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Abstract

Binary search is one of the most popular algorithms in computer science. Realizing it in the
context of secure multiparty computation which demands data-oblivious execution, however, is
extremely non-trivial. It has been previously implemented only using oblivious RAM (ORAM)
for secure computation and in this work we initiate the study of this topic using conventional
secure computation techniques based on secret sharing. We develop a suite of protocols with
different properties and of different structure for searching a private dataset of m elements
by a private numeric key. Our protocols result in O(m) and O(

√
m) communication using

only standard and readily available operations based on secret sharing. We further extend
our protocols to support write operations, namely, binary search that obliviously updates the
selected element, and realize two variants: updating non-key fields and updating the key field.
Our implementation results indicate that even after applying known and our own optimizations
to the fastest ORAM constructions, our solutions are faster than optimized ORAM schemes for
datasets of up to 230 elements and by up to two orders of magnitude. We hope that this work
will prompt further interest in seeking efficient realizations of this important problem.

1 Introduction

Secure multi-party computation is a mature research area which that for any functionality to be
evaluated on private data without having to disclose the data to the computation participants.
While work in this direction originated in the 80s [45], the past two decades resulted in signifi-
cant progress on two fronts: (i) secure computation techniques experienced notable performance
advances and (ii) availability and expressiveness of existing implementations greatly improved. To-
day such techniques are performant enough to privately analyze large data sets with reasonable
overhead. We also witness a growing number of compilers that automatically generate secure
multi-party protocols for any desired functionality.

In addition to improving performance of underlying techniques and commonly used operations,
there is a need to continue research on data-oblivious (i.e., data-independent) algorithms and
data structures which permit higher-level functionalities to be executed within secure multi-party
computation frameworks, ideally with asymptotic complexities of data-oblivious constructions being
as close as possible to those of their non-oblivious counterparts. One particular direction that would
benefit from additional exploration and research is algorithms for working with sorted data. Prior
work [47] demonstrated that generically building data structures for working with sorted sets using
common techniques such as linked lists or binary trees not only predictably significantly increases
the asymptotic complexity of the resulting protocols, but performs even worse than using simple
linear-scan-type techniques where the data is not sorted at all.

In this work, we look at the binary search problem in the context of secure multi-party com-
putation and study algorithms suitable for its data-oblivious realization. We are aware of binary
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search discussed in prior literature only as an application of oblivious RAM (ORAM) and are not
aware of any work that specifically studied this algorithm in the context of secure computation or,
more generally, data-oblivious computation.1 This work initiates such a study.

We are interested in the computation associated with a binary search when we search a private
sorted dataset using a private key. This means that no information about the dataset or the query
can be revealed. Let the data set consist of m private items a0, . . . , am−1, possibly consisting of
multiple fields, one of which is the key field. The items are sorted by their keys. On input search
value b, we want to retrieve the element ai whose key is the closest to the searched key b. We also
consider update operations where instead of retrieving an element, we update the chosen item.

Contributions. Our contributions are as follows:
• We design a suite of binary search protocols with different properties and structure in the

multi-party setting based on secret sharing. In the process we also develop an optimization
for use of generic ORAM schemes in binary search. These results are presented in sections 4
and 5.
• We combine and further improve our solutions to obtain hybrid schemes which outperform

the individual constructions and lower binary search communication from O(m) in our prior
constructions to O(

√
m) for a dataset of size m.2 Section 6 covers our hybrid protocols.

• We extend our binary search techniques to also support write operations. That is, instead
of retrieving the element that the search selected, we update that element. We distinguish
between updating non-key fields and the key field because the latter requires restructuring
the dataset to preserve its sorted order. These techniques can be found in section 7.
• We implement several of our constructions in the semi-honest and malicious models and

compare them to the state of the art on LAN and WAN. Our best result shows performance
improvement over ORAM-based solutions (even with our ORAM optimizations) for dataset
sizes up to 227 on LAN and 230 on WAN; the largest improvements are by 49× and 240× in
the semi-honest and malicious models, respectively.

2 Related Work

All prior work that securely performs binary search in the context of secure multi-party computa-
tion we are aware of [39, 19, 46, 27, 33, 42] focuses on leveraging ORAM operations to hide search
patterns, typically invoking a logarithmic number of ORAM accesses per binary search. With the
ability to conceal access patterns, ORAM is often used as a general-purpose solution for construct-
ing oblivious algorithms. The notion of ORAM was originally proposed [24, 26] for the client-server
setting and allows a client to obliviously access data from an encrypted dataset held by a server. A
popular type of ORAM is tree-based [38, 39, 27, 22], with constructions capable of achieving com-
municating O(logm) blocks of sufficient size per access with constant client storage [39]. Because
the original ORAM formulation is not suitable for use in secure computation where no party is per-
mitted to access the data in the clear, Gordon et al. [27] built on [38] to design ORAM for secure
two-party computation with amortized sublinear complexity, where the parties jointly perform the
work of the client without learning the access patterns. Additional results toward improving the
efficiency of ORAM schemes for secure computation followed [19, 20, 30, 9].

Floram [19] is one of the state-of-the-art ORAM constructions for secure computation, which

1While [35] is said to provide oblivious binary search, it fails to meet the expectations; see section 2 for additional
information.

2Sublinear communication is achievable when the underlying framework supports dot products with communica-
tion independent of the input size.
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reported the best binary search performance among [46, 27, 33, 43], and thus we empirically compare
performance of our constructions to that of Floram. Bunn et al.’s ORAM [9] has similar properties
to Floram; i.e., it is based on a distributed point function [23], has the same round, communication,
and local work complexities as Floram, but uses three parties instead of two. While its performance
can be competitive to other ORAM schemes, it comes without an implementation and it is not
possible for us to do meaningful comparisons of our solutions to that ORAM, especially because
the underlying techniques differ (e.g., it uses oblivious transfer). We can only say that our constant
round binary search construction is expected to outperform binary search based on Bunn et al.’s
ORAM for small datasets. Its (linear per access) local work will also be the bottleneck when m is
large and our optimization from section 4.3 reduces it from O(m logm) to O(m) per search, which
would match O(

√
m) communication and O(m) local work of our best construction. In addition,

3PC ORAM [30] is a tree-based three-party ORAM based on two-party ORAM [41]. 3PC ORAM
was reported to have a lower bandwidth than Floram when the dataset size is < 216 and thus is
also competitive. Earlier, Gentry et al. [22] proposed an ORAM optimization for binary search
for their tree-based construction, which enables binary search to have the asymptotic cost of a
single (recursive) ORAM access. This optimization is also applicable to 3PC ORAM and therefore
we apply the optimization to 3PC ORAM and include the optimized scheme in the discussion as
well. The above constructions were developed for the semi-honest adversarial model, and the only
ORAM secure against malicious adversaries we are aware of is by Keller and Yanai [32] which can
be based on Circuit ORAM [41] or Path ORAM [39]. Although other recent ORAM constructions
exist [28, 34, 13, 5, 10], they are designed for client-server environments and are not applicable to
secure computation.

In addition to the above generic solutions, there have been efforts to improve efficiency of
oblivious computation by designing oblivious data structures. Toft [40] proposed an oblivious secure
priority queue with an amortized cost of O(log2 n) per insertion and removal operation. Wang et
al. [43] presented oblivious data structures that include priority-queues and stacks building upon
techniques of [39] and [22]. Keller and Scholl [31] proposed oblivious data structures using two
ORAM schemes [38, 39] and basic secure multi-party operations from [17]. The work realized
oblivious arrays, dictionaries, and priority-queues in the multi-party setting using secret sharing.
Shi [37] and Jafargholi et al. [29] proposed oblivious priority queues that achieve optimal O(logm)
complexity. However, most of these data structures cannot be directly used for binary search
operations in the context of secure multi-party computation. Among these oblivious data structures,
the closest to our work is the oblivious dictionary construction for secure computation from [31]. It is
capable of performing record search in a binary-search-like manner with communication complexity
of O(m), while the best of our protocols has sublinear communication complexity.

Lastly, a recent article by Rao et al. [35] claims to achieve oblivious binary search based on
secret sharing. However, the protocols given in [35] is not data-oblivious, simply invokes O(logm)
comparisons the way a regular binary search would, and has to disclose the locations used in the
comparisons. Furthermore, there are other significant discrepancies in that work. For example, the
protocol’s complexity is not analyzed in the text, but is said to be O(m logm) communication in
O(1) rounds in the abstract, which disagrees with the protocol itself.

3 Preliminaries

We consider binary search computation on private data, which can be a stand-alone operation
or a part of larger computation. The parties carrying out the computation obtain a data set
[a0], . . . , [am−1], where notation [x] means that the value of x is protected and not known to the
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participants in the clear. The items may consist of multiple fields, but there has to be a value used
as the key, which we denote as ai.key for item ai. The set is sorted in the increasing order by
the key field of the elements, i.e., for each i ai.key < ai+1.key. The search uses keys ai.key, but
all fields associated with the chosen ai are returned by the search. The dataset and other private
inputs, e.g., the search key, can be contributed by one or more parties or be the result of preceding
secure computation.

Our focus is secure multi-party computation based on linear secret sharing. That is, when we
discuss non-ORAM-based approaches, our optimizations target, and performance improvements
are measured, using secret sharing techniques, but the high-level ideas can likely apply to other
types of techniques. With secret sharing, computation is carried out by n parties and there is a
corruption threshold t < n, indicating that at most t out of n participants can be corrupt and
conspiring (controlled by the same adversary) under which the techniques remain secure. Then
the security expectations are that no information about any of the private data can be revealed to
the corrupt participants, when the number of corrupt participants is below t. In particular, we use
the standard simulation-based definition of security, which can be found, e.g., in [25], and requires
that the view of the adversary controlling t parties during the protocol execution can be simulated
using only the input and output of the corrupt parties and the simulated view is indistinguishable
from an actual run of the protocol. Note that the functionality we target takes shares of the input
and produces shares of the output and thus the parties performing the computation contribute
no private input and learn no output. This means that they learn nothing as a result of protocol
execution and the simulation proceeds without access to any data.

In light of the above, [x] corresponds to a secret-shared value x. All inputs are provided in
the secret-shared form and the outputs are also produced in the form of private shares. Also note
that while each ai may consist of multiple fields, we do not explicitly define them except the key
field ai.key. Thus, we use notation [ai] to refer to all fields of ai, but it should be understood that
different fields of each ai might be secret shared separately. In particular, the computation uses
shares of the keys [ai.key].

With linear secret sharing, a linear combination of shared values is performed locally, without
communication, while multiplication is an elementary building block that requires a unit of com-
munication. Because local operations are typically fast, relevant performance metrics are the total
number of interactive operations and the number of rounds (i.e., sequential interactive operations).

Our constructions expect the availability of secure protocols for certain integer operations in
the chosen secret sharing framework. For example, we rely on multiplication of private integers [x]
and [y], less-than-or-equal comparison of integer [x] and [y] (denoted LE([x], [y])), a dot product of
two arrays of private integers, and generation of a (possibly pseudo-)random integer of a predefined
bitlength k (denoted RandInt(k)). Then any type of secret sharing for which these building blocks
are available would be suitable for instantiating our constructions. Examples include Shamir secret
sharing [36], which provides security in the semi-honest setting with honest majority, and SPDZ [18],
which achieves security in the presence of malicious participants with dishonest majority. Both of
these example carry out computation over a finite field, but our techniques would also apply to
computation over ring Z2k for some k, e.g., as used in Sharemind [8] and SPDZ2k [14].

For concreteness, in our presentation we assume classical Shamir secret sharing. This will allow
us to report concrete costs of the protocols which guide our optimizations and argue security for a
fixed adversarial model (namely, in the presence of semi-honest participants with t < n/2). Compu-
tation based on secret sharing is information-theoretically secure in its nature, but for performance
reasons building blocks can rely on computational security, therefore achieving computational in-
distinguishability.

Some of our constructions are based on oblivious RAM (ORAM), which comes with certain
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Protocol 1 [z]← CompBS(〈[a0], . . . , [am−1]〉, [b])
1: for i = 0, . . . ,m− 1 in parallel do
2: [ci]← LE([b], [ai.key]);
3: end for
4: [d0] = [c0];
5: for i = 1, . . . ,m− 2 in parallel do
6: [di]← [ci] · (1− [ci−1]);
7: end for
8: [dm−1] = 1− [cm−2];
9: [z]←

∑m−1
i=0 [ai] · [di]

10: return [z];

security guarantees. In particular, we require that an ORAM initialized over a private data set
of size m allows us to read and write an element at a private location j without revealing any
information about either the location or the element. We use ORAM for secure computation, where
the computational parties perform the necessary computation on private data without access to
the data or accessed location in the clear.

In the rest of this work, we use notation “←” to indicate randomized functionalities (where
randomization might only be due to share randomization and not randomization of the values to
which the shares reconstruct) and use assignment notation “=” for deterministic computation.

4 Initial Constructions

In the current discussion, we focus on the read operation, i.e., we are interested in retrieving element
ai with the closest key to the searched value b. Discussion of the write operation is deferred to
section 7 and specified as two variants where we update non-search fields based on the result of the
search or update the search key itself. Note that the logic of the protocols for the read operation
will apply to non-key field updates to a large extent, while updating the search key of an element
requires different computation and restructuring of the dataset representation.

There can be two natural, and known, ways of performing a binary search operation in the
context of secure computation: (i) comparing the search key to every element of the set to locate
the desired element and (ii) using oblivious RAM (ORAM). The approach with a linear number of
comparisons is expected to have favorable performance when the data set size m is small. ORAM,
on the other hand, uses sub-linear (polylogarithmic) in m work to perform a read or write access
at a hidden location and can result in solutions of sub-linear communication and computation.
ORAM, however, usually requires large setup costs and has larger constants. Thus, it would be
faster for data sets of large size and when the initialization cost could be amortized across many
operations.

4.1 Linear Number of Comparisons

Recall that we are given a set [a0], . . . , [am−1] sorted in the increasing order by their keys (we assume
no duplicate key values) and would like to search for value [b]. In a linear-scan-type solution, we
compare b to each ai.key by executing a protocol for [b] ≤ [ai.key], which results in an array of
m bits. We then search for the position j in the array where the bits switch from 0s to 1s and
return the corresponding item aj . A possible comparison-based binary search CompBS is given as
Protocol 1, with less or equal comparisons LE being called on k-bit arguments. In this protocol,
after performing the comparisons on line 2, we compute di as ci∧¬ci−1. Note that dj = 1 indicates
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Protocol 2 [z]← OramBS(ORAM([a0], . . . , [am−1]), [b])

1: [c]← LE([b], [abm/2c.key]);
2: [d] = bm/2c;
3: [p]← [c] · ([abm/2c]− [am−1]) + [am−1];
4: for i = 0, . . . , logm− 1 do
5: [d] = [d] + (1− 2[c])m/2i+2;
6: [a]← ORAMR([d]);
7: [c]← LE([b], [a.key]);
8: [p]← [c] · ([a]− [p]) + [p];
9: end for

10: return [z] = [p];

that b > aj−1.key and b ≤ aj .key and thus aj is the desired element that we want to retrieve.
Because there is only one index j such that dj = 1, we retrieve the corresponding element aj using
computation z =

∨m−1
i=0 (di ∧ ai) =

∑m−1
i=0 ai · di on line 9.

CompBS is written to return a single element of the set even if the searched value is outside of
the key range for all ais. In particular, if b ≤ a0.key, a0 is returned; if ai−1.key < b ≤ ai.key for
some i, ai is returned; and if b > am−1.key, am−1 is returned (this means that am−1 is returned
if b is greater than the key of am−2). However, any desired variant of the algorithm can be easily
supported.

Because round complexity is crucial to performance of secure protocols based on secret sharing,
our protocol is written to run as many interactive operations in parallel as possible. The overall
cost is dominated by m LE comparisons. Detailed costs of this and other protocols are provided
in Table 1 assuming classical building blocks. In particular, the dot product costs 1 interactive
operation with communication independent of the input size (e.g., implemented as a generalization
of multiplication from [21]), and LE comparisons are instantiated as in [12, 11] on k-bit inputs
ai.key and b, which cost 4k−2 interactive operations in 4 rounds, one of which can be precomputed.
Security analysis of this and other protocols is provided in Appendix C.

4.2 ORAM-Based Search

We next discuss binary search that uses ORAM. Unless noted otherwise, we let the array size be
m = 2k − 1 for some integer k, i.e., the set can be represented as a perfect binary tree. Also, we
use notation log(·) to denote dlog2(·)e.

The algorithm for performing an ORAM-based binary search follows the same structure as
that of a conventional binary search with the difference that the array access to a known index
is replaced with ORAM access to a secret index. Due to the access pattern hiding properties of
ORAM, no information about the decision (i.e., go left or right) will be leaked after each round of
comparisons. Given an ORAM set up over sorted dataset [a0], . . . , [am−1], we denote an ORAM
read and write access to a logical address [d] as ORAMR([d]) and ORAMW([d]), respectively. Note
that for an entry [ai], the index i represents its logical address rather than its physical address in
the ORAM. Furthermore, typical realizations of ORAM hide the type of operation (read or write)
on each access, but in our context the operation type is public knowledge. Thus, we reveal the type
of the operation in the ORAM notation (in the case that knowledge of the operation can permit
performance optimizations).

The ORAM-based binary search, OramBS, is given as Protocol 2. It starts by comparing the
search key to the element at position bm/2c. Because the location of the first access is fixed and
known, we store [abm/2c] outside of ORAM to save a costly ORAM access. The value of d stores
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the (private) location which should be read in each round, and after the total of j comparisons
moves bm/2jc positions left or right depending on the last comparison result c.

In the last iteration, the search key b is compared to the element at position d to determine
whether to return ad or ad+1. While the element at position d was just retrieved, retrieving ad+1

requires another ORAM access. We, however, observe that this extra ORAM read is not needed
because ad+1 is guaranteed to be retrieved in an earlier ORAM access. That is, because we know
b > ad based on the last comparison and b ≤ ad+1 based on correctness of the search, the element at
position d+ 1 has to reside on the path from the root of the binary search tree abm/2c to ad (except
when d = m − 1 is the last position). This means that ad+1 has been previously read and all we
need is to maintain a copy of it instead of invoking another ORAM access. This is what OramBS
does: variable p stores the last element on the path from the root when the search proceeded left,
i.e., the searched value was smaller than the element on the path (p is conditionally updated on
line 8 during each loop iteration). This guarantees that p will be equal to ad+1 if the comparison in
the last round results in incrementing d. In the event that the path never goes left, p is initialized
to am−1 on line 3.

The computation on lines 3 and 8 uses conditional statements of the type if ([c]) then [p] = [x]
else [p] = [y] expressed as [p] = [c] ∧ [x] ∨ [¬c] ∧ [y] = [c] · [x] + (1 − [c]) · [y]. We rewrite them
as [p] = [c]([x] − [y]) + [y] to save one multiplication each. Furthermore, because updating the
value of p can be done together with the next interactive operation, updating p contributes to
the round complexity only in the last round. Thus, the cost of the ORAM-based binary search is
heavily dominated by logm ORAM accesses and logm LE comparisons. Security is discussed in
Appendix C.

Gentry et al. [22] suggested a formula for performing greater-than comparisons, x > y, on
bit-decomposed k-bit values written as x = xk−1 . . . x0 and y = yk−1 . . . y0. The computation is

g(xk−1 . . . x0, yk−1 . . . y0) = (xk−1 − yk−1)xk−1 + (xk−1 − yk−1 + 1)g(xk−2 . . . x0, yk−2 . . . y0). (1)

Note that a straightforward implementation of this function would result in k rounds of computa-
tion, which becomes prohibitive in an application like binary search where comparisons are executed
sequentially. We notice that the formula can be rewritten in a different form to supports constant-
round evaluation as g(x, y) =

∑k−1
i=0 xizi

∏k−1
j=i+1wj , where zi = xi − yi and wi = zi + 1. However,

note that the original formula was written for computation in Z2 and does not produce correct
output when the computation is over a larger field. Furthermore, if we rewrite the formula to be
correct, it can no longer be represented in a compact form suitable for constant-round evaluation.
This means that we do not further consider it as competitive for our application compared to other
options (such as LE from [12] mentioned above, which also avoids bit decomposition).

4.3 ORAM-based Optimizations

Gentry et al. [22] suggested an optimization to tree-based ORAM constructions that allows ORAM-
based binary search to have asymptotically the same cost as that of a recursive tree-based ORAM
access. Briefly, the optimization eliminates the need for a recursive position map to translate a
logical address to its physical address in ORAM by adding pointers to each block that store the
locations of the next access in the ORAM. As a result, the total cost of a binary search is equal to
that of a single recursive ORAM access instead of a logarithmic number of full ORAM accesses in
general tree-based ORAM protocols. The optimized solution was not empirically evaluated in [22]
and therefore it is difficult to tell how its performance might compare to other constructions in
the literature. We, however, note that this optimization is expected to apply to other tree-based
ORAM constructions which recursively outsource the position map. In particular, we determined
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that one of the latest efficient ORAMs, 3PC ORAM [30], is tree-based and uses recursive position
maps for each ORAM access. Thus, the optimization is applicable to 3PC ORAM and we use the
resulting optimized 3PC ORAM in the performance evaluation of our constructions.

We also note that it is possible to optimize performance of ORAM-based binary search regardless
of the internal structure of the underlying ORAM construction. The general idea behind our
optimization is that we partition the original dataset a0, . . . , am−1 into logm layers of exponentially
increasing size. The ith layer will correspond to the elements which can be accessed during the ith
step of the binary search computation. That is, for m of the form 2k − 1, layer 0 contains only a
single element abm/2c, layer 1 contains two elements abm/4c and ab3m/4c, etc., and layer logm − 1
contains (m+1)/2 elements at even positions i. With this division, we can set up a separate ORAM
for each layer, significantly decreasing the work associated with the first accesses to ORAM and
thus leading to practical improvements in the performance of binary search.

This optimization can lead to varying impacts on the asymptotic complexity of the resulting
binary search for different ORAM constructions. In particular, for constructions with polylogarith-
mic (in dataset size) complexities of ORAM access, there might be no asymptotic gain in applying
this optimization. For example, if ORAM access costs O(log2N) for an ORAM set up for N ele-
ments, then making logm accesses of cost O(log2m) and making logm accesses with exponentially
increasing sizes from O(1) to O(m) will both result in O(log3m) overall cost. On the other hand,
ORAM constructions of larger asymptotic complexities can see pronounced improvements in the
asymptotic cost. For example, we can look at Floram [19], which is one of the fastest two-party
ORAM constructions. Its asymptotic complexity per access is O(

√
N) communication and O(N)

local work. After applying our optimization, the total work associated with binary search decreases
from O(m logm) using full-size ORAM for each access to only O(m). We empirically evaluate the
associated performance gain and report it in section 8.

5 Hierarchical Constructions

In this section we describe two new approaches to binary search, both of which are hierarchical
and use only a logarithmic number of comparisons. The high-level structure is similar to the one
used with ORAM-based search, but we replace the mechanism for protecting true accesses at each
iteration. Because of the cost of an ORAM access, it can be beneficial to replace it with alternative
computation, including solutions of higher asymptotic complexity linear in the size of a layer. Our
findings are in line with those in [7] that demonstrated that linear-time constructions for accessing
an element at a private location outperform ORAM performance in practice unless the size of the
array becomes very large.

In this section, we offer two solutions: The first one is based on array rotation to hide accessed
locations and the second generates tags for all elements in a layer to mark the true path. As with
the previous, ORAM-based, construction, we divide the array into layers and process one layer at
a time. The conceptual difference is how true accesses are protected for each layer.

5.1 Rotation-based Construction

Our first construction rotates all elements in a layer to hide the true access pattern and is based on
the following high-level idea: after comparing an element to the search key, we privately determine
whether we are jumping left or right and compute the location d to read in the next layer. We
next rotate the next layer of size 2i by a random private amount r ∈ [0, 2i − 1] and disclose the
protected location (d+ r) mod 2i. Once we know the location, we can retrieve the desired element
and perform the next comparison without knowing what the true index d was. Note that the
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Protocol 3 [z]← RotBS(〈[a0], . . . , [am−1]〉, [b])

1: let [`(i)] = 〈[abm/2i+1c], [ab3m/2i+1c], . . . , [ab(2i+1−1)m/2i+1c]〉 for i = 1, . . . , logm− 1;
2: for i = 1, . . . , logm− 1 in parallel do
3: 〈[ˆ̀(i)], [r(i)]〉 ← Rotate([`(i)]);
4: end for
5: [c]← LE([b], [abm/2c.key]);
6: [p]← [c] · ([abm/2c]− [am−1]) + [am−1];
7: [d] = 0;
8: for i = 1, . . . , logm− 1 do
9: [d] = 2[d] + [c];

10: [w]← RandInt(κ+ 1);
11: s′ = Open([d] + [r(i)] + 2i[w]);
12: s = s′ mod 2i;

13: [a] = [ˆ̀
(i)
s ];

14: [c]← LE([b], [a.key]);
15: [p]← [c] · ([a] + [p]) + [p];
16: end for
17: return [z] = [p];

rotation operation should be oblivious and performed once per search for each layer to ensure that
no information about the accessed locations is revealed.

Our algorithm for rotation-based binary search, RotBS, is given as Protocol 3. As before, we
are given an ordered set [a0], . . . , [am−1], where m is of the form 2k − 1, and divide it into layers
as in the optimized ORAM-based solution, i.e., with layer 0 consisting of only one element abm/2c
and layer logm − 1 containing all elements at even indices. Let [`(i)] denote the elements stored

at layer i and [`
(i)
j ] denote the jth element stored at layer i. We first randomly generate a secret

random offset r(i) ∈ [0, 2i) for each layer i > 0 and rotate all layers by those offsets in parallel
to minimize round complexity (lines 2–4). The rotation algorithm Rotate, which also chooses the
amount of rotation, is described afterwards.

After rotating all layers, we proceed with comparisons and first retrieve the (only) element from
the top layer [`(0)] and compare it with the target value b (line 5). We continue by jumping left or
right as before and privately computing the index d to access next using local computation (line 9).
Note that unlike OramBS that computed this index d as an index in the entire array, this time we
compute it as a position in a layer. This means that we start from two possible positions in layer
1 and update d in the next layer as 2[d] + [c], where [c] is the result of the current comparison.

To safely disclose the desired (protected) position in the rotated array, we must open (d +
r(i)) mod 2i instead of simply d + r(i). While the latter is a location operation, computing the
remainder modulo a power of 2 in this framework is a rather expensive operation, with the same
number of rounds as in comparisons and a number of interactive operations linear in the size of
the modulus, i.e., in i (see Mod2m in [12]). Fortunately, we were able to get around this cost and
safely disclose (d+ r(i)) mod 2i using only local computation (prior to the opening). In particular,
we mask the (i+1)st bit of the sum d+r(i), i.e., the carry bit, by a randomly chosen integer, which
allows us to safely open the result. To achieve this, we rely on statistical secrecy and choose an
integer of κ bits longer than the value we are protecting, where κ is a statistical security parameter
(line 10). The corresponding protocol is called RandInt and takes an argument that specifies the
bitlength of an integer to generate. It can be realized non-interactively as described in [12]. The
reader may notice that this approach requires that the field can represent integers κ bits longer
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Protocol 4 (〈[â0], . . . , [â2u−1]〉, [r])← Rotate([a0], . . . , [a2u−1])

1: for i = 0, . . . , u− 1 in parallel do
2: [ri]← RandBit();
3: end for
4: let [a

(0)
j ] = [aj ] for j ∈ [0, 2u − 1];

5: for i = 0, . . . , u− 1 do
6: for j = 0, . . . , 2u − 1 in parallel do

7: [a
(i+1)
j ]← [a

(i)
j ]− ([a

(i)
j ]− [a

(i)

j−2i mod 2u
]) · [ri];

8: end for
9: end for

10: [r] =
∑u−1

i=0 2i[ri];

11: let [âj ] = [a
(u)
j ] for j ∈ [0, 2u − 1];

12: return (〈[â0], . . . , [â2u−1]〉, [r]);

than the bitlength of the key values. This, however, is already required by the LE protocol.
Because each layer has been rotated by a one-time random offset, we can safely proceed by

revealing the value of (d + r(i)) mod 2i in each layer, retrieving that element in the rotated layer,
and performing the comparison until we reach the last layer. In addition to maintaining the current
element used in the comparison, we also keep track of the last retrieved element p which was ≤
the target b, in the same way as in OramBS. It will be retrieved in the last round if the returned
element should not be the one used in the last comparison. As before, the default value of p is
am−1.

The cost of this protocol consists of log(m) comparisons and other cheaper operations (i.e.,
multiplications and openings) and is dominated by the cost of rotating all layers. Because some
interactive operations could be combined and executed in the same round, the overall round com-
plexity is that of rotation (see below) plus 4 logm. Security is shown in Appendix C.

We next describe our Rotate protocol. It takes as input an array [a0], . . . , [a2u−1] of size 2u,
generates a random u-bit integer r, circularly rotates the elements of the array by r positions, and
outputs r together with the rotated array. Our solution is conceptually simple and is given as
Protocol 4. As the first step, we generate u random bits using protocol RandBit (line 2) and use
them to assemble u-bit offset r (line 10). RandBit can be implemented using 1 interactive operation
[12]. Despite having a higher cost than RandInt(u), generating r from random bits here is important
for two reasons: (i) we use the bits in the computation that follows and (ii) it allows us to generate
a value in the exact range [0, 2u − 1], while RandInt generates values slightly larger than of the
specified bitlength.

The next step is to rotate the array elements by the generated offset, which we do in u iterations:
in iteration i, the elements are shifted by 2i · ri positions right, i.e., we conditionally perform the
shift if the ith bit of r is set. After u iterations, the array elements are shifted by the value of r, as
desired. In more detail, on line 7 we either keep the current element aj at position j or replace it
with the element at position aj−2i mod 2u based on the value of ri.

When u = log(m), Rotate requires m logm interactive operations in logm + 1 rounds. Recall
that we use it in RotBS and execute rotations for all layers in parallel in the beginning. However,
rotation of only the smallest layer 1 needs to finish prior to its use in the first loop iteration on
line 13. This means layer rotations do not increase the round complexity of RotBS. As before, we
summarize performance of our binary search constructions in Table 1.

On using ring Z2k . Before we conclude, we comment on executing our protocols over ring
Z2k instead of a finite field. All protocols described so far except RotBS work unmodified when

10



Protocol 5 [z]← TagBS(〈[a0], . . . , [am−1]〉, [b])

1: let [`(i)] = 〈[abm/2i+1c−1], [ab3m/2i+1c−1], . . . , [ab(2i+1−1)m/2i+1c−1]〉 for i = 1, . . . , logm− 1;

2: [q(0)] = 〈1〉;
3: [c]← LE([b], [abm/2c−1.key]);
4: [p] = [c] · ([abm/2c−1]− [am−1]) + [am−1];
5: for i = 1, . . . , logm− 1 do
6: for j = 0, . . . , 2i − 1 in parallel do
7: if j mod 2 = 0 then

8: [q
(i)
j ] = [q

(i−1)
bj/2c ] · [c];

9: else
10: [q

(i)
j ] = [q

(i−1)
bj/2c ] · (1− [c]);

11: end if
12: end for
13: [a] =

∑2i−1
j=0 [q

(i)
j ] · [`(i)j ];

14: [c]← LE([b], [a.key]);
15: [p] = [c] · ([a]− [p]) + [p];
16: end for
17: return [z] = [p];

instantiated with building blocks over ring Z2k . The difference is that RotBS protects a value, opens
it, and uses i least significant bits in further computation (i.e., lines 10–12 of RotBS). We note that
this operation can become even easier over ring Z2k because all values are automatically reduced
modulo a power of 2. In particular, instead of prepending a large random value to statistically hide
the overflow from i bits, we can directly open the sum [r(i)] + [d] and use the result as s, as long as
all shares are reduced modulo 2i prior to the opening.

5.2 Tag-based Construction

Our second hierarchical solution utilizes a different mechanism for retrieving an element at a private
location from each layer. While a generic protocol for reading an element at a private location could
be used (e.g., multiplexor-based or as described in [7]), in the context of binary search we notice
that the location read at layer i + 1 is highly correlated to the location previously read at layer
i. This observation allows us to generate binary tags for each layer using tags of the layer before,
where in each layer the tag of a single position is set to 1 and the tags at all other positions are set
to 0. This representation consequently permits us to retrieve the element at the marked position
using efficient dot product computation.

Our tag-based construction, TagBS, is given as Protocol 5. As before, let [`(i)] denote the
elements at layer i and let us use similar notation [q(i)] to denote binary tags for layer i.

Initially, layer 0 has a single element and its tag is set to 1. The next layer has two elements,
one of which will be set to 1 based on the result of the first comparison and the other will be
set to 0. We continue computing tags for the current layer from the tags of the previous layer as
follows: if the “parent” tag at position j is 0, both “children” tags at positions 2j and 2j + 1 will
be 0. If the “parent” tag is 1, one of the “children” tags will be 0 and one will be 1 based on the
result of the current comparison c. Then to retrieve the marked element at the current layer, we
compute the dot product of the elements and their tags in the current layer (line 13). Also, as
before, we maintain another element in variable p, which will be used at the end if the result of the
last comparison is false.

The overhead of this protocol is given in Table 1. Note that TagBS uses fewer interactive
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Protocol
Rounds Interactive operations

Read Write Read Write
Comparison-based CompBS 5 +0 (4k − 1)m− 1 +(4k +m− 3)
ORAM-based OramBS logm(3 + ORAMRead)+ORAMWrite N/A N/A

Rotation-based RotBS 4 logm +1 m logm+ 4k logm− 1+(log2m− logm)/2
Tag-based TagBS 5 logm +1 4k logm+m− 2 +2m− logm
Hybrid LayHBS, ı̃ < logm− 1 5(logm− ı̃) + 4 +1 (4k − 3)2ı̃ +m+ 2 +2m− logm+ ı̃
Hybrid SubHBS, α · β = m MBS(α) + BS(β) + 1 varies MBS(α) + BS(β) + β varies

Table 1: Performance of binary search using field-based building blocks in the semi-honest model
with honest majority.

operations compared to rotation-based RotBS, but the latter has fewer rounds. Thus, we expect
that TagBS will be a faster choice in typical circumstances, but RotBS can be beneficial for high-
latency connections. In addition, comparison-based CompBS has constant round complexity, but
is expected to be slower for larger datasets due to its communication volume.

6 Hybrid Constructions

In this section we discuss how combining multiple constructions in a single solution can be used to
further improve performance of binary search. Section 6.1 discusses a solution in which portions of
the binary search tree are processed using different algorithms, and section 6.2 presents a solution
where previously developed constructions are applied only to a subset of the tree nodes resulting
in sublinear communication cost. In particular, while all of our constructions including the one
in section 6.1 require O(m) communication, the solution of section 6.2 lowers communication to
O(
√
m) by relying on an efficient dot product protocol.

6.1 Composition of Layers

The binary search constructions described so far have their own advantages. For example, comparison-
based CompBS has constant round complexity, which is the lowest across all protocols. Its com-
munication cost, however, is rather high and is linear in m · k. These properties make it a good
choice for datasets of small size, but performance is expected to deteriorate as the dataset size
grows. In contrast, tag-based TagBS has the lowest communication complexity as the dataset size
m increases, but the largest round complexity. Because it invokes only a logarithmic number of
comparisons, it is expected to outperform other constructions for larger values of m, but perform
relatively worse for very small values of m. In particular, the first three rounds of comparisons in
that construction process only 7 elements, but use 15 rounds. This can be contrasted with the total
of 5 rounds in CompBS. Coupled with the fact that communication latency is the major overhead
when the dataset is small, TagBS is sub-optimal during processing of the top layers.

The hybrid construction we propose here combines flat and hierarchical structures to take
advantage of the benefits of both of them. More precisely, we replace the top layers of the hierarchy
with a flat structure and design a transition to feed the results of evaluating the flat structure to
the next layer in the hierarchy. Although the idea is straightforward, its realization requires careful
design because the constructions have different interfaces and rely on different intermediate results.
We illustrate a transition mechanism on the example of combining CompBS and TagBS.

Recall that CompBS computes an array of bits [c0], . . . , [cm−1], where the bits in the beginning
of the array are 0s and switch to 1s at the location of the searched element [b]. The array is
consequently used to compute another bit array [d0], . . . , [dm−1], in which all elements are 0 except
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Figure 1: Illustration of the layer-based hybrid construction.

for the location of the switch, and the non-zero bit is used to retrieve the desired element of the array
[a0], . . . , [am−1]. TagBS, on the other hand, proceeds in a hierarchical manner and prior to moving
to layer i expects state [c], [p] that indicates the position of the desired element in the already

processed layers and computed tags [q
(i−1)
j ] for layer i − 1. Our transition computes the value of

[p] and tags [q
(i)
j ] from the bit arrays computed by CompBS and no explicit [c], as maintained by

TagBS, is used in the process.
Suppose we would like to process the first ı̃ layers, or equivalently m̃ = 2ı̃ elements, using

the flat structure. We execute the main portion of CompBS on elements associated with layers 0
through ı̃−1, use transition to generate [p] and the tags at layer ı̃, and continue with the remaining
computation as in TagBS. Figure 1 illustrates the process for ı̃ = 3. Note that the very last element
of the original dataset, am−1, is appended to the elements that CompBS processes and is treated
as an element of layer 0.

We determined that the relationship between c0, . . . , cm̃−1 computed by CompBS and q
(ı̃)
0 , . . . , q

(ı̃)
m̃−1

needed in TagBS is rather simple. In particular, we have:

q
(ı̃)
j =

{
c0 if j = 0
cj−1 ⊕ cj if 0 < j ≤ m̃− 1

(2)

Somewhat surprisingly, each q
(ı̃)
j is computed in the same way, while we expect differences in the

computation of even and odd elements because only half of the values are associated with layer ı̃−1.
XOR of each [cj−1] and [cj ] is easily computed as [cj−1] + [cj ]− 2[cj ] · [cj−1]. This is equivalent to
2[dj ]− [cj ]+ [cj−1], where the [dj ]s are as computed by CompBS. Because availability of [dj ]s makes

the computation of [q
(ı̃)
j ]s local, a notable implication for us is that combining the two constructions

reduces the overall cost below that of running CombBS and TagBS on the respective portions of
the data.

It is also necessary to compute the appropriate value of [p] during the transition. This com-
putation comes first (i.e., to finish processing layer ı̃− 1), and [p] is computed in the same way as
[z] in CompBS, i.e., the first element which was determined to be ≤ b so far will be used as the
next larger element if the remaining search returns that b is greater than all other elements. For
completeness, we present this hybrid construction, called LayHBS, in Appendix A.

In practice, the best choice of ı̃ depends on the setup. When the network latency between
the computational parties is small, the round complexity may have less impact on performance
and therefore a lower ı̃ is preferred. In contrast, if the network latency is high, a larger ı̃ reduces
the round complexity and therefore could be a better choice. We provide additional comments in
section 8. The exact cost is listed in Table 1 and this time is a function of ı̃.
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Figure 2: Illustration of the subtree-based hybrid construction. Shaded array elements are used to
form the top tree of size α. Subtrees s0 through sα−1 have size β.

Protocol 6 [z]← SubHBS(〈[a0], . . . , [am−1]〉, [b], α)

1: let β = m/α;
2: let [s(i)] = 〈[ai·β], [ai·β+1], . . . , [ai·β+β−1]〉 for i = 0, . . . , α− 1;

3: 〈[d0], . . . , [dα−1]〉 ← MBS(〈[s(0)β−1], [s
(1)
β−1], . . . , [s

(α−1)
β−1 ]〉, [b]);

4: for i = 0, . . . , β − 1 in parallel do

5: [ui]←
∑α−1

j=0 [s
(j)
i ] · [dj ];

6: end for
7: [z]← BS(〈[u0], . . . , [uβ−1]〉, [b]);
8: return [z];

6.2 Composition of Subtrees

All solutions presented so far, except OramBS, have communication linear in the size of the dataset
m. In this section we show how performance of previously presented constructions can be further
improved to O(

√
m) communication using only standard building blocks.

The high-level idea behind this solution is as follows. Recall that, on input m elements, CompBS
works by generating a bit array [d0], . . . , [dm−1] with a single element set to 1 and that array is
used to retrieve the searched element using a dot product (which costs 1 interactive operation).
Now suppose that instead of retrieving a single element at the end of the computation, we use the
computed bits to retrieve a desired subset of the elements, or a subtree if the elements are organized
in a hierarchy. The high-level structure of this approach is illustrated in Figure 2. We organize the
dataset in a hierarchy and run a modified binary search (which produces a bit array) on the top
portion of the tree of size α. We consequently use dot products to obliviously localize the search
to the relevant subtree of size β = m/α, call binary search on that tree, and use its output as the
result of the search. In other words, the top-level search allows us to determine in what portion of
the dataset the searched element falls and the second low-level search determines the exact position
and returns the desired element.

The solution, SubHBS, is formalized as Protocol 6. We use a modified version of a binary search
protocol that produces a unity bit array, denoted as MBS. The second call to binary search, on
the other hand, uses the conventional interface. We note that communication savings are possible
because of the use of dot product protocols, which on input of two vectors of arbitrary size require
only one interactive operation. This means that when we set α = β = O(

√
m), communication

complexity of this solution reduces from O(m) to O(
√
m). We note that local computation remains

O(m), but this component of interactive protocols is much easier to speed up than communication,
e.g., by employing more powerful hardware and/or using multi-threading.

It should be clear that the call to binary search BS on line 7 of SubHBS can be instantiated with
any binary search construction described so far. This includes hybrid LayHBS and even SubHBS
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Protocol 7 〈[d0], . . . , [dm−1]〉 ← TagMBS(〈[a0], . . . , [am−1]〉, [b])

1: let [`(i)] = 〈[abm/2i+1c], [ab3m/2i+1c], . . . , [ab(2i+1−1)m/2i+1c]〉 for i = 0, . . . , logm− 1;

2: [q
(0)
0 ] = 1;

3: for i = 0, . . . , logm− 1 do

4: [q(i)] = 〈[q(i)0 ], . . . , [q
(i)

2i−1]〉;
5: [a] =

∑2i−1
j=0 [q

(i)
j ] · [`(i)j ];

6: [c]← LE([b], [a.key]);
7: for j = 0, . . . , 2i − 1 in parallel do
8: if j mod 2 = 0 then

9: [q
(i+1)
j ] = [q

(i)
bj/2c] · [c];

10: else
11: [q

(i+1)
j ] = [q

(i)
bj/2c] · (1− [c]);

12: end if
13: end for
14: end for
15: return 〈[d0], . . . , [dm−1]〉 = 〈[q(logm)

0 ], . . . , [q
(logm)
m−1 ]〉;

itself, which in that case would be called recursively. Similarly, the first call to binary search on
line 3 can be instantiated with any binary search protocol modified to produce a bit array instead
of a single element. So far we only showed that CompBS can be naturally used for this purpose,
but below we also show how to modify TagBS. This would imply that LayHBS could additionally
be used for that purpose. Lastly, if we replace the call to BS on line 7 of SubHBS with a call to
MBS, SubHBS itself can be invoked on line 3. Combined with the ability to choose parameter α
(and consequently β), these options provide a rather significant performance optimization space in
practice.

What remains is to discuss our solution for modifying TagBS to implement the interface for MBS.
Recall that TagBS generates tags [q(i)] for each layer i in the hierarchy and maintains variable [p].
The tags have a useful structure, which each tag being a bit and having only a single tag set to 1
per layer. However, to generate a desired bit array [d0], . . . , [dm−1], we need to have a single bit set
to 1 out of the entire dataset and not per layer. Instead of trying to combine different layers into
a single array, out solution is to continue with the structure of TagBS and generate one more layer
[q(logm)], which this time will have a tag for each element of the original dataset and only a single
element will be set to 1. We also remove the code for creating and maintaining the value of [p]
because it is no longer used in the protocol. The final solution TagMBS is formalized as Protocol 7.
As noted before, this variant will allow for a variety of solutions to be used with SubHBS.

Performance of hierarchical SubHBS is shown in Table 1. Because the algorithm makes calls to
binary search algorithms on datasets of smaller sizes, we use notation BS(x) and MBS(x) to denote
the cost of binary search and modified binary search, respectively, invoked on input of size x. The
cost of the write variant will depend on the binary search algorithms that SubHBS calls.

7 Update Operations

We next explore solutions for a binary search followed by an update operation. The first variant
updates non-key fields of the element located by the search and does not require high-level changes
to the logic of read constructions. The second variant is for updating the key itself, which requires
changes to the logic due to the need to re-position the affected element within the dataset to
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maintain the sorted order.

7.1 Updating Non-Key Fields

In this write or update variant, we determine the target location by a binary search and then
update the corresponding non-key fields. That is, the write operation updates one element at a
private location, while the order of the elements remain unchanged. The high-level logic behind the
modification is that we produce an m-bit array with zeros in all positions except the one which was
located by the binary search, the bit of which is set to 1. Given this array, we can easily update
all elements of the data set in such a way that only one element is updated with the desired value,
while all other elements remains unchanged. Note that it is necessary to touch (re-randomize) all
elements of the original dataset to ensure that the location of the selected element is not revealed.

To this extent, we revisit our binary search constructions and describe what changes are neces-
sary to support this operation. We use v to denote the value with which the located element is to
be updated with the understanding that the key field is not affected, i.e., we somewhat abuse the
notation to overwrite an element with v, but only non-key fields are updated.

Recall CompBS, where we perform a linear number of comparisons, update the resulting bit
array to ensure only one bit is set to 1, and retrieve the desired element using the dot-product
operation. The structure of that algorithm makes it easy to support write operations, where we
only need to replace the retrieval step with an update step. In particular, the di values form the
unity array that we need. Then after the computation of the dis, we update the non-key fields of
each ai as [di][v] + (1 − [di])[ai] = [ai] − ([ai] − [v])[di]. A complete specification of this variant,
CompBSW, is given in Appendix A as Protocol 9 due to its close resemblance to CompBS. The extra
work associated with this and other protocols compared to the read versions is given in Table 1.

Consider OramBS next. Recall that it makes logm ORAM (read) accesses and the element of
interest is guaranteed to be on the selected path. The original OramBS avoids an extra ORAM
access at the end by storing additional element p from the path. However, to perform the update,
we still need to protect the location of the update and make an additional ORAM (write) access.
Detailed OramBSW is given as Protocol 10 in Appendix A.

RotBS was a hierarchical approach with layer rotations by one-time random offsets to protect
information about accessed elements. In that construction, we retrieved one element from each
rotated layer, computed the element corresponding to the result of the search, and returned to
the original representation of the data set. Now, as we would like to update an element of the
set, performing the update on rotated layers and returning to the original layers afterwards would
nullify the update. For that reason, we modify the solution to return the rotated layers, which
become the starting point for the next invocation of binary search. This means that we (privately)
maintain the current amount of rotation for each layer and add a new offset to it during each
additional rotation. That is, after each binary search, the amount of rotation associated with each
layer corresponds to the cumulative amount of rotations over all prior searches.

An issue arises in connection to storing cumulative offsets due to the need to keep each cumu-
lative sum below the size of the layer after each addition (which corresponds to reduction modulo
2i). Recall that in RotBS we avoided reducing the sum d+r(i) modulo 2i and instead protected the
carry bit prior to the opening the sum. This time, however, the cumulative value of r(i) increases
after each binary search and thus we would need to protect more and more bits during the open-
ing. Because the bitlength of the value being protected affects the size of the field over which we
compute, it is not practical to let that value go unbounded. For that reason, we periodically reduce
the cumulative sum modulo 2i and denote the period by δ. RotBSW and the updated rotation
that reflect these changes are listed as Protocols 11 and 12 in Appendix A. We also detail the
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mechanism for periodic reduction of the sum.
What remains to discuss in the context of rotation-based algorithm is how to update the result

of the search. Recall that the protocol discloses logm masked locations, one of which must be
our target. This means that it is sufficient for us to update those logm locations. Thus, if we
find a way to write the new data to the target location without changing the data written to the
remaining logm− 1 locations, data-obliviousness will be maintained. Fortunately, the comparison
results leave a hint that the last retrieved element ≤ b must be the one we want. In other words,
we only need to find the last [c(i)] set to 1 and reset all other comparison results to 0. We do this
iteratively, which does not increase the number of rounds compared to RotBS; see Appendix A for
details.

The last construction we discuss is TagBS modified for writing. Given that TagMBS already
produces a bit array, it becomes straightforward to realize its write variant. In particular, because
TagMBS produces unity bit array [d0], . . . , [dm−1], all that is necessary is to append lines 9–11 of
CompBSW to the end of TagMBS to obtain TagBSW. The cost difference compared to the original
TagBS is given in Table 1.

7.2 Updating the Key Field

Now, updating the key of an element returned by the search impacts the structure of the solution.
This is because a change in an element’s key can lead to relocation of the element within the sorted
array. This means that we need to locate both the target element’s current location and the new
location and obliviously reposition all elements between these two locations. We sketch a possible
solution in this section.

Given two keys, i.e., the original key and the new key, we need to execute two instances of binary
search with these two keys to determine the original and new locations of the target element.
Because we represent the dataset as a sorted array, obliviously moving the in-between elements
requires O(m) work. We describe a simple solution which expects that the two binary search
instances produce bit arrays.

Suppose that the two searches determine (private) locations x and y, respectively. Also suppose
that the results of each search are encoded as two bit arrays [c0], . . . , [cm−1] and [d0], . . . , [dm−1],
where the latter contains 0s with the exception of the target location and the former is filled with
0s prior to the target location and with 1s starting from the target location. These bit arrays are
identical to what CompBS generates during the computation, but the latter array is also produced
by TagMBS and hybrid constructions. Note that given one of the arrays, it is straightforward to
produce the other. In what follows, we use superscript (1) and (2) to denote the results of the first
and second searches, respectively.

The logic behind our solution is that any element with index smaller than min(x, y) and greater
than max(x, y) remains unchanged. If x > y, each element in the range [y + 1, x] should be
overwritten with its left neighbor and new data [v] should be written in location y. Otherwise, if
x < y, each element in the range [x, y − 1] should be overwritten with its right neighbor and the
new data [v] is written in location y. (When x = y, either case applies and there are no elements
to shift.) Thus, for any given element, there are four possibilities: it remains unchanged, it moves
left, right, or it gets replaced with the new value.

Because the computation is different depending on whether x or y is greater, as the first step
of the computation, we determine the result of the comparison [w]← LE([x], [y]). Note that x and
y are not provided to us in the above form, but given the information we possess, it is easy to

compute them as [x] =
∑m−1

i=0 i · [d(1)i ] and [y] =
∑m−1

i=0 i · [d(2)i ], which is local computation.
Having computed the value of [w], we can proceed with updating the elements themselves. We
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start by computing a new array [c0], . . . , [cm−1] with the elements computed as [ci] = [c
(1)
i ]⊕ [c

(2)
i ].

Namely, we execute [ci] = [c
(1)
i ] + [c

(2)
i ] − 2[c

(1)
i ] · [c(2)i ] for each i ∈ [0,m − 1] in parallel. This

results in the elements between x and y being set to 1 while erasing the remaining elements, and
the in-between elements are what we would like to move.

The next point to notice is that when x > y, the positions of the non-zero ci values correspond
exactly to the positions of the values we want to move, i.e., they range from indices y through x−1.
However, when x ≤ y, the positions of non-zero ci elements range from x to y− 1, while we need to
move elements with indices x+ 1 through y. For that reason, as the next step, we use the value of

[w] to update the [ci]s in parallel as [ci] = [ci] + [w] · ([d(1)i ]− [d
(2)
i ]). Now we are ready to proceed

with updating the dataset and update each element in parallel as

[âi] = [ci] · ([w] · [ai+1] + (1− [w]) · [ai−1]) + (1− [ci]) · ([d(2)i ] · [v] + (1− [d
(2)
i ]) · [ai]).

That is, the first of the two terms, conditioned on ci = 1, corresponds to moving the in-between
elements either left or right depending on w. The second term, conditioned on ci = 0, corresponds
to either updating the target element with the new value v or keeping the element unchanged

depending on d
(2)
i , i.e., whether it is the target location. The formula is written for readability and

can be expressed differently to lower the number of interactive operations (multiplications). This
concludes our description.

8 Performance Evaluation

8.1 Cost in Different Settings

Table 1 shows costs of our constructions when instantiated with Shamir secret sharing in the semi-
honest setting. If one would like to utilize a different underlying framework, for example, 3-party
replicated secret sharing over ring Z2k , the costs of the building blocks can change which will have
an impact on the total cost. Using a different realization of LE would likely most significantly impact
CompBS, but we expect that relative performance of different construction will remain similar.

If we realize the constructions in the malicious adversarial setting, many frameworks do not
support dot product of communication independent of the input size. Note that all of CompBS,
RotBS, TagBS, and the hybrid constructions utilize dot product operations and thus their com-
munication will be impacted. The amount of impact varies based on the relationship of m to the
original communication cost. For example, this is a relatively small increase for CompBS, close to
doubling for TagBS, and significant increase for SubHBS. The order of the protocols in terms of
their communication volumes, however, does not change.

8.2 Evaluation Setup

We implemented several of our algorithms and carried out experiments on both LAN and WAN.
For LAN experiments, we used three machines with 2.1GHz processors connected via 1Gbps Eth-
ernet (934Mbps throughput) with a one-way latency of 0.13ms. Our WAN experiments used local
machines and one remote machine with a 2.4GHz processor. The link between the remote and local
machines had throughput of 76–85Mbps and a one-way latency of 21ms. While the machine config-
urations are slightly different, we examine the times to ensure that the differences do not introduce
inconsistencies in the experiments. That is, the computation time is determined by the slower
machines, and the introduced slowdown on WAN is due to the higher latency and lower bandwidth
in the WAN experiments. All experiments used a single thread and the dataset elements had a
single field (the key) represented as a 32-bit integer.
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Figure 3: Performance of ring-based binary search in the semi-honest model on LAN (left) and
WAN (right).
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Figure 4: Performance of binary search in the malicious model with (left) and without (right)
honest majority on LAN.

8.3 Performance in the Semi-Honest Model

Our implementation in the semi-honest model is in the honest majority setting (i.e., t < n/2).
Because ring-based computation is faster than computation over a field, we use replicated secret
sharing over Z232 with three parties. Implementation of comparisons is adapted from field-based LT
[12, 11] as described in [16, 6]. The difference with field-based performance is shown in Appendix B.

We compare performance of our constructions to the state-of-the-art Floram [19] and 3PC
ORAM [30] after optimizing them. In particular, we run Floram’s binary search implementation
from [2] and also execute an optimized version using the results of section 4.3. We also apply Gentry
et al.’s [22] optimization to 3PC ORAM which makes the cost of binary search asymptotically equal
to a single ORAM access and run it using the implementation from [1]. Note that 3PC ORAM
uses custom techniques not compatible with standard secure computation building blocks. For that
reason we approximate performance of optimized 3PC ORAM binary search using comparisons and
multiplications as implemented in this work. The exact times might be higher due to the need to
convert between different representations. Furthermore, all ORAM schemes come with significant
initialization costs not captured in our experiments.

The results of our experiments on both LAN and WAN are given in Figure 3 (additional numbers
can be found in Appendix B). First note that optimized Floram binary search is on par with the
original Floram binary search for small datasets and the difference starts to show when m becomes
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honest majority on WAN.

larger than 210. Also, the optimization applied to 3PC ORAM removes recursion and makes the
construction faster.

Our CompBS outperforms all other protocols when the dataset size is small because the round
complexity is the bottleneck with small m. With larger m, communication is dominant and CompBS
is not competitive, as expected, but maintains its advantage longer on WAN because of the latency.
TagBS has lower communication and shows a better runtime than optimized Floram for sizes up
to 222 on LAN and larger on WAN, but its linear communication becomes the bottleneck for large
sizes.

Hybrid LayHBS can improve performance of TagBS by only a constant. The maximum im-
provement is achieved when ı̃ = 6 on LAN and ı̃ = 12 on WAN, where the runtime gap between
CompBS and TagBS is the largest. Nevertheless, the difference in performance of TagBS and LayHBS
diminishes as the size increases.

Our SubHBS shows significant advantage over all other protocols. It outperforms all other
options for sizes is up to 227 on LAN and 211–230 on WAN due to its low communication. As
the size increases, its curve becomes steep indicating that local computation is the bottleneck. In
particular, th dot-product computation of O(m) local work consumes 94% (45%) of the total time
with m = 225 on LAN (WAN). This means that the performance could be significantly improved
for large sizes via multi-threading. We also would like to note that while it appears that SubHBS’s
curve is significantly steeper than that of (optimized) Floram binary search, this will not be the
case if we keep increasing m. Both SubHBS and optimized Floram search require O(m) local
computation, but computation becomes the bottleneck for SubHBS at smaller sizes because of its
superior performance for medium values of m. This is consistent with findings in [19] which show
that Floram’s curve becomes steep close to 230 in a setting with 500Mbps bandwidth.

Recall that implementing SubHBS involves several optimization choices including the algorithms
for the sub-searches and the values for parameter α. While using α = O(

√
m) gives us theoretically

the lowest communication, the network environment and the speed of sub-protocols also affect this
decision. For each experiment, we vary the value of α and select the best performing protocols
for the sub-searches to determine the best configuration. Specifically, for LAN, we used α = 26

and modified CompBS for the first sub-search for m from 210 to 214 and α = 27 and TagMBS for
larger m; the second sub-search used the fastest protocol for the corresponding β. On WAN, we
set α ≈

√
m for m < 216 and use α = 28 for m between 216 to 219. For larger m, we let β = 213 or

214 and use SubHBS with α = 28 recursively for the second sub-search. TagBS and TagMBS were
not helpful in WAN experiments because CompBS is faster for small to medium sizes and SubHBS
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that combines CompBS variants becomes a better choice. We expect the best configurations to
vary based on computation and communication resources.

The above choices give us that on LAN each party sends 22.9KB when m = 215, 65KB when
m = 220, and 2.12MB when m = 225 per SubHBS. On WAN, communication becomes 107.5KB,
116.5KB, and 554KB for the same sizes. The differences are because we opt for CompBS with fewer
rounds on WAN and also use α closer to

√
m when m is large.

To summarize, our best protocols outperform alternative solutions for sizes up to m = 227

on LAN and m = 230 on WAN. SubHBS is up to 49× faster than binary search based on best
performing ORAM (optimized Floram) on LAN and up to 27× on WAN.

8.4 Performance in the Malicious Model

To demonstrate that our constructions can be used in the malicious setting, we also evaluate our
constructions in the malicious model on both LAN and WAN. Because relying on dot product
protocols of constant communication is important for our constructions, we start with the tech-
niques of Dalskov et al. [15] which have this property. The solution uses replicated secret sharing
with three or four parties one of which is corrupt and we use the three party version. To evaluate
performance when dot products involve linear communication, we use SPDZ2k [14, 16]. It is in
the dishonest majority setting and our experiments use two parties, which often gives the best
performance. Lastly, we also run binary search experiments using maliciously secure ORAM [32],
which is the only ORAM in the malicious model we are aware of, and use its BMR+Circuit ORAM
variant with two parties. Because it is tree-based recursive ORAM, Gentry et al.’s optimization is
applied in the experiments. All implementations are from MP-SPDZ [4] and ORAM is available
only for m ≥ 211.

Figure 4 and 5 shows the results. The left plots with honest majority depict the total time, just
like Figure 3. The right plots with dishonest majority show online and total runtime separately. The
total runtime includes both online and estimated offline times, where the offline cost is computed
based on the amount of precomputation and offline computation speed for our solutions in MP-
SPDZ and the same triple generation speed is used for our protocols and Circuit ORAM. LayHBS
is not shown in the right plot for clarity and has almost the same performance as TagBS for larger
sizes.

Overall, our constructions show similar trends to those in Figure 3. Because the dot product
has linear communication in the dishonest majority setting, both TagBS and SubHBS have linear
communication, which narrows the gap between them. Due to the high latency, the gap is larger
on WAN because SubHBS has a lower round complexity than TagBS. TagBS outperforms CompBS
for m > 28 on LAN and m > 213 on WAN, with the biggest gap at m = 26 on LAN and m = 29 on
WAN. Thus, we use ı̃ = 6 on LAN and ı̃ = 9 on WAN for our LayHBS in both malicious settings.
Also interesting to note that the total time in the three-party honest majority setting is similar
to the online time only with dishonest majority (with the exception of SubHBS when m is large,
which is expected); Table 4 makes this clear.

Online time of our dishonest majority SubHBS is up to 18 times smaller than that of Circuit
ORAM on LAN and up to 2 times on WAN; Circuit ORAM becomes faster on LAN when m reaches
221 (resp., 220 on WAN). Circuit ORAM shows its advantage earlier on WAN because of its low
round complexity, which is consistent with how it is reported in [32]. The total runtime of Circuit
ORAM is up to 140 and 240 times slower than that of SubHBS on LAN and WAN, respectively,
and performance of our construction and Circuit ORAM becomes similar at 222. One may also
observe that the total runtimes on WAN are an order of magnitude slower than on LAN. This is
because not only does the low bandwidth affect the online computation, but it also slows down
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precomputation needed to generate multiplication triples.

9 Conclusions

In this work we initiate the study of binary search protocols in secure multi-party computation,
where on input a private sorted dataset and a private search key, one retrieves or updates the
closest element that matches the search. We develop a suite of protocols with different properties
and structure and further combine them to into hybrid solutions to improve performance and
asymptotic complexity. Our fastest binary search protocol uses O(

√
m) communication for a dataset

of size m. We further proceed by modifying these protocols to support the write operation, where
the write affects either non-key fields or the key itself.

Our performance evaluation demonstrates that our solutions outperform existing ORAM con-
structions for dataset sizes up to a billion, even after optimizations to improve performance of
ORAM schemes specifically in the context of binary search. We hope that this work will inspire
others to work on this topic and make further progress in binary search protocols and in particular
designing sublinear-cost constructions.
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A Additional Protocols

This section lists complete specifications of several protocols, which were described in prior sec-
tions. In particular, Protocol 8 lists our hybrid LayHBS from section 6.1 on the example of com-
bining CompBS and TagBS. Protocol 9 describes CompBSW, i.e., the write (to non-key fields)
variant of comparison-based CompBS. Protocol 10 specifies our ORAM-based binary search proto-
col OramBSW which updates non-key fields based on the result of the search.

Protocols 11 and 12 describe rotation-based binary search followed by a write to non-key fields
RotBSW and its building block RotateW, respectively. Their general description is offered in sec-
tion 7.1 and here we specify certain algorithm details such as periodically reducing the accumulated
amount of shift modulo 2i for each layer and updating the target element with the new value. In
particular, we keep a global variable count which is assumed to be accessible to both protocols and
corresponds to the number of invocation of the binary search operations. Once the count reaches δ,
we reduce the cumulative amount of rotation, r̂, modulo 2u, where 2u is the size the corresponding
layer (lines 10–12 in RotateW). We use protocol Mod2m from [12] for this purpose, which takes the
total bitlength (u+ log δ) of r̂ and the number of bits u to retain as its arguments. It is realized in
a constant number of rounds and communication linear in u. Avoiding calling modulo reduction
during each rotation reduces both the number of rounds and the number of interactive operations

25



Protocol 8 [z]← LayHBS(〈[a0], . . . , [am−1]〉, [b], ı̃)
1: for i = 0, . . . , 2ı̃ − 1 in parallel do
2: [ci]← LE([b], [a(i+1)m/2ı̃−1.key]);
3: end for
4: [d0] = [c0];
5: for i = 1, . . . , 2ı̃ − 2 in parallel do
6: [di]← [ci] · (1− [ci−1]);
7: end for
8: [d2ı̃−1] = 1− [c2ı̃−2];

9: [p]←
∑2ı̃−1

i=0 [ai] · [di]; // BS1 ends
10: let [`(i)] = 〈[abm/2i+1c−1], [ab3m/2i+1c−1], . . . , [ab(2i+1−1)m/2i+1c−1]〉 for i = ı̃, . . . , logm− 1;

11: [q
(ı̃)
0 ] = [c0]; // BS4 starts at layer `(ı̃)

12: for i = 1, . . . , 2ı̃ − 1 locally do

13: [q
(ı̃)
i ] = 2[di]− [ci] + [ci−1];

14: end for
15: [a] =

∑2ı̃−1
i=0 [q

(ı̃)
i ] · [`(ı̃)i ];

16: [c]← LE([b], [a.key]);
17: [p] = [c] · ([a]− [p]) + [p];
18: for i = ı̃+ 1, . . . , logm− 1 do
19: for j = 0, . . . , 2i − 1 in parallel do
20: if j mod 2 = 0 then

21: [q
(i)
j ] = [q

(i−1)
bj/2c ] · [c];

22: else
23: [q

(i)
j ] = [q

(i−1)
bj/2c ] · (1− [c]);

24: end if
25: end for
26: [a] =

∑2i−1
j=0 [q

(i)
j ] · [`(i)j ];

27: [c]← LE([b], [a.key]);
28: [p] = [c] · ([a]− [p]) + [p];
29: end for
30: return [z] = [p];

associated with the binary search, but may result in an increased field size, which affects communi-
cation associated with all interactive operations in the protocol. In more detail, when the bitlength
of the search keys k > logm, using δ such that logm− 1 + log δ = k does not lead to a larger field
size and is always beneficial. Increasing δ above that value can still result in performance savings,
but the cost associated with the increased field size needs to be balanced with the savings due to
not executing Mod2m protocol. This also means that savings will be greater for datasets of smaller
sizes.

Prior to the first invocation of RotBSW, we set count to 0 and execute the protocol with the
value of r set to 0. For convenience, the dataset is represented in the form of layers.

To be able to update the target element, we first need to privately determine which of the
disclosed logm locations is the target location using values [c(i)]s. The last non-zero value should
be kept and others should be reset to 0. We perform this operation iteratively: during each iteration
we update all previous [c(i)]s on line 14 of RotBSW. After the end of the iterations, we obtains an
array of [c(i)]s, in which all elements are 0 except one, which is set to 1. We consequently write the
new data [v] to its desired location using the array of c(i)s on lines 18–20.
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Protocol 9 〈[â0], . . . , [âm−1]〉 ← CompBSW(〈[a0], . . . , [am−1]〉, [b], [v])

1: for i = 0, . . . ,m− 1 in parallel do
2: [ci]← LE([b], [ai.key]);
3: end for
4: [d0] = [c0];
5: for i = 1, . . . ,m− 2 in parallel do
6: [di] = [ci] · (1− [ci−1]);
7: end for
8: [dm−1] = 1− [cm−2];
9: for i = 0, . . . ,m− 1 in parallel do

10: [a′i] = [ai]− ([ai]− [v]) · [di];
11: end for
12: return 〈[a′0], . . . , [a′m−1]〉;

Protocol 10 ORAM([â0], . . . , [âm−1])← OramBSW(ORAM([a0], . . . , [am−1]), [b], [v])

1: [c]← LE([b], [abm/2c.key]);
2: [d] = bm/2c;
3: [p] = [c] · (bm/2c − (m− 1)) + (m− 1);
4: for i = 0, . . . , logm− 1 do
5: [d] = [d] + (1− 2[c])m/2i+2;
6: [a] = ORAMRead([d]);
7: [c]← LE([b], [a.key]);
8: [p] = [c] · ([d]− [p]) + [p];
9: end for

10: ORAMW([p], [v]);
11: return ORAM([â0], . . . , [âm−1]);

There can be different ways of updating the [c(i)]s, e.g., by using a prefix operation after all
algorithm’s iterations finish. We choose the above mechanism due to its round complexity. That
is, as can be seen from Table 1, our rotation-based binary search offers the lowest round complexity
among the hierarchical constructions and the above mechanism does not increase the number of
rounds. In particular, the multiplications on line 14 use one round, but they can be combined with
other interactive operations. This modification for supporting the write operation introduces only
one additional round to update all layers at once and increases communication by (log2m−logm)/2
invocations.

B Additional Performance Results

In this section we list additional performance results. Tables 2 and 3 show runtimes of our construc-
tions in the semi-honest model with honest majority and three computational parties. They show
performance using replicated secret sharing over ring Z2k and performance using Shamir secret
sharing over field Fp with prime p. Performance difference is also visualized in Figure 6.

The field-based implementation used the GNU Multiple Precision Arithmetic Library (GMP) [3]
for field arithmetic and executed our protocols within the PICCO compiler framework [48] with
some recent optimizations such as [7]. As shown in Figure 6, field-based protocols have similar
curves to ring-based curves, but performance is about an order of magnitude slower. Compared
to the ring setting, computation becomes the bottleneck for LayHBS and SubHBS sooner, which is
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Protocol 11 (〈[ˆ̀(0)], . . . , [ˆ̀(logm−1)]〉, 〈[r̂(1)], . . . , [r̂(logm−1)]〉) ← RotBSW(〈[`(0)], . . . , [`(logm−1)]〉,
〈[r(1)], . . . , [r(logm−1)]〉, [b], [v])

1: count = count+ 1;
2: for i = 1, . . . , logm− 1 in parallel do
3: 〈[ˆ̀(i)], [r̂(i)]〉 ← RotateW([`(i)], [r(i)], i);
4: end for
5: [c(0)]← LE([b], [abm/2c.key]);
6: [d] = 0;
7: for i = 1, . . . , logm− 1 do
8: [d] = 2[d] + [c(i−1)];
9: [w]← RandInt(κ+ log δ);

10: s′(i) = Open([d+ r̂(i) + 2i[w]);
11: s(i) = s′(i) mod 2i;

12: [a] = [ˆ̀
(i)

s(i)
];

13: [c(i)]← LE([b], [a.key]);
14: for j = 0, . . . , i− 1 in parallel do
15: [c(j)] = (1− [c(i)]) · [c(j)];
16: end for
17: end for
18: for i = 0, . . . , logm− 1 in parallel do

19: [ˆ̀
(i)

s(i)
] = [ˆ̀

(i)

s(i)
] + [c(i)] · ([v]− [ˆ̀

(i)

s(i)
]) ;

20: end for
21: return (〈[ˆ̀(0)], . . . , [ˆ̀(logm−1)]〉, 〈[r̂(1)], . . . , [r̂(logm−1)]〉);

expected because local work is slower. The building blocks are also a few times slower with a field.
Setting ı̃ = 4 on LAN and ı̃ = 9 on WAN gives us the maximal improvement for field-based

LayHBS. For SubHBS, the chosen α and sub-search algorithms are also different. For example, in
our LAN experiments with m = 212, we set α = 24. This is because modified CompBS for the first
sub-search and LayHBS for the second sub-search give us the best overall performance with that
choice of α. As dataset size increases, using SubHBS recursively for the second sub-search could
achieve better results. In contrast, in the environment with high latency, setting α to be larger
would be a better choice that provides the best round complexity.

Tables 4 and 5 demonstrate the runtimes of our protocols in the malicious model with and
without honest majority on LAN and WAN. We show performance using three-party replicated
secret sharing [15] for the honest majority setting and online performance using SPDZ2k [14, 16]
with two parties for the dishonest majority setting. Setting α = O(

√
m) using SubHBS achieved the

best results for all the tested sizes. The runtime of SubHBS with honest majority starts to increase
rapidly around size 220, which indicates that the computation cost becomes the dominating part
of the overall cost. In contrast, we expect communication to be the dominating portion of SubHBS
in the dishonest majority setting on WAN, where we observe a steep rise at size 220. While it
may appear that the runtime of CompBS in the honest majority setting is worse than that in
the dishonest majority setting, we recall that the implementation of Rep3 provides the total time
including preprocessing, while the preprocessing cost in the dishonest majority setting is estimated
separately and is not included in the tables.
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Protocol 12 ([ˆ̀], [r̂])← RotateW(` = 〈[a0], . . . , [a2u−1]〉, [r], u)

1: for i = 0, . . . , u− 1 in parallel do
2: [ri]← RandBit();
3: end for
4: for i = 0, . . . , u− 1 do
5: for j = 0, . . . , 2u − 1 in parallel do

6: [a
(i+1)
j ]← [a

(i)
j ]− ([a

(i)
j ]− [a

(i)

j−2i mod 2u
]) · [ri];

7: end for
8: end for
9: [r̂]←

∑u−1
i=0 2i[ri] + [r];

10: if ((count mod δ) = 0) then
11: [r̂] = Mod2m([r̂], u+ log δ, u);
12: end if
13: let [âi] = [a

(u)
i ] for i ∈ [0, 2u − 1];

14: return ([ˆ̀], [r̂]) = (〈[â0], . . . , [â2u−1]〉, [r̂]);

SetupProtocol
Dataset size

24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

CompBS 1.982.272.86 3.66 5.259.9718.235.368.4 129 249 488 – – – – – – – – – –
Ring TagBS 5.787.268.7510.2411.813.314.816.518.721.224.328.435.246.868.5 112 193 353 663 1315 – –
Z2k LayHBS – – – – 5.316.918.4710.212.414.817.821.928.539.761.3 104 186 344 653 1307 – –

SubHBS – – – – – – 4.895.195.79 7.3 8.9 9.9 11.813.817.1 20.9 27.941.356.7 99.1 217454

CompBS 5.9 10 18.3 32.7 64.2 129 261 523 – – – – – – – – – – – – – –
Field TagBS 9.8 12 14.8 17.6 21 24 28.336.244.752.461.785.1 161 285 529 1023 – – – – – –
Fp LayHBS – 9.9 10 12 13.216.719.222.928.337.949.180.2 151 276 521 1016 – – – – – –

SubHBS – – – – – – 19.021.823.825.830.637.246.461.397.8 177 266 488 896 – – –

Table 2: Runtime of binary search protocols in the semi-honest setting with honest majority and
three computational parties on LAN in milliseconds.

C Security Arguments

Security of Protocol 1. Security of Protocol 1 CompBS is straightforward to demonstrate.
That is, because we assume that the invoked building blocks – namely, LE, multiplication, addi-
tion/subtraction, and the dot product – are secure, they come with the corresponding simulators
which achieve indistinguishability. Then to simulate the adversarial view, we simply need to invoke
the corresponding simulator and obtain security of the overall protocol.

Security of Protocol 2. To demonstrate security, we notice that, as before, the construction is a
composition of secure building blocks for which we can simply invoke the corresponding simulators.
The only difference is that this time we rely on ORAM to protect the access pattern associated
with retrieving the element at private position d. However, due to our assumptions, an ORAM
scheme possesses the necessary properties and thus we can invoke the underlying simulator and
simulate the view without the knowledge of d.

Security of Protocol 3. Assuming that Rotate and other sub-protocols called in Protocol 3 RotBS
maintain security, we can claim secure composition of secure building block with the exception of
line 11 which reveals the value of s′. Recall that the value of s′ is computed as d+ r(i) + 2iw, where
r(i) is a secret one-time i-bit random value and w is a secret one-time (κ + 1)-bit random value.
The purpose of r(i) is to protect d when disclosing d+ r mod 2i and the purpose of w is to protect
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SetupProtocol
Dataset size

24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

CompBS0.1460.1470.1490.1540.1600.1930.2340.3160.5300.893 1.57 2.98 – – – – – – – – – –
Ring TagBS – – – 1.01 1.17 1.29 1.46 1.59 1.76 1.89 2.05 2.19 2.37 2.59 2.89 3.32 4.06 5.34 7.81 – – –
Z2k LayHBS – – – – – – – – – 0.6670.7870.945 1.12 1.33 1.64 2.11 2.87 4.19 6.61 11.6 – –

SubHBS – – – – – 0.2930.2940.2940.2960.2960.2990.3030.3060.3340.3680.4050.4570.4740.5330.6911.141.8

CompBS0.2160.2240.2420.2720.3190.5160.788 1.39 2.48 4.83 – – – – – – – – – – – –
FieldTagBS 0.7310.915 1.09 1.29 1.47 1.65 1.84 2.03 2.21 2.43 2.62 2.87 3.19 3.82 4.61 6.2 9.02 14.8 23.7 – – –
Fp LayHBS – – – – – – 0.73 0.891 1.10 1.30 1.64 1.77 2.26 2.76 3.64 5.19 7.89 13.8 22.6 – – –

SubHBS – – – – – 0.4120.4310.4480.4670.4930.5270.5780.6420.7030.7940.850 1.01 1.39 1.99 3.19 4.909.0

Table 3: Runtime of binary search protocols in the semi-honest model with honest majority and
three computational parties on WAN in seconds.
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Figure 6: Performances of binary search constructions in the semi-honest model with honest ma-
jority and three computational parties on LAN (left) and WAN (right).

the carry bit after addition i-bit d and r(i). We next argue that the distribution of s′ is statically
close to the uniform distribution over (κ+ i+ 1)-bit integers and thus we can simulate the view of
corrupt parties during protocol execution by drawing a random element from that space and obtain
statistical indistinguishability. In more detail, because we protect the (i+ 1)st carry bit of d+ r(i)

with a (κ + 1)-bit random integer, information about the carry bit can only be revealed with at
most negligible probability in the security parameter κ. The remaining i bits of d+ r(i) and s′ are
distributed uniformly at random over the range [0, 2i − 1] and reveal no information information
about d, i.e., perfect secrecy is achieved. Combining these two observations, we obtain that there
is negligible probability that information about private values might be revealed, which means that
we can simulate protocol execution with statistical indistinguishability.

Security of Protocol 4. It is easy to see that Protocol 4 Rotate maintains security. That is, it
invokes only secure building blocks and performs computation obliviously regardless of the rotation
amount r.

Security of Protocol 5. Security of this solution is straightforward because it is a composition
of secure building blocks.

Because showing security of other protocols is straightforward, i.e., security follows from composi-
tion of secure building blocks or uses one of the arguments above, we omit security arguments for
other protocols.
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Setup Protocol
Dataset size

24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223

CompBS 4.766.057.6311.319.235.364.1 121 239 469 937 1840 – – – – – – – –
Rep3 TagBS 10.112.614.817.219.522.226.732.340.252.6 71.8 107 165 291 522 904 1697 – – –
[15] LayHBS – – – 10.412.215.819.724.531.841.2 59.2 94.1 155 279 516 894 1685 – – –

SubHBS – – – 8.62 9.5 11.212.114.717.219.4 23.8 30.6 40.3 58 90.1 151 265 415 778 –

CompBS 5.187.259.9517.128.250.394.6 186 358 688 1350 – – – – – – – – –
SPDZ2k TagBS 9.2111.714.116.820.324.429.336.146.161.9 88.4 137 256 429 798 14902880 – – –
[14, 16] LayHBS – – – 11 15.119.424.231.141.556.6 80.3 131 252 421 791 14802871 – – –

SubHBS – – – 9.6 11.413.916.521.126.131.5 45.5 75.8 120 189 376 689 12702540511010200

Table 4: Runtime of binary search protocols in the malicious model with honest majority (replicated
secret sharing, 3 parties, total time) and dishonest majority (SPDZ2k , 2 parties, online only) on
LAN in milliseconds.

Setup Protocol
Dataset size

24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223

CompBS 0.4550.469 0.48 0.51 0.63 0.96 1.65 2.8 4.4 8.7 16.8 – – – – – – – – –
Rep3 TagBS 0.84 0.99 1.13 1.27 1.43 1.59 1.7 1.96 2.18 2.48 2.79 3.53 4.36 5.41 7.029.6113.9 – – –
[15] LayHBS – – – – – – 0.79 1.05 1.57 1.88 2.62 3.45 4.5 6.11 8.7 8.7 – – – –

SubHBS – – – – – – 0.56 0.57 0.59 0.6150.620.7030.740.9151.131.482.012.483.524.79

CompBS 0.3880.3970.4170.4680.5370.672 0.93 1.66 3.1 5.44 10.2 19.3 – – – – – – – –
SPDZ2k TagBS 1.46 1.84 2.21 2.58 2.97 3.35 3.72 4.1 4.49 4.94 5.56 6.57 8.1 12.1 17.324.738.8 – – –
[14, 16] LayHBS – – – – – – 0.91 1.29 1.71 2.12 2.69 3.64 5.37 8.01 12.920.334.7 – – –

SubHBS – – – – – 0.78 0.7960.8290.8670.9851.18 1.47 1.98 2.93 4.667.8313.321.535.3 67

Table 5: Runtime of binary search protocols in the malicious model with honest majority (replicated
secret sharing, 3 parties, total time) and dishonest majority (SPDZ2k , 2 parties, online only) on
WAN in seconds.
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