
Aggregating and thresholdizing hash-based signatures using
STARKs

Irakliy Khaburzaniya

Polygon/Meta

irakliy81@gmail.com

Kostantinos Chalkias

Meta

chalkiaskostas@gmail.com

Kevin Lewi

Meta

klewi@fb.com

Harjasleen Malvai

UIUC / IC3

hmalvai2@illinois.edu

ABSTRACT
This work presents an approach for compressing hash-based signa-

tures using STARKs (Ben-Sasson et. al.’18). We focus on construct-

ing a hash-based 𝑡-of-𝑛 threshold signature scheme, as well as an

aggregate signature scheme. In both constructions, an aggregator

collects individual one-time hash-based signatures and outputs a

STARK proof attesting that the signatures are valid and meet the

required thresholds. This proof then serves the role of the aggregate

or threshold signature. We demonstrate the concrete performance

of such constructions, having implemented the algebraic interme-

diate representations (AIR) for them, along with an experimental

evaluation over our implementation of the STARK protocol.

We find that, even when we aggregate thousands of signatures,

the final aggregated size ranges between 100KB and 200KB. This

makes our schemes attractive when there exist at least 50 one-or-

few-times hash-based signatures – such as in the blockchain setting.

We also observe that for STARK-based signature aggregation, the

size of individual signatures is less important than the number of

hash invocations and the complexity of the signature verification

algorithm. This implies that simple hash-based signature variants

(e.g. Lamport, HORST, BPQS) are well-suited for aggregation, as

their large individual signatures serve only as witnesses to the ZKP

circuit and are not needed for aggregate signature verification.

Our constructions are directly applicable as scalable solutions for

post-quantum secure blockchains which typically employ blocks of

hundreds or thousands of signed transactions. Moreover, stateful

hash-based one-or-few-times signatures are already used in some

PQ-ready blockchains, as address reuse is typically discouraged for

privacy reasons.

ACM Reference Format:
Irakliy Khaburzaniya, Kostantinos Chalkias, Kevin Lewi, and Harjasleen

Malvai. 2022. Aggregating and thresholdizing hash-based signatures using

STARKs. In Proceedings of the 2022 ACM Asia Conference on Computer and
Communications Security (ASIA CCS ’22), May 30-June 3, 2022, Nagasaki,
Japan. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3488932.

3524128

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9140-5/22/05. . . $15.00

https://doi.org/10.1145/3488932.3524128

1 INTRODUCTION
Aggregate and threshold signature schemes are important crypto-

graphic primitives with real-world applications ranging from Public

Key Infrastructure (PKI) to blockchains. Roughly speaking, in an

aggregate signature scheme, signatures over unrelated messages

that are signed individually by different parties are combined into a

single signature. In a threshold signature scheme, 𝑡 out of 𝑛 parties

sign a single message𝑀 , and the resulting signature stands in as

the signature of all 𝑛 parties over𝑀 .

Of particular interest are schemes where these resulting signa-

tures are succinct (poly-logarithmic in the number of individual

signatures) and the amount of interaction between signers is min-

imal. Schemes with minimal interaction are called one-round or

non-interactive. In these non-interactive constructions, a single

party (not necessarily one of the signers), usually called the ag-
gregator, collects signatures from individual signers and combines

them into a single short aggregate or threshold signature. No other

interaction is needed.

As discussed in Sec. 1.2, both aggregate and threshold signatures

can be constructed as extensions from a variety of popular choices,

including: Schnorr signatures, BLS signatures, and others. Of these,

pairing-based signatures stand out as the only ones yielding both

succinct and non-interactive aggregate and threshold schemes.

Scaling signatures for blockchains. There are two primary

ways in which digital signatures are used in blockchains today:

• To sign transactions authorizing transfer of funds between

accounts. For example, a single Bitcoin block may contain

over 2, 500 ECDSA signatures [12], while in some high through-

put blockchains, each block may contain upward of 25, 000

signatures [43]. Each of these signatures is a one-time-signature

and needs to be included in a block. This forms the moti-

vation for aggregate signatures over distinct messages, to

compress the footprint of the blockchain.

• In Byzantine Fault Tolerant (BFT) consensus systems, a sub-

set of validators needs to sign the same message to agree on

the latest state of the system, and their signatures must be

stored on chain. In practical settings, the number of valida-

tors could be in the hundreds or even thousands [29]. This

informs the need for threshold signatures.

• In particular, compressing the size of threshold signatures

allows light clients to verify the evolution of the blockchain,

without introducing additional, non-cryptographic trust as-

sumptions. While some work addresses this problem [32], it

https://doi.org/10.1145/3488932.3524128
https://doi.org/10.1145/3488932.3524128
https://doi.org/10.1145/3488932.3524128

ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan Irakliy Khaburzaniya, Kostantinos Chalkias, Kevin Lewi, and Harjasleen Malvai

remains open in the post-quantum setting. Even bootstrap-

ping regular blockchain clients is becoming increasingly chal-

lenging due to the large size of blocks. Aggregating blocks

solves this problem.

In both cases, the ability to non-interactively compress thousands

of signatures, both with and without thresholds, is instrumental to

solving blockchain scalability challenges. Moreover, the blockchain

context imposes additional requirements on potential aggregate

and threshold signature schemes: public keys of individual signers

must be small, and aggregate/threshold signatures must be fast to

verify. Small keys are important because even if the signatures are

compressed, individual public keys must still be stored on-chain.

Fast verification is important because the compressed signatures

need to be verified in a variety of settings, including devices with

limited capabilities (i.e., light clients).

Note that this setting requires aggregation/thresholdizing to

be performed only once, by any third party service which can

obtain the individual signatures. Given that providing services to

light clients has already proved a viable business model, it is not

unreasonable to predict that signature aggregation/thresholdizing

for light clients would too. In fact, various (well-funded) businesses

already exist [40, 47, 49], which provide zero-knowledge-based

solutions for blockchains, including running servers for heavy-

weight computations. So, even the need for relatively powerful

machines for aggregating/thresholdizing signatures, does not seem

to be a hindrance to adoption.

Finally, given the rising threat of quantum computing and the

attacks enabled by them against elliptic curve (EC) based signa-

tures, the blockchain community has an increased interest in ex-

ploring the implementation of cryptographic primitives that are

not as susceptible to quantum adversaries. Due to their informa-

tion theoretic security guarantees, hash-based signatures make

good candidates for long-lasting, post-quantum blockchains, but so

far, the absence of practical threshold and aggregate constructions

have hindered their wider adoption. To the best of our knowledge,

there are currently no signature schemes which meet all of the

above requirements: succinctness, non-interactivity, and resistance

to quantum attacks. However, a general methodology for construct-

ing such a scheme is well-known: one can use a general-purpose

zero-knowledge proof (ZKP) system to generate a proof attesting

that a set of signatures is valid and/or meets the required threshold.

In fact, these techniques have already been applied in practice to

EC-based signatures [32].

In this work, we present the first practical construction and

concrete implementation of using a post-quantum ZKP to com-

press hash-based signatures, which are inherently more resistant to

quantum attacks. Although the idea of using ZKPs for compression

is not new, in practice these techniques are straightforward nei-

ther to implement nor evaluate for concrete performance statistics.

We show how to make existing one-time hash-based signatures

STARK-friendly by employing optimized encoding techniques. We

provide concrete results as well as an open-source framework for

performing efficient signature compression that is resistant against

quantum attacks. We believe that our work can form the basis of

reusing the proposed aggregated and threshold one-time signa-

ture gadgets for more complex many-times hash-based signature

schemes (if required), when a zero knowledge proof friendly hash

function, such as Rescue[3], is applied. Specifically, all of the pre-

sented algorithms are available in our open-sourced [6] STARK

library for arbitrary computations, which will hopefully help the

community on benchmarking, reusing and modifying the proposed

multi and threshold hash-based signatures via STARK [8] proofs.

Note that while recent work [33] has provided general purpose

virtual machines for STARKs, it is well-known that hand optimized

representations of STARK programs are significantly more perfor-

mant. Yet, writing special purpose represenatations of programs

for STARKs programs remains challenging. Writing algrebraic in-

termediate representations (AIRs) for these constructions is, hence,

a useful contribution of this work. We hope that our work will

provide useful examples for others in the community.

1.1 Overview of Our Constructions
Our constructions of aggregate and threshold signatures are built

using a combination of hash-based signatures and a STARK protocol.

In both constructions, individual signers sign messages using a

regular hash-based signature scheme, and an aggregator uses the

STARK to compress individual signatures into a single succinct

proof.

Our aggregate signature scheme is described in Sec. 4, and the

threshold scheme is described in Sec. 5. In both cases, aggregate

signature sizes are logarithmic in the number of individual signa-

tures, with practical output sizes between 100KB and 200KB. This

makes our schemes especially attractive when aggregating over 50

individual signatures. The signature verification is fast (i.e., 5 ms),

but the aggregation may require significant time and/or processing

power. We provide evaluation of concrete results in Sec. 6.

Our constructions can be immediately applicable to post-quantum

resistant blockchains deployed today [31] without requiring users

to update their existing private keys. Many of these blockchains use

stateful and one-or-few times hash-based signature schemes, result-

ing in individual signatures of ∼2KB in the best case. For example,

Quantum Resistant Ledger [51] uses XMSS (recommended by NIST

in SP 800-208 [26]) andWOTS+ [20], IOTA [46] depends on a custom

hash-based signature called Kerl (based on Keccak, with conversion

to ternary) and implements WOTS, and finally Corda [18] supports

Sphincs [11] and explores BPQS [22], a blockchain friendly XMSS

variant, that starts as one-time, but can be extended to a many-times

scheme only when required.

Hash-based signatures. For our underlying signature scheme,

we present a one-time signature (OTS) scheme, Lamport+ which

is described in detail in Sec. 3 and based on Lamport’s original

one-time signatures. The primary motivation for using Lamport+
is its efficient encoding in ZKP systems. Our instantiation of plain

Lamport+ has 32-byte public keys, produces 8KB signatures, and

targets 123 bits of security. We also provide an optimized Lamport+
version applying a “mining” technique to the message hash to be

signed, which allows targeting 127 bits of security.

Extending to many-time signatures. While Lamport+ is de-

signed to be an OTS scheme primarily to minimize implementation

complexity, it is possible to replace it with a many-time hash-based

signature scheme at the expense of a slight increase in ZKP circuit

Aggregating and thresholdizing hash-based signatures using STARKs ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan

complexity and aggregate signature generation time. After all, Lam-

port/WOTS variants are the building blocks of many-time schemes

like Sphincs [11] and XMSS [20].

STARKs. For the ZKP system used to combine individual hash-

based signatures into a single aggregate or threshold signature, we

employ STARKs [8]. The primary motivation is that this scheme

is hash-based and hence secure against quantum attacks [24]. Al-

though post-quantum security is not unique to STARKs, they yield

the best concrete efficiency of all known alternatives [4, 9, 25],

especially in terms of proof verification times.

In this work, we do not cover the details of the STARK protocol

itself(see for e.g. [8] for more details); however, we provide descrip-

tions of arithmetizations for all computations involved in STARK

proof generation. Arithmetization in STARKs consists of defining

an intermediate algebraic representation (AIR) for a computation.

STARKs are especially performant when proving computations

which have a large number of repeated operations. However, trans-

lating computations into efficient AIRs is non-trivial, and we an-

ticipate that our presentation of AIRs will motivate developers to

using STARKs.

Moreover, we have implemented a fully-featured and performant

STARK prover and verifier in Rust, and open-sourced our imple-

mentation under the MIT license [6]. In addition to the STARK

prover and verifier, our open-source Github repository contains

examples of all AIRs described in this work.

1.2 Related Work
Currently some of the most popular signature schemes in both

literature and practice include the elliptic curve based ECDSA and

EdDSA (or other Schnorr variants), RSA, pairing-based schemes

such as BLS, and the many post-quantum (PQ) algorithms proposed

in NIST’s PQ standardization process i.e., based on hash functions or

lattices [1]. Various research efforts have focused on extending the

original schemes by supporting faster batch verification, shorter

aggregated signatures over the same or different messages and

threshold schemes. Two of the most common metrics include signa-

ture compression rate and rounds of interactivity, ideally offering a

non-interactive solution where signers do not need to engage in

any type of communication between them to output a compressed

aggregated signature.

Regarding ECDSA, to the best of our knowledge schemes for

non-interactive aggregation don’t exist, mainly due to the mod-

ular inversion involved [41]. Similarly, in RSA the modulus 𝑁 is

different between users, which makes interactivity essential [15].

Aggregating Schnorr-based schemes requires various additional

steps such as distributed key generation (DKG) or at least one round

of interaction (see, for example [37]). A promising work is that of

Musig2 [44], which can support pre-processing of all but the first

round, but this still cannot work for blockchain users, since they do

not engage in a setup protocol. Two other interesting approaches

include the recent non-interactive EdDSA half-aggregation [23]

and Γ-signatures [52] (a Schnorr variant), where both achieve 50%

signature compression. Of these schemes, BLS aggregation is most

notable for its efficiency and the fact that third parties can aggregate

public keys as well as signatures. In other words, no interaction

between individual signers is needed. Unfortunately though, all of

the above are not PQ-secure.

Recent works construct post-quantum aggregatable signature

schemes relying on lattice-based assumptions [13, 30, 45], but also

require a setup step such as DKG or an interactive protocol to gen-

erate aggregated keys. A few schemes including MMSAT [28], the

scheme of Boneh and Kim [16] and that of Boudgoust and Roux-

Langlois [17] are aggregatable and don’t require setup. These are

based on the random oracle model (ROM) and the Short Integer So-

lution (SIS) problem. In particular, [17] is based on the well-studied

Module SIS and Module LWE assumptions. None of [16, 17, 28]

provides a threshold signature scheme. Further, the aggregate sig-

natures of [28] grow linearly in the number of parties, even though

the constant is small. Various post-quantum constructions for ring

and group signatures have also been proposed using lattices [50]

as well as the ROM [36]. However, we are not aware of efficient

aggregatable constructions for hash-based post-quantum schemes,

(e.g. XMSS [20], Sphincs [11], BPQS [22]), although there exist

STARK-based signature schemes (e.g. Ziggy [48]), which, with re-

cursive STARKs might be efficiently aggregated; although as far as

we know, such a construction has been mentioned in webinars [7],

but not yet been published or standardized.

2 PRELIMINARIES
2.1 STARKs Protocol
We define a STARK protocol as a tuple of three algorithms STARK =

(Setup, Prove,Verify) as follows:

• pp← STARK.Setup(1
𝜆, Prog): Takes in the security param-

eter 𝜆, and the description of a Prog
:
{0, 1}∗ → {0, 1} and

outputs public parameters pp.
• 𝜋 ← Prove(pp, stmt,𝑤): Takes in the public parameters, a

statement stmt, witness𝑤 , such that Prog(stmt| |𝑤) = 1 and

outputs a proof 𝜋 .

• 𝑏 ← Verify(pp, 𝜋, stmt): Takes in the public parameters and

outputs a bit 1 or 0 (denoting accept or reject).

We also assume that STARK.Setup is transparent, meaning that it

relies only on public randomness and satisfies standard security

definitions for SNARKs including completeness and knowledge

soundness (also known as knowledge extraction). We defer to the

literature for more details (e.g. see [4, 8, 9, 25, 38]).

STARK parameters. Our instantiation of the STARK protocol

uses parameters shown in Table 1. For the base field we use a 128-

bit prime field with modulus 𝑞 = 2
128 − 45 · 240

+ 1. This choice is

motivated by the following factors:

(1) Modern CPUs can perform arithmetic operations with 128-

bit integers relatively efficiently, and Rust has native support

for u128 integer type.

(2) This specific field is STARK-friendly as it has high-order

roots of unity. (specifically, 2
40

roots of unity).

(3) This specific field allows computing roots of 5th power, i.e.,

(𝑀 − 1) mod 5 ̸= 0. This is required for our instantiation of

Rescue hash function.

ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan Irakliy Khaburzaniya, Kostantinos Chalkias, Kevin Lewi, and Harjasleen Malvai

Security level Base field Blowup factor Query count Grinding factor Folding factor Hash function

96 bits 128 bits 8 27 16 8 BLAKE3

123 bits 128 bits 8 34 22 8 BLAKE3

Table 1: STARK parameters for 96-bit and 123-bit security levels using the same base field. For 96-bit security level, output
of BLAKE3 hash function is truncated to 24 bytes to provide up to 96-bit collision resistance. For 123-bit security level, FRI
protocol must be run in a quadratic extension of the base field.

2.2 Algebraic Intermediate Representation
(AIR)

Arithmetization is the reduction of computational statements to

a set of algebraic statements involving a set of bounded-degree

polynomials. In the STARK protocol, the output of arithmetization is

an Algebraic Intermediate Representation of a computation. Formal

definition of AIR is provided in [8], but informally, AIR consists of

the following three elements:

(1) execution trace which is a two-dimensional matrix, in which

each row represents the state of the computation at a single

point in time and each column corresponds to an algebraic
register tracked over all steps of the computation. Let 𝑇 de-

note the execution trace matrix.

(2) transition constraints which define algebraic relationships

between two (or more) rows of the execution trace.

(3) boundary constraints which enforce equality between certain
cells of the execution trace and a set of constant values.

Boundary constraints can be thought of as defining a set of

input and output values for the computation.

Execution trace. Denote𝑚 as the width of the execution trace

and 𝑛 as the number of steps in the execution trace, i.e. 𝑇 is an

𝑚 × 𝑛 matrix. We define the register trace of a register 𝑘 as the

polynomial interpolation 𝑓𝑘 of the set {(𝜔𝑖 ,𝑇 [𝑖][𝑘]) | 𝑖 ∈ [0, 𝑛)},
where 𝜔 is a generator of a multiplicative subgroup of size 𝑛 in the

base field specified for an instantiation of a STARK protocol. The

set {𝑓𝑘 | 𝑘 ∈ [0,𝑚)} is called the set of trace polynomials.
Notice that if 𝑓𝑘 (𝑥) is the value in the execution trace matrix in

column 𝑘 and row 𝑖 , then 𝑓𝑘 (𝑥 · 𝜔) is the value in 𝑘 at step 𝑖 + 1.

For efficient execution of the STARK protocol, 𝑛 must be a power

of two. This allows us to use FFT-based polynomial evaluation and

interpolation, which have the complexity of 𝑂(𝑛 log𝑛) Thus, the

base field for the STARK protocol must be 2-smooth
1
, which indeed

is the case for out selected field with modulus 𝑞 = 2
128 − 45 · 240

+ 1.

In addition to registers of the execution trace, we also use periodic
registers (also called 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑐𝑜𝑙𝑢𝑚𝑛𝑠), which are not included in

the execution trace but can be referenced in transition constraints.

Periodic columns are typically used in STARKs to encode a small

set of values which can be represented by succinct polynomials of

size much smaller than 𝑛. One example is a register where values

repeats in a cycle and the length of the cycle is a power of two.

Constraints. Both boundary and transition constraints are de-

fined by rational functions of the form:

𝑝(𝑥)

𝑧(𝑥)

1
A field is k-smooth if it contains a subgroup (multiplicative or additive) all of whose

prime divisors are at most k. For example, a prime field of size 𝑞 such that 𝑞 − 1 is

divisible by a large power of 2, is 2-smooth.

where, 𝑝(𝑥) defines the constraint relationship, and 𝑧(𝑥) defines the

constraint domain (a set of steps at which the constraint should

hold). This constraint is said to hold if the polynomial 𝑧 divides the

polynomial 𝑝 .

For boundary constraints, 𝑝(𝑥) has the following form:

𝑝(𝑥) = 𝑐(𝑓𝑘 (𝑥))

where, 𝑓𝑘 (𝑥) is the trace polynomial for register 𝑘 against which

the constraint is enforced. For example, to specify that the value in

the first column of the first row in the execution trace must be 1,

we could use the following constraint:

𝑓0(𝑥) − 1

𝑥 − 1

Similarly, to specify that the value in the 7th row of the second

column must be 987, we could use the following constraint:

𝑓1(𝑥) − 987

𝑥 − 𝜔7

For transition constraints, 𝑐(𝑥) has the following form:

𝑝(𝑥) = 𝑐({𝑓0(𝑥), ..., 𝑓𝑚−1(𝑥)}, {𝑓0(𝑥 · 𝜔), ..., 𝑓𝑚−1(𝑥 · 𝜔)})

that is, 𝑐(𝑥) is a function of all register values in two consecutive

steps of a computation. For example, the following constraint en-

forces that a value in the first register of the execution trace must

be incremented by 1 at every step:

𝑓0(𝑥 · 𝜔) − (𝑓0(𝑥) + 1)∏𝑛−1

𝑖=0
(𝑥 − 𝜔𝑖)

Additionally, since trace polynomials are evaluated over a multi-

plicative subgroup of a field, the denominator of the constraint

above can be expressed succinctly, and the constraint can be re-

written as:

𝑓0(𝑥 · 𝜔) − (𝑓0(𝑥) + 1)

𝑥𝑛 − 1

Below, we describe transition constraints using the notation

𝑐(𝑥) for (𝑥𝑛 − 1)/(𝑥 − 𝜔𝑛−1
), as the denominator for all transitions

constraints is the same. This denominator specifies that transition

constrains should hold on all but the last steps of the execution

trace. The degree of a transition constraint is defined as 𝑑𝑒𝑔(𝑐(𝑥)).

2.3 Accumulators
Accumulators are well-studied cryptographic primitives used for

committing to sets and verifying setmembership and non-membership.

In particular, we denote an accumulator protocolACC = (ACC.Setup,
ACC.Eval,ACC.WitCreate,ACC.Verify) and require it to be a se-

cure static accumulator as defined in Definition 5 of [27].

Aggregating and thresholdizing hash-based signatures using STARKs ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan

Accumulator for Lamport+ public key. For the purpose of
constructing a Lamport+ public key, we construct ACC using a

linear accumulator with minor modifications. Specifically, in a

standard linear accumulator, given a random oracle H and a set

of 𝑛 elements 𝑆 , ACC.Eval(H , 𝑆) outputs a commitment to 𝑆 as

H (𝑠0 | |𝑠1 | |...| |𝑠𝑛−1) where 𝑠𝑖 ∈ 𝑆 . However, in our instantiation,

ACC.Eval(H , 𝑆) outputsH (𝑠0 | |𝑠𝑛/2
| |𝑠1 | |𝑠𝑛/2+1

| |...| |𝑠𝑛/2−1
| |𝑠𝑛−1).We

call this construction a “zig-zag” accumulator. This construction

allows us to simplify the design of AIR for Lamport+ signature

verification. Specifically, using zig-zag accumulator, we are able to

absorb public sub-keys for message bits which are 128 bits apart

in a single execution trace step. This, in turn, allows us to ver-

ify sub-keys for both message elements in parallel, with no extra

computational overhead.

Accumulator for key aggregation. In our implementation,

we construct ACC using a Merkle Tree in the standard way i.e.,

given a random oracleH , each of the leaves is a binding commit-

ment to the elements of a set 𝑆 , and the output of ACC.Eval(H , 𝑆)

is root, the root of the Merkle tree. Correspondingly, the output

of ACC.WitCreate(H , root, 𝑥) for some 𝑥 ∈ 𝑆 is the Merkle Tree

path to the commitment to 𝑥 and the opening to that commitment.

Ultimately, this implies that the proofs of membership for a set 𝑆

are logarithmic in |𝑆 |.

3 Lamport+: THE MODIFIED WOTS
SIGNATURE SCHEME

A majority of recent work focuses on stateless many-times hash-

based signatures, optimized for both short public keys and sig-

natures. This leads to compromises in efficiency, mainly for key

generation and signing. To optimize instead, for the blockchain

context and signature aggregation using STARKs, we arrive at the

following desiderata: (1) short public keys, ideally one 32-byte hash

element; (2) small and easy to implement circuits, optimized for

AIR; (3) the fewest possible hash invocations during verification.

The size of the signature is not our primary focus, because the

aim of this work is for a powerful prover to aggregate signatures

using STARKs and thus, the sizes of the original signatures do not

have a bearing on the bandwidth of the end verifier. For this reason,

for our proof-of-concept, we use the simplest version of the Winter-

nitz one-time signature (WOTS) [35], which we call Lamport+. For
the hash function, we use Rescue, for which no quantum attacks

are known and which has a very efficient AIR, which we describe

in App. A. We also note that OTS is a powerful primitive used in

building most hash-based many-time signatures. Instantiated with

the Rescue hash-function, the final Lamport+ algorithm outputs

signatures of about 8KB (254 × 32B hash elements).

Our proof of concept implementation is based on an OTS algo-

rithm we will refer to as Lamport+, a checksum-based OTS pro-

posed by Merkle (section 4 in [42]) which happens to be an instance

of WOTS using𝑤 = 2 as the Winternitz parameter. We picked this

scheme to minimize the number of hash invocations, which other-

wise would a) complicate the AIR representation of the algorithm

and b) result to slower proof generation. The major difference

against the naive Lamport OTS is that instead of requiring two

keys per bit, one for the “0” bit and one for the “1” bit, we can by

convention only sign the set bits of the signed message. This cuts

the public and secret key sizes in half, while maintaining the same

number of hash invocations with the original Lamport scheme.

However, an extra checksum is required to prevent an adaptive

chosen message attack where adversaries can just flip set bits to

“0”. The checksum is nothing more than the total number of zero

bits in the original message.

3.1 Formal construction
Let𝑀 be a bit-string that represents the message of length𝑚 to be

signed and G : {0, 1}∗ → {0, 1}𝑚 be a hash function in the ROM.

The public parameters are pp = (pp𝐴𝐶𝐶 ,G,𝑚), where ppacc is the
public key for an accumulator as described in Sec. 2. The Lamport+
construction LP = (LP.KeyGen, LP.Sign, LP.Verify) is defined as:

• (priv, pub) ← LP.KeyGen(pp; 𝑟). Given the public parame-

ters pp and randomness 𝑟 as inputs, KeyGen computes the

private key, which consists of 𝑛 =𝑚 + 𝑙𝑜𝑔(𝑚) bit-strings of

length𝑚 chosen randomly from a uniform distribution
2
. For

𝑖 ∈ [0, 𝑛) compute a list of tuples (𝑝𝑟𝑖 , 𝑝𝑏𝑖 = G(𝑝𝑟𝑖)). Each 𝑝𝑏𝑖
corresponds to the sub-public-key for each the message-hash

bit𝑚𝑖 to be signed. Optionally, we can derive the final pub-

lic key as pub ← ACC.Eval(pp𝐴𝐶𝐶 , {𝑝𝑏0, . . . , 𝑝𝑏𝑛−1}) and
output (priv, pub). The latter is a commonly used practice

in hash-based schemes to compress sub-public-keys into a

single short value.

• sig← LP.Sign(pp, 𝑀, priv). On inputs public parameters pp,
message𝑀 and private key priv, expand the private key to

the list of tuples (𝑝𝑟𝑖 , 𝑝𝑏𝑖) similarly to KeyGen 3
.

Count the number of zeros on the message’s 𝑚 bits (this

is the Winternitz checksum) and append this number to𝑀

representing it with ⌈log(𝑚)⌉ bits, which will result to a 𝑛 bit

length bit-string. We call the resulted 𝑛-sized bitstream as

𝑚′. Compute the signature as follows: For 𝑖 ∈ [0, 𝑛) if𝑚′
𝑖

= 1

append 𝑝𝑟𝑖 to sig, else append 𝑝𝑏𝑖 . Output sig, which is a list

of size 𝑛 of𝑚-sized elements.

• 𝑧 ← LP.Verify(pp, 𝑀, pub, sig). On input the public parame-

ters pp, the signed message 𝑀 , the public key pub and the

signature 𝑠𝑖𝑔, compute𝑚′ similarly to Sign and execute the

following logic: 𝑥 ← For 𝑖 ∈ [0, 𝑛) if𝑚′
𝑖

= 1 append G(sig𝑖)
to 𝑥 , else append sig𝑖 . The verify algorithm outputs the bit

𝑧 ← pub == ACC.Eval(pp𝐴𝐶𝐶 , {𝑥0, . . . , 𝑥𝑛−1}).
Security intuition. As already mentioned, Lamport+ is aWOTS
instance for 𝑤 = 2 (Winternitz parameter). Buchmann et al. [19]

present and prove the security of theWOTS signature scheme. In

particular, they include the definition for security of a one-time

signature as existential unforgeability under chosen message at-

tacks (EU-CMA), where the attacker has access to a signing oracle

but makes only one query. Under the assumption that the used

hash function is a PRF, they show that a EU-CMA adversary has

negligible advantage, which inherently applies to Lamport+ too.

Compression via mining without security loss Note that it is
possible to further compress the input message to less than𝑚 bits

and still maintain the security level at 𝑚/2 (collision resistance)

as proposed in [21]. That would allow for reducing the size of 𝑛,

2
It’s a common practice to use a key derivation function instantiated using a random

oracle to generate all of the sub-private-key parts with a single seed, such as HKDF [39].

3
In practice we do not need all of the (𝑝𝑟𝑖 , 𝑝𝑏𝑖) pairs, but only those 𝑝𝑏𝑖 required.

ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan Irakliy Khaburzaniya, Kostantinos Chalkias, Kevin Lewi, and Harjasleen Malvai

which effectively means less sub-key tuples. Briefly, it is a common

practice to sign hashes of themessage, whichmakes sense especially

when the message is larger than 𝑚 bits. The algorithm applies

the following “mining" technique to any Lamport or WOTS based

scheme: instead of directly using the output of G(𝑀), we could

apply an extra HMAC H′ : ({0, 1}∗, {0, 1}∗)→ {0, 1}𝑚′ , with inputs

the 𝑀 and a counter 𝑐 . In fact, we retry HMACing (mining) as

ℎ𝑚 = 𝐻 ′(𝑀,𝑐𝑖), for a counter 𝑐 starting from 0, until ℎ𝑚 starts with

𝑘 zero bits. Then an application can completely omit the prefix

zero-bits and only accept inputs of size𝑚′. Although this reduces

the message space, the pre-image and collision resistance do not

change, essentially like proof-of-work. The verifier could either try

the same mining technique or signers can just attach the counter

𝑐 to the signature and the verifier will verify (outside the STARK

proof) that ℎ𝑚 = 𝐻 ′(𝑀,𝑐) starts with 𝑘 zero bits.

3.2 Signature verification AIR
LP.Verify procedure, as it is described above, is not particularly "AIR-
friendly", neither from the standpoint of circuit design complexity,

nor from the standpoint of STARK proof generation complexity.

Therefore, we make several adjustments to the original procedure

to make it more AIR-friendly.

First, we set hash function G to Rescue-Prime (see App. A). In

our instantiation, G accepts a sequence of 128-bit field elements as

input, and outputs a hash which is represented by a tuple of 128-bit

field elements . This means that all sub-keys 𝑝𝑟𝑖 must be tuples

of valid field elements, and thus, we augment the key generation

procedure to output tuples of field elements rather than bit strings

for 𝑝𝑟𝑖 . This naturally implies that sub-keys 𝑝𝑏𝑖 are also represented

by tuples of field elements since 𝑝𝑏𝑖 = G(𝑝𝑟𝑖), and G outputs a tuple

of field elements as mentioned above.

Second, as described above, LP.Verify accepts message𝑀 as a bit

string and reduces it to a value ℎ′, and then verifies the signature

against this value. For AIR-friendly version, we need ℎ′ to be a

tuple of field elements. However, performing this reduction inside

a STARK is expensive. Thus, to minimize complexity of AIR for

LP.Verify, we break it into two parts. The first part consists of

reducing 𝑀 to a tuple of field elements ℎ′ = (𝑚0,𝑚1) and is done

outside of the ZKP circuit (this also includes computing message

checksum). The second part verifies the signature against (𝑚0,𝑚1),

and requires at most 381 invocations of hash function 𝐺 .

Alg. 1 provides a high-level description of an AIR-friendly ver-

sion of LP.Verify procedure. The algorithm receives pre-processed

message (𝑚0,𝑚1) and a public key 𝑝𝑢𝑏 (which is also represented

by a tuple of field elements) as public inputs. The signature, as well

as arrays with binary decompositions of𝑚0 and𝑚1 in little-endian

byte order, are passed in as a private witness.

With each iteration of the loop, the algorithm consumes two

bits from the message bit arrays (one bit from 𝑚
0
and another

bit from 𝑚
1
), accumulates these bits in accumulators 𝑚acc

0
and

𝑚acc
1

, and based on the values of these bits, updates public key

accumulator 𝑝𝑢𝑏acc. Specifically, when a message bit at position 𝑖

is one, G(𝑠𝑖𝑔𝑖) is added to the accumulator; otherwise, 𝑠𝑖𝑔𝑖 is added

to the accumulator.

The program outputs 𝑡𝑟𝑢𝑒 , iff values of all accumulators are

equal to the corresponding values passed in via public inputs. This

ensures that signature verification passes only if a valid signature

over the message represented by (𝑚0,𝑚1) was passed in via the

private witness.

Algorithm 1 AIR-friendly variant of LP.Verify

inputs:𝑚0,𝑚1, 𝑝𝑢𝑏

witness:𝑚
0
[],𝑚

1
[], 𝑠𝑖𝑔[]

𝑚acc
0
← 0,𝑚acc

1
← 0

𝑝𝑢𝑏acc ← 𝑛𝑒𝑤_ℎ𝑎𝑠ℎ𝑒𝑟 ()

for i in 0..128 do
𝑚acc

0
←𝑚acc

0
+𝑚

0
[𝑖] ∗ 2

𝑖

𝑚acc
1
←𝑚acc

1
+𝑚

1
[𝑖] ∗ 2

𝑖

if 𝑚
0
[𝑖] == 1 then

𝑝𝑢𝑏acc ← 𝑝𝑢𝑏acc .𝑢𝑝𝑑𝑎𝑡𝑒(ℎ𝑎𝑠ℎ(𝑠𝑖𝑔[𝑖]))

else
𝑝𝑢𝑏acc ← 𝑝𝑢𝑏acc .𝑢𝑝𝑑𝑎𝑡𝑒(𝑠𝑖𝑔[𝑖])

end if
if 𝑚

1
[𝑖] == 1 then

𝑝𝑢𝑏acc ← 𝑝𝑢𝑏acc .𝑢𝑝𝑑𝑎𝑡𝑒(ℎ𝑎𝑠ℎ(𝑠𝑖𝑔[𝑖 + 128]))

else
𝑝𝑢𝑏acc ← 𝑝𝑢𝑏acc .𝑢𝑝𝑑𝑎𝑡𝑒(𝑠𝑖𝑔[𝑖 + 128])

end if
end for
𝑝𝑢𝑏acc ← 𝑝𝑢𝑏acc .𝑓 𝑖𝑛𝑎𝑙𝑖𝑧𝑒()

return𝑚0 ==𝑚acc
0

&&𝑚1 ==𝑚acc
1

&& 𝑝𝑢𝑏 = 𝑝𝑢𝑏acc

In our implementation, AIR for the program described in Alg. 1

works over an execution trace of 22 registers and 1024 steps. The

highest degree of transition constraints is 6. The registers are

grouped into three logical groups:

(1) Message accumulators: 4 registers for computing𝑚acc
0

and

𝑚acc
1

values.

(2) Signature element hashing: 12 registers for computingG(𝑠𝑖𝑔𝑖).

Here, we use 12 registers because we hash two signature

elements in parallel: 𝑠𝑖𝑔𝑖 and 𝑠𝑖𝑔𝑖+128 for all 𝑖 ∈ {0..128}, and
each hash requires 6 registers to compute.

(3) Public key accumulator : 6 registers for computing the value

of 𝑝𝑢𝑏acc.

Each of these groups and corresponding transition constraints are

described in detail in the following sections.

The length of the execution trace is 1024 steps because for every

consumed pair of message bits, we compute hashes of correspond-

ing signature elements. As described in App. A, in our implementa-

tion, the AIR for a single invocation Rescue-Prime hash function

requires an execution trace of 8 steps long. Thus, for each pair of

message bits we need to add 8 steps to the execution trace, and

since the total number of bit pairs is 128, we arrive at 1024 total

steps.

Our AIR also relies on several periodic columns, two of which

are of particular importance:

• Column𝑚ℎ encodes a pattern of values which specifies that

every 8
𝑡ℎ

step, starting with step 7, 𝑚ℎ = 1. For all other

steps𝑚ℎ = 0. This column is used to simulate rudimentary

control flow.

• Column𝑚𝑝 contains increasing powers of two incremented

every 8 steps. For example, for the first 8 steps, 𝑚𝑝 = 2
0
,

Aggregating and thresholdizing hash-based signatures using STARKs ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan

for the following 8 steps,𝑚𝑝 = 2
1
, for the following 8 steps

𝑚𝑝 = 2
2
etc. This column is used by message accumulators.

A simplified schematic of a trace for verifying a signature over a

6-bit message is shown in Fig. 1.

Message accumulators. Registers {𝑟0, .., 𝑟3} bind the execution

trace to the message over which the signature is being verified.

Recall that in our case, a message is represented by two elements

in a 128-bit field: 𝑚0 and 𝑚1. Registers 𝑟2 and 𝑟3 contain binary

decompositions of 𝑚0 and 𝑚1 respectively, in little-endian byte

order such that new bits are inserted into the registers every 8 steps.

Registers 𝑟0 and 𝑟1 contain accumulated values of𝑚0 and𝑚1 at a

given step of the execution trace, such that by the end of the trace,

𝑟0 =𝑚0 and 𝑟1 =𝑚1.

The accumulation is performed as follows: on every 8
𝑡ℎ

step of

the computation, the value of register 𝑟2 is multiplied by the value

of𝑚𝑝 , which contains powers of two incremented every 8 steps as

described previously. The result is then added into the register 𝑟0.

The same computation is applied to registers 𝑟1 and 𝑟3. We perform

these computations on every 8
𝑡ℎ

step because intermediate steps

are needed for Rescue hash computations in other registers, and

all registers must have the same number of steps. This effectively

"wastes" most of the cells in registers 𝑟0, 𝑟1, 𝑟2, and 𝑟3, however,

this is a small penalty to pay for the simplicity of resulting AIR.

Denoting 𝑟𝑖 to be the value of register 𝑖 at the current step of the

computation, and 𝑟 ′
𝑖
to be the value of register 𝑖 at the next step of

the computation, transition constraints for registers {𝑟0, .., 𝑟3} are:

𝑟2

2
− 𝑟2 = 0 (1)

𝑟2

3
− 𝑟3 = 0 (2)

𝑟 ′
0
− (𝑟0 +𝑚ℎ ·𝑚𝑝 · 𝑟2) = 0 (3)

𝑟 ′
1
− (𝑟1 +𝑚ℎ ·𝑚𝑝 · 𝑟3) = 0 (4)

The first two constraints enforce that values in registers 𝑟2 and 𝑟3
must be binary (0 or 1). Constraint (3) enforces that when𝑚ℎ =

1 (which happens on every 8
𝑡ℎ

step), the current value of 𝑟2 is

accumulated into 𝑟0, otherwise, the value of 𝑟0 remains the same.

Constraint (4) does the same for registers 𝑟1 and 𝑟3.

Signature element hashing. Registers {𝑟4, .., 𝑟9} and {𝑟10, .., 𝑟15}
are used to hash signature elements corresponding to 1 bits of

the message (the 𝑝𝑟𝑖 elements). Registers {𝑟4, .., 𝑟9} do this for ele-

ments corresponding to bits 0...127 of the message, while registers

{𝑟10, .., 𝑟15} do this for elements corresponding to bits 128...254.

The hashing is performed as follows: on every 8
𝑡ℎ

step of the

execution trace, starting with step 0, if the corresponding message

bit is 1, a new signature element is copied into registers {𝑟4, 𝑟5} and
{𝑟10, 𝑟11}, and all other registers are set to zeros. If message bit is 0,

zeros are inserted into all registers, though this will not be enforced

via constraints. On all other steps, Rescue-Prime round function

is applied. The effect of this is that on the last step of each 8-step

cycle, registers {𝑟4, 𝑟5} and {𝑟10, 𝑟11} will contain 𝑝𝑏𝑖 = G(𝑝𝑟𝑖), iff

corresponding message bits were set to 1.

Using 𝑟𝑖 and 𝑟
′
𝑖
notation as in the previous section, and denoting

𝑟𝑒𝑠𝑐𝑖 to be a function which computes transition constraints for a

single round for Rescue-XLIX permutation for hash state element 𝑖 ,

we define transition constraints for registers {𝑟4, .., 𝑟15} as follows:
(1 −𝑚ℎ) · 𝑟𝑒𝑠𝑐0(𝑟4, 𝑟

′
4
) = 0 (5)

(1 −𝑚ℎ) · 𝑟𝑒𝑠𝑐1(𝑟5, 𝑟
′
5
) = 0 (6)

𝑚ℎ · 𝑟 ′6 + (1 −𝑚ℎ) · 𝑟𝑒𝑠𝑐2(𝑟6, 𝑟
′
6
) = 0 (7)

𝑚ℎ · 𝑟 ′7 + (1 −𝑚ℎ) · 𝑟𝑒𝑠𝑐3(𝑟7, 𝑟
′
7
) = 0 (8)

𝑚ℎ · 𝑟 ′8 + (1 −𝑚ℎ) · 𝑟𝑒𝑠𝑐4(𝑟8, 𝑟
′
8
) = 0 (9)

𝑚ℎ · 𝑟 ′9 + (1 −𝑚ℎ) · 𝑟𝑒𝑠𝑐5(𝑟9, 𝑟
′
9
) = 0 (10)

(1 −𝑚ℎ) · 𝑟𝑒𝑠𝑐0(𝑟10, 𝑟
′
10

) = 0 (11)

(1 −𝑚ℎ) · 𝑟𝑒𝑠𝑐1(𝑟11, 𝑟
′
11

) = 0 (12)

𝑚ℎ · 𝑟 ′12
+ (1 −𝑚ℎ) · 𝑟𝑒𝑠𝑐2(𝑟12, 𝑟

′
12

) = 0 (13)

𝑚ℎ · 𝑟 ′13
+ (1 −𝑚ℎ) · 𝑟𝑒𝑠𝑐3(𝑟13, 𝑟

′
13

) = 0 (14)

𝑚ℎ · 𝑟 ′14
+ (1 −𝑚ℎ) · 𝑟𝑒𝑠𝑐4(𝑟14, 𝑟

′
14

) = 0 (15)

𝑚ℎ · 𝑟 ′15
+ (1 −𝑚ℎ) · 𝑟𝑒𝑠𝑐5(𝑟15, 𝑟

′
15

) = 0 (16)

Constraints (5), (6), (11), (12) enforce that Rescue-XLIX round func-

tion is applied to registers 𝑟4, .., 𝑟11 whenever 𝑚ℎ = 0, but don’t

place any constraints on these registers when𝑚ℎ = 1. The remain-

ing constraints also enforce that Rescue-XLIX round function is

applied to the corresponding registers when𝑚ℎ = 0, but in addition

specify that these registers should be set to zeros when𝑚ℎ = 1.

Public key accumulator. Registers {𝑟16, .., 𝑟21} are used to accu-

mulate 𝑝𝑏𝑖 elements into Lamport+ public key. The methodology

is similar to the one used to hash private key elements described in

the previous section, except for the following differences:

• The capacity portion of the state (registers 𝑟20 and 𝑟21) is not

reset on every 8
𝑡ℎ

step. Instead, values of these registers are

copied over to the next step when𝑚ℎ = 1. This means that

every new set of 𝑝𝑏𝑖 elements is absorbed into the sponge,

and and a single result is squeezed out of the sponge on the

last step of the computation.

• On every 8
𝑡ℎ

step, if message bits are 1 (registers 𝑟2 and 𝑟3),

hashes of the corresponding 𝑝𝑟𝑖 elements (register 𝑟4, 𝑟5, and

𝑟10, 𝑟11) must be equal to the 𝑝𝑏𝑖 elements (register 𝑟16, 𝑟17,

and 𝑟18, 𝑟19) absorbed into the sponge of the public key hash.

This last set of constraints ties together different parts of the

execution trace in such a way that trying to insert invalid values in

one of the parts will invalidate constraints in another part.

Using the notations defined in the prior sections, we define

transition constraints for registers {𝑟16, .., 𝑟21} as follows:

𝑚ℎ · 𝑟2 · (𝑟 ′16
− 𝑟4) + (1 −𝑚ℎ) · 𝑟𝑒𝑠𝑐0(𝑟16, 𝑟

′
16

) = 0 (17)

𝑚ℎ · 𝑟2 · (𝑟 ′17
− 𝑟5) + (1 −𝑚ℎ) · 𝑟𝑒𝑠𝑐1(𝑟17, 𝑟

′
17

) = 0 (18)

𝑚ℎ · 𝑟3 · (𝑟 ′18
− 𝑟10) + (1 −𝑚ℎ) · 𝑟𝑒𝑠𝑐2(𝑟18, 𝑟

′
18

) = 0 (19)

𝑚ℎ · 𝑟3 · (𝑟 ′19
− 𝑟11) + (1 −𝑚ℎ) · 𝑟𝑒𝑠𝑐3(𝑟19, 𝑟

′
19

) = 0 (20)

𝑚ℎ · (𝑟 ′20
− 𝑟20) + (1 −𝑚ℎ) · 𝑟𝑒𝑠𝑐4(𝑟20, 𝑟

′
20

) = 0 (21)

𝑚ℎ · (𝑟 ′21
− 𝑟21) + (1 −𝑚ℎ) · 𝑟𝑒𝑠𝑐5(𝑟21, 𝑟

′
21

) = 0 (22)

Boundary constraints. In addition to the transition constraints

described above, we also define the following boundary constraints

for the computation:

(1) Values in all registers except for 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟10, 𝑟11 must

be equal to zeros at the first step of the computation (𝑠0).

ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan Irakliy Khaburzaniya, Kostantinos Chalkias, Kevin Lewi, and Harjasleen Malvai

Figure 1: A trace table for Lamport+ signature verification over a 6-bit message: 011101. Only the first and the last steps in an
8-step cycle are shown. In this example,𝑚0 = 011 and𝑚1 = 101.

(2) Values in registers 𝑟0 and 𝑟1 must be equal to message values

𝑚0 and𝑚1 at step 𝑠1023 (the last step of the computation).

(3) Values in 𝑟16 and 𝑟17 at step 𝑠1023 must be equal to the values

of the public key 𝑝𝑢𝑏 which was used to sign the message.

4 AGGREGATE SIGNATURES
In this section, we describe our aggregate signature scheme. Our

scheme is non-interactive: any party can collect Lamport+ sig-

natures over unrelated messages signed individually by different

parties and compress them into a single aggregate signature. The

aggregate signature size is logarithmic in the number of individual

signatures. The signature is fast to verify, but the aggregation pro-

cedure may require significant time and/or processing power (see

evaluation of concrete results in Sec. 6).

4.1 Formal construction
Given 𝑀 = (𝑀1, ..., 𝑀𝑛), a tuple of 𝑛 messages, 𝑃𝐾 = (𝑝𝑘1, ..., 𝑝𝑘𝑛),

a tuple of Lamport+ public keys and Σ = (𝜎1, ..., 𝜎𝑛), a tuple of

Lamport+ signatures, let LP.pp := a set of public parameters for LP
defined in Sec. 3. We define Progverif−agg((𝑛,𝑀, 𝑃𝐾, LP.pp), Σ):

(1) verif ← 1

(2) For 𝑖 in 1...𝑛:

verif ← LP.Verify(LP.pp, 𝑀𝑖 , 𝑝𝑘𝑖 , 𝜎𝑖) ∗ verif
(3) Output verif.

Now, LP can be augmented with additional operations LP.AggSig
and LP.AggSigVerify, given public parameters, pp = (LP.pp, STARK.
pp), where LP.pp and STARK.pp← STARK.Setup(1

𝜆, Progverif−agg)

are the public parameters for Lamport+ and STARK respectively.

Note that given the sets of public parameters LP.pp and STARK.pp,
any party can call LP.AggSig.

• AggSig ← LP.AggSig(LP.pp, 𝑛, 𝑀, 𝑃𝐾, Σ): Given public pa-

rameters, LP.pp, integer 𝑛, messages𝑀 = (𝑀1, ..., 𝑀𝑛), public

keys 𝑃𝐾 = (𝑝𝑘1, ..., 𝑝𝑘𝑛) and signatures Σ = (𝜎1, ..., 𝜎𝑛), let

stmt := (𝑛,𝑀, 𝑃𝐾, LP.pp) and𝑤 = Σ and return STARK.Prove(

STARK.pp, stmt,𝑤).

• 𝑏 ← LP.AggSigVerify(pp, 𝑛, 𝑀, 𝑃𝐾,AggSig): On inputs inte-

ger 𝑛, messages𝑀 = (𝑀1, ..., 𝑀𝑛), public keys 𝑃𝐾 = (𝑝𝑘1, ...,

𝑝𝑘𝑛), aggregated signature AggSig and public parameters

pp = (LP.pp, STARK.pp), stmt← (𝑛,𝑀, 𝑃𝐾,

LP.pp). Output 𝑏 ← STARK.Verify(STARK.pp, stmt,AggSig).

4.2 Security
We define the security of aggregate signatures in the aggregate
chosen-key security model akin to [14], but with the adversary being

permitted only one signing oracle query. Define GameAggSigH (A, 𝑁 ,
𝑞H), as follows, where H is the hash function used in the signature

scheme:

Setup. pp is the set of public parameters for the signature scheme.

The adversary A, is provided with a public key 𝑝𝑘1 chosen at ran-

dom and pp.
Query. A makes at most 𝑞H queries to H and requests a signature

on a message𝑀∗ of its choice, that verifies with 𝑝𝑘1.

Response.A outputs 𝑁 − 1 distinct public keys 𝑝𝑘2, ..., 𝑝𝑘𝑁 and a

tuple of messages𝑀 = (𝑀1, ..., 𝑀𝑁), where𝑀1 ̸= 𝑀∗ and an aggre-

gated signature 𝜎 .

Output. Output AggSigVerify(pp, 𝑁 ,𝑀, (𝑝𝑘1, ..., 𝑝𝑘𝑁), 𝜎).

Finally, we define the advantage AdvaggsigA,H (𝑁,𝑞H) ofA as the proba-

bility that GameAggSigH (A, 𝑁 , 𝑞H) outputs 1. We say that a one-time

aggregate signature scheme is secure if, for any efficient adversary

A, AdvaggsigA,H (𝑁,𝑞H) is negligible in the security parameter.

Lemma 4.1. The one-time aggregate signature scheme, LP, with
operations LP.AggSig and LP.AggSigVerify, is satisfies the security
definition above.

Proof sketch. Concretely, AdvaggsigA,H (𝑁,𝑞H) is given by

𝑃[pp← (LP.pp, STARK.pp), 𝑟 ←$ {0, 1}∗, 𝑝𝑘1 ← LP.KeyGen(𝑝𝑝, 𝑟);

((𝑝𝑘2, ..., 𝑝𝑘𝑁), 𝑀 := (𝑀1, ..., 𝑀𝑁), 𝜎)← A𝐻,SigningOracle(·)
:

1← STARK.Verify(STARK.pp, (𝑁,𝑀, (𝑝𝑘1, ..., 𝑝𝑘𝑁), LP.pp), 𝜎))]

Aggregating and thresholdizing hash-based signatures using STARKs ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan

To generate a verifying signature, an adversary must do one of the

following : (1) generate a verifying a proof 𝜎 , without knowledge of
𝜎1, such that LP.Verify(LP.pp, 𝑀1, 𝑝1, 𝜎1) returns 1. (2) forge 𝜎1 such

that LP.Verify(LP.pp, 𝑀1, 𝑝𝑘1, 𝜎1) returns 1. The probability of (1)

is upper bounded by the knowledge soundness error of the STARK
protocol, which we assume here to be negligible. The probability

of (2) is upper bounded by the advantage of an EU-CMA adversary

for LP. In both cases, the argument follows from the fact that an

adversary with non-negligible probability of success can be used

as a subroutine by a STARK or EU-CMA adversary, respectively.

Thus, by the union bound, the advantage of the aggregate signature

adversary is negligible in the security parameter. □

4.3 Aggregate signature verification AIR
The AIR for program Progverif−agg is very similar to the AIR of a sin-

gle Lamport+ signature verification program described in Sec. 3.2.

Specifically, we can concatenate execution traces of individual sig-

natures (as shown in Fig. 2 for a two-signature case), and keep all

constraints virtually unchanged. Thus, aggregating 𝑛 signatures

would require an execution trace of 22 registers and 1024 · ⌈𝑛⌉ steps.
where ⌈𝑛⌉ is the number of signatures rounded to the next power

of two. The adjustments we need to make transition and boundary

constraints are described in the sections below.

Transition constraint adjustments. First, we need to ensure that
transition constraints are not enforced on steps between the signa-

tures (e.g. between steps 1023 and 1024). To do this, we introduce

a new periodic column𝑚𝑠 , which contains a cycle of 1024 values

comprised of 1023 zeros followed by 1 one. We then multiply all

transition constraints by the expression (1 −𝑚𝑠), which has the

effect of enforcing all constraints on steps where𝑚𝑠 ̸= 1, but ignor-

ing them on steps where𝑚𝑠 = 1. This also increases the degree of

transition constraints by one, and, thus, the maximum constraint

degree of AIR for Progverif−agg program is 7.

Boundary constraint adjustments. Second, we need to place

boundary constraints at the end of each signature cycle to ensure

that messages (registers 𝑟2 and 𝑟3) and public keys (registers 𝑟16 and

𝑟17) at the end of each signature verification trace are indeed equal

to the expected values. Such constraints would have the following

form:

𝑓 (𝑥) − 𝑏(𝑥)

(𝑥 − 𝜔1023
) · (𝑥 − 𝜔2047

)...(𝑥 − 𝜔 (1024·𝑛−1)
)

where: 𝜔 is the generator of the trace domain, 𝑓 (𝑥) is a trace

polynomial, and 𝑏(𝑥) is the boundary polynomial. For example, for

register 𝑟2, 𝑓 (𝜔𝑖) = 𝑟2[𝑖] for all 𝑖 ∈ {0..𝑛 · 1024}, and 𝑏(𝜔 (1024·𝑖−1)
) =

𝑚𝑖,0 for all 𝑖 ∈ {0..𝑛}.
It should be noted that this constraint cannot be evaluated suc-

cinctly by the verifier as complexities 𝑏(𝑥) and the denominator

of the constraint are linear in the number of signatures. However,

there are two mitigating circumstances.

First, because STARK domains are multiplicative subgroups of

size equal to a power of two, and we enforce the constraints at

intervals equal to powers of two, the denominator has a succinct

form and the constraint can be written as:

𝑓 (𝑥) − 𝑏(𝑥)

𝑥𝑛 − 𝜔 (𝑛+1023)

Second, and for the same reasons, the verifier can obtain 𝑏(𝑥)

polynomial using FFT-based interpolation. Even though such inter-

polation has complexity 𝑂(𝑛 log𝑛), in practice it can be performed

very quickly. For example, for 𝑛 = 8192, interpolating 𝑏(𝑥) takes

under 0.5ms on a single CPU core. Thus, when aggregating fewer

than 10,000 signatures, time needed to evaluate this constraint will

be under 2ms, which has a minor impact on the overall verification

time. Even for 𝑛 > 100, 000 the proofs can be verified in under 50

ms, however, for such large number of signatures, verification of

this constraint will dominate the overall proof verification time.

5 THRESHOLD SIGNATURES
This section describes our threshold signature scheme. Signature

sizes in our scheme are logarithmic in the total number of signers.

The threshold signature is fast to verify but the aggregation pro-

cedure may require significant time and/or processing power (see

evaluation of concrete results in Sec. 6).

Informally, to generate a 𝑡-of-𝑛 threshold signature over message

𝑀 , 𝑛 signers send their Lamport+ public keys to an aggregator.

The aggregator uses the individual public keys to generate a single

public key, 𝑃𝐾 , for this set of signers by outputting an accumulation

of their keys. This is the threshold signature scheme’s public key.

The aggregator, then, distributes𝑀 to all signers. The signers sign

𝑀 with their individual private keys, and send their signatures

back to the aggregator. Once the aggregator receives 𝑡 signatures,

they compute a STARK proof attesting that they verified 𝑡 distinct

signatures over𝑀 , and that signers of all signatures belong to the

original set of signers. This proof serves as the threshold signature

of 𝑛 signers over𝑀 , with respect to the single public key 𝑃𝐾 .

Note that our threshold signatures provide only𝑤𝑒𝑎𝑘 𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑡𝑦.

That is, for different subsets of 𝑡 signers, resulting threshold sig-

natures will not be identical. The latter means that anyone with

access to all 𝑡 individual signatures can determine the set of signers

included in the threshold signature.

5.1 Formal construction
To construct threshold signatures, we introduce three additional op-

erations to LP: LP.AggregatePublicKeys, LP.ThresholdSigAgg and
LP.ThresholdSigVerify. As in Sec. 4.1, we let LP.pp be a set of

Lamport+ public parameters, including the parameters for an accu-

mulator ACC. For an integer 𝑛 and a set 𝑆 = {𝑝𝑘1, ..., 𝑝𝑘𝑛}, define
• 𝑃𝐾 ← LP.AggregatePublicKeys(LP.𝑝𝑝, 𝑛, 𝑆): Output 𝑃𝐾 :=

acc𝑆 ← ACC.Eval(ACC.pp, 𝑆).

Given a threshold 𝑡 , a set 𝑃𝐾 ′ ⊆ 𝑆 , 𝑃𝐾 ′ = (𝑝𝑘 ′
1
, ..., 𝑝𝑘 ′|𝑃𝐾 ′ |) such that

|𝑃𝐾 ′ |≥ 𝑡 + 1, a message𝑀 , a tuple of accumulator witnesses Wit =

(wit1, ...,wit |𝑃𝐾 ′ |), a tuple of signatures Σ = (𝜎1, ..., 𝜎 |𝑃𝐾 ′ |) on𝑀 we

define Progverif−threshold((𝑛, 𝑡, 𝑃𝐾,𝑀), (𝑃𝐾 ′,Wit, Σ)) as follows:

(1) verif ← 0

(2) For 𝑖 in 1...|𝑃𝐾 ′ |:
signature_verif ← LP.Verify(LP.pp, 𝑀, 𝑝𝑘 ′

𝑖
, 𝜎𝑖)

acc_verif ← ACC.Verify(ACC.pp, 𝑃𝐾,wit𝑖 , 𝑝𝑘 ′𝑖)
verif ← verif + (signature_verif ∗ acc_verif)

(3) Output verif ≥ 𝑡 + 1.

Our aggregated threshold signature scheme, therefore, takes the pa-

rameters𝑀,𝑛, 𝑡 , an aggregated public key 𝑃𝐾 and setting 𝑃𝐾 ′, Σ, as

ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan Irakliy Khaburzaniya, Kostantinos Chalkias, Kevin Lewi, and Harjasleen Malvai

Figure 2: A trace table for verification of two Lamport+ signatures.

above. 𝑝𝑝 = (LP.pp, STARK.pp), where STARK.pp← STARK.Setup(1
𝜆,

Progverif−threshold):

• ThresholdSig← LP.ThresholdSigAgg(pp, 𝑛, 𝑡, 𝑀, 𝑃𝐾, 𝑃𝐾 ′, Σ):

First, getwit𝑖 ← ACC.WitCreate(ACC.𝑝𝑝, 𝑃𝐾, 𝑝𝑘 ′
𝑖
), setWit←

{wit1, ...,wit |𝑃𝐾 ′ |}, then set stmt ← (𝑛, 𝑡, 𝑃𝐾,𝑀) and 𝑤 ←
(𝑃𝐾 ′,Wit, Σ). Finally, output STARK.Prove(STARK.pp, stmt,𝑤).

• 𝑏 ← LP.ThresholdSigVerify(LP.pp, 𝑛, 𝑡, 𝑃𝐾,𝑀, ThresholdSig):

Let stmt← (𝑛, 𝑡, 𝑃𝐾,𝑀, ThresholdSig) and return𝑏 ← STARK.
Verify(STARK.pp, stmt).

5.2 Security
We modify the game from Sec. 4.2, to define the following game,

GameThresholdSigH (A, 𝑁 , 𝑡, 𝑞H), where H is the hash function used

in the signature scheme:

Setup. pp is the set of public parameters for the signature scheme.

The adversary A, is provided with public keys 𝑝𝑘1, ..., 𝑝𝑘𝑁−𝑡 cho-
sen at random and pp.
Query.A makes at most 𝑞H queries to H and makes a single query

to the signing oracle for each 𝑝𝑘𝑖 on message𝑀∗
𝑖
of its choice.

KeyAggregation.A outputs 𝑡 distinct public keys𝑝𝑘𝑁−𝑡+1, ..., 𝑝𝑘𝑁 .

Let 𝑆 = {𝑝𝑘1, ..., 𝑝𝑘𝑁 } and 𝑃𝐾 ← AggregatePublicKeys(pp, 𝑁 , 𝑆).

Response. A outputs a message𝑀 ̸= 𝑀∗
𝑖
, for any 𝑖 ∈ [𝑁 − 𝑡] and

an aggregated threshold signature 𝜎 .

Output. Output ThresholdSigVerify(pp, 𝑁 , 𝑡, 𝑃𝐾,𝑀, (𝑝𝑘1, ..., 𝑝𝑘𝑁),

𝜎). Define the advantage AdvthresholdsigA,H (𝑁, 𝑡, 𝑞H) of A as the prob-

ability that GameThresholdSigH (A, 𝑁 , 𝑡, 𝑞H) outputs 1. A one-time

threshold signature scheme is secure if, for any efficient adversary

A, AdvthresholdsigA,H (𝑁, 𝑡, 𝑞H), is negligible in the security parameter.

Lemma 5.1. The one-time threshold signature scheme, LP, with
LP.AggregatePublicKeys, LP.ThresholdSigAgg, LP.ThresholdSigVerify,
is satisfies the security definition above.

Proof sketch. Wewant to show that the following is negligible:

𝑃[pp← (LP.pp, STARK.pp), 𝑟𝑖 ←$ {0, 1}∗, 𝑝𝑘𝑖 ← LP.KeyGen(𝑝𝑝,

𝑟𝑖) for 𝑖 ∈ [𝑁 − 𝑡]; (𝑝𝑘𝑁−𝑡+1, ..., 𝑝𝑘𝑁 , 𝑀, 𝜎)← A𝐻,SigningOracle(·)
:

𝑃𝐾 ← ACC.Eval(ACC.pp, {𝑝𝑘𝑖 }𝑖∈[𝑁]
)∧

1← STARK.Verify(STARK.pp, (𝑁, 𝑡, 𝑃𝐾,𝑀, 𝜎))]

For the adversary to produce terms such that 𝑃𝐾 ← ACC.Eval(
ACC.pp, {𝑝𝑘𝑖 }𝑖∈[𝑁]

)∧ 1← STARK.Verify(STARK.pp, (𝑁, 𝑡, 𝑃𝐾, 𝜎)),

it needs to achieve at least one of the following: (1) produce a proof

𝜎 , attesting to 𝑡 + 1 valid signatures on𝑀 , while owning only 𝑡 of

the keys committed in 𝑃𝐾 , i.e. providing a verifying proof without

a valid witness. (2) forge a signature by one of the keys gener-

ated by the challenger. (3) provide a witness for membership in

the accumulated key 𝑃𝐾 for a key 𝑝𝑘𝑁+1, which was not origi-

nally input to ACC.Eval. (1) would violate knowledge soundness

of STARK. (2) violates the EU-CMA security of LP, and (3) violates

the collision-freeness of ACC. Thus, due to the union bound, ad-

versary’s advantage is upper bounded by sum of the knowledge

soundness error of STARK, the advantage of an EU-CMA adversary

of LP and the probability of an ACC adversary generating a witness

for an uncommitted value. Since each of these terms is negligible,

the above expression is negligible in the security parameter. □

5.3 Threshold signature verification AIR
The AIR for program Progverif−threshold is similar to the AIR for

aggregate signature verification program described in Sec. 4.3, with

additional logic for verifying that all individual signatures belong

to the members of 𝑆 . We do this by verifying that public keys for

the signatures are leaves in the Merkle tree defined by 𝑃𝐾 . The AIR

for Merkle path verification program described in App. B.

In our implementation, AIR forProgverif−threshold programworks

over an execution trace of 28 registers, and requires 1024 · 𝑛 steps,

where 𝑛 is the total number of signers in the threshold group

rounded to the next power of two. For example, if the total number

of signers is 7, the execution trace will be 8192 steps long, regardless

of the number of individual signatures verified. This means that

programs for 1-out-of-7 and 6-out-of-7 signatures will result in ex-

ecution traces of exactly the same length (8192 steps). A simplified

schematic of an execution trace for a 2-out-of-3 signature is shown

in Fig. 3. The components of the trace and associated constraints

are described in the following sections. Signature verification.
Registers {𝑟0, ..., 𝑟17} are used to verify individual Lamport+ signa-

tures in a manner similar to the aggregate signature verification

AIR, with the following differences:

• Instead of 𝑛 distinct messages only a single message𝑀 is pro-

vided to the program as a public input. Thus, the first 4 reg-

isters of Lamport+ signature verification trace are replaced

Aggregating and thresholdizing hash-based signatures using STARKs ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan

Figure 3: Threshold signature verification trace for 𝑛 = 3.

with two periodic columns:𝑚0 and𝑚1. These columns will

contain binary decomposition of the tuple of field elements

describing𝑀 .

• Boundary constraints against public key registers (𝑟12 and

𝑟13) are removed as ensuring that signature verification trace

resolves to a valid public key is enforced by a set of transition

constraints described further in this section.

• When a signature from a specific signer is missing, a null
signature is inserted in its place. The constraint system is

unchanged, as validity of null signatures is not enforced.

Merkle path verification. Registers {𝑟18, .., 𝑟25} are used to verify
that all individual public keys against which the signatures are

verified are present in the Merkle tree with the root equal to the

aggregate public key of all signers. AIR for this registers is almost

identical to Merkle path verification program described in App. B,

except for the following differences:

• Additional boundary constraints are placed against leaf in-

dices to ensure that all Merkle paths in the tree are verified.

The order of indexes is offset by −1. Thus, a Merkle path for

the last leaf is verified first, then Merkle path for the first

leaf, second leaf etc. This allows for output values of the

signature verification segment to align with input values for

Merkle path verification segment, and simplifies transition

constraint definitions described further in this section.

• The above arrangement also dictates that the last leaf in the

Merkle tree of the aggregated public key is always a zero

key. Thus, we also impose boundary constraints enforcing

that values in registers 𝑟18 and 𝑟19 at step 0 are set to zero.

Signature counter. Registers 𝑟26 and 𝑟27 are used to count the

number of verified signatures. Specifically, the value of register

𝑟26 is set to one at the end of each 1024 step cycle (i.e. on steps

1023, 2047 etc.) iff the signature verified in this cycle is valid. If the

signature is not valid (i.e., it is a null signature), 𝑟26 is set to zero.

Register 𝑟27 is used as the actual counter. It is initialized to zero,

and its value is incremented whenever value of register 𝑟26 = 1.

Thus, by the end of the execution trace, the value of register 𝑟27

will be equal to the number of valid signatures.

Denoting 𝑟𝑖 to be the value of register 𝑖 at the current step of the

computation, and 𝑟 ′
𝑖
to be the value of register 𝑖 at the next step of

the computation, transition constraints for registers 𝑟26 and 𝑟27 are

defined as follows:

𝑟2

26
− 𝑟26 = 0 (1)

𝑟 ′
27
− (𝑟27 +𝑚𝑠 · 𝑟26) = 0 (2)

𝑚𝑠 · 𝑟26 · (𝑟 ′18
− 𝑟12) = 0 (3)

𝑚𝑠 · 𝑟26 · (𝑟 ′19
− 𝑟13) = 0 (4)

where, 𝑚𝑠 is periodic column identical to the one described in

Sec. 4.3 – a cycle of 1024 values comprised of 1023 zeros followed

by 1 one.

The first constraint above enforces that values in 𝑟26 must be

binary, while the second constraint enforces that value of 𝑟27 is

incremented only if 𝑟26 = 1 and we are at the end of a signature

verification cycle (i.e.𝑚𝑠 = 1). The other two constraints tie the

signature verification and the Merkle path verification segments

together. They enforce that whenever we are at the end of a signa-

ture verification cycle and 𝑟26 = 1, the public key resulting from

signature verification trace (registers 𝑟12 and 𝑟13) must be equal to

the leaf of the Merkle path at the corresponding index (registers

𝑟18 and 𝑟19). Thus, 𝑟26 can be set to one iff the prover indeed has a

valid signature for the individual public key at the respective index.

Boundary constraints. In addition to the boundary constraints

required for signature verification and Merkle path verification

segments discussed previously, we also need to impose boundary

constraints against the signature counter. Specifically, we enforce

the following additional constraints:

(1) Value in register 𝑟27 at step 0 must be set to zero.

(2) Value in register 𝑟27 at the last step must be equal to the

expected number of valid signatures.

Thus, after verifying the proof, the verifier will learn the total

number of valid signatures known to the prover. The verifier can

then compute the ratio of valid signatures to the total number of

signers and check if the resulting valuemeets the required threshold

– outside of the circuit to reduce circuit complexity.

6 EVALUATION
To evaluate concrete performance of our signature schemes, we

implemented the following components using Rust programming

language: (1) the Rescue hash function, (2) Lamport+ signature

ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan Irakliy Khaburzaniya, Kostantinos Chalkias, Kevin Lewi, and Harjasleen Malvai

scheme, (3) a generic STARK prover and verifier, and (4) the AIRs

for our aggregate and threshold signature schemes. Our implemen-

tation of STARK prover supports multi-threaded proof generation,

but does not make use of any advanced CPU instructions, leaving

room for optimizations in future work. We ran benchmarks on an

8-core Intel Core i9 processor @ 2.4 GHz with 32 GB of RAM.

6.1 Rescue and Lamport+
Our implementation of Rescue-Prime hash function achieves about

15,000 hashes per second on a single CPU core when hashing values

up to 64 bytes long. This is approximately two orders of magni-

tude slower than for such widely used hash functions as SHA2/3 or

BLAKE2/3. However, this slowdown is expected, given that mod-

ern CPUs are not optimized for prime field arithmetic. Even with

existing hardware, we believe that this performance can be im-

proved 5x-6x, by instantiating Rescue with different parameters

(e.g. smaller field) and optimizing underlying field operations.

Performance of Rescue translates directly to performance of

Lamport+ signatures as shown in Table 2. Lamport+ is an OTS, so,

key generation time is lumped with signing time. For verification,

we show average time, with the worse case time being 30 ms.

It should be noted that if Lamport+ is instantiated with a fast

hash function such as BLAKE3, it becomes extremely fast, with a

single CPU core capable of verifying almost 45,000 signatures/sec.

6.2 Signature aggregation
The concrete performance of our signature schemes is shown in Ta-

ble 3. We benchmark STARK proof generation at different security

levels, by varying the number of queries included in a proof (see

Sec. 2.1). Table 4 shows a comparison with other signature schemes.

Aggregate and threshold signature verification times are between

3 ms and 10 ms. As explained in Sec. 4.3, verification time is linear in

the number of individual signatures. However, practical impact of

this linear complexity is negligible when verifying an aggregation

of fewer than 10, 000 signatures.

As Table 3 shows, a large number of signatures may take signifi-

cant time to aggregate. However, STARK proof generation is mas-

sively parallelizable, so prover time may be reduced significantly by

utilizing more powerful hardware. For example, aggregating 1024

signatures at 96-bit security level can be completed in 3.9 seconds

on a 64-core machine (vs. 19.7 seconds on an 8-core machine).

Note that the comparison in Table 4 is not entirely “apples-to-

apples", since our schemes are OTS, while other schemes (with the

exception of WOTS
4
) support a practically unlimited number of

signatures. Nevertheless, this comparison is informative as trans-

forming our scheme to a many-times signature scheme should have

relatively minor impact on the resulting signature sizes.

6.3 Further optimizations
The results presented above are taken from a stable version of our

STARK library, which has since been updated to support STARKs

defined over small fields (e.g. 62-bit or 64-bit primes). The benefit of

using such small fields is that modular reductions can be performed

4
For WOTS, we assume instantiation using a PRF with the key collision resistance

property and providing strong unforgeability, as defined in Corollary-2(b) of [19].

very quickly on 64-bit machines – currently the most common CPU

architecture. This, in turn, translates into two tangible benefits.

First, we observe a significant improvement in Rescue Prime hash

function performance. Specifically, we’ve implemented a version

of Rescue Prime in a 62-bit prime field, which yielded roughly 10x

speed up as compared to our implementation in a 128-bit field used

in the benchmarks above. We expect this speed up to carry over

into faster signing and verification time for Lamport+ signature

scheme (i.e., we can expect these times go down from 30ms and

20ms to 3ms and 2ms, respectively).

Second, faster field arithmetic translates directly into faster

STARK proof generation. However, the impact here is not as signifi-

cant as with Rescue Prime hash function. Based on our preliminary

benchmarks, we expect proof generation time (and, thus, signature

aggregation time) to decrease by a factor between 2x and 4x. Thus,

it may be possible to aggregate 1000+ Lamport+ signatures in under

a second on a 64-core machine such as Azure HB120-64rs v3.

Acknowledgements
While working on this project, Harjasleen Malvai was funded in

part by the Initiative for Cryptocurrencies and Contracts (IC3).

REFERENCES
[1] G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang, J. Kelsey, Y.-K. Liu,

C. Miller, D. Moody, R. Peralta, et al. Status report on the second round of the

nist post-quantum cryptography standardization process. US Department of
Commerce, NIST, 2020.

[2] M. R. Albrecht, L. Grassi, L. Perrin, S. Ramacher, C. Rechberger, D. Rotaru, A. Roy,

andM. Schofnegger. Feistel structures for mpc, andmore. In European Symposium
on Research in Computer Security, pages 151–171. Springer, 2019.

[3] A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe, and A. Szepieniec. Design of

symmetric-key primitives for advanced cryptographic protocols. IACR Transac-
tions on Symmetric Cryptology, pages 1–45, 2020.

[4] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam. Ligero: Lightweight

sublinear arguments without a trusted setup. In Proceedings of the 2017 acm sigsac
conference on computer and communications security, pages 2087–2104, 2017.

[5] T. Ashur, S. Dhooghe, and A. Szepieniec. Rescue-prime: a standard specification

(sok). IACR Transactions on Symmetric Cryptology, pages 1–16, 2020.
[6] A. authors. STARK prover and verifier (Rust implementation). https://github.

com/anonauthorsub/asiaccs_2021_440.

[7] E. Ben-Sasson. Recursive STARKs. https://www.crowdcast.io/e/recursive-starks,

2020.

[8] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable, transparent, and

post-quantum secure computational integrity. IACR Cryptol. ePrint Arch., 2018:46,
2018.

[9] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward. Au-

rora: Transparent succinct arguments for r1cs. In Annual international conference
on the theory and applications of cryptographic techniques. Springer, 2019.

[10] E. Ben-Sasson, L. Goldberg, and D. Levit. Stark friendly hash–survey and rec-

ommendation. Technical report, Cryptology ePrint Archive, Report 2020/948.

https://eprint. iacr. org/2020/948, 2020.

[11] D. J. Bernstein, D. Hopwood, A. Hülsing, T. Lange, R. Niederhagen, L. Pa-

pachristodoulou, M. Schneider, P. Schwabe, and Z. Wilcox-O’Hearn. Sphincs:

practical stateless hash-based signatures. In Annual international conference on
the theory and applications of cryptographic techniques. Springer, 2015.

[12] Blockchain-Charts. Average Transactions Per Block. https://www.blockchain.

com/charts/n-transactions-per-block, 2021.

[13] D. Boneh, R. Gennaro, S. Goldfeder, and S. Kim. A lattice-based universal thresh-

oldizer for cryptographic systems. IACR Cryptol. ePrint Arch., 2017:251, 2017.
[14] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably en-

crypted signatures from bilinear maps. In International Conference on the Theory
and Applications of Cryptographic Techniques, pages 416–432. Springer, 2003.

[15] D. Boneh, C. Gentry, B. Lynn, H. Shacham, et al. A survey of two signature

aggregation techniques, 2003.

[16] D. Boneh and S. Kim. One-time and interactive aggregate signatures from lattices.

[17] K. Boudgoust and A. Roux-Langlois. Compressed linear aggregate signatures

based on module lattices. Cryptology ePrint Archive, Report 2021/263, 2021.

https://eprint.iacr.org/2021/263.

https://github.com/anonauthorsub/asiaccs_2021_440
https://github.com/anonauthorsub/asiaccs_2021_440
https://www.crowdcast.io/e/recursive-starks
https://www.blockchain.com/charts/n-transactions-per-block
https://www.blockchain.com/charts/n-transactions-per-block
https://eprint.iacr.org/2021/263

Aggregating and thresholdizing hash-based signatures using STARKs ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan

Private key size Public key size Signature size Signing time Verification time

16 KB 32 bytes 8 KB 30 ms 20 ms

Table 2: Performance of Lamport+ signature scheme instantiated with Rescue-Prime hash function. Private key can be generated
from a single 32-byte seed.

n 96-bit security 123-bit security
Prover Time Prover RAM Signature Size Prover time Prover RAM Signature Size

Aggregate signatures
128 2.5 sec 0.9 GB 68 KB 3.2 sec 1.2 GB 129 KB

256 5.1 sec 1.8 GB 71 KB 6.7 sec 2.4 GB 140 KB

512 10.5 sec 3.7 GB 77 KB 13.6 sec 4.8 GB 155 KB

1024 19.7 sec 7.4 GB 83 KB 25.7 sec 9.5 GB 165 KB

Threshold signatures
127 2.9 sec 1.0 GB 69 KB 3.8 sec 1.3 GB 136 KB

255 6.1 sec 1.9 GB 74 KB 7.7 sec 2.6 GB 146 KB

511 12.6 sec 3.9 GB 80 KB 15.6 sec 5.1 GB 159 KB

1023 25.8 sec 7.8 GB 86 KB 32.4 sec 10.0 GB 170 KB

Table 3: Performance for our implementations at various parameters.

Scheme PQ-Secure Public Key Size Individual Sig. Size Aggregated Sig. Size

Ed25519 No 32 B 64 B 62.5 KB*

BLS12-381 No 48 B 96 B 96 B

WOTS (w = 16) Yes 32 B 2.14 KB 2.09 MB*

Sphincs
+
-128s Yes 32 B 8 KB 7.8 MB*

Falcon-512 Yes 897 B 618 B 603 KB*

Dilithium3 Yes 1.9 KB 3.3 KB 3.2 MB*

MMSAT-128 Yes 4.2 KB 3 KB 36 KB

This work Yes 32 B 8 KB 165 KB

Table 4: Comparison of various schemes, and their aggregation over 1000 signatures. 128-bit security is assumed, but for certain
schemes the practical security level is slightly less than 128-bits. Schemes that do not support aggregation are marked with ‘*’,
in which case we assume concatenating individual signatures.

[18] R. G. Brown, J. Carlyle, I. Grigg, and M. Hearn. Corda: an introduction. R3 CEV,
August, 1:15, 2016.

[19] J. Buchmann, E. Dahmen, S. Ereth, A. Hülsing, and M. Rückert. On the security

of the winternitz one-time signature scheme. In International Conference on
Cryptology in Africa, pages 363–378. Springer, 2011.

[20] J. Buchmann, E. Dahmen, and A. Hülsing. Xmss-a practical forward secure signa-

ture scheme based on minimal security assumptions. In International Workshop
on Post-Quantum Cryptography, pages 117–129. Springer, 2011.

[21] K. Chalkias, M. Baudet, Y. Sun, and D. Wong. Hash-based signatures for

blockchains. Applied Crypto Symposium, 2020. https://drive.google.com/file/d/

1pPdJhThmJCnTKBlqbEE32G31T5ELzG19.

[22] K. Chalkias, J. Brown, M. Hearn, T. Lillehagen, I. Nitto, and T. Schroeter.

Blockchained post-quantum signatures. In IEEE Blockchain Conference, 2018.
[23] K. Chalkias, F. Garillot, Y. Kondi, and V. Nikolaenko. Non-interactive half-

aggregation of EdDSA and variants of Schnorr signatures. In CT-RSA, 2021.
[24] A. Chiesa, P. Manohar, and N. Spooner. Succinct arguments in the quantum

random oracle model. In Theory of Cryptography Conference. Springer, 2019.
[25] A. Chiesa, D. Ojha, and N. Spooner. Fractal: Post-quantum and transparent

recursive proofs from holography. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 769–793. Springer,
2020.

[26] D. A. Cooper, D. C. Apon, Q. H. Dang, M. S. Davidson, M. J. Dworkin, and C. A.

Miller. Recommendation for stateful hash-based signature schemes. NIST Special
Publication, 800:208, 2020.

[27] D. Derler, C. Hanser, and D. Slamanig. Revisiting cryptographic accumulators,

additional properties and relations to other primitives. In Cryptographers’ track
at the rsa conference, pages 127–144. Springer, 2015.

[28] Y. Doröz, J. Hoffstein, J. H. Silverman, and B. Sunar. Mmsat: A scheme for

multimessage multiuser signature aggregation. IACR Cryptol. ePrint Arch., 2020.
[29] J. Drake. Pragmatic signature aggregation with bls, May 2018.

[30] R. El Bansarkhani and J. Sturm. An efficient lattice-based multisignature scheme

with applications to bitcoins. In International Conference on Cryptology and
Network Security, pages 140–155. Springer, 2016.

[31] T.M. Fernández-Caramés and P. Fraga-Lamas. Towards post-quantum blockchain:

A review on blockchain cryptography resistant to quantum computing attacks.

IEEE Access, 8:21091–21116, 2020.
[32] A. Gabizon, K. Gurkan, P. Jovanovic, G. Konstantopoulos, A. Oines, M. Olszewski,

M. Straka, E. Tromer, and P. Vesely. Plumo: Towards scalable interoperable

blockchains using ultra light validation systems, 2020.

[33] L. Goldberg, S. Papini, and M. Riabzev. Cairo–a turing-complete stark-friendly

cpu architecture. Cryptology ePrint Archive, 2021.
[34] L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and M. Schofnegger. Poseidon:

A new hash function for zero-knowledge proof systems. In Proceedings of the
30th USENIX Security Symposium. USENIX Association, 2020.

[35] A. Hülsing. W-ots+–shorter signatures for hash-based signature schemes. In

International Conference on Cryptology in Africa, pages 173–188. Springer, 2013.
[36] J. Katz, V. Kolesnikov, and X. Wang. Improved non-interactive zero knowledge

with applications to post-quantum signatures. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, 2018.

[37] C. Komlo and I. Goldberg. Frost: Flexible round-optimized schnorr threshold

signatures. 2020.

[38] A. Kosba, Z. Zhao, A. Miller, Y. Qian, H. Chan, C. Papamanthou, R. Pass, abhi

shelat, and E. Shi. C∅c∅: A framework for building composable zero-knowledge

proofs. Cryptology ePrint Archive, 2015. https://eprint.iacr.org/2015/1093.

[39] H. Krawczyk. Cryptographic extraction and key derivation: The hkdf scheme.

In Annual Cryptology Conference, pages 631–648. Springer, 2010.
[40] M. Labs. Matter labs announces $50m in new funding for zksync. https://blog.

matter-labs.io/funding-ea89c1fa731e, 2021.

[41] G. Maxwell, A. Poelstra, Y. Seurin, and P. Wuille. Simple schnorr multi-signatures

with applications to bitcoin. Cryptology ePrint Archive, Report 2018/068, 2018.

https://eprint.iacr.org/2018/068.

https://drive.google.com/file/d/1pPdJhThmJCnTKBlqbEE32G31T5ELzG19
https://drive.google.com/file/d/1pPdJhThmJCnTKBlqbEE32G31T5ELzG19
https://eprint.iacr.org/2015/1093
https://blog.matter-labs.io/funding-ea89c1fa731e
https://blog.matter-labs.io/funding-ea89c1fa731e
https://eprint.iacr.org/2018/068

ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan Irakliy Khaburzaniya, Kostantinos Chalkias, Kevin Lewi, and Harjasleen Malvai

[42] R. C. Merkle. A certified digital signature. In Conference on the Theory and
Application of Cryptology, pages 218–238. Springer, 1989.

[43] S. Micali. Algorand 2021 Performance. https://www.algorand.com/resources/

blog/algorand-2021-performance, 2021.

[44] J. Nick, T. Ruffing, and Y. Seurin. Musig2: Simple two-round schnorr multi-

signatures. 2020.

[45] H. Pilaram, T. Eghlidos, and R. Toluee. An efficient lattice-based threshold

signature scheme using multi-stage secret sharing. IET Information Security,
2021.

[46] S. Popov. The tangle. White paper, 1:3, 2018.
[47] S. Reynolds. Starkware launches layer 2 product starknet on ethereum.

https://www.coindesk.com/business/2022/02/23/starkware-launches-layer-2-

product-starknet-on-ethereum/, 2022.

[48] StarkWare. Ziggy signature. https://github.com/starkware-libs/ethSTARK/tree/

ziggy#Glossary, 2020.

[49] T. A. Team. Aleo raises $200m in series b to expand private-by-default, blockchain

platform. https://www.aleo.org/post/aleo-raises-series-b, 2022.

[50] W. A. Torres, R. Steinfeld, A. Sakzad, and V. Kuchta. Post-quantum linkable

ring signature enabling distributed authorised ring confidential transactions in

blockchain. Technical report, Cryptology ePrint Archive, Report 2020/1121, 2020.

https://eprint.iacr.org, 2020.

[51] P. Waterland. The QRLWhitepaper. Technical report, Quantum Resistant Ledger.

[52] Y. Zhao. Aggregation of gamma-signatures and applications to bitcoin. IACR
Cryptol. ePrint Arch., 2018:414, 2018.

A RESCUE HASH FUNCTION
Selection of a hash function for the hash-based signature scheme

is critical as it directly impacts design complexity and prover per-

formance. To be efficient within a STARK, a hash function must

have simple algebraic representation, and unfortunately, traditional

hash functions such as SHA and BLAKE do not fit the bill. This is

primarily because these hash functions make extensive use of bit

operations (e.g. XOR, bit shifts) which are cheap in modern CPUs,

but are very expensive within STARKs and other ZKP systems.

To address these shortcomings a number of arithmetization-

friendly hash functions have been developed recently [2, 3, 34].

These new constructions are several orders of magnitude more

efficient inside ZKP circuits as compared to their traditional ana-

logues [10]. The main drawbacks of these new constructions is their

relative recency, and poor performance outside of ZKP circuits.

For our aggregated signature schemes we have selected Rescue-

Prime hash function [5], primarily for simplicity of its AIR. Rescue-

Prime employs Rescue-XLIX permutation in a sponge construction

to hash strings of arbitrary lengths. Each permutation consists of

a number of rounds operating over a state of𝑚 field elements. As

illustrated on Fig. 4, a single round of Rescue-XLIX permutation

consists of the following steps:

• Apply the power map to each element of the state.

• Apply the MDS matrix to the state, through matrix-vector

multiplication.

• Add the next𝑚 round constants into the state.

• Apply the inverse power map to each element of the state.

• Apply the MDS matrix to the state, through matrix-vector

multiplication.

• Add the next𝑚 round constants into the state.

Denoting the state before the round function is applied by 𝑆 , and

the state resulting from the application of the round function by 𝑆 ′,
we can describe a single Rescue-XLIX permutation round by the

following AIR constraints:

𝑚∑︁
𝑗 =1

𝑀[𝑖, 𝑗](𝑆[𝑗]𝛼 +𝐶2𝑖𝑚[𝑗]𝛼)

− (

𝑚∑︁
𝑗=1

𝑀−1
[𝑖, 𝑗](𝑆 ′[𝑗] −𝐶2𝑖𝑚[𝑚 + 𝑗]))𝛼 |𝑖 ∈ [𝑚]

Figure 4: Round 𝑖 of Rescue Prime permutation with𝑚 = 3.

The above expression evaluates to 0 for all 𝑖 , if and only if 𝑆 ′ state
results from applying a single round of Rescue-XLIX permutation

to state 𝑆 . It is important to note that we connect 𝑆 and 𝑆 ′ from
the middle of the round, and therefore we can replace the inverse

power map with a simple power map. Thus, the degree of these

constraints is 𝛼 .

For our specific instantiation of Rescue-Prime we selected a 128-

bit prime field, and set𝑚 = 6 and 𝛼 = 5. We also set the number of

rounds to 7 to target 128-bit PQ-security against pre-image, second

pre-image and collision attacks with an additional 40% security

margin. The 40%margin was selected to make the number of rounds

be one less than a power of two, which simplifies AIR design for

the overall system.

With the above parameters, to hash a 512-bit value into a 256-bit

value, we can use a trace table of 6 registers wide and 8 steps long

(see Fig. 5). At the initial step 𝑆0, we populate the rate portion of

the state (registers𝑚0 ..𝑚3), with the value to be hashed, and set

the capacity portion of the state (registers𝑚4,𝑚5) to 0. We then

apply Rescue-XLIX round function 7 times, each time recording the

state of the sponge in a separate row. At step 𝑆7, the permutation

is complete, so the hashed value can be read from registers𝑚0,𝑚1.

Figure 5: A trace table for one invocation of Rescue-XLIX
permutation (7 rounds).

B MERKLE PATH VERIFICATION AIR
We define Merkle path verification procedure merkle_path as a

procedure which takes two parameters: an index of a leaf in a

Merkle tree and a Merkle path to the leaf at the specified index, and

outputs the root of the Merkle tree as described in Alg. 2.

An AIR-friendly variant of merkle_path has the following dif-

ferences from the generic procedure:

https://www.algorand.com/resources/blog/algorand-2021-performance
https://www.algorand.com/resources/blog/algorand-2021-performance
https://www.coindesk.com/business/2022/02/23/starkware-launches-layer-2-product-starknet-on-ethereum/
https://www.coindesk.com/business/2022/02/23/starkware-launches-layer-2-product-starknet-on-ethereum/
https://github.com/starkware-libs/ethSTARK/tree/ziggy#Glossary
https://github.com/starkware-libs/ethSTARK/tree/ziggy#Glossary
https://www.aleo.org/post/aleo-raises-series-b

Aggregating and thresholdizing hash-based signatures using STARKs ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan

Algorithm 2 merkle_path procedure

inputs: 𝑖𝑛𝑑𝑒𝑥 , 𝑝𝑎𝑡ℎ[]

𝑟 ← hash(𝑝𝑎𝑡ℎ[0], 0)

for i in 1..𝑝𝑎𝑡ℎ.𝑙𝑒𝑛𝑔𝑡ℎ do
if get_bit(𝑖𝑛𝑑𝑒𝑥, 𝑖 − 1) == 0 then

𝑟 ← hash(𝑟, 𝑝𝑎𝑡ℎ[𝑖])

else
𝑟 ← hash(𝑝𝑎𝑡ℎ[𝑖], 𝑟)

end if
end for
return 𝑟

Figure 6: Execution trace for merkle_path procedure for 𝑛 = 3

and 𝑖𝑛𝑑𝑒𝑥 = 3.

• Leaf index is passed into the procedure as a private witness

in the form of a bit vector (in little-endian order) and the

procedure outputs the index value as a single element.

• In our context, nodes of a Merkle tree are represented by

tuples of elements in a 128-bit field. Thus, Merkle path is

passed into the procedure as two arrays each containing a

single element of a tuple at a corresponding index.

• We use the Rescue-Prime hash function (see App. A), which

operates over a state of 6 field elements and requires 7 rounds

to compute a hash. After 7 rounds are applied to the state,

the resulting hash is located in elements 0 and 1 of the state.

In our implementation, AIR for Merkle path verification works

over an execution trace of 8 registers and 8 ∗ 𝑛 steps, where 𝑛 is

the depth of the Merkle tree. A simplified schematic of a trace for

𝑛 = 3 is shown in Fig. 6.

Out of 8 registers, 6 are used for hash computations, and the

remaining two are used to bind the execution trace to a leaf index.

We also rely on two periodic columns𝑚ℎ and𝑚𝑝 which are identical

to the columns described in Sec. 3.2.

B.1 Index accumulator
Registers 𝑟0 and 𝑟1 are used to bind the execution trace to a leaf

index. Register 𝑟1 contains binary decomposition of the leaf index

in little-endian byte order, while register 𝑟0 contains accumulated

value of the index at a given step of the trace, such that at the end

of the trace, 𝑟0 contains the full value of the index.

Denote the value of register 𝑖 at the current step of the com-

putation, as 𝑟𝑖 and the value of register 𝑖 at the next step of the

computation as 𝑟 ′
𝑖
. Transition constraints for registers 𝑟0 and 𝑟1 are:

𝑟2

1
− 𝑟1 = 0 (1)

𝑟 ′
0
− 𝑟0 − 𝑟1 ·𝑚ℎ ·𝑚𝑝 = 0 (2)

Constaint 1 enforces that values in register 𝑟1 must be binary (0

or 1). Constraint 2 enforces that on every 8
𝑡ℎ

step (i..e when𝑚ℎ = 1),

the next bit of the index is accumulated into register 𝑟0. Otherwise,

the value of 𝑟0 is copied over to the next step unchanged.

B.2 Node hashing
Registers {𝑟2, ..., 𝑟7} are used to compute hashes of nodes in the

Merkle path. The hashing is performed as follows: on every 8
𝑡ℎ

step

of the execution trace, starting with step 7 (i.e. when𝑚ℎ = 1), when

the index bit is 1 (i.e. when 𝑟1 = 1) values from registers {𝑟2, 𝑟3}
are moved into registers {𝑟4, 𝑟5}, and the values corresponding to

the next node in the Merkle path are inserted into registers {𝑟2, 𝑟3}.
However, when 𝑟1 = 0, the next node in the path is inserted into

registers {𝑟4, 𝑟5}, while values of registers {𝑟2, 𝑟3} are copied over

to the next step. On all other steps (i.e. when𝑚ℎ = 0), Rescue-Prime

round function is applied.

The effect of the above logic is that depending on the value of the

index bit, we compute either hash({𝑟2, 𝑟3}, {𝑟4, 𝑟5}) or hash({𝑟4, 𝑟5},
{𝑟2, 𝑟3}) in registers {𝑟2, ..., 𝑟7}, and by the end of the execution trace,
registers {𝑟2, 𝑟3} will contain the root of the Merkle tree implied by

the path and the index parameters.

Using 𝑟𝑖 and 𝑟
′
𝑖
notation as in the previous section, and denoting

𝑟𝑒𝑠𝑐𝑖 to be a function which computes transition constraints for a

single round for Rescue-XLIX permutation for hash state element 𝑖 ,

we define transition constraints for registers {𝑟2, .., 𝑟7} as follows:
𝑚ℎ · (𝑟 ′2 − 𝑟1 · 𝑟4 − (1 − 𝑟1) · 𝑟2) + (1 −𝑚ℎ) · 𝑟𝑒𝑠𝑐0(𝑟2, 𝑟

′
2
) = 0 (3)

𝑚ℎ · (𝑟 ′3 − 𝑟1 · 𝑟5 − (1 − 𝑟1) · 𝑟3) + (1 −𝑚ℎ) · 𝑟𝑒𝑠𝑐1(𝑟3, 𝑟
′
3
) = 0 (4)

𝑚ℎ · (𝑟 ′4 − 𝑟1 · 𝑟2 − (1 − 𝑟1) · 𝑟4) + (1 −𝑚ℎ) · 𝑟𝑒𝑠𝑐2(𝑟4, 𝑟
′
4
) = 0 (5)

𝑚ℎ · (𝑟 ′5 − 𝑟1 · 𝑟3 − (1 − 𝑟1) · 𝑟5) + (1 −𝑚ℎ) · 𝑟𝑒𝑠𝑐3(𝑟5, 𝑟
′
5
) = 0 (6)

𝑚ℎ ∗ 𝑟 ′6 + (1 −𝑚ℎ) ∗ 𝑟𝑒𝑠𝑐4(𝑟6, 𝑟
′
6
) = 0 (7)

𝑚ℎ ∗ 𝑟 ′7 + (1 −𝑚ℎ) ∗ 𝑟𝑒𝑠𝑐5(𝑟7, 𝑟
′
7
) = 0 (8)

In addition to the logic described previously, constraints (7) and

(8) also enforce that when𝑚ℎ = 1, the capacity portion of the hash

state (registers 𝑟6 and 𝑟7) must be cleared, to prepare the state for

the next round of hashing.

B.3 Boundary constraints
In addition to the transition constraints described above, for Merkle

path computation to be valid, we need to ensure that the correct

binary decomposition of the leaf index was used. We do this by

enforcing the following boundary constraints:

(1) Value in register 𝑟0 at step 0 must be set to 0.

(2) Value in register 𝑟0 at the last step must equal the leaf index.

	Abstract
	1 Introduction
	1.1 Overview of Our Constructions
	1.2 Related Work

	2 Preliminaries
	2.1 STARKs Protocol
	2.2 Algebraic Intermediate Representation (AIR)
	2.3 Accumulators

	3 Lamport+: The Modified WOTS Signature Scheme
	3.1 Formal construction
	3.2 Signature verification AIR

	4 Aggregate Signatures
	4.1 Formal construction
	4.2 Security
	4.3 Aggregate signature verification AIR

	5 Threshold Signatures
	5.1 Formal construction
	5.2 Security
	5.3 Threshold signature verification AIR

	6 Evaluation
	6.1 Rescue and Lamport+
	6.2 Signature aggregation
	6.3 Further optimizations

	References
	A Rescue Hash Function
	B Merkle path verification AIR
	B.1 Index accumulator
	B.2 Node hashing
	B.3 Boundary constraints

