3.5 7 14 28

Brakedown ( 1
2

-SNARK)? (128-bit field) 0.3 0.4 0.8 1.4 3 5 10

Shockwave ( 1
2

-SNARK)? (128-bit field) 0.2 0.3 0.6 1.2 2 5 9
? Provides plausible post-quantum security

Figure 10: Verifier time (in seconds) for varying R1CS instance sizes under different schemes.

not produce publicly-verifiable proofs. The verifier’s runtime is asymptotically the same as Brakedown’s
and Shockwave’s verifiers ( 1

2 -SNARK variants), but Brakedown’s and Shockwave’s verifier appear to be
concretely far cheaper.

• Proof sizes are Oλ(N) for an N -sized instance for both baselines, whereas Brakedown’s and Shockwave’s
proofs are Oλ(

√
N). Concretely, Brakedown’s and Shockwave’s proofs are orders of magnitude shorter

than both baselines.

• Asymptotically, the prover in both baselines uses memory proportional to that needed to produce
the witness and evaluate the circuit non-cryptographically. Brakedown and Shockwave do not have
this property, though for worst-case circuits, Brakedown, Shockwave, and the baselines have the same
asymptotic memory consumption (this includes, for example, circuit-satisfiability instances whose
witness size is linear in the circuit size). Concretely, both baselines report better memory usage than
Brakedown and Shockwave.

9.3.2 Performance of Brakedown’s and Shockwave’s SNARK scheme

Prior state-of-the-art schemes in this category include: Spartan [Set20], SuperSonic [BFS20], Fractal [COS20],
Kopis [SL20], and Xiphos [SL20]. For Fractal, we use its open-source implementations from libiop [libc],
configured to provide provable security. For SuperSonic, there is no prior implementation, so we use prior
estimates of their costs based on microbenchmarks (See [SL20] for a detailed discussion of how they estimate
these costs). For Spartan, we use its open-source implementation [liba]. For preprocessing costs, we ignore
the use of “untrusted assistant” technique [SL20], which applies to all schemes considered here.

Figures 11, 12, 13, 14 depict respectively the prover time, the proof size, the verifier time, and the verifier’s
preprocessing time for varying R1CS instance sizes for our schemes and their baselines. We find the following
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210 211 212 213 214 215 216 217 218 219 220

Spartan [Set20] 0.1 0.2 0.3 0.5 0.9 2 3 7 12 24 45
SuperSonic [BFS20] 86 163 311 599 1,160 2,240 4,360 8,500 16,600 32,500 63,800
Fractal? [COS20] 0.8 1.5 2.9 5.9 12 25 51 104 216 – –
Kopis [SL20] 1.0 1.3 2.1 3.1 5.3 8.3 15 25 48 87 168
Xiphos [SL20] 1.2 2.0 2.5 4.2 5.7 10.2 15.4 28 49 93 169

Brakedown? 0.06 0.1 0.2 0.3 0.6 1 2 4 8 17 33
Shockwave? 0.04 0.08 0.16 0.3 0.6 1.3 2.7 5 11 21 45
? Provides plausible post-quantum security

Figure 11: Prover time (in seconds) for varying R1CS instance sizes under different schemes. Fractal’s prover runs out of
memory at 218 constraints and beyond.

210 211 212 213 214 215 216 217 218 219 220

Spartan [Set20] 32 37 41.7 48 54 63 72 85 98 120 142
SuperSonic [BFS20] 31 33 34 36 38 40 41 43 45 47 49
Fractal? [COS20] 1,069 1,226 1,359 1,490 1,665 1,817 1,962 2,147 2,316 – –
Kopis [SL20] 25 26 27 29 30 32 33 34 36 37 39
Xiphos [SL20] 40 44 45 48 49 51 53 55 57 59 61

Brakedown? 6,020 7,758 9,258 10,773 13,018 15,164 19,269 23,551 31,173 39,261 53,846
Shockwave? 438 572 695 940 1,182 1,631 2,096 2,969 3,891 5,606 7,382
? Provides plausible post-quantum security

Figure 12: Proof sizes in KBs.

from our experimental results.

• Brakedown achieves the fastest prover at instance sizes we measure. Shockwave’s prover is slower
than Brakedown’s, both asymptotically and concretely, but Shockwave’s prover is still over an order of
magnitude faster than prior plausibly post-quantum secure SNARKs (namely Fractal [COS20]).

• Brakedown and Shockwave have the largest proof sizes amongst the displayed proof systems, but for
large enough R1CS instances their proof sizes are sublinear in the size of the NP-witness (N > 216 for
Shockwave and N ≥ 222 for Brakedown).

• Brakedown’s verifier is slower than Shockwave and most other schemes, particularly Xiphos [SL20]
which is specifically designed for achieving a fast verifier. However, Shockwave’s verifier is competitive
with prior plausibly post-quantum secure SNARKs.

• Brakedown’s and Shockwave’s preprocessing costs for the verifier are competitive with those of prior
high-speed SNARKs such as Spartan [Set20] and Xiphos [SL20], and an order of magnitude faster than
the prior post-quantum secure SNARK (Fractal).

Performance for larger instance sizes. To demonstrate Brakedown’s and Shockwave’s scalability to
larger instance sizes, we experiment with them and Spartan for instance sizes beyond 220 constraints.

For these larger-scale experiments, we use an Azure Standard F64s v2 VM which has 64 vCPUs and 128 GB
memory. Figures 15, 16, and 17 depict results from these larger-scale experiments. Our findings from these
experiments are similar to results from the smaller-scale results.

10 Additional related work and comparisons

On cryptographic assumptions and detailed comparison to [BCL20]. Recall from Section 1 that
Bootle, Chiesa, and Liu [BCL20] give a zero-knowledge IOP for R1CS with linear-time prover and polyloga-
rithmic time verifier. Standard transformations can then translate this IOP into a zero-knowledge SNARG
that is unconditionally secure in the random oracle model.
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210 211 212 213 214 215 216 217 218 219 220

Spartan [Set20] 8 9 11 14 18 22 30 38 53 68 97
SuperSonic [BFS20] 1,400 1,500 1,600 1,700 1,900 2,000 2,100 2,200 2,300 2,500 2,600
Fractal? [COS20] 148 120 163 168 141 184 188 165 205 – –
Kopis [SL20] 68 73 87 94 117 129 165 185 236 278 390
Xiphos [SL20] 53 54 55 57 57 60 60 63 63 65 65

Brakedown? 111 133 190 223 323 386 576 708 1,103 1,379 2,219
Shockwave? 14 21 25 40 50 82 106 175 223 377 481
? Provides plausible post-quantum security

Figure 13: Verifier’s performance (in ms).

210 211 212 213 214 215 216 217 218 219 220

Spartan [Set20] 0.1 0.1 0.2 0.3 0.6 1 2 3 7 10 20
SuperSonic [BFS20] 35 64 117 216 400 747 1,400 2,600 4,900 9,400 17,900
Fractal? [COS20] 0.3 0.6 1.2 2.5 5.4 11.5 24 51 107 227 –
Kopis [SL20] 0.6 0.7 1.3 1.5 2.7 3.4 6.2 8.6 16 24 46
Xiphos [SL20] 0.8 1 2 3 3 6 7 13 18 32 49

Brakedown? 0.04 0.06 0.12 0.2 0.4 0.7 1.4 3 6 11 22
Shockwave? 0.04 0.08 0.15 0.3 0.6 1.3 2.7 5.5 11 24 47
? Provides plausible post-quantum security

Figure 14: Verifier’s preprocessing time (i.e., encoder’s time) in seconds for varying R1CS instance sizes under different schemes.

Our implemented SNARKs, Shockwave and Brakedown, satisfy the same type of security property as
[BCL20, BCG20], in the sense that we give an IOP (of knowledge), and this can be transformed into a
SNARK that is unconditionally secure in the random oracle model. However, our other theoretical SNARKs
do not, owing to their use of (one layer of) recursive composition. Rather, they are knowledge-sound assuming
our first SNARK remains knowledge sound in the plain model when the random oracle is instantiated by the
appropriate concrete hash function. This is a well-known issue that arises whenever one recursively composes
two SNARKs, where the “inner” SNARK makes use of random oracles [Val08, BCCT13, COS20, BCMS20].
The random oracle used by the inner SNARK must be instantiated before recursive composition can occur,
and knowledge soundness of the composed SNARK requires knowledge soundness of the inner SNARK.

On a technical level, Bootle et al. [BCL20] obtain a zero-knowledge IOP with polylogarithmic proof length by
applying proof composition to interactive oracle proofs (IOPs) that one can later transform into zkSNARKs
via Merkle hashing and the Fiat-Shamir transformation [Mic94, Val08, BCS16]. In contrast, we obtain or
theoretical zkSNARKs with analogous costs by transforming our first (non-zero-knowledge) IOP into a
SNARK before performing recursive proof composition with a suitable existing zkSNARK.

Additional related work. Other than [BCG20, BCL20], the following works have come closest to the
goals set forth in this paper: (1) Hyrax [WTS+18] and Libra [XZZ+19] for low-depth, uniform circuits;
(2) Spartan [Set20] and Xiphos [SL20] for arbitrary, non-uniform statements represented with R1CS; (3) the
recent work of Kothapalli et al. [KMP20] for a variant of R1CS. All these schemes combine variants of the
sum-check protocol [LFKN90, BCR+19] with cryptographic commitments (e.g., polynomial commitments).

In Hyrax and Libra, beyond performing O(N) finite field operations where N is the size of the circuit,20 the
prover performs O(d logN +W ) exponentiations in a group, where W is the size of the witness to the circuit.
As a result, these schemes achieve a linear-time prover so long as d logN+W ≤ (N · logW )/λ (i.e., for circuits
of sub-linear depth and with sub-linear sized witnesses, and when |F| = 2Θ(λ)). Two downsides remain. First,
their underlying interactive proof [GKR08, CMT12, WJB+17] has communication cost Θ(d logN), which
places a lower bound on the proof length (regardless of the polynomial commitment scheme used). Second,
they require uniform circuits (e.g., data-parallel circuits) to achieve verifier’s costs that are sub-linear in the
circuit size.

20Hyrax employs Giraffe [WJB+17] that shows how to implement the prover via O(N) finite field operations for data-parallel
circuits. Libra showed how to achieve this runtime bound for arbitrary circuits.
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220 221 222 223

Spartan 44 89 175 350

Brakedown? 33 67 136 274
Shockwave? 45 91 186 390
? Provides plausible post-quantum security

Figure 15: Prover time (in seconds) for varying R1CS instance sizes under Brakedown, Shockwave, and Spartan.

220 221 222 223

Spartan 132 170 208 345

Brakedown? 53,895 69,595 98,182 129,298
Shockwave? 7,440 10,845 14,453 21,259
? Provides plausible post-quantum security

Figure 16: Proof sizes (in KBs) for varying R1CS instance sizes under Brakedown, Shockwave, and Spartan.

In contrast, Spartan and Xiphos apply to arbitrary R1CS (over discrete-logarithm-friendly fields) and when
using appropriate polynomial commitment schemes (such as Dory [Lee20]), their proof length is O(logN)
group elements. Furthermore, they achieve Oλ(logN) verification times, after a one-time preprocessing step
to create a commitment to R1CS matrices.21 However, after performing O(N) operations over F, Spartan’s
and Xiphos’s provers perform an O(N)-sized multiexponentiation, which stems from their use of a polynomial
commitment schemes applied to a multilinear polynomial with O(N) coefficients.22 As a result, according
to the aforementioned accounting, they do not achieve a linear-time prover even though concretely these
zkSNARKs have a prover time that is in fact the state of the art in most cases for large enough instance sizes.

In a recent theoretical work, Kothapalli et al [KMP20] propose a zkSNARK that achieves Oλ(1) proof sizes
and verification times for a variant of R1CS, but their prover performs an O(N)-sized multiexponentiation
for an N -sized R1CS instance, so it does not achieve a linear-time prover according to the above accounting.
Additionally, their scheme requires a one-time trusted setup.

Beyond the above works, GGPR-based zkSNARKs [GGPR13, PGHR13, Gro16], which build on earlier
work [IKO07, Gro10, Lip12, SMBW12], offer the best proof sizes and verification times in practice, but they
require the prover to perform an FFT of length Θ(N) and also require a trusted setup (a trusted authority,
or a set of authorities of which at least one is honest, that creates public parameters using a secret trapdoor
that they later forget). Other approaches to zero-knowledge arguments not discussed above either require the
prover to devote Θ(N logN) field operations to FFTs [AHIV17, BCR+19, GWC19, CHM+20], or they require
a trusted setup [GWC19, CHM+20], or they do not achieve sub-linear verification costs [BBB+18, BCG+17].
Moreover, as mentioned in Section 1, all prior succinct argument implementations have placed restrictions on
the field used, e.g., discrete-logarithm friendliness, FFT-friendliness, or the need for one or more additive or
multiplicative subgroups of a specified size.

Finally, several recent works [GMO16, CDG+17, WYKW20, BMRS20, DIO20] do achieve a linear-time
prover, but they do not achieve sub-linear verification costs nor proof sizes; many of these works also do not
achieve non-interactivity nor publicly-verifiable proofs.

11 Conclusion and future directions

In this work, we have given new, plausibly post-quantum arguments of knowledge for expressive NP-complete
problems such as R1CS. Our arguments achieve asymptotically optimal prover time, sublinear proof size,
and state of the art concrete efficiency. There are a number of avenues to improve or extend our arguments,
without radical departures from our paradigm.

21Similar preprocessing applies to Hyrax and Libra to achieve an Oλ(d logN)-time verifier even for non-uniform, depth-d
circuits; see Figure 18.

22There exist polynomial commitment schemes, e.g., [ZXZS20], that do not require a multiexponentiation, but they require
the prover to perform an FFT over a vector of length N , which as discussed is not linear-time, and in practice is slower than an
O(N)-sized multiexponentiation for large enough N .
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220 221 222 223

Spartan 96 126 180 240

Brakedown? 2,226 2,765 4,506 5,695
Shockwave? 483 803 989 1,649
? Provides plausible post-quantum security

Figure 17: Verifier’s time (in ms) for varying R1CS instance sizes under Brakedown, Shockwave, and Spartan.

An obvious direction is to further improve the practicality of our linear-time encodable codes, i.e., achieving
better distance properties without sacrificing encoding time. A potentially more substantive observation
is that, in order to achieve a sound argument, we may not actually need the code to have large minimum
distance; it may suffice for the code to have large computational minimum distance. By this, we mean that,
while pairs of close codewords might exist, they cannot be found by any efficient algorithm. Are there more
efficient codes than ours that can be shown to have large computational minimum distance under standard
intractability assumptions?

The proof length of our polynomial commitment scheme would benefit slightly from improved analyses of
proximity gaps for general linear codes. E.g., extending the analysis of Appendix A from Reed-Solomon codes
to general linear codes would improve the proof length of Brakedown by perhaps 15%. Alternatively, such an
improved analysis could be leveraged to marginally improve prover time while keeping proof size constant.

It would be interesting to implement versions of the polynomial commitment scheme described in Section 5
(and also implicit in [RR20]) with proof length Θλ(N1/3) or Θλ(N1/4), where N is the size of the polynomial
to be committed. While these protocols improve the proof size’s dependence on N , the hidden constants and
the dependence on λ worsen significantly. In addition, the prover’s runtime increases by a factor of at least
the inverse of the rate of the error-correcting code used. Accordingly, it is not clear that these protocols would
concretely improve over the prover-time-vs-proof-size tradeoffs already obtained in this work by adjusting the
rate of code used.

A final direction is to implement the composition of Shockwave or Brakedown with another SNARK, perhaps
one of very small proof length, in an effort to achieve a best-of-both-worlds SNARK with a linear-time prover
and tiny proofs. Doing so naively would require expressing the Shockwave or Brakedown verifier as an R1CS
instance. Preliminary estimates suggest that for realistic input sizes (say, ≤ 240) this might result in an
R1CS of size perhaps 230, dominated by the need to represent cryptographic hash operations via the R1CS.
This is not out of the realm of feasibility, even for popular trusted-setup SNARKs with short proofs that are
difficult to scale owing to large (superlinear) prover complexity and the need for a trusted setup [WZC+18].
But it is nonetheless larger than ideal (e.g., if one wishes to compose with existing trusted-setup SNARKs
with short proofs, without running a new trusted-setup ceremony, one is limited, e.g, to instances of size
roughly 219 [Zca18, GMN21]). It may be possible to reduce the “R1CS-representation-size” of the Shockwave
or Brakedown verifiers by reducing proof length with better error-correcting codes or as per the previous
paragraph.

Lastly, on the theory side, it remains open to give a SNARK with a linear-time prover that operates even
over very small fields (i.e., of size sub-exponential in the desired security parameter λ).
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A Tighter Analysis for the Reed-Solomon Code

By invoking a state of the art analysis in place of Claim 1, one can concretely improve the number of columns
that must be opened by the verifier in the polynomial commitment when the error-correcting code used is
the Reed-Solomon code. The following claim is a rephrasing of [BCI+20, Theorem 3.1].

Claim 10. (Ben-Sasson, Carmon, Ishai, Kopparty, and Saraf [BCI+20]) Let Enc be the encoding function
of a Reed-Solomon code over F with message length k, blocklength N , and rate ρ = (k + 1)/N . Let
û = (û1, . . . , ûm) ∈

(
FN
)m

and for each i ∈ [m] let ci be the closest codeword in Enc to ûi. Let δ ∈ (0, 1−ρ
2 ].

Let E with |E| < δN be a subset of the columns j ∈ [N ] of û on which there is even one row i ∈ [m] such that
ûi,j 6= ci,j . Let ε = N/|F|. With probability at least 1− ε over the choice of r ∈ Fm,

∑m
i=1 ri · ûi has distance

at least |E| from any codeword in Enc.

Lemma 3. Let ρ and ε = N/|F| be as in Claim 10 and let δ ∈ (0, 1−ρ
2 ]. If the prover passes all of the checks

in the testing phase with probability at least

ε+ (1− δ)`,

then there is a sequence of m codewords c1, . . . , cm in Enc such that

E := |{j ∈ [N ] : ∃i ∈ [m] such that ci,j 6= ûi,j}| ≤ δN. (11)

Proof. Let d(b, c) denote the relative Hamming distance between two vectors b, c ∈ FN . Assume by way of
contradiction that Equation (11) does not hold. We explain that the prover passes the consistency tests
during the testing phase with probability less than ε+ (1− δ)`.

Recall that v denotes
∑m
i=1 riûi. By Claim 10, the probability over the verifier’s choice of r that there exists

a codeword a satisfying d(a, v) ≤ δ is less than ε. If no such a exists, then d(Enc(u′), v) > δ. In this event, all
of the verifier’s consistency tests pass with probability at most (1− δ)`.

Completeness and binding of the polynomial commitment scheme. Completeness holds by design.

To argue binding, recall from the analysis of the testing phase that ci denotes the codeword in Enc that is
closest to row i of û, and let w :=

∑m
i=1 q1,i · ci. Let ρ, δ and ε = N/|F| be as in Lemma 3. We show that, if

the prover passes the verifier’s checks in the testing phase with probability more than ε+ (1− δ)` and passes

the verifier’s checks in the evaluation phase with probability more than (ρ+ δ)
`
, then w = Enc(u′′).

If w 6= Enc(u′′), then w and Enc(u′′) are two distinct codewords in Enc and hence they can agree on at most
ρ ·N coordinates. Denote this agreement set by A. The verifier rejects in the evaluation phase if there is any
j ∈ Q′ such that j 6∈ A ∪ E, where E is as in Equation (11). |A ∪ E| ≤ |A|+ |E| ≤ ρ ·N + δN = (ρ+ δ)N ,
and hence a randomly chosen column j ∈ [N ] is in A ∪ E with probability at most ρ+ δ. It follows that u′′

will pass the verifier’s consistency checks in the evaluation phase with probability at most (ρ+ δ)
`
.

In summary, we have shown that if the prover passes the verifier’s checks in the testing phase with probability
at least ε+ (1− δ)`, then, in the following sense, the prover is bound to the polynomial g∗ whose coefficients
in the Lagrange basis are given by c1,1, . . . , cm,m, where ci ∈ FN denotes the closest codeword to row i of
the vector û sent in the commitment phase: on evaluation query r, the verifier either outputs g∗(r), or else

rejects in the evaluation phase with probability at least 1− (ρ+ δ)
`
. Setting δ = 1−ρ

2 , we obtain the following
theorem.

Theorem 7. Consider the polynomial commitment scheme described in Section 5 using the Reed-Solomon
code. If the prover passes the verifier’s checks in the testing phase with probability at least N/|F|+ ( 1+ρ

2 )`,
then, in the following sense, the prover is bound to the polynomial g∗ whose coefficients in the Lagrange basis
are given by c1,1, . . . , cm,m, where ci ∈ FN denotes the closest codeword to row i of the vector û sent in the
commitment phase: on evaluation query r, the verifier either outputs g∗(r), or else rejects in the evaluation

phase with probability at least 1−
(

1+ρ
2

)`
. The polynomial commitment is extractable.

47



Furthermore, the polynomial commitment scheme provides standard extractability properties. This is because
with the transformation of [Kil92, Mic94, Val08, BCS16], informally speaking, given a prover in the random
oracle model that convinces a verifier, one can efficiently extract the IOP proof strings from the prover. Our
analysis of the testing phase of the polynomial commitment scheme (Lemma 3) guarantees that each row of
the prover’s proof string in the commitment phase has relative Hamming distance at most δ = 1−ρ

2 from
some codeword. Hence, row-by-row decoding provides the coefficients of the multilinear polynomial that
the prover is bound to (decoding of the Reed-Solomon code can be done in polynomial time via, e.g., the
Berlekamp-Welch algorithm).

An optimization over small fields. The probability N/|F| + ( 1+ρ
2 )` appearing in Theorem 7 can be

driven arbitrarily close to N/|F| by increasing `. However, for small fields, N/|F| may be larger than the
desired soundness error ε = exp(−λ). In this event, one can modify the polynomial commitment scheme as
follows so as to replace N/|F|+ ( 1+ρ

2 )` with (N/|F|)η + η · ( 1+ρ
2 )` for any constant η > 1. The Testing Phase

is repeated η times in parallel, but with the same random subset Q ⊆ [N ] of columns (with |Q| = ` = Θ(λ))
used in all η repetitions. The proof of Theorem 7 is easily extended to show that Theorem 7 applies to this
modification of the polynomial commitment, with N/|F|+ ( 1+ρ

2 )` replaced with (N/|F|)η + η · ( 1+ρ
2 )`.

By using the same set Q in all η invocations of the testing phase, one avoids a factor-η blowup in the
proof length (as revealing all “columns” in Q of û is the bottleneck in the proof length). When using the
Reed-Solomon code, the repetitions of the Testing Phase also do not substantially increase the prover time,
because the bottleneck in the prover time is computing û in the Commit Phase, not the Test Phase (this
holds both asymptotically when using Reed-Solomon codes, and concretely for large enough instance sizes N).

B Asymptotic Efficiency of Prior SNARKs

Figure 18 depicts the asymptotic efficiency of zkSNARKs from this work and prior works.
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proof size/ computational
prover time encoder time verifier time ZK? assumptions model

Hyrax [WTS+18] O(W + d logN) G-exp N/A Oλ(
√
W + d logN) 3 DLOG, RO data-parallel circuits

O(N) F-ops with low-depth d

Libra [XZZ+19]† O(W + d logN) G-exp N/A Oλ(d logN) 3 q-type, RO uniform circuits
O(N) F-ops with low-depth d

Virgo [ZXZS20] O(N +W logW ) F-ops N/A Oλ(d logN + log2 W ) 3 RO uniform circuits
O(W ) hashes with low-depth d

Spartan [Set20] O(N) G-exp O(N) G-exp Oλ(
√
N) 3 DLOG, RO R1CS

Spartan++ [SL20] O(N) G-exp O(N) F-ops Oλ(
√
N) 3 DLOG, RO R1CS

Xiphos [SL20] O(N) G-exp O(N) F-ops Oλ(logN) 3 SXDH, RO R1CS

[KMP20]† O(N) G-exp O(N) G-exp Oλ(1) 3 q-type, RO∗ ACS

Hyrax? O(W + d logN) G-exp O(N) F-ops Oλ(d logN) 3 SXDH, RO non-uniform circuits
O(N) F-ops with low-depth d

[BCG20] O(N) F-ops O(N) F-ops Oλ(Nε) 7 RO R1CS
O(N) hashes O(N) hashes

[BCL20] O(N) F-ops O(N) F-ops Oλ(logc(N)) 3 RO R1CS
O(N) hashes O(N) hashes

This work O(N) F-ops O(N) F-ops Oλ(Nε) 7 RO R1CS
O(N) hashes

This work O(N) F-ops O(N) F-ops Oλ(log2 N) 3 RO∗ R1CS
O(N) hashes

This work O(N) F-ops O(N) F-ops Oλ(logN) 3 RO∗, SXDH R1CS
O(N) hashes

This work† O(N) F-ops O(N) F-ops Oλ(1) 3 RO∗, q-type R1CS
O(N) hashes

† Requires universal trusted setup

Figure 18: Asymptotic efficiency of zkSNARKs from this work and prior works (we borrow style from [Set20, SL20,
BCG20]). The depicted costs are for an NP statement of size N over a finite field F, where |F| = exp(Θ(λ)) and λ ≥
ω(logN) is the security parameter. F-ops refers to field multiplications or additions; G-exp refers to an exponentiation
in a group G whose scalar field is F. We focus on zkSNARKs with a linear number of operations of a certain type. We do
not depict schemes that do not achieve sub-linear verification costs [BBB+18, BCG+17, WYKW20, BMRS20, DIO20].
For Hyrax [WTS+18] and Libra [XZZ+19], we assume a layered arithmetic circuit, with N gates, depth d, and a
non-deterministic witness of size W . The parameters ε ∈ (0, 1) and c > 0 are constants. ACS refers to a specialization of
R1CS [KMP20]. Spartan++ and Xiphos use an untrusted assistant (e.g., the prover) to accelerate the encoder, thereby
avoiding O(N) G-exp operations [SL20]. Hyrax? refers to Hyrax with the following modifications from subsequent
works: (1) linear-time sum-checks for non-uniform circuits from Libra [XZZ+19]; (2) computation commitments from
Spartan [Set20] to preprocess the structure of a non-uniform circuit; and (3) polynomial commitment scheme from
Dory [Lee20], which is also used in Xiphos [SL20]. Bootle et al. [BCG20, BCL20] and our first scheme give IOPs, and
the table refers to SNARKs that can be obtained thereof via standard transformations. Our first scheme is Theorem
8. The latter three schemes are obtained by applying one-level of proof composition to our first scheme using one
of three existing zkSNARKs as the “outer” proof system: Spartanro [Set20], Xiphos [SL20], and Groth16 [Gro16].
RO in the “assumptions” column refers to the random oracle model (rows for which RO is the only assumption
yield an unconditionally knowledge sound protocol in the random oracle model, and interactive protocols in the
plain model that are knowledge sound assuming CRHFs. Rows for which RO∗ appears in the assumption column
require assuming plain-model security when the random oracle is instantiated with a concrete hash function). To
achieve a linear-time prover by using a linear-time hash function for Merkle hashes, our schemes and the schemes of
Bootle et al. [BCG20, BCL20] require assuming the hardness of certain lattice problems, which are not listed in the
“assumptions” column for brevity (§1).
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