
Implementing CRYSTALS-Dilithium Signature
Scheme on FPGAs ?

Sara Ricci[0000−0003−0842−4951], Lukas Malina[0000−0002−7208−2514], Petr
Jedlicka[0000−0003−0833−8068], David Smekal[0000−0002−1996−5334], Jan

Hajny[0000−0003−2831−1073], Petr Cibik[0000−0003−0780−6288], and Patrik Dobias

Department of Telecommunications, Brno University of Technology, Brno, Czech
Republic

Tel.: +420 541 146 990
{ricci,malina,hajny}@feec.vutbr.cz, xjedli23@stud.feec.vutbr.cz,

cibik@netcope.com, xdobia13@vutbr.cz

Abstract. In July 2020, the lattice-based CRYSTALS-Dilithium digital
signature scheme has been chosen as one of the three third-round finalists
in the post-quantum cryptography standardization process by the Na-
tional Institute of Standards and Technology (NIST). In this work, we
present the first Very High Speed Integrated Circuit Hardware Descrip-
tion Language (VHDL) implementation of the CRYSTALS-Dilithium
signature scheme for Field-Programmable Gate Arrays (FPGAs). Due
to our parallelization-based design requiring only low numbers of cycles,
running at high frequency and using reasonable amount of hardware re-
sources on FPGA, our implementation is able to sign 15832 messages per
second and verify 10524 signatures per second. In particular, the sign-
ing algorithm requires 68461 Look-Up Tables (LUTs), 86295 Flip-Flops
(FFs), and the verification algorithm takes 61738 LUTs and 34963 FFs
on Virtex 7 UltraScale+ FPGAs. In this article, experimental results for
each Dilithium security level are provided and our VHDL-based imple-
mentation is compared with related High-Level Synthesis (HLS)-based
implementations. Our solution is ca 114 times faster (in the signing al-
gorithm) and requires less hardware resources.

Keywords: Post-quantum cryptography · Post-quantum cryptography
· Digital signatures · Number-theoretic transform · FPGA · VHDL im-
plementation · Parallelization · Optimization.

1 Introduction

Nowadays, security of most well-established public key cryptosystems relies on
Non-Polynomial (NP) time complexity problems, namely integer factorization,
discrete logarithm, and elliptic curve discrete logarithm problems. Unfortunately,
these closely related NP-problems are vulnerable to quantum computer attacks.

? This work is supported by Ministry of the Interior of the Czech Republic under grant
VI20192022126.

2 S. Ricci et al.

Table 1. VHDL and HLS implementations of NIST PQC finalists.

Digital Signature

Scheme Type HLS method VHDL implementation

Dilithium lattice 3 7

Falcon lattice 3 7

Rainbow multivariate 3 3

Encryption/KEM

Scheme Type HLS method VHDL implementation

Kyber lattice 3 7

McEliece code 3 3

NTRU lattice 3 3

SABER lattice 3 3
Note: 3– algorithm is fully implemented, 7– algorithm is not implemented.

The main threat arrives from the Shor’s algorithm [5] which allows attackers
to solve discrete logarithm and integer factorization problems, and therefore
attacks the asymmetric cryptosystems based on them. Furthermore, symmet-
ric key cryptography does not remain untouched either. In fact, the Grover’s
algorithm [5] simplifies the collision and symmetric key brute force search to
sub-linear complexity which results in an increase of keys and parameter sizes
in algorithms [7]. It is an interesting fact that both algorithms need to run on
a quantum computer with a minimal-required number of logic qubits which has
not been physically reached yet. For instance, Shor’s algorithm requires 4000
logical qubits to break 2048-bit RSA keys [14], and current quantum computers
capable to run Shor’s algorithm only have about 20 logical qubits [13]. How-
ever, a significant number of experts and practitioners believe that such a quan-
tum computer can be built in the next decade and concretely pose a danger to
current cryptographic primitives [4, 17]. In 2016, the NIST initiated a process
to solicit, evaluate, and standardize one or more Post-Quantum Cryptography
(PQC) schemes [1], i.e. quantum-resistant digital signatures and Key Encapsu-
lation Mechanisms (KEMs). In the 3rd round, 3 signature and 4 KEM finalists
were selected as potential future standards from the competing 64 candidates. In
particular, two lattice-based, CRYSTALS-Dilithium and Falcon, and one mul-
tivariate, Rainbow, signature schemes were selected. The schemes were chosen
based on their security strength and software/hardware performance.

Lattice-Based Cryptography (LBC) is one of the families of primitives relying
on hard problems which are believed to be secure against quantum-computing
attacks. LBC has gained significant attention for its performance among the
PQC families for both KEMs and digital signatures. Especially the CRYSTALS-
Dilithium (shortly Dilithium), which is a lattice-based digital signature and a
NIST finalist, provides a reasonable parameter size and promising performance
[3, 12]. Several implementations of this scheme on different devices are currently
accessible, e.g., C implementations [8], and HLS-based implementations [3, 20].
Nevertheless, a pure VHSIC-based implementation of Dilithium still does not
exist.

Implementing CRYSTALS-Dilithium Signature Scheme on FPGAs 3

To the best of our knowledge, we introduce a first pure VHDL-based im-
plementation of the CRYSTALS-Dilithium digital signature for FPGAs. The
target FPGA platform for our implementation is a widely-used chip from Xil-
inx, namely the Virtex 7 UltraScale+. This chip can be found in many computer
components, in network cards and cryptographic accelerators in particular. Es-
pecially, FPGA network cards are widely used as cryptographic accelerators to
speed up security and cryptography functions in high-performance communi-
cation systems, and therefore they could be suitable platforms for evaluating
pre-standardized quantum-resistant schemes such as the Dilithium scheme. In
this work, we present our original design and optimized VHDL implementation
of the Dilithium scheme and our results which are indicating significant perfor-
mance primacy over software-based and HLS-based related implementations.

This paper is organized as follows: the rest of this section contains related
work and our contribution. Section 2 introduces the Dilithium digital signa-
ture. Section 3 presents details of our hardware implementation and explains
our design decisions. Section 4 discusses the results of our implementation and
provides the comparison with other related Dilithium implementations. In the
last section, we conclude this work.

1.1 Related Work

Table 1 shows the current state of NIST PQC finalists VHDL-based and HLS-
based implementations on the FPGA platform. All protocols have HLS-based
implementations which have been published in different articles. HLS provides
an automatic conversion from existed C, C ++ or Matlab implementations into
HDL. Nevertheless, the outputs from HLS are often less efficient than native
VHDL-based implementations, and some outputs could have functional errors
or security bugs. In detail, Soni et al. [19] investigate NIST 2nd round PQC
signatures by synthesizing the C-based code by using HLS on FPGA. They
focus on Power-Performance-Area-Security (PPAS) trade-offs, design flows and
implementation-resilience to a variety of side-channel attacks. In another article,
Soni et al. [20] compare HLS implementations of two 2nd round NIST PQC semi-
finalists, namely qTESLA and Dilithium schemes. The authors use the Xilinx
Vivado HLS method and present the results of both schemes on FPGA (Xilinx
Artix-7). They show that at lower security levels Dilithium has slightly lower
hardware requirements than qTESLA. Basu et al. [3] employ the HLS method
to implement and compare 11 2nd round NIST PQC semifinalists on Xilinx
Virtex-7 FPGA platform. They cover all KEM finalists and the Dilithium signa-
ture scheme. They state several key points evaluation results as conclusions. For
instance, they show that Dilithium is superior for the signing algorithm, qTesla
is superior for the verification algorithm and SPHINCS+ is the costliest in terms
of latency and latency-area product. In case of KEMs, CRYSTALS-Kyber is the
fastest scheme for security level 1.

We are not aware of any hardware implementations (i.e., VHDL-based) of
Dilithium, while Rainbow signature and McEliece, NTRU, and SABER schemes
have been already implemented. Ferozpuri and Gaj [9] present the design and

4 S. Ricci et al.

hardware implementation of Rainbow on Xilinx Virtex 7 (XC7VX1140) and
Kintex-7 (XC7K480) FPGA platforms. In case of KEMs, Wang et al. [21] provide
the full Niederreiter cryptosystem implementation on the Virtex-6 XC6VLX240T.
This cryptosystem is the dual variant of the Classic McEliece scheme. At last,
Roy and Basso [18] deal with the hardware implementation of SABER using the
FPGA Xilinx ZCU102 board. In their study, they compare their results with
existing implementations of SABER and few other PQC NIST candidates.

1.2 Contributions

To the best of our knowledge, this is the first VHDL-based implementation of
the CRYSTALS-Dilithium signature scheme on FPGA that is created natively,
without using High-Level Synthesis. In particular, we make the following contri-
butions:

– We design and implement in VHDL all underlying functions used in Dilithium
such as SHAKE-128, SHAKE-256, ExpandAq, ExpandMaskq, PowerToRoundq,
MakeHintq. All mentioned functions are implemented in VHDL from scratch
in order to get better performance at the FPGA platform (high frequency,
low number of cycles).

– We design and implement essential Number-Theoretic Transform (NTT)
functions in VHDL and optimize these functions for a hardware environ-
ment.

– We integrate the functions into the main Dilithium algorithms: key genera-
tion, signing and verification. For instance, a loop (while cycle) in the
signing algorithm is designed and implemented in order to be efficient (high
frequency, low number of cycles). The parallelization approach has been
applied during the design of all algorithms and significant blocks.

– All algorithms are measured, tested and verified based on the reference im-
plementation of Dilithium in the C programming language [8]. The results
are also compared with related C-based and HLS-based implementations,
and indicate a significant performance improvement in all algorithms.

2 Preliminaries

In this section, we discuss the mathematical background that is crucial for the
understanding of our implementation. In Section 2.2, we revise the number-
theoretic transformation. The Dilithium signature is described in Section 2.3.

2.1 Notation

In this section, we introduce the notation used throughout the paper. Let n and
q be two integers, i.e. n = 256 and q = 8380417 = 223 − 213 + 1. We denote
by Rq the polynomial ring Z[x]q/(x

n + 1) where xn + 1 is the modulus. Bold
lower-case letters (v) are used for column vectors in R or Rq, while regular font
letters (v) for elements in R or Rq. Matrices are represented by bold upper-case
letters (A).

Implementing CRYSTALS-Dilithium Signature Scheme on FPGAs 5

2.2 Number-Theoretic Transform (NTT)

The NTT is a generalization of the discrete Fourier transform over a finite field
[15]. An interesting property of the discrete Fourier transform is the reduction
of the overall complexity of (polynomial) multiplication to O(n log n). This is
due to the usage of the point value representation of a polynomial instead of the
coefficient representation.

In NTT, a polynomial becomes a multi-point evaluation at powers of a root
of unity. Therefore, the polynomial multiplication consists in applying NTT in
O(n log n), then performing point-wise multiplication in O(n) and finally con-
verting the result to a coefficient representation in O(n log n). This process can
be synthesized by the following formula,

f(x)× g(x) = NTT−1(NTT (f)�NTT (g)),

where � is the point-wise multiplication of the coefficients.
In order to allow efficient computation of the NTT the coefficient ring has

to contain primitive roots of unity. Dilithium’s modulus q is chosen such that
there exists a 512-th root of unity r modulo q, where r = 1753. Since Rq is
isomorphic to

∏
i Zq/(X − ri) a polynomial f(x) can be represented as (f(r),

f(r3), . . . f(r511)), which are Dilithium’s NTT output vectors with coefficients
in the order f(r), f(r3), . . . f(r511).

There are many ways to compute the number-theoretic transform. Dilithium
requires the use of Cooley-Tukey butterflies in NTT, Gentleman-Sande butter-
flies in NTT−1, and the Montgomery algorithm for modular reductions after
multiplying with a precomputed root of unity [8]. Note that roots of unity are in
modulo arithmetic, therefore the Montgomery reduction is required, more details
in [8].

2.3 CRYSTALS-Dilithium Signature

CRYSTALS-Dilithium signature [8] is part of the Cryptographic Suite for Al-
gebraic Lattices (CRYSTALS), which counts a KEM, namely Kyber, and a sig-
nature, namely Dilithium. Both protocols’ security relies on the hardness of
the Module variant of the Learning With Error (MLWE) problem [6, 11]. For
Dilithium’s MLWE problem, A is a k × l matrix of polynomials, whereas s and
e become l-dimensional and k-dimensional vectors, respectively. Informally, the
MLWE problem can be viewed as the Ring-LWE problem where the single ring
elements (a and s) are replaced with module elements over the same ring. Note
that the MLWE problem has been introduced since it might be able to offer a
better level of security than the Ring-LWE, while offering advantages in perfor-
mance with respect to plain LWE [2].

Dilithium uses the MLWE problem with n and q fixed. The security level of
this signature changes by simply changing the dimension of the matrix A, i.e.
by changing k and l. Therefore, since Rq is the same for all security levels it is
possible to optimize all Dilithium security levels by optimizing the operations

6 S. Ricci et al.

in Rq. This makes it easy to vary security. Dilithium specifies four sets of pa-
rameters: weak, medium, recommended and very high which use A dimensions
(k, l) = (3, 2), (4, 2), (5, 4) and (6, 5), respectively. For the recommended security
level, the scheme has 2.7KB signatures and 1.5KB public keys.

Algorithm 1 Key Generation KeyGen()

1: ρ,K ← {0, 1}256
2: (s1, s2) ∈ S`η × Skη := ExpandA(K)
3: A ∈ Rk×`q := ExpandA(ρ)
4: t := As1 + s2
5: (t1, t0) := Power2Round(t, d)
6: tr ∈ {0, 1}384 := CRH(ρ||t1)
7: return pk = (ρ, t1), sk = (ρ,K, tr, s1, s2, t0)

In this section, we briefly describe the Dilithium scheme and we refer to the
original article [8] for further information. Dilithium is composed by three algo-
rithms: Key Generation, Signing and Verification as shown in Algorithms
1, 2 and 3. In particular, each algorithm employs few internal functions which
are used more times and/or in more phases. Table 2 maps these basic functions.

Algorithm 2 Signing Sign(sk,M)

1: A ∈ Rk×`q := ExpandA(ρ)
2: µ ∈ {0, 1}384 := CRH(tr||M)
3: κ := 0, (z,h) :=⊥
4: while (z,h) :=⊥ do
5: y ∈ S`γ1−1 := ExpandMask(K||µ||κ)
6: w := Ay
7: w1 := HighBitsq(w, 2γ2)
8: c ∈ B60 := H(µ||w1)
9: z := y + cs1

10: (r0, r1) := Decomposeq(w − cs2, 2γ2)
11: if ‖z‖∞ ≥ γ1 − β or ‖r0‖∞ ≥ γ2 − β or r1 6= w1 then (z,h) :=⊥
12: else
13: h := MakeHintq(−ct0,w − cs2 − ct0, 2γ2)
14: if ‖ct0‖∞ ≥ γ2 or the # of 1’s in h is greater than w then (z,h) :=⊥
15: κ = κ+ 1

16: return σ = (z,h, c))

Algorithm 1 depicts the Key Generation. It has two main parts: (1) the
expansion of two random seeds ρ and K to A and (s1, s2), respectively, by
the extendable output function SHAKE-128, and (2) the computation of the
remaining components of both public and secret keys. SHAKE-256 is used as

Implementing CRYSTALS-Dilithium Signature Scheme on FPGAs 7

the collision resistant hash (CRH) in all algorithms. Note that A is directly given
in the NTT domain representation, i.e. its elements are polynomials represented
as vectors.

In Algorithm 2, the Signing generates a masking vector of polynomials y,
computes Ay and then considers w1, the ”high-order” bits of Ay coefficients.
The challenge is created by hashing w1 and the message M . The functions
Power2Roundq, Decomposeq, HighBitsq and LowBitsq permit selecting prop-
erly w1, while MakeHintq and UseHintq reconstruct ”the missing” bits for the
Verification stage. This procedure allows reducing the public key by a fac-
tor of around 2.5 at the expense of additional hundred bytes in the signature.
SHAKE-256 is used for the generation of y by the ExpandMask function and in
the H function.

Algorithm 3 Verification Verify(pk,M, σ = (z,h, c))

1: A ∈ Rk×`q := ExpandA(ρ)
2: µ ∈ {0, 1}384 := CRH(CRH(ρ||t1)||M)
3: w′1 := UseHintq(h,Az− ct1 · 2d, 2γ2)
4: return ‖z‖∞ < γ1 − β and c := H(µ||w1) and # of 1’s in h is ≤ w

At last, the Verification is shown in Algorithm 3. The verifier computes
w′1 and accepts the signature z if it is small enough (see the original article [8]
for more details).

3 VHDL Implementation

This section describes our design and implementation of the Dilithium signature
scheme and its main blocks in VHDL.

3.1 Methodology and Implementation of Chosen Functions

This section describes the methodology used through the article and the imple-
mentation of main basic functions as the components that form the basic opera-
tions for the Dilithium algorithms. Our hardware implementation of Dilithium is
mainly based on our VHDL source codes. We do not use HLS in order to speed
up the development process. The goal of avoiding HLS and using the pure VHDL
approach is to provide a more efficient implementation (best trade off between
used hardware sources and performance) than the HLS-based implementations
[3, 20].

The implementation methodology consists of these steps:

1. Implementation of individual functions - some functions have been imple-
mented from scratch and some primitive functions are based on public im-
plementations. Table 2 shows an overview of the used functions with imple-
mentation specifications.

8 S. Ricci et al.

Table 2. Mapping Dilithium functions depending on where they are used. ”All” states
for ”used in all algorithms”, ”Gen” for ”used in Key Generation”, ”Sig” for ”used in
Signing” and ”Ver” for ”used in Verification”.

Function Algorithm Our
impl.

Note

Keccak All 3 Variants SHAKE-128 and
SHAKE-256

ExpandAq All 3 Using our Keccak SHAKE-
128

ExpandMaskq Sig 3 Using our Keccak SHAKE-
256

CRH All 3 Using our Keccak SHAKE-
256

Hashing to a Ball Sig 3 Using our Keccak SHAKE-
256

Random Number Generator Gen 7 Using LFSR-Random num-
ber generator [10]

NTT All 3 Using our 4 butterflies and
Montgomery reduction

NTT−1 All 3 Using our 4 butterflies and
Montgomery reduction

Decomposeq Sig, Ver 3 Special Dilithium procedure
PowerToRoundq Gen 3 Reduction with input coeffi-

cient division
HighBitsq Sig 3 Special Dilithium procedure
LowBitsq Sig 3 Special Dilithium procedure
MakeHintq Sig 3 Special Dilithium procedure
UseHintq Ver 3 Special Dilithium procedure
Note: 3– our implementation, 7– existing algorithm with reference in Note column.

2. Testing the functionality and validity of implemented functions - each func-
tion has been tested and optimized in order to be efficient from the perfor-
mance (high frequency), and hardware resources (low number# of FFs and
LUTs) perspective.

3. Implementation of the Dilithium algorithms (security level III.) - the inte-
gration of verified functions.

4. Testing the functionality and validity of implemented Dilithium algorithms
(security level III.) - each algorithm has been verified by comparing in-
put/ouput validity based on the reference C implementation [8].

5. Extending the recommended algorithms - the implementation has been ex-
tended by more security levels, i.e. I., II. and IV. variants.

6. Performance testing and comparison - getting the experimental results.

As shown in Table 2, we decided to implement the main functions of the
Dilithium signature from scratch. This is due to the fact that our implemented al-
gorithms are optimized to reach as high clock frequency as possible, and adapted
for the 512-bit bus that is used in the chosen FPGA board (UltraScale+). More-

Implementing CRYSTALS-Dilithium Signature Scheme on FPGAs 9

over, some algorithms were not implemented yet or made publicly available.
More details are given in the description of the components below.

Keccak Component (SHAKE-128, SHAKE-256). Our implementation of
the hash function Keccak is straight-forward. This component is the core of
the extendable output functions SHAKE-128 (‘r‘ = 1344) and SHAKE-256
by specific settings of the generic parameter ‘r‘ (‘r‘ = 1088). SHAKE-128 and
SHAKE-256 are used for generation of the matrix A and vectors/polynomials,
e.g. the secret key components s1 and s2. The Keccak component absorbs the
prepared input data with specific ”101” padding in blocks of ‘r‘ bits and squeezes
the output hash also into blocks of ‘r‘ bits. This component uses the standard
Advanced eXtensible Interface (AXI) interface and has a simple implementation
which could be easily adapted and optimized depending on the use. This VHDL
implementation takes 24 time cycles due to the usage of parallelization during
absorbance and squeezing of data [16].

ExpandA and ExpandMask Components. ExpandAq and ExpandMaskq use
the Keccak component set as the SHAKE-128 and SHAKE-256 hash functions,
respectively. Both components use the standard AXI interface. In particular,
there is a 256-bit seed at the input of ExpandAq components and the generated
coefficients of the A matrix of 32 bits are written to the output one after the
other. By setting a generic parameter, you can change the generation of matrix
coefficients row by row or column by column. The ExpandAq component is located
in all algorithms of the Dilithium scheme and is used to generate the uniform
matrix A in the NTT domain representation. On the contrary, ExpandMaskq
belongs only to the Signing algorithm and it is used for the generation of the
vector y.

CRH Component. The CRH component uses the standard AXI interface
and is based on the SHAKE-256 hash function. This function produces a 384-
bit output. The CRH component is located in all algorithms of the Dilithium
scheme. This component is implemented from scratch since there are no existing
implementations in VHDL.

Hashing to a Ball Component. At the input of this component is a 64-bit
signal, to which µ is firstly applied in blocks and then the coefficients of the vector
of polynomials w. At the output, it generates a 512-bit vector representing the
values 1 and -1 of the polynomial c. The first part of 256 bits indicates the indices
on which the polynomial contains 1, the second part indicates the indices of -1.
This feature uses the SHAKE-256 and needed to be implemented from scratch
since there are no existing implementations in VHDL.

Random Number Generator (RND) Component. Our Random number
generator component is based on a linear feedback shift register (LFSR). LFSR
is a shift register whose input bit is created by a linear function of its previous
state. The output of the generator depends on the feedback function and the

10 S. Ricci et al.

BRAM
interface
switch

control unit

coefficients
4x18k
BRAM

roots of unity
3x18k ROM

data in
[127:0]

data out
[127:0]

addr
[5:0]

we

select

start

ready

4x addr
[6:0]

split
akalaman

merge

butterflies 2x2

we

data out [127:0]

data in
[127:0]

3x addr [7:0]

Fig. 1. Block scheme of NTT implementation for FPGA.

initial state called the seed. Thus, 3 signals come to the input of the generator -
a clock pulse (clk), a control element (set seed) and the mentioned seed (seed).
For example, a three-bit random number (rand out) is obtained at the generator
output. The RND component uses Lal’s open source VHDL implementation [10]
which allows fast number generation (350 MHz, 384 LUTs and 128 FFs) and
follows Dilithium specifications [8].

NTT and NTT−1 Components. Our described implementation is based on
Fast Fourier Transform with decimation in the frequency domain and follows
Dilithium specifications [8]. The transformation takes place over 256 samples,
which corresponds to the calculation performed in 8 iterations (256 = 28).
Within each iteration, 128 partial transformations are calculated using butter-
flies. The difference in the order of the coefficients entering this partial transfor-
mation is 128

2n−1 , where n denotes the order of the iteration with indexing starting
from 1. To compromise between the speed of calculation and hardware resources,
the parallelization of the calculation using 4 butterflies in a 2x2 arrangement is
deployed. This means a calculation in two iterations at the same time with two
butterflies in each of them. The butterflies in the first iteration have to be shifted
by a value corresponding to the required difference in the coefficients of the fol-
lowing iteration. The reason for spreading the calculation between two iterations
is to reduce the number of output coefficients (for one iteration) and to minimize
the number of Block Random Access Memory (BRAM) for storing intermediate

Implementing CRYSTALS-Dilithium Signature Scheme on FPGAs 11

results and to reduce the number of interludes between iterations. Each block
memory has only two ports. Ports could be overwritten or read at the same time.

Moreover, the elementary arithmetic operations (adding and multiplication)
in the Montgomery algorithm also run in parallel using digital signal processor
(DSP) blocks in the FPGA platform. The computational structure of the Mont-
gomery reduction is pipelined to reach the maximum clock frequency and have
small latency between the first valid input and the first valid output while the
component throughput is 1 output per 1 clock cycle. The block diagram of the
NTT component is shown in Figure 1. Four BRAMs are used to store input val-
ues, intermediate results and output values. In the inactive mode, the interface of
these memories is switched by the control unit to the component interface, then
inputs and outputs can be written or read. During calculating the transforma-
tion, the memory interface is made available to the control unit, which sets the
addresses, and to the computational structure consisting of butterflies in a 2x2
layout connected to the data buses. Four coefficients are transmitted in parallel
over the data bus, which are divided between the inputs of the butterflies and
merged again at the output. The last block is the ROM memory with the roots of
the unit equation (so-called roots of unity), whose address is again controlled by
the control unit and the data bus is connected to the computational structure.

The design of the Inverse NTT (NTT−1) component is almost identical to
the NTT scheme. Only the iterations are performed in the reverse order, and
thus the distribution of the butterflies in the first and second parallel iterations is
inverse. In contrast to NTT, the Montgomery reduction of the output coefficients
is performed at the end of the whole calculation.

Other Dilithium Components. Besides the components described above,
our hardware implementation of the Dilithium scheme also includes other com-
ponents such as Decomposeq, Power2Roundq, HighBitsq, LowBitsq, MakeHintq,
and UseHintq. These components are also implemented individually in order to
be used in various Dilithium algorithms. The components use the standard AXI
interface and have been tested before their integration into the algorithms that
are described in the following subsections.

3.2 Implementation of Key Generation Algorithm

In the Key Generation algorithm, the default sizes of input/outputs parameters
are chosen by the specification of the Dilithium scheme - (recommended) security
level III. The description of the individual input and output signals of the key
generation algorithm component is given in Table 3. The outputs include the
m axis rho data signal which is a randomly generated part of both the private
and public keys and is used to generate tr and the A matrix. Furthermore, the
m axis key data signal, which is a part of the private key, is used in ExpandMask.
The m axis tr data signal is the output of the CRH function and it is a part of
the private key. The coefficients s coeffs correspond to the coefficients s1 and
s2 (a part of the private key), which are used during generating the private key.
The coefficients are allocated at the address s coeffs addr, where the first 1024

12 S. Ricci et al.

Table 3. The input and output signals of the key generation algorithm component

Signal Size [b] Type Description

rst 1 Input the reset of the component

clk 1 Input clock signal

s axis data 128 Input RNG seed

s axis valid 1 Input the indication of valid seed

m axis rho data 256 Output parameter ρ

m axis key data 256 Output parameter K

m axis tr data 384 Output output tr into the function CRH

s coeffs 128 Output coefficients s1 and s2
s coeffs addr 10 Input the addresses of coefficients s1 and s2

t0 coeff 32 Output the parameter t0
t0 coeff addr 11 Input the address of the parameter t0

t1 coeff 32 Output the parameter t1
t1 coeff addr 11 Input the address of the parametert1
m axis valid 1 Output the indication of the key generation

addresses correspond to the coefficients of the polynomial s1 and the other 1280
addresses correspond to the coefficients of s2. The t0 coefficients are contained
in the t0 coeff and t1 coeff signals, which are parts of the private key at
t0 coeff addr. Similarly, the t1 coeff signal, which is a part of the public key,
is used to verify the key (UseHint function) and stores a total of 1280 addresses
in the address space under the name t1 coeff addr. The address space of the
above-mentioned coefficients is formed by an IP block (IP - Intellectual Property
by Xilinx) of Random Access Memory (RAM), which contains 1280 addresses.

3.3 Implementation of Signing Algorithm

The Signing algorithm can be considered the most complex part of the Dilithium
scheme. It is mainly caused by the presence of a while loop. Thus, the number
of repetitions can be only determined with certain probability.

The Signing algorithm component communicates with the environment via
input and output AXI Stream interfaces that have a data bus width of 512 bits.
At the input, the parameters of the private key are received in the first AXI
Stream transactions, followed by the message itself to be signed. If the message
is signed with a private key identical to the key for the previous signature, then
it is possible to load only the message to the component because the private
key is already stored in the component. This fact is indicated by the first empty
AXI Stream transaction with the highest bit set to logical 1. In such case, the
component can skip the initial operations related to the generation of the neces-
sary signature parameters. After the signature is completed, the corresponding
vectors are passed through the output interface. The assignments of input and
output parameters to specific AXI Stream transactions are shown in Table 4.
The size of one transaction corresponds to the width of the data bus (512 bits).

Implementing CRYSTALS-Dilithium Signature Scheme on FPGAs 13

Table 4. Assignment of input and output to AXI stream transactions.

ID of transaction Data

Assignment of input

0 ρ (parameter for matrix A generation)

1 tr (parameter for CRH)

2 K (parameter for CRH)

3...66 polynomials represented as the vector s1
67...146 polynomials represented as the vector s1
147...226 polynomials represented as the vector t0

227... message for signing

Transactions of output

0...15 polynomial c

16...95 polynomials represented as the vector h

96...159 polynomials represented as the vector z

The Signing algorithm can be divided into 2 parts. The shorter initial

part (Lines 1-3 in Algorithm 2) can be executed only once. The second longer
part is executed inside the while loop (Lines 4-15 in Algorithm 2). See Section
2.3 for more details. In particular, matrix A generation and vectors s1, s2, t0 con-
version to NTT area can be executed once and then stored in BRAM memories,
i.e. a stored private key is used.

The operations of the initial part are independent of each other, and therefore
it is possible to parallelize them. Since the generation of the matrix and CRH
with a long message are much more time consuming than the NTT conversion
(to NTT area), the NTT conversion of vectors s1, s2, t0 is executed sequentially
by using a single NTT component.

With the exception of generating the vector y, all operations of the while

cycle depend on the results of previous operations. In order to be able to par-
allelize this part and use the potential of the FPGA, the individual parts were
created to generate outputs for future iterations, regardless of whether this it-
eration will be performed. The block diagram of the signature implementation
is shown in Figure 2. The signing algorithm is divided into 18 parallel running
processes that are interconnected to each other. For example, the while cycle
part performs 11 NTT components in parallel. This parallel approach requires
more DSP blocks but provides a smaller number of cycles than the sequential
approach.

3.4 Implementation of Verification Algorithm

The description of the individual input and output signals of the Verification

algorithm is depicted in Table 5. The coefficients are passed to the component in
blocks of 4 coefficients, so that bits 31 to 0 are reserved for coefficients 1 to 64,
and bits 63 to 32 for coefficients 65 to 128, etc. To generate the matrix A

14 S. Ricci et al.

Input
AXI

Stream
Expand A

CRH

1x NTT

Expand
mask 2x NTT

rho

tr, K, msg

s1,
s2,
t0 rho'

y

NTT(A)

NTT(y)

HashToBall 2x INTT

NTT(w)

Decompose
ww1

mu

1x NTT

c

NTT(s1,s2,t0)

NTT(c)

6x INTT

NTT
(cs1,cs2,ct0)

cs1

cs2

ct0

-

w0

make hint

check
rejection

h

z

Output
AXI

Stream

send
sign

z h c

while
cycle

Fig. 2. Block diagram for the signing algorithm implementation.

of the ExpandA component, the verification algorithm uses the generation of
coefficients by columns, because each row in a given column is multiplied by
the same polynomial z and so this polynomial does not have to be stored or
regenerated every time. The generated vector of polynomials w′1 is packed in a
pair of coefficients (see the reference implementation [8]) and sent directly to the
Hashing to a ball component in order to save time when accessing memory.

Control test-benches have been created to test all components. The correct-
ness of the signing and verification components has been also checked by created
test vectors from the C reference implementation [8].

4 Experimental Results and Comparison

This section describes the experimental results of our hardware implementation
design for all Dilithium algorithms in all presented security levels (i.e, I., II., III.
and IV variants). The target FPGA platform of our implementation is a chip
from Xilinx, namely Virtex 7 UltraScale+ with the designation xcvu7p-flvb2104-

Implementing CRYSTALS-Dilithium Signature Scheme on FPGAs 15

Table 5. Table of input and output signals of the verification algorithm component

Signal Size [b] Type Description

rst 1 input the reset of the conponent

clk 1 input clock signal

s axis rho tdata 256 input ρ

s axis rho tvalid 256 input indication of valid ρ

s axis msg tdata 1088 input the part of message

s axis msg tvalid 1 input indication of the valid message

s axis msg tuser 11 input marking of the last byte of the message

s axis msg tlast 1 input indication of the last part of the message

s axis msg tready 1 output indication of the reading the message part

m axis tdata 1 output indication of signature verification

m axis tvalid 1 output indication of valid output

m axis tready 1 input indication of the reading the output

Polynomial coefficients - equal for t1, z, h, c

s axis {X} tdata 128 input 4 polynomial coefficients

s axis {X} tvalid 1 input indication of valid coefficient

s axis {X} tready 1 output indication of the reading the coefficient

2-i. Table 6 shows available hardware resources and specification of the Virtex 7
Ultrascale+ FPGA platform.

4.1 Required Hardware Resources and Performance Results on
FPGA

The efficiency of hardware implementation can be measured by required hard-
ware resources and performance (e.g., frequency, # number of cycles, Operations
Per Second (OPS)) on the target platform (UltraScale+).

Table 7 shows the results after the synthesis of the individual components
needed in Key Generation, Signing and Verification algorithms and of the
aforementioned algorithms for security level III. These results were obtained
by synthesis in Vivado 2017.4.1 for Virtex UltraScale +. The table depicts the
number of used hardware sources (i.e., LUTs, FFs, and memory modules such
as BRAM, LUTRAM) and also the theoretical operating frequency that can
serve for the assessment of computational performance. Note that NTT and
NTT−1 require DSP and BRAM due to their higher complexity. In particular,
DSP blocks are used for optimization reasons, i.e., they allow to achieve higher

Table 6. Hardware specification of Virtex 7 Ultrascale+

LB LUTs FFs RAM [MB] UltraRAM [MB]

1724000 788000 1576000 50.6 180

16 S. Ricci et al.

Table 7. Hardware resources on FPGA for Dilithium components and algorithms
(security level III.)

Component LUT FF DSP BRAM LUTRAM
Frequency

[MHz]

Consumption
stat./dyn.

[mW]

Dilithium Components

SHAKE-128 3735 1608 0 0 0 587.2 1800/832

SHAKE-256 3361 1608 0 0 0 587.2 1792/816

Expand A 5003 3191 0 0 0 558.3 1659/626

CRH 4678 3085 0 0 0 456.8 1667/793

Sample in ball 7347 4418 0 0 0 435.4 1661/818

RNG 384 128 0 0 0 758.3 1022/36

Power2Round 12518 3085 0 0 1667 732.2 1385/185

NTT 1798 2532 48 3.5 438 637 1665/1214

NTT−1 2547 3889 84 3.5 762 637 1668/1557

Dilithium Algorithms

Key Generation 54183 25236 182 15 1808 350 1688/3578

Signing 68461 86295 965 145 8726 333 1800/13012

Verification 61738 34963 316 18 1922 158.2 1665/1251

frequency, and therefore a higher number of transformations per second. Then,
BRAM blocks are needed to store NTT (and NTT−1) input, intermediate and
output values. In fact, this is reflected on algorithms’ performance where Signing
proportionally requires more NTT and NTT−1 computations with respect to
Key Generation and Verification. However, the hardware resources of this
scheme do not take up more than 1/4 of the total resources of the selected
FPGA (UltraScale+) platform. The resource ratio is expressed as a percentage
for LUT: 68461 (8.69%), LUTRAM: 8726 (2.21%), FF: 86295 (5.47%), BRAM:
145 (10.07%) and DSP: 965 (21.16%).

In Table 8, the performance results for various Dilithium variants (I., II.,
III., IV.) algorithms are shown. The size of a message is 59 B. For instance,
our FPGA-based implementation of Dilithium for recommended version III. is
able to sign up to 15832 messages per second and verify up to 10524 signatures
per second. In particular, the number of generated polynomials increases with
the security level. This has an impact on the clock cycles. On the contrary, the
number of LUT, FF and LUTRAM is practically unchanged among the variants
since Rq is the same for all security levels (see Section 2.3 for more details). For
example, the Signing algorithm requires in average 66742, 69445, 70395, and
74395 LUTs for I., II., III., and IV. variants, respectively.

4.2 Comparison with HLS Implementations

As our hardware implementation is the first implementation written solely in
VHDL, we can present only the comparison with the HLS-based implementa-

Implementing CRYSTALS-Dilithium Signature Scheme on FPGAs 17

Table 8. Performance of Dilithium variants.

Key generation Signing Verification

Security Level Cycles Ops Cycles Ops Cycles Ops

I. 7990 43805 13110 25782 6770 23350

II. 12600 27778 18338 17723 10546 15000

III. 18193 19238 21033 15547 15032 10524

IV. 22981 15230 22362 14265 20221 7800

tions [3, 20]. Table 9 depicts the hardware resources and frequency for our VHDL
and aforementioned HLS-based implementations. Basu et al. [3] HLS implemen-
tation has been performed on a Xilinx Artix-7 FPGA board. Basu et al. and
do not provide Key Generation results. Their implementation of Signing takes
826832 cycles for 8.738 ns clock value. Their Verification takes 297592 cycles
for 8.738 ns clock value. Soni et al. [20] HLS implementation of Dilithium has
been performed on a Xilinx Artix-7 FPGA board. Their Key Generation takes
241102 cycles for 8.375 ns clock value. Their baseline Signing algorithm takes
1659851 cycles for 8.738 ns clock value. The optimized Signing by using loop
unrolling takes 1565100 cycles for the same clock value. The Verification al-
gorithm takes 292782 cycles for 8.738 ns clock value. After using loop unrolling
the number of cycles is decreased to 242901 but with slightly higher clock value
of 9.83 ns. It is to be noted that unrolling versions of both algorithms signifi-
cantly increase the hardware resources to almost a double size. Soni et al. also
present the loop pipelining optimization that reduces the latency while keep-
ing the LUTs and FFs similar to the baseline version. This version requires
233420 cycles for key generation, 1618319 cycles for signing and 285100 cycles
for verification. Therefore, the results of the pipelining optimization variant (as
performance/resources trade-off) is used in our comparison in Table 9.

The results indicate that our VHDL-based implementation of all Dilithium
algorithms requires less cycles than HLS-based implementations. Moreover, our
VHDL implementation reaches higher frequencies than HLS-based implemen-
tations thus it provides more operations per second. This is achieved by using
pipelined processing inside the logic blocks. Nevertheless, this performance op-
timization increases FFs.

Figure 3 compares the performance of our VHDL implementation with rele-
vant HLS-based implementations, i.e., Soni et al. [20] and Basu et al. [3]. For each
implementation, we compute the number of operations per second for each algo-
rithm based on knowledge of the overall latency (cycles) and overall frequency.
For instance, our implementation of the Signing algorithm is ca 226 times faster
than the Soni et al. implementation [20] and ca 114 times faster than the Basu
et al. implementation [3]. Our implementation of the Verification algorithm is
then ca 26 times faster than Soni et al. implementation [20], and 27 times faster
than Basu et al. implementation [3].

18 S. Ricci et al.

Table 9. Comparison of hardware resources and latency on FPGA for Dilithium im-
plementations (sec.level III.). Not available parameters are marked as ”-”.

Implementation LUT FF
Frequency

[MHz]

Latency
[Cycles]

Key Generation

Basu [3] - - - -

Soni [20] 86646 17674 119.4 233420

Our proposal 54183 25236 350 18193

Signing

Basu [3] 123933 27308 114.4 826832

Soni [20] 90567 21160 114.4 1618319

Our proposal 81530 83926 333 21033

Verification

Basu [3] 63980 14783 114.4 297592

Soni [20] 65274 15169 114.4 285100

Our proposal 61738 34963 158.2 15032

4.3 Comparison with Software Implementation

We also compare our hardware implementation with the reference Dilithium im-
plementation written in C. The Software implementation was tested on Ubuntu
VM (Ubuntu 18.04.3 LTS, 64-bit, CPU i5-7200 2.5 GHz, 1 GB). The results of
the reference implementation (Dilithium-ref) for a random message of the length
of 59 B, security version III., are as follows: (1) Key generation : 585217 cycles,
0.2251 ms, 4442 generation ops, Signing: 4181466 cycles, 1.608 ms, 622 signing
ops, and (3) Verification: 676288 cycles, 0.2601 ms, 3844 verification ops.

VHDL-based implementations are usually more efficient than software imple-
mentations. Our Signing algorithm requiring 21033 cycles is able to create 15832
signatures per second (on FPGA with 333 MHz) while the C-implementation re-
quired 4181466 cycles and performs 622 signatures per second (on the CPU 2.5
GHz). Thus, our hardware-based implementation is 25 times faster than the
software-based one.

5 Conclusion

In this work, we presented the fast hardware implementation of the Dilithium
signature scheme. We implemented the components from scratch and optimized
them to be efficient, i.e., achieve a low number of cycles and high frequency.
The components are divided into three main Dilithium algorithms following the
parallelization design approach, without using HLS. For instance, our signing
algorithm runs in 18 parallel processes and a message can be signed within
21033 cycles and 333 MHz frequency (for the security level III.). The verification
algorithm takes 15032 cycles within 158.2 MHz (for the security level III.). We

Implementing CRYSTALS-Dilithium Signature Scheme on FPGAs 19

1

1.5

2

2.5
·104

19,238

15,832

10,524

O
p

er
a
ti

o
n
s

p
er

S
ec

o
n
d
s

(O
P

S
)

Our Work

Basu et al.

Soni et al.

key gen. signing verification
0

200

400

600

800

1,000

138

386

510

71

403

Fig. 3. Comparison of performance on FPGA for Dilithium implementations.

demonstrated that our VHDL-based implementation is much more efficient than
existing HLS-based implementations (e.g. our signing is ca 114 times faster) and
the software C-based reference implementation (e.g. our signing is ca 25 times
faster). Our implementation of all Dilithium algorithms requires a reasonable
amount of hardware resources (e.g. our signing takes 81350 LUTs and 83926
FFs) on the FPGA board (UltraScale+).

Our future work will be focused on the optimization of certain blocks such as
CRH to increase the frequency of signing and verification algorithms. Further,
we will investigate how to integrate and ensure resistance against side channel
attacks, while still prioritizing high-performance and flexibility.

References

1. Nist - computer security resource center (csrc): Post-quantum cryptography - round
3 submissions. https://csrc.nist.gov/projects/post-quantum-cryptography/round-
3-submissions, last accessed 09-November-2020.

2. Albrecht, M.R., Deo, A.: Large modulus ring-lwe ≥ module-lwe. In: International
Conference on the Theory and Application of Cryptology and Information Security.
pp. 267–296. Springer (2017)

20 S. Ricci et al.

3. Basu, K., Soni, D., Nabeel, M., Karri, R.: Nist post-quantum cryptography-a hard-
ware evaluation study. IACR Cryptol. ePrint Arch. 2019, 47 (2019)

4. Bauer, B., Wecker, D., Millis, A.J., Hastings, M.B., Troyer, M.: Hybrid quantum-
classical approach to correlated materials. Physical Review X 6(3), 031045 (2016)

5. Bernstein, D.J.: Introduction to post-quantum cryptography. In: Post-quantum
cryptography, pp. 1–14. Springer (2009)

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. ACM Transactions on Computation Theory (TOCT)
6(3), 1–36 (2014)

7. Chen, L., Chen, L., Jordan, S., Liu, Y.K., Moody, D., Peralta, R., Perlner, R.,
Smith-Tone, D.: Report on post-quantum cryptography, vol. 12. US Department
of Commerce, National Institute of Standards and Technology (2016)

8. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé,
D.: Crystals-dilithium: A lattice-based digital signature scheme. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems pp. 238–268 (2018)

9. Ferozpuri, A., Gaj, K.: High-speed fpga implementation of the nist round 1 rainbow
signature scheme. In: 2018 International Conference on ReConFigurable Comput-
ing and FPGAs (ReConFig). pp. 1–8. IEEE (2018)

10. Lal, V.: Lfsr-random number generator. https://opencores.org/projects/lfsr randgen
(2010), last accessed 05-August-2016.

11. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
Designs, Codes and Cryptography 75(3), 565–599 (2015)

12. Malina, L., Ricci, S., Dzurenda, P., Smekal, D., Hajny, J., Gerlich, T.: Towards
practical deployment of post-quantum cryptography on constrained platforms and
hardware-accelerated platforms. In: International Conference on Information Tech-
nology and Communications Security. pp. 109–124. Springer (2019)

13. Mart́ın-López, E., Laing, A., Lawson, T., Alvarez, R., Zhou, X.Q., O’brien, J.L.:
Experimental realization of shor’s quantum factoring algorithm using qubit recy-
cling. Nature Photonics 6(11), 773 (2012)

14. Moses, T.: Quantum computing and cryptography. Entrust Inc. January (2009)
15. Nejatollahi, H., Dutt, N., Ray, S., Regazzoni, F., Banerjee, I., Cammarota,

R.: Post-quantum lattice-based cryptography implementations: A survey. ACM
Comput. Surv. 51(6), 129:1–129:41 (Jan 2019). https://doi.org/10.1145/3292548,
http://doi.acm.org.ezproxy.lib.vutbr.cz/10.1145/3292548

16. NIST: Fips pub 202 sha-3 standard: Permutation-based hash and extendable-
output functions (2015), https://csrc.nist.gov/publications/detail/fips/202/final

17. PQCRYPTO-EU-project: Tu eindhoven leads multi-million euro project to protect
data against quantum computers. https://pqcrypto.eu.org/press/press-release-
post-quantum-cryptography-ENGLISH.docx (2016), last accessed 04-November-
2018.

18. Roy, S.S., Basso, A.: High-speed instruction-set coprocessor for lattice-based key
encapsulation mechanism: Saber in hardware. IACR Cryptol. ePrint Arch. 2020,
434 (2020)

19. Soni, D., Basu, K., Nabeel, M., Aaraj, N., Manzano, M., Karri, R.: Hardware
architectures for post-quantum digital signature schemes (2020)

20. Soni, D., Basu, K., Nabeel, M., Karri, R.: A hardware evaluation study of nist
post-quantum cryptographic signature schemes. In: Second PQC Standardization
Conference. NIST (2019)

21. Wang, W., Szefer, J., Niederhagen, R.: Fpga-based niederreiter cryptosystem using
binary goppa codes. In: International Conference on Post-Quantum Cryptography.
pp. 77–98. Springer (2018)

