
Edwards curves and FFT-based multiplication

Pavel Atnashev, George Woltman
patnashev@gmail.com, woltman@alum.mit.edu

August 15, 2021

Abstract This paper introduces fast algorithms for performing group op-

erations on Edwards curves using FFT-based multiplication. Previously

known algorithms can use such multiplication too, but better results can

be achieved if particular properties of FFT-based arithmetic are accounted

for. The introduced algorithms perform operations in extended Edwards

coordinates and in Montgomery single coordinate.

1 Introduction

Edwards curves [1] and twisted Edwards curves [2] are families of elliptic curves with the fastest known group

operations. They’ve become the elliptic curves of choice in many applications, particularly in cryptography.

FFT-based multiplication is a general term for a range of algorithms performing multiplication of two

numbers and, in some cases, fast modulo operation [3]. Despite the theoretical advantage of FFT-based

algorithms, they outperform classical multiplication methods at number sizes way too big to be of interest for

cryptography or any other real-world application. Still, they find their use in number theory and experimental

mathematics.

One can find many formulas related to Edwards curves in the literature. Most of the papers consider

multiplication and squaring as atomic operations and express the cost of an algorithm as the number of

multiplications and squarings. But FFT-based multiplication is a complex multi-stage process, some stages

of which are independent of others and can be reused. Some operations can be stretched through the whole

algorithm, making it hard to estimate how many multiplications are happening there. Different metrics and

different algorithms are needed to get the best performance of FFT-based calculations on modern computers.

In this paper we introduce optimized algorithms to perform group operations on Edwards curves modulo

numbers from 1 000 to 100 000 000 digits long. For smaller numbers computational complexity is minimized.

For larger numbers an additional problem of data transfers is investigated, because even a trivial operation

like copy becomes expensive. Yet, thanks to FFT-based multiplication, one can run elliptic curve calculations

for numbers this big in reasonable time.

2 Edwards curves

A twisted Edwards curve is defined by:

ax2 + y2 = 1 + dx2y2

where a and d are the curve parameters. Edwards curves are a special case of twisted Edwards curves with

a = 1.

There are several coordinate systems to represent and perform operations on curves without the need to

do expensive division. Extended Edwards coordinates are defined as:

(X,Y, Z, T) : aX2 + Y 2 = Z2 + dT 2, x =
X

Z
, y =

Y

Z
, T =

XY

Z
= xyZ

1

Projective Edwards coordinates (X,Y, Z) can be obtained by just abandoning T , which is a feature widely

used in our algorithms. Obtaining affine coordinates (x, y) requires division by Z and is called normalization.

Hisil, Wong, Carter, and Dawson in [4] introduced doubling and addition formulas in extended coordinates

which do not require the parameter d. Doubling can be performed as 2(X1, Y1, Z1, T1) = (X3, Y3, Z3, T3)

where

X3 = 2X1Y1(2Z2
1 − Y 2

1 − aX2
1),

Y3 = (Y 2
1 + aX2

1)(Y 2
1 − aX2

1),

Z3 = (Y 2
1 + aX2

1)(2Z2
1 − Y 2

1 − aX2
1),

T3 = 2X1Y1(Y 2
1 − aX2

1). (1)

Several things can be noted here. First, each formula is a multiple of two values, with only 4 distinct values

in all formulas. Second, if a = 1 the formulas become completely parameter-free. Third, T1 is not used

at all. The same formulas can be used with both extended and projective input, and can produce either

extended or projective output. One can even perform a series of projective doublings with the final extended

doubling, which is exactly what is needed in signed window scalar multiplication.

Addition can be performed as (X1, Y1, Z1, T1) + (X2, Y2, Z2, T2) = (X3, Y3, Z3, T3) where

X3 = (X1Y2 − Y1X2)(T1Z2 + Z1T2),

Y3 = (Y1Y2 + aX1X2)(T1Z2 − Z1T2),

Z3 = (Y1Y2 + aX1X2)(X1Y2 − Y1X2),

T3 = (T1Z2 + Z1T2)(T1Z2 − Z1T2). (2)

Here again each formula is a multiple of two values, with only 4 distinct values in all formulas. But both T1

and T2 are used. On the other hand, there are clear benefits if at least one of the inputs is normalized.

Montgomery in [5] introduced doubling and differential addition formulas for the single coordinate xM ,

which are significantly faster than group operations for both coordinates. While Edwards curves perform

better in scalar multiplication, there are still applications where differential addition of a single coordinate is

enough, like stage 2 of ECM factorization. Since Montgomery curves are birationally equivalent to twisted

Edwards curves, one can easily rewrite Montgomery formulas with the following transformations:

YEd = XM − ZM ,

ZEd = XM + ZM ,

a/(a− d) = (A + 2)/4.

Here (YEd, ZEd) is a projective y-coordinate on a twisted Edwards curve with parameters a and d, (XM , ZM)

is a projective x-coordinate on a Montgomery curve with parameter A.

Then y-coordinate doubling can be performed as 2(Y1, Z1) = (Y3, Z3) where

A3 = Z2
1 (Y 2

1 −
d

a
Y 2
1),

B3 = (Z2
1 − Y 2

1)(Z2
1 −

d

a
Y 2
1),

Y3 = A3 −B3,

Z3 = A3 + B3. (3)

2

y-coordinate differential addition can be performed as (Y1, Z1)− (Y2, Z2) = (Y0, Z0), (Y1, Z1)+(Y2, Z2) =

(Y3, Z3) where

A3 = (Z0 − Y0)(Y1Z2 + Z1Y2)2,

B3 = (Z0 + Y0)(Y1Z2 − Z1Y2)2,

Y3 = A3 −B3,

Z3 = A3 + B3. (4)

3 FFT-based multiplication

There are several flavours of FFT-based multiplication algorithms. But they all have the same basic idea:

input numbers are transformed into vectors of n independent residues, per-element multiplication performed,

the resulting vector is inversely transformed into a number, carry is propagated from least significant to most

significant word of the output. The complexity of transforms is O(n log n log log n), while all other steps are

O(n). That makes transforms the most computationally expensive part of multiplication.

A squaring requires these steps: forward transform, per-element squaring, inverse transform, carry propa-

gation. A multiplication of two different numbers requires more steps: forward transform of the first number,

forward transform of the second number, per-element multiplication, inverse transform, carry propagation.

A squaring requires 2 transforms while a multiplication requires 3 transforms, which is a significant difference

in performance. On the other hand, once a forward transform is performed, the vector can be used in multiple

operations. Multiplication of previously transformed numbers requires only a single inverse transform. This

is why the count of multiplications and squarings is an inaccurate metric for FFT-based algorithms. The

count of transforms is much more relevant, minimizing transforms requires a different approach to algorithm

design.

Another area of concern is the size of data structures. For relatively small numbers, merely thousands

digits long, all necessary data can fit into fast caches of modern processor cores. Performance is limited only

by the core’s computing power. For numbers tens of millions digits long, vectors become so big that the

only place where they can reside is slow main memory. A core can spend most of its time waiting for data

to arrive from main memory.

In practice this means that FFT-based arithmetic libraries need to provide interfaces that allow algorithms

to exploit opportunities to reduce memory accesses. Consider a simple vector operation (a+b)·c. A traditional

approach is to compute a temporary vector a+b, then multiply it by c, which requires 4 reads, 2 writes total.

A better approach is to perform (a + b) · c per-element, which requires 3 reads, 1 write. A programming

interface can become bloated with such functions, but it’s a small price to pay for improved performance.

Unfortunately, algorithms that save writes for huge numbers may not be optimal for smaller numbers.

If an algorithm needs to compute (a + b) · c and (a + b) · d, it may be beneficial to compute a + b twice

for 6 reads, 2 writes total, instead of using a temporary vector resulting in 6 reads, 3 writes. For smaller

numbers where writes are fast computing a+ b twice becomes an unnecessary processor load. In some cases

two versions of the same algorithm need to be written, one that saves writes and one that saves processor

instructions.

As demonstrated by previous examples, transformed vectors can be used not only for multiplication

and squaring, but also addition and subtraction, the same field operations that can be performed with the

original number. The only limitation here is that words of the output must be capable of holding enough

data before carry is propagated. Since vector elements are independent of each other, the concept of carry

is meaningless for transformed data. Only after applying inverse transform one can discover that a word of

3

the output is overflowing. The amount of data that fits into a word is determined by the underlying number

system and by the size of transform n. Multiplication routines choose transform size to be big enough to

hold the result of a multiplication. But usually there is spare “word space” to hold more data, because n

is not fine-grained. Some libraries require n to be a power of 2, others allow more flexibility, but still n

increments in large steps. Making use of that additional word space when available can greatly speed up a

calculation.

4 Algorithms

For the purpose of this paper we are introducing an ideal programming interface which offers functions

common to all FFT-based algorithms. Each function is considered a black box.

Let’s define the following functions:

transform Performs a forward transform.

inv transform Performs an inverse transform.

carry Propagates carry of a number and performs modulo operation (if necessary).

carry with mul It is trivial to multiply a result by a small constant during carry propagation for a negligible

extra cost.

safe Boolean function that returns true if a given operation is allowed without intermediate carry propa-

gation. In our experience with our own FFT-based arithmetic library, we have found that if the a2

operation is safe, then a · b and (a + b) · c are also safe. For the rest of this paper it is assumed that

the library in use guarantees a2, a · b, (a + b) · c operations are all safe.

Transformed values are denoted with a line over the variable: X. It is allowed that the transform is

performed in-place, overwriting untransformed value. The algorithms never try to access original variable

once it was transformed. There’s also an assumption that writing into a variable participating in operation

is faster than into an unrelated variable.

Operations on vectors are per-element, with the minimum possible amount of reads and a single write.

± operation performs addition and subtraction, producing two outputs that can be written over the original

two values.

Algorithm costs can be expressed in four metrics: transforms, carries, reads and writes.

4

The following functions can be used with any algorithm:

Algorithm 1: Naive implementation of arithmetic operations

1 function square(X)

2 begin

3 return carry(inv transform(transform(X)2));

4 end

5 function mul(X,Y)

6 begin

7 X ← transform(X);

8 return carry(inv transform(transform(Y) ·X));

9 end

10 function add(X,Y)

11 begin

12 return carry(X + Y);

13 end

14 function add transformed with carry(X,Y)

15 begin

16 X ← inv transform(X);

17 Y ← inv transform(Y);

18 return transform(carry(X + Y));

19 end

Note that multiplication is implemented with one transformed value written to memory and the other

used on the fly. It is obviously a benefit not to store temporary data, but we still do it for one of the values.

The reason for this is the way caches work. Two sufficiently large transforms start to compete with each

other for cache space, degrading overall performance. It is often better to perform them sequentially.

From the above one can see that squaring costs 2 transforms, 1 carry, 1 read, 1 write. Multiplication costs

3 transforms, 1 carry, 3 reads, 2 writes. Addition costs 1 carry, 2 reads, 1 write. Addition of transformed

values with carry is an expensive operation that should be avoided. It is given here as an example of bad

algorithm design.

4.1 Doubling in extended Edwards coordinates

The best published algorithm [4, section 3.3] performs doubling in projective Edwards coordinates using

4 squarings, 3 multiplications, 6 additions/subtractions. A naive implementation costs 17 transforms, 13

carries, 25 reads and 16 writes.

Algorithm 2 improves on the naive implementation of doubling in projective Edwards coordinates using

14 transforms, 9 carries, 22 reads, and 17 writes (a savings of 4 transforms, 4 carries, 3 reads, a loss of 1

write). Algorithm 2 achieves these savings by using a library that allows saving transformed values, carry

operations with an optional small multiplier, and a single ± operator to save two reads.

Algorithm 2 implements (1) using 14 transforms in projective coordinates and 15 transforms in extended

coordinates for Edwards curves, 16 transforms in projective coordinates and 17 transforms in extended

coordinates for twisted Edwards curves. The algorithm keeps intermediate values in the output variables

5

and requires only one temporary variable (T3 in projective case and tmp in extended case).

Algorithm 2: Doubling, less transforms

Input: X1, Y1, Z1, f lag extended, a=transform(a).

Output: X3, Y3, Z3, T3 (optional)

1 X1 ← transform(X1);

2 Y 1 ← transform(Y1);

3 T3 ← carry with mul(inv transform(X1 · Y 1), 2);

4 Z1 ← transform(Z1);

5 Z3 ← carry with mul(inv transform(Z
2

1), 2);

6 X3 ← carry(inv transform(X
2

1));

7 if a then

8 X3 ← transform(X3);

9 X3 ← carry(inv transform(X3 · a));

10 end

11 Y3 ← carry(inv transform(Y
2

1));

12 Y3, X3 ←← carry(Y3 ±X3);

13 Z3 ← Z3 − Y3;

14 X3 ← transform(X3);

15 Y 3 ← transform(Y3);

16 Z3 ← transform(Z3);

17 T 3 ← transform(T3);

18 if flag extended then tmp ← carry(inv transform(X3 · T 3));

19 T3 ← carry(inv transform(Z3 · T 3));

20 Z3 ← carry(inv transform(Y 3 · Z3));

21 Y3 ← carry(inv transform(X3 · Y 3));

22 swap(X3, T3);

23 if flag extended then swap(T3, tmp);

Note that if the input is normalized, line 5 can be replaced with a simple Z3 = 2. If a has a numerically

small value, lines 6-10 can be replaced with a single X3 ← carry with mul(inv transform(X
2

1), a).

The dual carry operation on line 12 of Algorithm 2 can often be safely eliminated. Algorithm 3 uses 7,

8, or 9 carry operations (a savings of up to 2 carries over Algorithm 2). Algorithm 3 requires a library that

tells us when adds-without-carries can be safely used in future multiplication operations.

Lines 4 & 5 in Algorithm 2 can be combined saving one write and subsequent read provided the library

has a more robust interface that allows this combination.

6

Algorithm 3 uses 21 reads and 16 writes (saving 1 read and 1 write).

Algorithm 3: Doubling, less carries

Input: X1, Y1, Z1, f lag extended, a=transform(a).

Output: X3, Y3, Z3, T3 (optional)

1 X1 ← transform(X1);

2 Y 1 ← transform(Y1);

3 T3 ← carry with mul(inv transform(X1 · Y 1), 2);

4 Z3 ← carry with mul(inv transform(transform(Z1)2), 2);

5 X3 ← carry(inv transform(X
2

1));

6 if a then X3 ← carry(inv transform(transform(X3) · a));

7 Y3 ← carry(inv transform(Y
2

1));

8 if safe((a + b + c) · (d + e)) then // Ensures line 24 is safe

9 Y3, X3 ←← Y3 ±X3;

10 Z3 ← Z3 − Y3;

11 else if safe((a + b) · (c + d)) then // Ensures line 25 is safe

12 Y3, X3 ←← Y3 ±X3;

13 Z3 ← carry(Z3 − Y3);

14 else // Always safe

15 Y3, X3 ←← carry(Y3 ±X3);

16 Z3 ← Z3 − Y3;

17 end

18 X3 ← transform(X3);

19 Y 3 ← transform(Y3);

20 Z3 ← transform(Z3);

21 T 3 ← transform(T3);

22 if flag extended then tmp ← carry(inv transform(X3 · T 3));

23 T3 ← carry(inv transform(Z3 · T 3));

24 Z3 ← carry(inv transform(Y 3 · Z3));

25 Y3 ← carry(inv transform(X3 · Y 3));

26 swap(X3, T3);

27 if flag extended then swap(T3, tmp);

One can go even further. It is possible to store transformed values for reuse and actually use them at the

same time. Such an operation has two outputs, which are denoted by two ← symbols.

7

Algorithm 4 uses 17 reads and 14 writes, a savings of 4 reads and 2 writes over Algorithm 3.

Algorithm 4: Doubling, less reads

Input: X1, Y1, Z1, f lag extended, a=transform(a).

Output: X3, Y3, Z3, T3 (optional)

1 X1 ← transform(X1);

2 T3 ← carry with mul(inv transform((Y 1 ← transform(Y1)) ·X1), 2);

3 Z3 ← carry with mul(inv transform(transform(Z1)2), 2);

4 X3 ← carry(inv transform(X
2

1));

5 if a then X3 ← carry(inv transform(transform(X3) · a));

6 Y3 ← carry(inv transform(Y
2

1));

7 if safe((a + b + c) · (d + e)) then // Ensures lines 21,27 are safe

8 Y3, X3 ←← Y3 ±X3;

9 Z3 ← Z3 − Y3;

10 else if safe((a + b) · (c + d)) then // Ensures lines 22,28 are safe

11 Y3, X3 ←← Y3 ±X3;

12 Z3 ← carry(Z3 − Y3);

13 else // Always safe

14 Y3, X3 ←← carry(Y3 ±X3);

15 Z3 ← Z3 − Y3;

16 end

17 if flag extended then

18 T 3 ← transform(T3);

19 tmp ← carry(inv transform((X3 ← transform(X3)) · T 3));

20 T3 ← carry(inv transform((Z3 ← transform(Z3)) · T 3));

21 Z3 ← carry(inv transform((Y 3 ← transform(Y3)) · Z3));

22 Y3 ← carry(inv transform(X3 · Y 3));

23 swap(X3, tmp);

24 else

25 Z3 ← transform(Z3);

26 T3 ← carry(inv transform(transform(T3) · Z3));

27 Z3 ← carry(inv transform((Y 3 ← transform(Y3)) · Z3));

28 Y3 ← carry(inv transform(transform(X3) · Y 3));

29 end

30 swap(X3, T3);

Finally, a few more writes can be saved if the library allows computing ab + cd in a single operation.

Note that it is not always safe to compute a2 + b2 without doing a carry operation, because due to its nature

squaring tends to amplify fringe cases. It limits applicability of this last algorithm, although it’s still useful

in many cases.

Algorithm 5 uses 17 reads and 12 writes, a savings of 2 writes over Algorithm 4. Algorithm 5 assumes a = 1

8

and performs several subtractions two times, trading computation efficiency for memory access efficiency.

Algorithm 5: Doubling, less writes

Input: X1, Y1, Z1, f lag extended.

Output: X3, Y3, Z3, T3 (optional)

1 if not safe(a2 + b2) then goto Algorithm 4; // Ensures line 5 is safe

2 X1 ← transform(X1);

3 T3 ← carry with mul(inv transform((Y 1 ← transform(Y1)) ·X1), 2);

4 Z3 ← carry with mul(inv transform(transform(Z1)2), 2);

5 Y3 ← carry(inv transform(Y
2

1 + X
2

1));

6 X3 ← carry with mul(inv transform(X
2

1), 2);

7 Z3 ← transform(Z3);

8 Y 3 ← transform(Y3);

9 X3 ← transform(X3);

10 if flag extended then

11 tmp ← carry(inv transform((T 3 ← transform(T3)) · (Y 3 −X3)));

12 T3 ← carry(inv transform(T 3 · (Z3 − Y 3)));

13 Z3 ← carry(inv transform(Y 3 · (Z3 − Y 3)));

14 Y3 ← carry(inv transform(Y 3 · (Y 3 −X3)));

15 swap(X3, tmp);

16 else

17 T3 ← carry(inv transform(transform(T3) · (Z3 − Y 3)));

18 Z3 ← carry(inv transform(Y 3 · (Z3 − Y 3)));

19 Y3 ← carry(inv transform(Y 3 · (Y 3 −X3)));

20 end

21 swap(X3, T3);

All four algorithms may be useful depending on multiplication library, hardware architecture, cache sizes

and number sizes. We pay so much attention to doubling algorithms because doubling takes most of the

runtime of windowed scalar multiplication with sufficiently big window.

4.2 Addition in extended Edwards coordinates

The typical use case for addition is in left-to-right scalar multiplication. After a doubling or a series of

doublings, a curve point from precomputed dictionary corresponding to the current bit string is added to

the current curve point [6]. It is assumed that all values stored in the dictionary are already transformed,

and those transforms are not a part of the addition algorithm.

To compute (2) one needs 4 intermediate values: T1Z2 ± Z1T2, Y1Y2 + aX1X2 and X1Y2 − Y1X2. The

first two are trivial to compute, especially if Z2 = 1. The last two require a lot of multiplication. The

best published algorithm [4, section 3.2] uses a smart trick to save one multiplication for the cost of three

additions. It can be adapted to FFT-based multiplication, costing 16 transforms in projective coordinates,

with an inevitable complexity of tracking carry operations. But if the library allows computing ab + cd in

a single operation, it all becomes unnecessary. Straightforward computation of the formulas becomes the

safest and the fastest method.

Algorithm 6 implements (2) using 15 transforms in projective coordinates and 16 transforms in extended

coordinates for Edwards curves, 17 transforms in projective coordinates and 18 transforms in extended

coordinates for twisted Edwards curves. Besides addition it also implements subtraction by multiplying X2

9

and T2 by -1. Normalization of the dictionary saves two transforms in all cases.

Algorithm 6: Addition/Subtraction

Input: X1, Y1, Z1, T1, X2, Y 2, Z2, T 2, f lag subtraction, flag extended, a=transform(a).

Output: X3, Y3, Z3, T3 (optional)

1 if flag subtraction then

2 Z3 ← carry with mul(inv transform(transform(Z1) · T 2), -1);

3 else

4 Z3 ← carry(inv transform(transform(Z1) · T 2));

5 end

6 T3 ← carry(inv transform(transform(T1) · Z2));

7 if not flag extended or safe((a + b) · (c + d)) then // Ensures line 30 is safe

8 T3, Z3 ←← T3 ± Z3;

9 else

10 T3, Z3 ←← carry(T3 ± Z3);

11 end

12 X1 ← transform(X1);

13 Y 1 ← transform(Y1);

14 tmp ← X1;

15 if a then

16 tmp ← carry(inv transform(a · tmp));

17 tmp ← transform(tmp);

18 end

19 if flag subtraction then

20 X3 ← carry(inv transform(X1 · Y 2 + Y 1 ·X2));

21 Y3 ← carry(inv transform(Y 1 · Y 2 − tmp ·X2));

22 else

23 X3 ← carry(inv transform(X1 · Y 2 − Y 1 ·X2));

24 Y3 ← carry(inv transform(Y 1 · Y 2 + tmp ·X2));

25 end

26 X3 ← transform(X3); // X1Y2 − Y1X2

27 Y 3 ← transform(Y3); // Y1Y2 + aX1X2

28 Z3 ← transform(Z3); // T1Z2 − Z1T2

29 T 3 ← transform(T3); // T1Z2 + Z1T2

30 if flag extended then tmp ← carry(inv transform(Z3 · T 3));

31 Z3 ← carry(inv transform(Y 3 · Z3));

32 T3 ← carry(inv transform(X3 · T 3));

33 Y3 ← carry(inv transform(X3 · Y 3));

34 swap(Y3, Z3);

35 swap(X3, T3);

36 if flag extended then swap(T3, tmp);

Note that because safe(ab + cd) ≡ safe((a + b) · c) there should always be enough word space to perfrom

24-25, 27-28 operations safely. Line 6 can be replaced with T3 ← T1 if Z2 = 1.

10

4.3 Doubling of projective Edwards y-coordinate

The following algorithm implements (3) using 10 transforms if there’s enough word space and 11 transforms

otherwise. Also, A3 and B3 may be reused in differential addition as the difference, in that case it is benefitial

to transform them before computing Y3 and Z3 to save two transforms later.

Algorithm 7: Doubling of y-coordinate

Input: Y1, Z1, f lag transform, d=transform(d
a).

Output: Y3, Z3, A3, B3

1 Y3 ← carry(inv transform(transform(Y1)2));

2 Z3 ← carry(inv transform(transform(Z1)2));

3 if safe((a + b) · (c + d)) then // Ensures line 15 is safe

4 Y 3 ← transform(Y3);

5 Z3 ← transform(Z3);

6 B3 ← Z3 − Y 3;

7 else

8 B3 ← carry(Z3 − Y3);

9 Y 3 ← transform(Y3);

10 Z3 ← transform(Z3);

11 B3 ← transform(B3);

12 end

13 A3 ← carry(inv transform(d · Y 3));

14 A3 ← transform(A3);

15 B3 ← carry(inv transform((Z3 −A3) ·B3));

16 A3 ← carry(inv transform((Y 3 −A3) · Z3));

17 if flag transform and safe((a + b)2) then // Ensures lines 1-2 are safe

18 A3 ← transform(A3);

19 B3 ← transform(B3);

20 Z3, Y 3 ←← A3 ±B3;

21 else

22 Z3, Y3 ←← carry(A3 ±B3);

23 end

Note that safe((a+b)2) requires a lot of word space and may not be true often. Lines 3-12 are an example

why word space matters.

11

4.4 Differential addition of projective Edwards y-coordinates

The following algorithm implements (4) using 12 transforms. Here too A3 and B3 can be reused later.

Algorithm 8: Differential addition of y-coordinates

Input: Y1, Z1, Y 2, Z2, A0 = Z0 + Y 0, B0 = Z0 − Y 0, flag transform.

Output: Y3, Z3, A3, B3

1 Y3 ← carry(inv transform(transform(Y1) · Z2));

2 Z3 ← carry(inv transform(transform(Z1) · Y 2));

3 if safe((a + b)2) then // Ensures lines 12-13 are safe

4 Y3, Z3 ←← Y3 ± Z3;

5 else

6 Y3, Z3 ←← carry(Y3 ± Z3);

7 end

8 Y3 ← carry(inv transform(transform(Y3)2));

9 Z3 ← carry(inv transform(transform(Z3)2));

10 A3 ← carry(inv transform(transform(Y3) ·B0));

11 B3 ← carry(inv transform(transform(Z3) ·A0));

12 if flag transform and safe((a + b) · (c + d)) then // Ensures lines 1-2 are safe

13 A3 ← transform(A3);

14 B3 ← transform(B3);

15 Z3, Y 3 ←← A3 ±B3;

16 else

17 Z3, Y3 ←← carry(A3 ±B3);

18 end

Note that if Z2 = 1, it saves two transforms but complicates tracking of carry.

An alternative ending is possible here.

Algorithm 9: Alternative ending of differential addition of y-coordinates

10 Y 3 ← transform(Y3);

11 Z3 ← transform(Z3);

12 Y3 ← carry(inv transform(B0 · Y 3 −A0 · Z3));

13 Z3 ← carry(inv transform(B0 · Y 3 + A0 · Z3));

14 if flag transform and safe((a + b) · (c + d)) then // Ensures lines 1-2 are safe

15 Y 3 ← transform(Y3);

16 Z3 ← transform(Z3);

17 A3, B3 ←← Z3 ± Y3;

18 else

19 A3, B3 ←← carry(Z3 ± Y3);

20 end

5 Implementation

5.1 FFT library interface

There is one more important optimization an FFT library should provide that saves one read and write in

many situations.

12

The description of squaring in Algorithm 1 was a simplification of the work an FFT library performs

when an input number is too large to fit in the CPU caches. FFT libraries use some variation of D.H Bailey’s

multi-pass approach [7]. A squaring operation consists of three steps designed to do as much work as possible

while data is in the CPU caches.

1. Read a block of data into the CPU cache, perform first half of the forward transform, write results,

repeat until all data processed.

2. Read a block of data into the CPU cache, perform second half of the forward transform, point-wise

squaring, perform first half of the inverse transform, write results, repeat until all data processed.

3. Read a block of data into the CPU cache, perform second half of the inverse transsform, carry propa-

gation, write results, repeat until all data processed.

Thus, data is read and written three times.

Multiplication is similar, replacing point-wise squaring with point-wise multiplication by a second already-

transformed input. Multiplication of large numbers requires 4 reads and 3 writes.

If the result of a squaring or multiplication will be transformed it is advantageous to change step 3 to also

do the first half of a forward transform before writing results. When the result is later used in a subsequent

squaring or multiplication step 1 can be skipped entirely, saving one read and write. In practice, we’ve seen

this optimization yield performance improvements of over 20%.

Below is a recap of the desirable functions an FFT library should provide.

Addition/subtraction routines:

X ← A + B; // two versions with and without carry

X ← A−B; // two versions with and without carry

X, Y ←← A±B; // two versions with and without carry

X ← A + B; // no carry

X ← A−B; // no carry

X, Y ←← A±B; // no carry

The following FFT multiplication routines are desirable where

• Carry operation supports an optional small multiplier

• One of the inputs can be in an untransformed state, all other inputs must be in a transformed state

• If one of the inputs is in an untransformed state, it is transformed and can optionally be written back

to memory for later use

• Optionally start the forward FFT on the result

X ← transform(A);

A ← carry(inv transform(X · Y));

A ← carry(inv transform((X + Y) · Z));

A ← carry(inv transform((X − Y) · Z));

A ← carry(inv transform(X · Y + W · Z));

A ← carry(inv transform(X · Y −W · Z));

bool ← safe(various multiplication operations);

It may seem onerous to support so many multiplication operations. In practice, all that is required is

replacing the point-wise squaring in step 2 above, while reading auxiliary sources in as cache-friendly way

as possible.

13

It is left as an exercise to the reader to modify the algorithms presented to take advantage of a start-

next-forward-transform option. Note that the option is not available if the result is later used in an addi-

tion/subtraction operation with carry.

5.2 Performance data

All presented algorithms were implemented in Prefactor program (https://github.com/patnashev/prefactor)

using GWNum FFT library (https://www.mersenne.org/download/), which was significantly extended to

provide a better interface for such algorithms.

The following table shows performance data for sequential doubling in projective Edwards coordinates

modulo numbers of different size. The data was obtained on a CPU with 8 MB L3 cache supporting AVX

instruction set. Smaller values are better.

Table 1. Doubling performance.

Number FFT size
safe

(a + b + c) · (d + e)
Algorithm 2 Algorithm 3 Algorithm 4 Algorithm 5

F12 = 24096 + 1 192 true 0.728 0.701 0.657 0.680

921 · 22937988 + 1 200K true 1 343 1 253 1 214 1 217

243112609 − 1 2304K true 21 724 19 959 18 935 18 812

243512653 − 1 2304K false 21 671 22 209 21 156 18 789

For smaller numbers like F12 additional computational complexity of Algorithm 5 doesn’t pay off. But

for larger numbers Algorithm 5 performs either as well as Algorithm 4 or significantly better in certain

circumstances. Note that the two Mersenne numbers are similar in size and have statistically identical

performance in Algorithms 2 and 5, but not Algorithms 3 and 4. That is because some operations become

unsafe for the larger number. Poor performance of Algorithm 3 is explained by start-next-forward-transform

option available for Algorithm 2 which outweighs less carries in Algorithm 3.

14

https://github.com/patnashev/prefactor
https://www.mersenne.org/download/

References

[1] Harold M. Edwards. A normal form for elliptic curves. Bulletin of the American Mathematical Society,

44, pages 393–422, 2007. https://doi.org/10.1090/S0273-0979-07-01153-6.

[2] Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Christiane Peters. Twisted Edwards

Curves. Cryptology ePrint Archive, Report 2008/013, 2008. https://eprint.iacr.org/2008/013.

[3] Richard Crandall and Barry Fagin. Discrete weighted transforms and large-integer arith-

metic. Mathematics of Computation, 62, pages 305–324, 1994. https://doi.org/10.1090/

S0025-5718-1994-1185244-1.

[4] Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson. Twisted Edwards Curves Revis-

ited. Cryptology ePrint Archive, Report 2008/522, 2008. https://eprint.iacr.org/2008/522.

[5] Peter L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization. Mathematics of

Computation, 48, pages 243–264, 1987. https://doi.org/10.1090/S0025-5718-1987-0866113-7.

[6] Christophe Doche. Exponentiation. Handbook of Elliptic and Hyperelliptic Curve Cryptography, pages

145–168, 2006. http://hyperelliptic.org/HEHCC/chapters/chap09.pdf.

[7] D. H. Bailey. FFTs in External of Hierarchical Memory. Supercomputing ’89: Proceedings of the 1989

ACM/IEEE conference on Supercomputing, pages 234–242, 1989. https://doi.org/10.1145/76263.

76288.

15

https://doi.org/10.1090/S0273-0979-07-01153-6
https://eprint.iacr.org/2008/013
https://doi.org/10.1090/S0025-5718-1994-1185244-1
https://doi.org/10.1090/S0025-5718-1994-1185244-1
https://eprint.iacr.org/2008/522
https://doi.org/10.1090/S0025-5718-1987-0866113-7
http://hyperelliptic.org/HEHCC/chapters/chap09.pdf
https://doi.org/10.1145/76263.76288
https://doi.org/10.1145/76263.76288

	Introduction
	Edwards curves
	FFT-based multiplication
	Algorithms
	Doubling in extended Edwards coordinates
	Addition in extended Edwards coordinates
	Doubling of projective Edwards y-coordinate
	Differential addition of projective Edwards y-coordinates

	Implementation
	FFT library interface
	Performance data

