
Comparing Lattice Families for Bounded
Distance Decoding near Minkowski’s Bound ∗

Oleksandra Lapiha

DIENS, École normale supérieure, Paris, France

August 13, 2021

Abstract

In this report we analyse and compare the complexity of solving
the Bounded Distance Decoding problem in two families for discrete
logarithm lattices. Our algorithm uses the internal structure of the
lattice to decode an error close to Minkowski’s bound efficiently. This
procedure can be used as a decryption algorithm of an encryption
scheme, where the internal structure of the lattice serves as a secret
key. In addition, one of these lattices was used in [1] to construct a
family of one way functions. We present cryptanalysis of the mentioned
scheme and we prove that the stated size of the keys is insufficient for
a required security level.

1 Introduction

Bounded distance decoding is one of the fundumental problems in Information
theory. It arises when two parties need to communicate over a noisy channel.
For example, think of a bad quality phone line. And we are concerned with
the integrity of transmitted data. We are dealing with information loss

∗These are the results of the author’s internship done at CWI Amsterdam under the
supervision of Léo Ducas. The internship was completed in July 2020 as a part of the
Masters Program at ENS Paris.

1

that occurs due to the information flow being slightly disturbed by forces
of nature.

To achieve integrity we encode messages as points in Euclidean space. A
natural way to arrange the space of messages is to follow a Euclidean lattice
(all integer linear combinations of a linearly independent set of vectors in
Rn).

The decoding procedure aims to identify the point of the lattice closest
to the output point. If the disturbance in the network is small enough the
closest lattice point will indeed be the input message. This will help us
identify the upper bound on how much error a perfect decoding algorithm
can handle. We know that the distance between lattice points is bounded
from below by the length of the shortest vector(note λ1(L)) of the lattice.

If the error exceeds λ1(L)
2

, the closest point might not be the input message
anymore so decoding becomes impossible.

We would like to have an algorithm where the decoding radius is close to
λ1(L)

2
, and where λ1(L) is as large as possible. An upper bound on λ1(L) is

given by Minkowski’s first Theorem.

Theorem 1 (Minkowski’s First Theorem). For any full-rank lattice L of
rank n and for l1 norm of the shortest vector length the following inequality
holds:

λ1(L) ≤ (n!)1/n det(L)1/n ∼ n

e
det(L)1/n

Using the l1 norm will be natural for our decoding algorithm.

Furthermore, we know that a random lattice L is likely to have a λ1(L)
close to this bound; yet solving the bounded distance decoding problem in
random lattice is hard.

Our work focuses on two families of lattices for which the BDD problem
has an efficient solution and error is close to the Minkowski’s bound. The
first one is a generalization of a lattice discussed in [2] and used in Chor-
Rivest cryptosystem [3]. The second one was used in [1] for construction
of a trapdoor function and has a similar decoding algorithm. Apart from
decoding algorithms, we discuss an efficient way to compute the basis of a
given lattice. It is important to be able to compute some representation
of the lattice efficiently because this is a way to craft lattice points from
messages we would like to transmit. We also suggest security improvements
for the encryption scheme from [1] using our decoding algorithm and perform
its cryptanalysis to improve their parameter selection.

2

Discrete logarithm lattices.
In this work, we will discuss many lattices of similar flavour. They are

defined as a kernel of a morphism from Zn to another group. Let us give you
a short definition of the lattice given in [2] which serves as a basis for our
first generalization.

Let us consider numbers m which is a prime power, n and B such that
we can find n primes p1, . . . , pn which do not divide m and are bounded by
B. We consider a group morphism:

ψ : Zn → (Z/mZ)∗

(x1, . . . , xn) 7→
n∏
i=1

pxii (mod m)

The kernel of ψ is a subgroup of Zn so it is a lattice.

L := kerψ = {(x1, . . . , xn) ∈ Zn|
n∏
i=1

pxii ≡ 1 (mod m)}

Definition 1. For every matrix H ∈ Zn×kq the following defines a lattice
L = {x ∈ Zn : Hx ≡ 0 (mod q)}. This representation is called a parity
check representation of the lattice L.

Using the properties of parity check representation it is simple to compute
the basis of this lattice. It only requires the computation of n discrete
logarithms in (Z/mZ)∗ it can be done because the multiplicative group of
Z/mZ is cyclic. Discrete logarithms can be computed in polynomial time
with a combination of Pohlig-Hellman [4] and Pollard-ρ [5] algorithms. It’s
possible as they are calculated modulo a smooth number. The generalization
we give will require more work in this regard.

Efficient decoding algorithm.
We use a decoding algorithm discussed in [2] and [1]. We provide a few

modifications for it to fit our scenario in the second part of the work, but the
skeleton of the algorithm will stay the same.

We are given a lattice L defined above and a point t = (t1, . . . tn) ∈ Rn

which doesn’t belong to L and we would like to find the lattice point x closest
to t. We assume that error is a vector of real positive numbers whose norm
is bounded. The algorithm has the following steps:

3

1. Round every coordinate to t to deal only with discrete error bte =
x + bee. Denote e′ = bee, t′ = bte. Lattice point x is not affected by
this operation since L ⊂ Zn.

2. Compute ψ(t) =
∏n

i=1 p
xi+e

′
i

i (mod m) =
∏n

i=1 p
e′i
i (mod m). If the

error is small enough here we recover non-reduced value v =
∏n

i=1 p
e′i
i .

3. Recover prime number factorization of v using trial division. Powers of
primes will be the coordinates of our error.

4. Subtract the error from t′.

For negative errors we use rational number reconstruction techniques and
the bound on the error will come from there. In this work by an efficient
algorithm we mean an algorithm that runs in polynomial time.

Organisation of the document.
In the section 2 we discuss the first lattice family. We provide details on:

• how to compute its basis 2.2

• what it the complexity of this algorithm 2.3

• and how much of the error we can decode 2.4

The next part of our work 3 is dedicated to the family of polynomial lattices.

• it’s basis computation is discussed in the section 3.2

• the decoding radius for this case is discussed in 3.4

Then we compare these two families with respect to basis computation and
decoding algorithms in 3.5. Finally, we perform cryptanalysis of the encryption
scheme presented in [1] and propose improvements to it in the section 4.

Implementation.
Sagemath implementation of every algorithm for basis computation and

message decoding discussed in the document is available on GitHub at https:
//github.com/olapiha/bounded_distance_decoding.

4

https://github.com/olapiha/bounded_distance_decoding
https://github.com/olapiha/bounded_distance_decoding

2 Generalization of the construction for integers

In this section, we present a generalization of the decoding algorithm introduced
in [2]. In their paper, Léo Ducas and Cécile Pierrot use properties of the
group (Z/mZ)∗ for modulus m which is a prime power to decode efficiently.
The decoding radius achievable that way depends on the ratio

ln(m)

ϕ(m)

The higher the ratio the larger the decoding radius will be. In our generalization,
we take m′ an arbitrary product of prime powers. If m and m′ are of the
same size, as m′ is smoother ϕ(m′) will be smaller which gives us a better
decoding radius.

In the construction for m prime power authors compute lattice basis
directly using the fact that (Z/mZ)∗ is cyclic and we can calculate discrete
logarithms of its elements.

Our result is a deterministic efficient algorithm for computation of the
basis for any integer m. We find a way to deal with the structure of the
group (Z/mZ)∗ in a different way and compute lattice basis through its
dual.

2.1 Definition of discrete logarithm lattice

In this chapter we take m =
∏k

i=1 q
ej
j where {qj} are odd prime numbers

and {ej} are positive integers. Similarly to the initial construction we take
numbers n and B such that we can find n primes p1, . . . , pn different from
every qj and bounded by B. We consider a group morphism:

ψ : Zn → (Z/mZ)∗

(x1, . . . , xn) 7→
n∏
i=1

pxii (mod m)

The kernel of ψ is a subgroup of Zn so it is a lattice. We will call it
discrete logarithm lattice from now on.

L := kerψ = {(x1, . . . , xn) ∈ Zn|
n∏
i=1

pxii ≡ 1 (mod m)}

5

We work with a group (Z/mZ)∗ that is not necessarily cyclic anymore so
we cannot exploit properties of discrete logarithm right away. Nevertheless,
the Chinese Remainder Theorem (CRT) gives us the structure of the group:

(Z/mZ)∗ ∼
k∏
j=1

(Z/qejj Z)∗

For every prime qj > 2 and every ej ≥ 1 the group (Z/qejj Z)∗ is known to be
cyclic. So now, we can consider discrete logarithms in every component of
the product to find a lattice basis.

Applying the CRT gives us the following equivalence

L = kerψ = {(x1, . . . , xn) ∈ Zn|∀1 ≤ j ≤ k :
n∏
i=1

pxii ≡ 1 (mod q
ej
j)}

Going even further, suppose we know for every j a generator βj of (Z/qejj Z)∗.
Using the morphism between the cyclic multiplicative group and its additive
group of exponents we get representation consisting of linear relations:

L = {(x1, . . . , xn) ∈ Zn|∀1 ≤ j ≤ k :
n∑
i=1

xi logβj pi ≡ 0 (mod ϕ(q
ej
j))}

Note that discrete logarithm functions that we are using have different input
and output domains

∀1 ≤ j ≤ k : logβj : (Z/qejj Z)∗ → (Z/ϕ(q
ej
j)Z)

This is almost a parity check representation of L except we have many parity
check type conditions with different moduli. Therefore, L is an intersection
of lattices Lj where each of them is defined as a parity check lattice:

Lj := {(x1, . . . , xn) ∈ Zn|
n∑
i=1

xi logβj pi ≡ 0 (mod ϕ(q
ej
j))}

2.2 Computing a basis of the lattice

Our goal is to compute a basis of discrete logarithm lattice to be able to
encode messages as its points afterwards. The idea of our algorithm is to
compute the basis of the dual lattice first. And then obtain primal one from
the dual. Let us recall a definition of a dual lattice and a dual basis.

6

Definition 2. For a lattice L ⊆ Rn we define L∗ ⊆ (Rn)∗ as the lattice of all
linear maps f : Rn → R such that every lattice point is mapped to an integer
value.

Linear maps can be represented as an inner product function with a fixed
vector. So equivalently

L∗ = {y ∈ Rn|∀x ∈ L : 〈x, y〉 ∈ Z}

Definition 3. For a basis B = (b1, . . . , bn) ∈ Rm×n, define the dual basis
D = (d1, . . . , dn) ∈ Rm×n as the unique basis that satisfies

• Span(D) = Span(B)

• BTD = I

If B is a square matrix then (BT)−1 satisfies the definition. In the case of
a non-square matrix, one can verify that D = B(BTB)−1 is the dual basis.

Our algorithm has the following steps

1. Calculate parity check representations for every Lj

2. Get dual generating set of their intersection

3. Eliminate linear dependencies in the generating set

4. Obtain the basis of the primal lattice from the dual

We will describe each of them in more details

2.2.1 Parity check representations (Step 1.)

In the section 2.1 we were able to represent L as an intersection of L1, . . . ,Lk
for which we have parity check representations:

Lj := {(x1, . . . , xn) ∈ Zn|
n∑
i=1

xi logβj pi ≡ 0 (mod ϕ(q
ej
j))}

To compute them we calculate many discrete logarithms in finite groups.
As one probably knows, it is a hard problem for a general case in the sense
that we don’t know a polynomial algorithm to solve it. We need to choose
parameters such that we can still compute them efficiently. We discuss this
choice in the section (2.3) of this document.

7

2.2.2 Dual generating set (Step 2.)

To describe this step we need two lemmas

Definition 4. For two lattices L1, L2 we define their sum

L1 + L2 := {x+ y|x ∈ L1, y ∈ L2}

This space L1 + L2 can be generated by concatenation of bases of L1

and L2. It is a sum of two additive subgroups of Rn so it stays an additive
subgroup. But it is not always discrete so it doesn’t necessarily form a lattice.

Lemma 1. Suppose L =
⋂k
j=1 Lj 6= {0} and L∗, L∗j are duals of the respective

lattices. Then L∗ =
∑k

j=1 L∗j .

Proof. Let us start discussing the expression on the right hand side. Take
lattices L1, . . . ,Ln and evaluate the dual of their sum

(
n∑
j=1

Lj)∗ = {y ∈ Zn|∀x1 ∈ L1, . . . ,∀xn ∈ Ln : 〈y,
n∑
j=1

xj〉 ∈ Z}

= {y ∈ Zn|∀1 ≤ j ≤ n,∀xj ∈ Lj : 〈y, xj〉 ∈ Z}

So y must be an element of every L∗j . Therefore, (
∑n

j=1 Lj)∗ =
⋂k
j=1 L∗j .

Applying this assertion to lattices L∗1, . . . ,L∗n we have

(
n∑
j=1

L∗j)∗ =
k⋂
j=1

Lj = L

Now taking dual lattices of both sides of the equation we obtain:

(
n∑
j=1

L∗j)∗∗ = L∗

Lemma 2. Let B be a square matrix, B ∈ Rn×n. Suppose we are given parity
check representation of a lattice L = {x ∈ Zn|Bx ≡ 0 (mod p)} Then rows
of the matrix (1

p
·B
In

)
form a generating set of the dual lattice.

8

Proof. Another equivalent definition for L would be:

L = {x ∈ Zn|1
p
Bx ≡ 0 (mod 1)}

Therefore, can represent L as an intersection of the following lattices:

L1 = Zn

L2 = {x ∈ Rn|1
p
Bx ∈ Zn}

Then from lemma 1
L∗ = (L1 ∩ L2)

∗ = L∗1 + L∗2
It is obvious that (Zn)∗ = Zn. To prove that (1

p
B)T (here basis vectors are

columns) is a basis of the dual it is enough to show (1
p
B)−1 is basis of the

primal lattice. This is quite simple:

∀x ∈ Zn :
1

p
B · (1

p
B)−1 · x ∈ Z,

which proves the inclusion in one direction. For the inclusion in the opposite
direction we have:

∀x ∈ L :
1

p
B · x = y ∈ Zn =⇒ x = (

1

p
B)−1 · y, y ∈ Zn

A generating set of the sum of lattices can be obtained by concatenation of
their bases, so we obtain our desired result.

The basis computation algorithm takes parity check representations of
every lattice Lj scales them and adds an identity matrix. The output is the
concatenation of calculated generating sets.

2.2.3 Eliminating linear dependencies using elementary matrix
transformations (Step 3.)

Now we have obtained a generating set of the dual lattice but we would like
to have its basis. The idea is to transform the matrix to its row echelon form
so the resulting set has some zero vectors which we will discard, and obtain
the basis of the lattice by keeping the remaining non-zero generators.

9

Out of all elementary matrix transformations, we are only allowed adding
to a row an integer multiple of another row, interchanging two rows, multiplying
a row by -1. These three possibilities are called unimodular transformations.
As one may have noticed the only restriction is that we can’t multiply a row
by an integer different from ±1. This would result in a sublattice of L with
a higher determinant.

We use an algorithm for reducing the matrix to its Hermite normal form.
It is an equivalent of row echelon form for matrices over Z with a restriction to
unimodular transformations. Our input matrix can have rational coefficients
so we first transform them into integers multiplying by the least common
multiple of all denominators. We divide by it when the matrix is in the
Hermite form.

Resulting vectors might be quite long. If we want to control the size of the
basis we can use the LLL algorithm instead. This change will, for example,
make our encoded messages shorter and easier to decode.

2.2.4 Primal basis from dual basis (Step 4.)

A way to calculate a basis of primal lattice having the basis of the dual is
straightforward having its definition that we stated here 3. If D denotes a
dual basis, then B = D(DTD)−1 is a primal basis.

2.3 Complexity analysis

The first step (1) of the basis computation algorithm (2.2) boils down to
many computations of discrete logarithms in a finite group. For every distinct
prime factor q

ej
j of the modulus we compute n discrete logarithms(one for

every prime pi). It is n·k iterations in total. Let’s refer to (Z/qejj Z)∗ as group

G. Group order is equal to |G| = ϕ(q
ej
j) = q

ej−1
j (qj − 1) =

∏k
i=1 t

ai
i . It is a

q-smooth integer, so to efficiently calculate discrete logarithms in this group
we can use a combination of Pohlig-Hellman [4] and Pollard-ρ [5] algorithms.
Overall complexity in group operations is

O(
k∑
i=1

ai(ln(|G|) +
√
ti))

To be polynomial in lattice dimension, ai ≤ ej − 1 and ti ≤ qj need to be
polynomial in n. As we have n·k such operations, k should also be polynomial
in n.

10

It is easy to see that step 2 takes linear time in n + k. Step 3 is
Hermite normal form reduction which has the same complexity as Gaussian
elimination so runs in time polynomial in n+ k.

Finally, step 4 includes matrix multiplication and inversion for matrices
whose dimension is bounded by n+ k. They take polynomial time.

2.4 Decoding radius

Decoding algorithm extends naturally to the generalized setting. Let us
remind that normalized decoding l1-radius was equal to

r̄1 =
ln(m/2)

4ϕ(m)1/n · ln(B)

where B is a constant bounding all pi
We still haven’t configured parameters k, qj, pi. The primes qj, pi must be

pairwise different and as small as possible, so we need n + k distinct prime
numbers. We choose pi to be equal to first n prime numbers and qj equal to
the next k smallest primes that we haven’t used yet.

The more factors m the smoother ϕ(m) will be, but also the ratio ln(m/2)
ϕ(m)

decreases as m tends to infinity. For every dimention n we take m =
∏l

j=1 qj
where l we be determined by a script as the first local maximum of the radius.

2.5 Was it all worth it?

As it turns out factorization ofm does not affect the decoding radius substantially.
It can only introduce a minor improvement. We prove that with the following
lemma:

Lemma 3. Assume the primes p1, . . . , pn are the same for both lattices. If
a ·m ∼ b ·m′ ∼ en, when n→∞ Then

r̄
(1)
m

r̄
(1)
m′

→ 1, n→∞

Proof. The proof is in the appendix A

Refer to the figure 1 to compare the initial construction and its generalization
in practice.

From a practical perspective, such complications may indeed not be
Worthy. But we’ve definitely learned a thing or two on our way.

11

Figure 1: Comparison of the normalized decoding radius for initial
construction(in green) and the generalization(in red).

12

3 New Construction for Polynomial Lattices

3.1 Definition of Polynomial Lattices

Let us set parameters a prime power q and integers k, d and n. Let Fq[x] be
polynomial ring over a field Fq. We take a set of k irreducible polynomials
cj(x) ∈ Fq[x], j = 1, ..., k of degree d. According to the analogue of the prime

number theorem for polynomials [6] k cannot be greater than qd

d
.

Define c(x) :=
∏k

j=1 cj(x). We are going to work in the multiplicative
group of the quotient ring of Fq[x] with respect to c(x). Chinese Remainder
Theorem helps to determine the structure of

(
Fq[x]/c(x)

)∗
:

(
Fq[x]/c(x)

)∗ ∼ k∏
i=1

(
Fq[x]/ci(x)

)∗ ∼ k∏
i=1

F∗qd

Every component is a quotient by an irreducible polynomial, therefore it’s a
field. The multiplicative group of a field is cyclic, so we can consider discrete
logarithms in every component of the product to find a lattice basis.

Consider a vector α = (α1, ..., αn) ∈ Fnq where the αi’s are pairwise
different and not roots of c(·).

Now consider a group morphism:

ψ : Zn →
(
Fq[x]/c(x)

)∗
(u1, ..., un) 7→

n∏
i=1

(x− αi)ui (mod c(x))

Similarly to previous constructions, the lattice is defined as the kernel of
the morphism ψ:

L = kerψ = {(u1, ..., un) ∈ Zn|
n∏
i=1

(x− αi)ui ≡ 1 (mod c(x))}

We will be calling L the polynomial lattice from now on. Applying CRT
gives us an equivalent definition for L:

L = kerψ = {(u1, ..., un) ∈ Zn|∀1 ≤ j ≤ k :
n∏
i=1

(x− αi)ui ≡ 1 (mod cj(x))}

13

Supposing we know βj a generator of
(
Fq[x]/cj(x)

)∗
for every j we get another

representation by computing discrete logarithms in the multiplicative group
of every component:

L = {(u1, ..., un) ∈ Zn|∀1 ≤ j ≤ k :
n∑
i=1

ui logβj(x− αi) ≡ 0 (mod qd − 1)}

What might cuase a confusion is that each logβj has a different input domain.

For every j: logβj maps
(
Fq[x]/cj(x)

)∗
to (Z/(qd − 1)Z).

3.2 Lattice computation for polynomials

We obtained a parity check representation of L. To calculate a basis of L
we can follow a simplified version of the algorithm for discrete logarithm
lattices. We obtain the dual basis by scaling the parity check matrix and
concatenating it with In. Then we remove linear dependencies and finally
obtain primal basis from the dual. So basis computation algorithm has the
following steps:

1. Obtain the parity check representation of L.

2. Transform it into the basis of L∗.

3. Recover the primal basis from the dual.

3.2.1 Parity check representation 1.

To compute the parity check representation of the polynomial lattice we
need to compute ∀1 ≤ i, j ≤ n : logβj(x − αi) (mod qd − 1) and form them
into a matrix. The order of multiplicative group is qd − 1 which is not
necessarily a smooth integer so we cannot use Pohlig-Hellman [4] and Pollard-
ρ [5] approach to compute them efficiently. We are going to choose qd = nO(1)

so group order is overall polynomial in the lattice dimension and use Pollard-ρ
[5] algorithm to compute discrete logarithms.

3.2.2 Dual basis 2.

Lemma 2 gives us a straightforward way to compute the generating set of
the dual from a parity check matrix. To obtain its basis we eliminate linear
dependencies by reducing the generating matrix to its Hermite normal form
as in the section 2.2.3.

14

3.2.3 Recovering Primal basis from Dual 3 (Theory).

In this section, Q is an arbitrary integer, not related to the lattices constructed
before.

Lattices that admit a parity check representation are called q-ary lattices.
They lie between Znq and Zn: Znq ⊂ L ⊂ Zn. For this kind of lattices, it’s
possible to transform the parity check lattice into its basis efficiently. In the
algorithm, we will rely on the parity check matrix to have a special shape.

Definition 5. A matrix A ∈ Rn×m is in the systematic form if it has the
following form:

A =
[
In|A′

]
Where In stands for an identity matrix of dimensions n × n and A′ is an
arbitrary matrix of dimensions n× (m− n)

Lemma 4. Suppose L is defined by a parity check matrix. L = {x ∈ Zn :
Hx ≡ 0 (mod q)} and H ∈ Zk×nq is in the systematic form H = [Ik|D].
Then rows of G = [−DT |In−k] are generating vectors of the lattice L reduced
modulo q.

Proof. Let us first prove that every vector generated with the matrix G
belongs to the lattice.

∀x : H ·GTx = [Ik|D] · [−DT |In−k]Tx = (D −D)x = 0 (mod q)

Indeed we see that G generates a sublattice of L, let us call it L′. If G

generates L′ modulo q then G′ =

[
−DT In−k
qIk 0

]
generates all of the lattice.

det(G′) = det(L′) = qk.
It is left to prove that L has the same determinant, then L = L′ .
Parity check matrix defines the lattice as a kernel of a linear transformation

defined by H.
φ : Zn → Znq

x 7→ Hx (mod q)

Since H is in the systematic form, the image contains a space equivalent to
Zkq so it contains at least qk points. L is a sublattice of Zn so its determinant
can be computed as

det(L) = |Zn/L| · det(Zn) = |Zn/ker(φ)|

15

Using the first isomorphism theorem we have |Zn/ker(φ)| = |Im(φ)| ≥ qk.
So

qk ≤ Im(φ) = det(L) ≤ det(L′) = qk

Therefore L′ = L. QED.

Corrolary 1. Suppose the matrix H is in permuted systematic form e.g.∃P−
column permutation matrix P ·H = [I|D]. Then P ·G are generating vectors

of the lattice L reduced modulo q.

3.2.4 Recovering Primal basis from Dual 3 (Practice).

Let us build an algorithm specific to the polynomial lattices. First, in our
case the lattice is Q-ary for Q = qd−1. Here q is a prime power - the modulus
of the base field Fq.

At the start of this step of lattice computation, we are given the parity
check matrix if the polynomial lattice. The lattice is the set of solutions to
a homogeneous equation modulo qd − 1 defined by the parity check matrix,
therefore, none of the elementary transformations modulo qd− 1 can change
it. So we can apply Gaussian elimination to reduce it to the systematic form.

Here qd − 1 is not a prime number, so some of the elements of H might
not be invertible modulo qd − 1, and we cannot render them equal to one.
That is why it is useful to have permuted systematic form. We can then
try to invert elements of a particular row until we find an invertible one. In
practice the algorithm is able to reduce every matrix to its systematic form,
so we make an assumption that there are not so many elements we cannot
invert.

Using Lemma 4 we can obtain the set of generating vectors G of the
polynomial lattice L modulo q. Since we are dealing with the q-ary lattice,
to obtain the basis of the L itself we need to add the basis of Znq and remove
resulting linear dependencies. It is not strictly necessary to perform these
steps as having G we can craft points of the lattice L.

Let us put all the steps together in an algorithm:

1. Reduce the parity check matrix to its permuted systematic form.

2. Transform it into the generating matrix modulo q.

3. Concatenate with q · In.

4. Reduce obtained matrix to its Hermite normal form.

16

3.3 Decoding algorithm modification

We could check now if the framework of the decoding algorithm developed
before fits this new setting. In this section, we discuss the modification we
need to make and the decoding radius we can achieve with this approach.
Modifying the algorithm to treat polynomials instead of integers leads to the
following steps.

1. Round every coordinate to t to deal only with discrete error bte =
v + bee. Note e′ = bee, t′ = bte.

2. Compute ψ(t) =
∏n

i=1(x−αi)vi+e
′
i (mod c(x)) =

∏n
i=1(x−αi)e

′
i (mod c(x)).

3. Reconstruct the numerator n and the denominator d of
∏n

i=1(x−αi)e
′
i

that correspond to positive and negative parts of the error.

4. Recover prime number factorization of n and d using trial division.
Powers of primes will be the coordinates of our error.

5. Subtract just recovered error from t′.

Except for the step 3, all other steps translate directly to the case of
polynomials. Step 3 needs more work, let us discuss rational function reconstruction
in more detail.

3.3.1 Rational function reconstruction 3

In the work of [7] authors study rational function reconstruction in depth.

Given g, f the goal is to find n, d ∈ F[x] that deg(n) + deg(d) < deg(f)
2

and n
d

= g (mod f) The main algorithm the discuss is based in Extended
Euclidean Algorithm(EEA). We perform extended euclidean division and
the select a step where the degree of the current quotient is greater or equal
to deg f

2
. The authors refer to it as Wang’s algorithm. Here is its formal

description.
Here function lc() outputs the leading coefficient of the input polynomial.
The correctness of this algorithm follows from the following two lemmas.

The first one proves that under certain conditions one of the rows of EEA
contains the correct n and d. The second lemma tells us how to select the
correct row.

17

Algorithm 1 Rational Function Reconstruction.

1: procedure Reconstruct(f, g)
2: r0 = f r1 = g
3: t0 = 0 t1 = 1
4: q = 1
5: while deg(q) ≤ deg(f)

2
do

6: q = r0//r1
7: (r0, r1) = (r1, r0 − qr1)
8: (t0, t1) = (t1, t0 − qt1)
9: end while

10: if gcd(r0, t0) 6= 1 or deg(r0) + deg(t0) ≥ deg(f)
2

then
11: return FAIL
12: else:
13: return (r0

lc(t0)
, t0
lc(t0)

)
14: end if
15: end procedure

Lemma 5. Let F be a field, f, g, r, s, t ∈ F[x] with r = sf + tg, t 6= 0,
deg(f) > 0, and deg(r)+deg(t) < deg(f). Suppose ri, si, ti for 0 ≤ i ≤ l+1 be
the elements of the ith iteration in the Extended Euclidean Algorithm(EEA)
for f and g (e.i. ri = sif + tig).
Then there exists a nonzero element α ∈ F[x] such that r = αrj, s = αsj,
t = αtj, where deg(rj) ≤ deg(r) < deg(rj−1)

Proof. Find the proof in [8] (Lemma 5.15 page 116)

So if the solution exists it must be one of the pairs (ri, ti) of the EEA.

Lemma 6. Let F be a field f, g, n, d ∈ F[x] are polynomials such that lc(d) =
1, gcd(n, d) = gcd(f, d) = 1 and g = fracnd (mod f). Let j be the index
of a quotient with maximal degree in the EEA for f and g. If deg(f) >
2(deg(n) + deg(d)) the j is unique and n = rj, d = tj

Proof. Find the proof in [7] (Lemma 2.3 page 186)

3.3.2 Factorization by trial division

Input: A polynomial g such that deg(g) ≤ m whose roots are among α1, . . . , αn ∈
Fq

18

Output: e1, . . . , en s.t. g =
∏n

i=1(x− αi)ei
There’s only n possible roots, one trial division takes O(m) time and the
number of factors is bounded by m. So overall complexity is O(m2n).

3.4 Decoding radius

Rational function reconstruction puts an upper bound on how much error
this algorithm can decode. Let us first consider a simpler case where every
coordinate of the error is positive, so the step 3 becomes trivial. The goal
of this section is to find the parameters which provide maximal normalized
decoding radius for arbitrary discrete error and calculate this upper bound.

3.4.1 Only positive discrete error

Suppose we receive t = u + e where u ∈ L, ‖e‖1 ≤ r1 and ∀i : ei ∈ N. Then
we can compute

n∏
i=1

(x− αi)ti =
n∏
i=1

(x− αi)ui
n∏
i=1

(x− αi)ei (mod c(x))

If ‖e‖1 =
∑n

i=1 ei ≤ deg(c) = d · k the operation above will give us exactly
the polynomial

∏n
i=1(x− αi)ei . Then we can recover ei, 1 ≤ i ≤ n from the

factorization.
So l1(r1) = d · k.

Due to the nature of the bound above it is natural to talk about the
length r1 in l1 norm.

3.4.2 Arbitrary discrete error

Now we have ∀i : ei ∈ Z. Then

n∏
i=1

(x− αi)ti (mod c(x)) =
n∏
i=1

(x− αi)ei =

∏
i∈I(x− αi)ei∏
j∈J(x− αj)−ej

Lemma 7. Given g, c where deg(c) = d · k we can recover f1, f2 ∈ F[x] that
∀i = 1; 2: deg(fi) ≤ bdk2 c and f1

f2
= g (mod c) in polynomial time.

So we can decode every message for which ‖e‖1 =
∑n

i=1 |ei| ≤ b
dk
2
c

19

If we know more about the shape of the error the upper bound becomes
equal to the case with only positive error. We can reconstruct g = n

d
(mod f)

if it is known that deg(n) < N , deg(d) < D where N + D < deg(f) refer to
[7] for more information.

3.4.3 Normalized radius

From the bound on the error we already have we obtain the mormalized
raduis r̄1 = dk

2·det(L)1/n where det(L) = Φ(c(x)) = (qd − 1)k.

r̄1 =
dk

2 · (qd − 1)k/n

Let us optimize the values of d and k.
We have the following constraints:

1. qd = nO(1),
so that computing discrete logarithm in polynomial time (Section 3.2.1).

2. dk < qd,
so we can find enough irreducible polynomias of degree d (Section 3.1).

3. n ≤ q,
so we can take n polynomials x− αi from Fq[x] (Section 3.1).

From these constraints we can immediately conclude that d must be constant.

To obtain not more than a logarithmic gap from Minkowski’s bound we
need the following asymptotics: q = a · n, d = b, k = c · n

log(n)
. What we are

going to do next is finding optimal values for parameters a, b and c. We want
to maximize the following function:

r̄1 =
bc · n

2 log(n)((an)b − 1)c/ log(n)
∼ bc · n

2ebc log(n)

Parameter a by constraint 3 in 3.4.3 should be greater or equal to 1.

bc · n
2 log(n)((an)b − 1)c/ log(n)

≤ bc · n
2 log(n)(nb − 1)c/ log(n)

The choice of a is independent from choices of b and c so we can configure
it to the smallest possible value a = 1.

20

The function we are considering with fixed parameters c, b tend to the
same value as bc·n

2 log(n)ncb/ log(n) . To simplify the analysis we will find the best

parameters for the latter.

Note e := bc, fn(e) = e·n
1− e

log(n)

2 log(n)
. We would like to prove that for any value

of n, argmax(fn(e)) = 1

f ′n(e) =
n1− e

log(n)

2 log(n)
+
e · n1− e

log(n) · log(n)
(
− 1

log(n)

)
2 log(n)

=
n1− e

log(n)

2 log(n)
(1− e)

The value e = 1 is the only solution to the equation f ′n(e) = 0. It is easy to
verify that it corresponds to the maximum of fn(e) and it doesn’t depend on
the value of n.

Therefore, e = b · c = 1. In practice we fix b = 2, c = 1
2
. In the end, the

decoding radius our algorithm achieves is

r̄1 =
n

2 · log(n)(n2 − 1)1/2 log(n)

3.5 Comparing the decoding radius of the algorithms.

For the first family final normalized error radius that the algorithm can
handle is:

r̄1 =
ln(m/2)

4 · ϕ(m)1/n · ln((n+ 1) ln(n+ 1))

As we can see on the plot 2 for the second construction the radius is much
better:

r̄1 =
n

2 · log(n)(n2 − 1)1/2 log(n)

But both of them are still logarithmically far from Minkowski’s bound.

4 Cryptanalysis of the LLXY17 cryptosystem.

Let us give a high-level description of the encryption scheme presented in [1].
It is based on the family of polynomial lattices that we described above. The
public key of Alice is a matrix G that generates a sublattice of a polynomial

21

Figure 2: Comparison of all algorithms and theoretical upperbound (in red):
basic algorithm for integer lattice (in green), algorithm for polynomial lattices
(in blue).

22

lattice L. When Bob wants to send a message m to Alice he generates a
random noise e ∈ {0, 1}n of hamming weight w and sends the ciphertext
c = Gm+ e.

Alice’s private key contains parameters c(x) and (α1, . . . , αn) used to
construct the lattice L. To decode the message Alice performs error decoding
algorithm discussed in section 3.3. As we saw, for the decoding procedure to
work w(the l1 norm of e) should be less than the upperbound on the error.

We are given the ciphertext c we would like to obtain the message without
the key. Having the generating matrix G we can obtain the parity check
representation H of L. Multiplying the ciphertext by H we obtain:

H · c = H ·Gm+H · e = H · e

We would like to try every possible value of the error until H · c = H · e.
If we can learn the value of the error, we can subtract it from the ciphertext
and obtain the message multiplying by G−1.

Let us consider three different approaches to make the bruteforce attack
more efficient.

We compute the cost of every attack in the appendix B

4.1 Information Set Decoding Attack

We take a vector y ∈ Zkq , a matrix A ∈ Zk×nq . It can be reduced to its
permuted systematic form H = U · A = [Ik|D].

The goal is to find a vector x ∈ {0, 1}n with small Hamming weight
|x| = w that

Ax = y

Or equivalently Hx = U · Ax = Uy =: t, here we can use our knowledge
about the shape of H.

In this attack we partition x on two vectors x1 ∈ {0, 1}k and x2 ∈
{0, 1}n−k so we have

t = x1 +D · x2
We make a bet of the weight partition between |x1| = w1 and |x2| = w2,
where w1 + w2 = w. Now we enumerate only the possible values of x2,
compute x1 = t−D · x2 and check if it satisfies |x1| = w1. If we don’t find a
correct pair with this weight distribution, we rerandomize H and t and start
over. The pseudo-code is given as Algorithm 2.

23

4.2 Meet in the Middle

In this attack, we have the same goal but no information about the form
of the matrix A. We partition x and A on two equal parts: A = [A1|A2],
x = (x1|x2). Then Ax = y is equivalent to

A1x1 + A2x2 = y

If we can find vectors x1 and x2 for which values A1x1 and y − A2x2 collide
their concatenation x = (x1|x2) will satisfy Ax = y. Here we make a bet that
weight is distributed equally between the two parts. For all values of x1 with
correct weight we compute the value A1x1 and put x1 into a hash-table with
the index h(A1x1), where h(·) is an arbitrary suitable hash function. Then
for every x2 we look up the value with index h(y−A2x2) in the table. If the
cell is not empty we found the correct pair. Similarly, the pseudo-code of the
attack is given below as Algorithm 3.

4.3 Combining the two approaches.

Now we would like to combine Information Set Decoding attack with Meet
in the Middle approach to make it even more efficient.

We return to the case when A is reduced to the systematic form H =
U ·A = [Ik|D1|D2] we partition x = (x0|x1|x2) on three vectors x0 =∈ {0, 1}k,
x1, x2 ∈ {0, 1}

n−k
2 . Then

Ax = x0 +D1x1 +D2x2

We make bet that |x0| = w1, |x1| = |x2| = w2

2
and perform Meet-in-the-

Middle attack. Now we would like to find approximate collisions between
D1x1 and all possible t−D2x2

For that we desing a compression function f that will often map close
vectors to the same value. It operates as follows:

∀v = (v1, . . . , vk) ∈ Zkq : fp(v) = (bv1/pe, bv2/pe, . . . , bvk/pe)

Here p is a parameter of the function.
We store a table of f(D1x1) in memory and look-up there for t −D2x2.

We will need to deal with false positives and false negatives in this collision
search. Too many false positives can increase the cost of the search for every
randomization of the public key matrix and too many false negatives can
increase the number of randomizations themselves. To ease the analysis the
pseudo-code is given as Algorithm 4.

24

4.4 Adding negative errors

Our algorithm allows to decode errors of both signs efficiently, so adding
it will improve security of [LLXY17] encyption scheme. Let us estimate
how resistant is the scheme agains our most efficient attack when it uses
e ∈ {0, 1}n and e ∈ {0, 1,−1}n of the same l1 norm. In the ternary case the
error contains the same number of positive and negative coordinates so that
we can provide the same decoding radius as for the positive error. The costs
and improvement are presented in the following table.

Cost of attacks for different parameters
Parameters Bruteforce ISD MitM IDS+MitM imrovement

rate
n = 100.0
k = 10.0
w = 9.0

q = 100.0

248 239 227 225

Ternary 257 241 231 228 23

n = 500.0
k = 40.0
w = 30.0
q = 500.0

2171 2132 292 281

Ternary 2201 2137 2107 292 211

n = 1000.0
k = 72.0
w = 50.0

q = 1000.0

2295 2224 2155 2137

Ternary 2345 2230 2180 2155 218

4.5 LLXY17 parameter selection

We would also like to comment on parameter selection made for the scheme.
In the following table, we present costs of the attack for the smallest and
largest parameters suggested by [1] for their encryption scheme. Their estimate
security level for the first one is 2106 and 2119. With our best attack, we are
able to break it with an average cost of 225 and 226 which is feasible in practice.

25

Cost of attacks for LLXY17 parameters
Parameters Claimed

security
IDS+MitM
cost

n = 230.0
k = 201.0
w = 28.0
q = 263.0

2106 225

n = 260.0
k = 228.0
w = 31.0
q = 293.0

2119 226

In conclusion, the parameters taken for this scheme need to be seriously
reconsidered.

5 Future work

The main question left to answer is what are the correct parameters to use
in the scheme of [1]. For that, we need to take into account the cost of
our most efficient attack, the attacks discussed in the original paper and the
constraints of our decoding algorithm. After the parameters are computed
we need to see if the scheme is still practical.

In the attack developed for the ternary case we do not take into account
that the error has to contain the same number of positive and negative
coordinates, so our security analysis can be improved for the ternary errors.

6 Acknowledgements

We would like to thank Léo Ducas for suggesting the topic of this project and
for supervising it. We also thank Koen de Boer for helpful discussions. This
research was supported in part by the Cryptology Group of the Centrum
Wiskunde & Informatica and in part by École normale supérieure de Paris.

26

A Proof of Lemma 3

Proof. Since the primes are the same, they are also bounded by the same
constant B so the term 1

4 ln(B)
cancels out in the numerator and denominator.

r̄
(1)
m

r̄
(1)
m′

=
ln(m/2) · ϕ(m′)1/n

ln(m′/2) · ϕ(m)1/n

=
ln(en/2a) · ϕ(m′)1/n

ln(en/2b) · ϕ(m)1/n

=
ϕ(m′)1/n

ϕ(m)1/n

We apply a few classic results to estimate the growth of ϕ(n) [9]:

lim sup
n→∞

ϕ(n)

n
= 1

lim inf
n→∞

ϕ(n) · ln ln(n)

n
= e−γ

where γ is the Euler constant, e−γ = 0.56145948 . . .

lim
n→∞

ϕ(m′)1/n

ϕ(m)1/n
≤

lim sup
n→∞

ϕ(m′)1/n

lim inf
n→∞

ϕ(m)1/n

= lim
n→∞

(
m · ln ln(m′)

m′

)1/n

= lim
n→∞

(ln ln(en/b))1/n = 1

B Calculating the cost of attacks

B.1 ISD: Binary case

The average cost of such an algorithm can be calculated as

Tw2 =
x2 bruteforce cost

Pr(|x2| = w2||x| = w)

To compute the numerator will go through the steps of the algorithm 2:

27

Algorithm 2 ISD attack

1: procedure Decoding(A, y)
2: Reduce A it’s randomized systematic form: (Ik|D)
3: for x2 of weight w2 do
4: compute x1 = t−Dx2
5: if |x1| = w1 and contains only 0, 1 then
6: return Derandomize x = (x1, x2)
7: end if
8: end for
9: goto line 2.

10: end procedure

• Step 3-4: O(k · n2)

• Step 5: O(k · (n− 1) · (k − 1))

• Step 6-11: O(k · w2 ·
(
n−k
w2

)
)

In total we have: k·(n2+(n−1)(k−1)+w2

(
n−k
w2

)
) Computing the denominator

is a simple task as well:

Pr(|x2| = w2||x| = w) =

(
n−k
w2

)
·
(
k
w1

)(
n
w

)
Therefore

Tw2 =
k ·
(
n
w

)
· (n2 + (n− 1)(k − 1) + w2

(
n
w2

)
)(

k
w1

)(
n−k
w2

)
B.2 ISD: Ternary case

Now if we select the errors from {0, 1,−1}n(we will be calling them ternary
errors from now on), the only thing that changes is the number of choices
for x2. The numerator:

k · (n2 + (n− 1)(k − 1) + w2

(
n− k
w2

)
· 2w2)

The denominator:

Pr(|x2| = w2||x| = w) =

(
n−k
w2

)
·
(
k
w1

)(
n
w

)
28

So,

Tw2 =
k ·
(
n
w

)
· (n2 + (n− 1)(k − 1) + w2

(
n
w2

)
· 2w2)(

k
w1

)(
n−k
w2

)
To minimize the average cost we take an optimal value of w2 calculated

with a script.

B.3 MitM: Binary case

Algorithm 3 MitM attack

1: procedure Decoding(A, y)
2: Generate random matrix U
3: (A1|A2)← A · U
4: t = y · U
5: for x1 of weight w

2
do

6: compute A1x1
7: store in the hash table
8: end for
9: for x2 of weight w

2
do

10: compute t− A2x2
11: look up in the hash table for a collision
12: if collision found then
13: return x = (x1, x2)
14: end if
15: end for
16: goto line 2.
17: end procedure

Here we bet that the weight is distributed equally on both sides. So the
average cost can be calculated as follows:

T =
cost of finding a collision

Pr(|x1| = |x2| = w/2||x| = w)

Similarly to the previous attack we compute the cost of running one iteration
of the algorithm 3:

• Step 2: n ∗ k ∗ log(q)

29

• Step 3-4: O(k · n2)

• Step 5-8: O(k · w
2
·
(
n/2
w/2

)
)

• Step 9-15: O(k · w
2
·
(
n/2
w/2

)
)

The time cost we have in total is equal to

T = O(k · (n2 + w

(
n/2

w/2

)
))

Also, we need to store every x1. So, the cost in terms f memory is equal to

M =

(
n/2

w/2

)
· log(n) · w

2

Computing the value of the denominator we obtain:

Pr(|x1| = |x2| = w/2) =

(
n/2
w/2

)2(
n
w

)
The total average time cost:

T =
k ·
(
n
w

)
· (n2 + w

(
n/2
w/2

)
)(

n/2
w/2

)2
B.4 MitM: Ternary case

Numerator(time):

T = k · (n2 + w ·
(
n/2

w/2

)
· 2w/2)

Memory:

M =

(
n/2

w/2

)
· 2w/2 · log(n) · w

2

Denominator:

Pr(|x1| = |x2| = w/2) =

(
n/2
w/2

)2(
n
w

)
Total average time cost:

T =
k ·
(
n
w

)
· 2w/2 · (n2 + w

(
n/2
w/2

)
)(

n/2
w/2

)2
30

B.5 ISD+MitM: Binary case

Algorithm 4 ISD+MitM attack

1: procedure Decoding(A, y)
2: Reduce A it’s randomized systematic form: (Ik|D1|D2)
3: for x1 of weight w2

2
do

4: compute fp(D1x1)
5: store in the hash table
6: end for
7: for x2 of weight w2

2
do

8: compute fp(t−D2x2)
9: look up in the hash table for a collision

10: if collision found then
11: compute D1x1
12: compute x0 = t−D2x2 −D1x1
13: if |x0| = w1 and contains only 0, 1 then
14: return Derandomize x = (x0, x1, x2)
15: end if
16: end if
17: end for
18: goto line 2.
19: end procedure

Let us first compute the cost of running the algorithm when we were lucky
to generate such matrix U that we end up finding a vector x that satisfies
all the coditions. The steps refer to the algorithm 4.

• Step 3-4: O(k · n2)

• Step 5: O(k · (n− 1) · (k − 1))

• Step 6-9: O(k · w2

2
·
(
(n−k)/2
w2/2

)
)

• Step 10-19: O(k · w2

2
·
(
(n−k)/2
w2/2

)
+ k · {# collisions})

In total we have: O(k ·(n2+(n−1)(k−1)+w2

(
(n−k)/2
w2/2

)
++E({# positives})))

Concerning memory cost, we only store the hash table of x1 in a cell with
index fp(D1x1) for every x1. The weight of x1 is small so we only remember

31

the set of nonzero coordinates log(n) · w2

2
. Number of such x1 is equal to(

(n−k)/2
w2/2

)
So the overall complexity is

(
(n−k)/2
w2/2

)
· log(n) · w2

2

The total average cost can be computed with a formula:

T =
k · (n2 + (n− 1)(k − 1) + w2

(
(n−k)/2
w2/2

)
+ E({# collisions}))

Pr(|x0| = w1, |x1| = |x2| = w2

2
||x| = w1 + w2)Pr(there was no false negative collision)

Let us calculate missing parts of the formula:

E({# collisions}) =

(
n

w2

)
· Pr(collision)

=

(
n

w2

)
· 1

bq/pe

n

To simplify the notations for the computation of false negatives the approximate
collision search between y1 := D1x1 and y2 := t−D2x2 let us call T the hash
table of y1’s. The number of boxes to which we map y1 and y2 with our
compression function we denote with b = bq/pe. We assume that y1, y2 are
distributed uniformly over Zkq because otherwise we would be able to obtain
some information on x1 and x2 and speed up the bruteforce which contradicts
our security assumption. ti signify the non-zero coordinates of x0

Pry2(false negative) = Pry2(∃y1 ∈ T : fp(y1) 6= fp(y2), |x0| := |y2 − y1| = w1, x0 ∈ {0, 1}k)
= Pry2(∃x0s.t.|x0| = w1, x0 ∈ {0, 1}k : fp(y2 − x0) 6= fp(y2), y2 − x0 ∈ T)

≤ (union bound) ≤
∑
x0

Pry2(fp(y2 − x0) 6= fp(y2), y2 − x0 ∈ T)

≤ (union bound) ≤
∑
x0

w1∑
i=1

Pry2((y2)ti ∈ {kp+ 1p = 0, . . . b}, y2 − x0 ∈ T)

=
∑
x0

w1∑
i=1

(
n−k/2
w2/2

)
· b
q

qk

=
∑
x0

w1 ·

(
n−k/2
w2/2

)
· b
q

qk

=

(
k

w1

)
· w1 ·

(
n−k/2
w2/2

)
· b
q

qk

32

The probability of getting a correct weight distribution is:

Pr(|x0| = w1, |x1| = |x2| =
w2

2
) =

(
n−k/2
w2/2

)2(k
w1

)(
n
w

)
Putting everything together we obtain the total average cost.

B.6 ISD+MitM: Ternary case

Note that we do not take into account that the error has to contain the same
number of positive and negative coordinates, so the attack we present can
be optimized even further.

Computational cost:

• Step 3-4: O(k · n2)

• Step 5: O(k · (n− 1) · (k − 1))

• Step 6-9: O(k · w2

2
·
(
(n−k)/2
w2/2

)
· 2w2/2)

• Step 10-19: O(k · w2

2
·
(
(n−k)/2
w2/2

)
· 2w2/2 + k · {# positives})

In total we have: O(k·(n2+(n−1)(k−1)+w2

(
(n−k)/2
w2/2

)
·2w2/2+E({# collisions})))

Memory cost:

M =

(
(n− k)/2

w2/2

)
· 2w2/2 · log(n) · w2

2

Total average cost:

T =
k · (n2 + (n− 1)(k − 1) + w2

(
(n−k)/2
w2/2

)
· 2w2/2 + E({# collisions}))

Pr(|x0| = w1, |x1| = |x2| = w2

2
||x| = w1 + w2)Pr(there was no false negative collision)

Missing parts of the formula :

E({# collisions}) =

(
n

w2

)
· 2w2/2 · Pr(collision) =

(
n

w2

)
· 2w2/2 · 1

bq/pe

n

33

Pry2(false negative) = Pry2(∃y1 ∈ t : fp(y1) 6= fp(y2), |x0| := |y2 − y1| = w1, x0 ∈ {0, 1}k)
= Pry2(∃x0s.t.|x0| = w1, x0 ∈ {0, 1}k : fp(y2 − x0) 6= fp(y2), y2 − x0 ∈ T)

≤ (union bound) ≤
∑
x0

Pry2(fp(y2 − x0) 6= fp(y2), y2 − x0 ∈ T)

≤ (union bound) ≤
∑
x0

w1∑
i=1

1(x0=1)Pry2((y2)ti ∈ {kp+ 1p = 0, . . . b},

y2 − x0 ∈ T) + 1(x0=−1)Pry2((y2)ti ∈ {kp− 1p = 0, . . . b}, y2 − x0 ∈ T)

=
∑
x0

w1∑
i=1

(
n−k/2
w2/2

)
· b
q

qk

=
∑
x0

w1 ·

(
n−k/2
w2/2

)
· b
q

qk

=

(
k

w1

)
· 2w1 · w1 ·

(
n−k/2
w2/2

)
· b
q

qk

Pr(|x0| = w1, |x1| = |x2| =
w2

2
) =

(
n−k/2
w2/2

)2(k
w1

)(
n
w

)
Putting everything together we obtain the total average cost.

References

[1] Z. Li, S. Ling, C. Xing, and S. L. Yeo., “On the closest vec-tor problem
for lattices constructed from polynomials and their cryptographic
applications.,” Cryptology ePrint Archive, 2017.

[2] L. Ducas and C. Pierrot, “Polynomial time bounded distance
decodingnear minkowski’s boundin discrete logarithm lattices,” Des.
Codes Cryptogr., pp. 87(8): 1737–1748, 2019.

[3] B. Chor and R. R. Rivest, “A knapsack-type public key cryptosystem
based on arithmetic in finite fields.,” IEEE Trans. Information Theory,
pp. 34(5):901–909, 1988.

34

[4] S. C. Pohlig and M. E. Hellman, “An improved algorithm for
computing logarithms over gf(p) and its cryptographic significance,”
IEEE Transactions on Information Theory, p. 24(1):106–110, 1978.

[5] J. Pollard, “Monte carlo methods for index computations mod p,”
Mathematics of Computation, p. 918–924, 1978.

[6] C. F. Gauss and A. A. Clarke, Disquisitiones Arithmeticae. 1965.

[7] S. Khodadad and M. Monagan, “Fast rational function reconstruction,”
Proceedings of the International Symposium on Symbolic and Algebraic
Computation, ISSAC, pp. 184–190, 2006.

[8] J. G. Joachim von zur Gathen, Modern Computer Algebra. 3 ed., 2013.

[9] G. H. Hardy and E. M. Wright, An Introduction to the Theory of
Numbers. 6 ed., 2009.

35

	Introduction
	Generalization of the construction for integers
	Definition of discrete logarithm lattice
	Computing a basis of the lattice
	Parity check representations (Step 1.)
	Dual generating set (Step 2.)
	Eliminating linear dependencies using elementary matrix transformations (Step 3.)
	Primal basis from dual basis (Step 4.)

	Complexity analysis
	Decoding radius
	Was it all worth it?

	New Construction for Polynomial Lattices
	Definition of Polynomial Lattices
	Lattice computation for polynomials
	Parity check representation 1.
	Dual basis 2.
	Recovering Primal basis from Dual 3 (Theory).
	Recovering Primal basis from Dual 3 (Practice).

	Decoding algorithm modification
	Rational function reconstruction 3
	Factorization by trial division

	Decoding radius
	Only positive discrete error
	Arbitrary discrete error
	Normalized radius

	Comparing the decoding radius of the algorithms.

	Cryptanalysis of the LLXY17 cryptosystem.
	Information Set Decoding Attack
	Meet in the Middle
	Combining the two approaches.
	Adding negative errors
	LLXY17 parameter selection

	Future work
	Acknowledgements
	Proof of Lemma 3
	Calculating the cost of attacks
	ISD: Binary case
	ISD: Ternary case
	MitM: Binary case
	MitM: Ternary case
	ISD+MitM: Binary case
	ISD+MitM: Ternary case

