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Abstract. We construct a simple public-coin zero-knowledge proof sys-
tem solely based on symmetric primitives, from which we can apply the
Fiat-Shamir heuristic to make it non-interactive. Our construction can
be regarded as a simplified cut-and-choose-based malicious secure two-
party computation for the zero-knowledge functionality. Our protocol is
suitable for pedagogical purpose for its simplicity (code is only 728 lines).
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1 Introduction

Zero-knowledge proof (ZK) is a fundamental cryptographic primitive which al-
lows a prover to convince a verifier of the membership of an instance x in any
NP language without revealing any information about its witness w [14]. Due
to its theoretical significance and practical applications (e.g., the use of ZK in
nuclear disarmament [13]), ZK is also a central topic in cryptographic research.
In particular, a rich body of research [21,25,16,11,15,7,27,30] (and many oth-
ers) has successfully constructed succinct argument systems with proof size and
verification complexity sub-linear in the size of the statement.

Despite the achievements, many current efficient ZK protocols have high
prover complexity in order to facilitate the succinct property. While this cap-
tures the performance requirement in most cases, we argue that a lightweight
prover is crucial for some applications as well. Imagine the following scenario:
An computationally weak IoT device captures possibly sensitive data (e.g., bio-
metric) from its sensors and need to prove some properties on the captured data
to a powerful server. Due to the privacy requirement, it cannot simply send the
data to the server. In this case, a zero-knowledge protocol that has low prover’s
complexity would be ideal.

1.1 Our Construction

Here we briefly introduce the intuitions of our construction in Figure 1. We con-
sider ZK as a special case of malicious secure two-party computation. Therefore
we try to optimize cut-and-choose-based 2PC by utilizing features specific to the
zero-knowledge setting.



Prove(1κ, Cx, w)

for i := 1 to 2κ do

(GCi, ei, di)← Gb(1κ, Cx)

endfor

b := H({GCi, di})
z := {}
for i := 1 to 2κ do

if bi = 0 then

z ← z ∪ ei
elseif bi = 1 then

Wi := En(ei, w)

z ← z ∪Wi

fi

endfor

return π = ({GCi, di}, z)

Verify(1κ, Cx, π)

b := H({GCi, di})
for i := 1 to 2κ do

if bi = 0 then

if Ve(GCi, ei, di, Cx) = 0 then

return false

fi

fi

if bi = 1 then

if De(di,Ev(GCi,Wi)) = 0 then

return false

fi

fi

endfor

return true

Fig. 1. Our post quantum NIZK in a nutshell, where H is a random oracle, G =
(Gb,En,De,Ev, ev,Ve) is a garbling scheme. κ is the security parameter.

Informally, a cut-and-choose-based 2PC consists of those steps: Firstly, the
garbler generates garbled circuits and sends them to the evaluator. The evaluator
randomly chooses a subset of garbled circuits and asks the garbler to open them.
On receiving the seeds, the evaluator checks those garbled circuits are generated
correctly. Then the two parties execute some oblivious transfers (OT) in order
to let the evaluator obtain the garbled label corresponding to his private input.
The evaluator also needs additional operations to make sure the garbler’s inputs
are consistent. Finally, the evaluator accepts the majority outcome of garbled
circuits.

Let us try to apply this protocol to zero-knowledge proof directly. Unlike
previous constructions [20], we let the prover and verifier be the garbler and
evaluator respectively. This change gives rise to several advantages:

1. We no longer need OT because the verifier has no private input. This elim-
inates public key encryption and leaves only symmetric primitives. We can
also get rid of the selective failure attack.

2. We do not have to check the input consistency since the ZK property does
not require multiple witnesses to be the same as long as they are valid.

3. We can accept if and only if all outputs are the same instead of accepting the
majority. In a 2PC setting, choosing the majority is to avoid one-bit leakage
from abortion, however, the verifier is not required to prevent this attack
because he has no private inputs.

2



4. Finally we can see that the protocol is public-coin, i.e., the verifier has no
private randomness in this protocol. Therefore we can apply Fiat-Shamir
heuristic to this ZK protocol to make it non-interactive.

1.2 Related Works

Here we only briefly review those works related to universal post-quantum non-
interactive zero-knowledge proof systems.

zk-STARK This protocol was proposed and first realized by Ben-Sasson et al.
in [5]. zk-STARK offers universal, transparent, scalable and post-quantum secure
zero-knowledge proof system in the interactive oracle proofs (IOP) model.

MPC-in-the-head Ishai et al. [19] first introduce the “MPC-in-the-head”
paradigm from which one can construct a ZK from the black-box use of a secure
multiparty computation protocol. Later, this approach was first implemented by
ZKBoo [12]. Some subsequent works [1,9] also follow this paradigm.

Garbled Circuit Garbled Circuit (GC) is a cryptographic tool which is widely
used in secure multiparty computation. It was invented by Yao [28] in 1986.
Recent years, garbled circuits are improved quickly, like point-and-permute [3],
row-reduction [24], free-XOR [22], half gate [29] and stacked garbling [18].

ZK from GC Jawurek et al. proposed the first ZK protocol based on garbled
circuits [20]. Their construction focuses on the advantage of garbled circuits,
namely its efficiency at evaluating non-algebraic functions (e.g., a circuit for
block cipher), and thus achieves good performance. Nevertheless, their protocol
is not public-coin and cannot be made non-interactive using the standard Fiat-
Shamir transformation.

2 Preliminaries

A negligible function, denoted by negl(n), represents a function f : N → R
that for any constant c, there exists an integer N such that for all n > N ,
f(n) ≤ n−c. We also use poly(n) to denote some polynomial. For integer n ∈ N
let [n] to denote the set {1, 2, ..., n}. We use the common definitions of com-
putational and statistical indistinguishable distribution ensembles. Throughout
this work, we use κ to denote security parameters. We use PPT to indicate
probabilistic polynomial-time and sometimes use the term “efficient” and PPT
interchangeably.

An NP relation R is defined by a circuit family {Ci}i∈N whose size is
bounded by some polynomial. An instance-witness pair (x,w) is included in
the relation iff. C|x|(x,w) = 1. We use L(R) to denote the language induced by
the relation, i.e., L(R) = {x|∃w, (x,w) ∈ R}.

3



2.1 Zero Knowledge Proof

We follow the standard definition of zero knowledge [17], which we recall as
follows.

Definition 1. A protocol π is a sigma protocol for relation R if it’s a three-round
public-coin protocol satisfying the following three properties:

Completeness. If P and V follow the protocol on public input x and private
input w where (x,w) ∈ R then V always accepts.

Special soundness. There exists an efficient PPT algorithm A such that given
any x and any pair of accepting transcript (a, e, z) and (a, e′, z′) for x where
e 6= e′ extracts w such that (x,w) ∈ R.

Honest-verifier zero-knowledge. There exists a PPT simulator S which on
input x, e generates a transcript (a, e, z) such that for any (x,w) ∈ R the
transcript is identically distributed as in the real execution.

2.2 Garbled Circuit

We follow the definition of garbled circuit in [20], which is derived from the
standard definitions [4]. We first explain the syntax of a garbling scheme and
then list the properties of a garbling scheme that is required in this paper.

Definition 2. A garbling scheme is defined by a tuple G = (Gb,En,De,Ev, ev,Ve):

– The garbled circuit generation function Gb is a randomized algorithm that
on input a security parameter 1κ and the description of a Boolean function
C : {0, 1}n → {0, 1}, outputs a triple of strings (GC, e, d).

– The plaintext evaluation algorithm ev evaluates the function described by C
i.e., ev(C,w) = C(w).

– The encoding function En is a deterministic function that uses e to map an
input w to a garbled input W .

– The garbled evaluation function Ev is a deterministic function that evaluates
a garbled circuit GC on an encoded input W to get an encoded output Z.

– The decoding function De, using the string d, decodes the encoded output Z
into a plaintext output z.

– In addition to the standard algorithms, a verifiable garbled scheme has an
extra procedure Ve that, on input garbled circuit GC, a description of a
Boolean function C, and the encoding information e, outputs 1 (accept) or
0 (reject).

We require the following standard properties of a garbling scheme.

Definition 3 (Correctness). Let G be a garbling scheme described as above.
We say that G enjoys correctness if for all C : {0, 1}n → {0, 1}, w ∈ {0, 1}n such
that C(w) = 1, the following probablity is negligible in paramter κ:

Pr[(GC, e, d)← Gb(1κ, C),W ← En(e, w) : De(d,Ev(GC,W )) 6= 1]

4



Definition 4 (Privacy). Let G be a garbling scheme described as above. We say
that G enjoys privacy if for all C : {0, 1}n → {0, 1} there exists a PPT algorithm
Gb.Sim such that given plaintext output y, generates the garbled circuit, decoding
information, and garbled input that is indistinguishable from a real execution. In
particular, the following two distributions are computationally indistinguishable
for any input w.

– {(GC, e, d)← Gb(1κ, C),W ← En(e, w) : (GC, d,W )}
– {y ← ev(C,w), (GC, d,W )← Gb.Sim(C, y) : (GC, d,W )}

Remark 1. In order to facilitate the security proof of our construction, we require
the following two additional requirements on the encoding function En(e, w).

Projective. Fixing s, suppose the function En maps an n-bit string to an n`-bit
one, then the map f : w 7→ En(e, w) can be “decomposed” into n functions
f1, ..., fn such that f(x) = f1(w1), ..., fn(wn) where wi is the ith bit of w.

Injective. Let e be generated from (GC, e, d) ← Gb(C), the map f : w 7→
En(e, w) is injective with high probability over the randomness of Gb.

The first property is standard [4] and is closely related to the application of
garbled circuits in secure two-party computation. The second one is naturally
satisfied by some natural constructions. For example, let W = PRF(s, w) where
PRF is a pseudorandom function with a large enough range, then the probability
of a collision is negligible.

The two properties listed above facilitates an efficient extraction procedure
Gb.Ext that outputs w given e and encoded input W — the projective prop-
erty allows us to extract bit-by-bit while the injective property guarantees the
uniqueness of the extraction. In particular, for every input position i, the ex-
tractor test whether the output block corresponds to 0 or 1 and sets the results
accordingly, as shown in Figure 2.

Finally, we require the following verifiability property of a garbling scheme,
which ensures the correctness of the garbling process by the verification algo-
rithm. Jumping ahead, this guarantees the effectiveness of witness extraction
given two accepting transcripts.

Definition 5 (Verifiability). Let G be a garbling scheme described as above.
We say that G enjoys verifiability if for all C : {0, 1}n → {0, 1}, for all PPT A,
the following probability is negligible in parameter κ.

Pr

[
(GC, e, d,W )← A(1κ, C)

Ve(C,GC, e) = 1 ∧ De(d,Ev(GC,W )) = 1
: ev(C,Gb.Ext(e,W )) 6= 1

]
We note that the above definition differs from the verifiability definition

in [20]. Nevertheless, we show that under the assumption that the encoding
function is injective and projective (i.e., efficient extraction is possible), Defini-
tion 5 is implied by the original one, which we recall below.
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Gb.Ext(e,W )

for i := 1 to n do

if Wi = Eni(e, 0) then

wi := 0

elseif Wi = Eni(e, 1) then

wi := 1

else

return ⊥
endif

endfor

return w1, ..., wn

Fig. 2. The input extraction procedure of an injective and projective garbling scheme
G. n is the input length and Eni is the ith output block of En.

Definition 6 (Verifiability from [20]). A garbling scheme G enjoys verifi-
ability if for all C : {0, 1}n → {0, 1} and x, y ∈ {0, 1}n, for all PPT A, the
following probability is negligible in parameter κ.

Pr

[
(GC, e)← A(1κ, C)

X = En(e, x), Y = En(e, y)
:

Ve(C,GC, e) = 1 ∧
Ev(GC,X) 6= Ev(GC, Y )

]
Lemma 1. Let G be a garbling scheme and the encoding function En is injective
and projective, then Definition 6 implies Definition 5.

Proof. Suppose a garbling scheme G satisfies Definition 6 but does not satisfy
Definition 5. Consider the adversary A that returns (GC, e, d,W ) on input C.
The encoded input W satisfies that De(d,Ev(GC,W )) = 1 while the value re-
turned from the extraction procedure Gb.Ext — denoted as w — evalautes to 0
on C.1

Let W ′ = En(e, w). From the correctness and the deterministic property of
the decoding procedure we conclude that Ev(GC,W ) 6= Ev(GC,W ′). Since all
other requirements in Definition 6 are met, this forms a contradiction.

3 Construction

In this section, we present our construction of a public-coin zero-knowledge proof
system based on garbled circuits.

1 We ignore the case of Gb.Ext returning “⊥” since the authenticity property of the
garbling scheme (which is standard and not presented in this paper) guarantees
that an adversary cannot generate such malformed encoded input that evaluates to
well-formed encoded output.
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3.1 ZK in the Standard Model

In contrast to the well-known JKO protocol [20], we let the prover perform
garbling in order to acquire a public-coin protocol. The protocol, which is shown
in Figure 3, is a cut-and-choose style sigma protocol where the prover first sends
two garblings of a circuit Cx using independent random coins. When considering
an NP relation R such that (x,w) ∈ R iff. C(x,w) = 1, we let the circuit Cx
“hard-wire” the public information x, i.e., Cx(w) = C(x,w).

Then the verifier samples a challenge b ← {0, 1} and sends it to the prover.
The prover reveals the coins specified by this index and sends input encodings
W corresponding to the unopened circuit. Finally, the verifier accepts the proof
if the random coin rb successfully generates GCb and the outputs induced by
GC1−b and X is 1.

Prover Verifier

(GC0, e0, d0)← Gb(1κ, Cx)

(GC1, e1, d1)← Gb(1κ, Cx)

GC0, d0, GC1, d1

b← {0, 1}

b

W ← En(e1−b, w)

eb,W

The verifier accepts if

Ve(GCb, eb, Cx) = 1 ∧
De(d1−b,Ev(GC1−b,W )) = 1

Fig. 3. A public coin zero-knowledge in the standard model.

We prove the special soundness and honest-verifier zero-knowledge properties
of this scheme in the following theorem.

Theorem 1. Let R be a NP relation defined by circuit family {C ′} s.t. for
every instance (a, b) ∈ R, C ′(a, b) = 1. For any instance a ∈ L(R), define circuit
family C(w) = C ′(a,w). Let G = (Gb,En,De,Ev, ev,Ve) be a garbling scheme.
The sigma protocol in Figure 3 is a computational honest-verifier zero-knowledge
protocol with special soundness for the relation R.

Proof. The completeness of the protocol follows from the correctness of the gar-
bling scheme. We then prove the honest-verifier zero-knowledge property by
explaining the procedure for generating an accepting verifier’s transcript.
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The procedure for generating an accepting transcript from input (x, b) is as
follows:

– First generate (GCb, eb, db)← Gb(1κ, Cx) as an honest prover.

– Then generate the other garbled circuit and input by invoking the simulation
algorithm for the garbling scheme: (GC1−b,W, d1−b)← Gb.Sim(Cx, 1).

– Outputs the transcript (GC0, d0, GC1, d1, b, eb,W ).

The effectiveness of the simulator Gb.Sim for the garbling scheme, which is
implied by the privacy of the garbling scheme (Definition 4), guarantees the
computational indistinguishability between a real accepting transcript and one
generated from the above procedure (without the knowledge of input w), which
implies computational zero-knowledge.

Next we argue the special soundness of the above scheme. Recall that this
property requires that a valid input can be extracted from two transcripts (a, e, z)
and (a, e′, z′) such that e 6= e′. Consider the two transcripts

– (GC0, d0, GC1, d1, b, eb,W )

– (GC0, d0, GC1, d1, b
′, eb′ ,W

′)

where without loss of generality we many assume b = 0 and b′ = 1. Notice
that for both indices, the condition Ve(GC, e, d, Cx) = 1 ∧ De(d,Ev(GC,W ))
holds. From the verifiability property (Definition 5) of the garbling scheme, we
conclude that with non-negligible probability we can extract input w such that
ev(Cx, w) = 1 for either transcript.

We note that the above proof does not require rewinding and thus in the
quantum random oracle model (QROM) the security properties hold against
quantum adversaries [10,23]. ut

Next, we apply the standard techniques, namely parallel repetition and Fiat-
Shamir transform, to the basic sigma protocol in Figure 3, in order to acquire
a non-interactive zero-knowledge proof with negligible soundness error in the
random oracle model.

Corollary 1. Let H be a random oracle and λ ∈ N be an integer. Then by run-
ning the protocol in Figure 3 for λ times in parallel and generating each chal-
lenge by hashing all κ first messages using the random oracle H, one can acquire
a non-interactive zero-knowledge proof with honest-verifier zero-knowledge and
soundness error 2−λ against PPT adversary.

Optimizations. Notice that in our protocol a large overhead originates from the
application of the cut-and-choose technique. Indeed, to achieve soundness error
2−κ, the prover needs to send 2κ garbled circuits where only one is actually
evaluated. And therefore it is natural to apply the optimizations targeted at the
cut-and-choose technique, commonly found in the malicious two-party compu-
tation setting.
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– Instead of sending the garbled circuit, the prover can only send commitments
in the first round. Then in the third round, the prover sends the coins for
garbling and commitment for the selected index and decommitment infor-
mation for the other index. This can reduce the communication complexity
roughly by half.

Recall that a large overhead of the protocol in this subsection is caused by the
need to verify that the prover faithfully garbles the correct circuit. Notwithstand-
ing, a trusted party (e.g., a judiciary department) may exist in some scenarios,
and can distribute some input-independent “raw-material” to both parties be-
fore the actual proof process begins. This is captured by the “Common Reference
String” model in the next subsection.

3.2 ZK in the CRS Model

In this setting, a third party garbles the verification circuit and distributes the
input encoding information to the prover and garbled circuit to the verifier
faithfully. Notice that since the garbled circuit is guaranteed to be correct by
the model, we can remove the expensive cut-and-choose step, and the proof
message consists of only the garbled input (which is trivially non-interactive).
This is captured in the algorithms in Figure 4.

CRS.Gen(1n)

(GC, e, d)← Gb(C, 1n)

return ((GC, d), e)

Prove(e, x)

X ← En(e, x)

return X

Verify(GC, d,X)

y ← De(d,En(GC,X))

return y

Fig. 4. Zero-knowledge protocol in the common reference string model.

3.3 Discussion

Recall that in the construction we proposed, the prover’s computation is essen-
tially garbling and encoding. From a theoretical perspective, this paradigm can
be viewed as an application of the randomized encoding technique [2], where
the prover essentially performs the encoder’s job. When instantiated with the
garbled circuit, the prover’s computation is in NC1 — the class of functions
that can be completed by a O(log n)-depth circuit family. This characterization
could inspire further applications, such as utilizing parallelism or delegation of
computation.

4 Implementation and Experiments

We implement the protocol in Section 3 for the SHA256 relation defined as follows:
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Rhash(y;x) : y = SHA256(x), where x ∈ {0, 1}512, and y ∈ {0, 1}256.

Throughout the experiment, we use the specific SHA256 circuit in the works of
Campanelli et al. [8] which has optimized the AND gate count. The total number
of gates is 117,016 and the number of AND gates is 22,272.

To counter the Grover quantum attack, we extend the size of a garbled label
to 256bit. To achieve 2−128 soundness error, the repetition count is 128.

The proving time is 3.0s. The verification time is 2.2s. The proof is 379MB.
We run the experiments on a Ubuntu 20.04 LTS machine with AMD Ryzen

5 3600 CPU and 16GB of RAM. Our implementation is only 728 lines in C++
with dependency on OpenSSL.

5 Conclusion

We admit the proof size of our construction is large. However, in comparison
with other post-quantum NIZK, our construction requires minimum knowledge.
This scheme can be taught to undergraduate students right after they under-
stand garbled circuits. Unlike zk-STARK, which requires plenty of efforts on
complexity theory, or MPC-in-the-head paradigm, which requires secure multi-
party computation in advance. Our implementation is only 728 lines, which is
suitable as a course work for beginners.

Second, our construction is highly parallel. Not only cut-and-choose can be
parallel, but also garbling itself. That means the execution time can be reduced
by multiprocessor significantly.

On the other hand, our construction benefits from the improvements on gar-
bled circuits. For example, Heath et al. recently purpose stacked garbling [18],
indicating that our approach works potentially better than others on some spe-
cific tasks like evaluating a decision tree.
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