
OnionPIR: Response Efficient Single-Server PIR
Muhammad Haris Mughees

University of Illinois at
Urbana-Champaign

mughees2@illinois.edu

Hao Chen
Facebook, USA

sxxach@gmail.com

Ling Ren
University of Illinois at
Urbana-Champaign
renling@illinois.edu

ABSTRACT

This paper presents OnionPIR and stateful OnionPIR, two single-
server PIR schemes that significantly improve the response size and
computation cost over state-of-the-art schemes. OnionPIR scheme
utilizes recent advances in somewhat homomorphic encryption
(SHE) and carefully composes two lattice-based SHE schemes and
homomorphic operations to control the noise growth and response
size. Stateful OnionPIR uses a technique based on the homomor-
phic evaluation of copy networks. OnionPIR achieves a response
overhead of just 4.2x over the insecure baseline, in contrast to the
100x response overhead of state-of-the-art schemes. Our stateful
OnionPIR scheme improves upon the recent stateful PIR frame-
work of Patel et al. and reduces its response overhead by 22x by
avoiding downloading the entire database in the offline stage. Com-
pared to state-of-the-art stateless PIR schemes including OnionPIR,
stateful OnionPIR reduces the computation cost by 7x.

1 INTRODUCTION

Protecting user privacy is becoming a critical concern to cloud ap-
plications and service providers. Private information retrieval (PIR)
is an important cryptographic primitive to protect user privacy
when fetching data from the cloud. Informally, PIR allows a user
to retrieve a particular entry from a database while guaranteeing
that the identity of the entry remains hidden from the database
server. Recently, PIR has been suggested for various applications,
including privacy-preserving media streaming [35], anonymous
communication [45], metadata private messaging [6], privacy pre-
serving ad delivery [34], contact discovery [12], safe-browsing [41],
password-checking [4], and privacy preserving location routing
[27].

At a high level, PIR schemes can be classified into single-server [4,
5, 14, 16, 28, 42–44, 46] ones and multi-server ones [8, 9, 19, 20,
25, 25, 31, 52, 53, 53]. Multi-server schemes are generally more
efficient but they need the stronger trust assumption of multiple
non-colluding servers. The need for coordination from multiple
organizations makes them hard to deploy in practice. In this paper,
we will focus on single-server PIR. Single-server PIR schemes have
thus far been quite inefficient. This limits their use to proof-of-
concept systems or very small databases. The central goal of this
paper is to substantially improve single-server PIR efficiency.

In PIR, there are three main performance measures: the request
size, the response size, and the server’s computation cost. There are
often trade-offs between these measures. For example, a trivial
(singer-server) PIR scheme is to download the whole database. This
trivial scheme involves no server computation and has almost zero
request size, but it incurs a huge response size. State-of-the-art
single-server PIR schemes have smaller response sizes than the

trivial scheme but they are still very expensive in terms of response
size and server computation, as we elaborate below.
Performance bottlenecks of single-server PIR. State-of-the-
art single server PIR schemes such as SealPIR [5] have made signif-
icant progress in reducing the request size. For example, SealPIR’s
request size is only 32 KB 1 for a database with up to a million
entries. However, they suffer from high costs in the other two
metrics.
• Large response. State-of-the-art single-server PIR schemes incur
around 100x overhead in response size. That means to fetch a 30
KB entry (e.g., an ad), the client needs to download 3 MB of data.
• Heavy computation. State-of-the-art single-server PIR schemes
require heavy computation on the server. For example, SealPIR
requires 4030 seconds of server computation to fetch a 300 KB
file (e.g. a song) from a database with a million entries.

This paper addresses the above two performance issues of single-
server PIRs.
Main contribution 1. We first present a new single-server PIR
scheme we call OnionPIR that significantly improves the response
size and maintains a similar computation cost. The main technique
is to carefully control the noise growth from the ciphertext oper-
ations on the server with the help of recent advances in homo-
morphic encryption schemes. OnionPIR has a mere 4.2x response
size overhead (over the insecure baseline), in contrast to the 100x
overhead in state-of-the-art schemes. Concretely, to download a 30
KB entry, the client in OnionPIR only needs to download 128 KB
of data.

The small downside of OnionPIR is a slight increase in the client
request size for small databases. Specifically, for a database with
one million entries, the request size in OnionPIR is 64 KB, which is
about twice as large as SealPIR’s request size of 32 KB. However, we
note that the request size for OnionPIR remains 64 KB for databases
with up to one billion entries and increases only logarithmically
with the database size after that. In contrast, the request size for
SealPIR starts to increase quickly once the database size exceeds
four million, e.g., it becomes 64 KB for a database with 16 millions
entries and around 1 MB for one billion entries.
Main contribution 2. Next, to address the computation issue, we
improve the Stateful PIR paradigm and integrate it with OnionPIR.
In stateful PIR, the client has a local state and uses that state to make
cheaper PIR queries [22, 47]. We remark that the original stateful
PIR scheme of Patel et al. [47] can already improve computation
but it requires the client to download the whole database in the of-
fline phase, which drastically increases the amortized response size.
We develop a new technique based on homomorphic evaluation of
copy networks [24], which allow us to reap the computation savings
of stateful PIR while keeping the amortized response roughly the
1after applying a standard optimization discussed in Section 4.3

1

same. The amortization benefit of stateful PIR is more prominent
when accessing relatively larger data entries and larger databases.
Concretely, the amortized computational cost to access a 300 KB en-
try in a database with one million entries is 578 seconds on a single
CPU core, which is 7x better than vanilla OnionPIR. Compared to
the original stateful PIR scheme of Patel et. al., stateful OnionPIR
achieves around 22x reduction in amortized response size at the
expense of a moderate increase in computational cost and request
size. Overall, the monetary cost of stateful OnionPIR is 6x less than
stateless OnionPIR and 3x less than Patel et. al. Hence, our scheme
provides a more practical trade-off for single-server PIR.

Independent work of Ali et al.A concurrent work of Ali et al. [4]
also studies how to reduce response size in (stateless) single-server
PIR. At a high level, they used different techniques from us (we
will elaborate on this in Section 7) and also achieved substantial
reduction in response size over SealPIR. But OnionPIR is more
efficient than their scheme in all three metrics as we elaborate in
Section 7.

2 BACKGROUND AND PRELIMINARY

2.1 Somewhat Homomorphic encryption

State-of-the-art single-server PIR schemes rely on lattice-based
somewhat homomorphic encryption (SHE). The security of lattice-
based SHE is based on the hardness of Learning With Errors (LWE)
or its variant on the polynomial ring (RLWE). We will use RLWE-
based SHE schemes, in particular, BFV [26] and RGSW [18, 29].

As its name suggests, a SHE scheme supports a limited num-
ber of homomorphic addition and multiplication operations on the
ciphertexts. All known constructions of SHE produce noisy cipher-
texts and homomorphic operations on the ciphertexts increase the
noise level in the resulting ciphertext. After a certain number of
operations, the noise in the ciphertext would become too large
and the ciphertext could no longer be decrypted. It is important
to note that ciphertext multiplications result in the noise to mul-
tiply and hence blow up rapidly. Thus, to keep the noise growth
under control, existing PIR schemes have to introduce expensive
techniques to avoid ciphertext multiplications altogether. This is a
major source of their inefficiency that we will address in this work.

BFV encryption. The BFV SHE scheme is defined over a fixed
polynomial ring 𝑅 = Z/(𝑥𝑛 + 1). Here, 𝑛 is the degree of the poly-
nomial and is usually a power of two. In the BFV SHE scheme, the
secret key 𝑠 is a polynomial sampled from distribution of “small”
(e.g., with binary coefficients) polynomials in 𝑅. Let 𝑞 and 𝑡 denote
the coefficient modulus for the ciphertext and plaintext, respec-
tively. A plaintext message𝑚 is a polynomial in 𝑅 mod 𝑡 . Each
ciphertext consists of two polynomials in 𝑅 mod 𝑞, and is given
as (𝑐0, 𝑐1) = (𝑎, 𝑏 + 𝑒 +𝑚) where 𝑎 is sampled uniformly at ran-
dom from 𝑅 mod 𝑞 and 𝑏 = 𝑎 · 𝑠 + 𝑒 . 𝑒 is a noise polynomial with
coefficients sampled from a bounded Gaussian distribution. The
message𝑚 is encoded in the most significant bits of the coefficients
second polynomial. A ciphertext can be decrypted by computing
𝜇 = 𝑐1 − 𝑐0 · 𝑠 = 𝑒 +𝑚. Since the message is encoded in the most
significant bits and the noise 𝑒 is small, rounding 𝜇 recovers𝑚.

Ciphertext expansion factor. An efficiency metric critical to our
purpose is the ciphertext expansion factor, which is denoted as 𝐹 and

defined as the ratio between the ciphertext size and the plaintext
size. For BFV in particular, 𝐹 =

2 log𝑞
log 𝑡 because the ciphertext is a

pair of polynomials modulo 𝑞 whereas the plaintext is a polynomial
modulo 𝑡 . The ciphertext expansion factor 𝐹 directly affects the
response size of the PIR protocol and a main task in this paper is to
reduce 𝐹 .
RGSW encryption. We will use a second somewhat homomor-
phic encryption scheme called RGSW [17]. A RGSW scheme has
a gadget vector 𝑔 (𝑙×1) = (𝐵 (𝑘−1) , · · · , 𝐵 (𝑘−𝑙)) where 𝐵 is called the
decomposition base and 𝑘 = log𝑞/log𝐵. The parameter 𝐵 and the
size of the gadget vector 𝑙 give a trade-off between efficiency and
noise growth. The gadget vector then gives a gadget matrix as
follows:

G = I2 ∨ 𝑔 =

[
𝑔 0
0 𝑔

]
∈ 𝑅 (2𝑙×2) . (1)

A RGSW encryption of a plaintext polynomial𝑚 ∈ 𝑅 is

C = Z +𝑚 · G

where each row of Z ∈ 𝑅 (2𝑙×2) is a BFV encryption of 0. Note
that the top half of the matrix C consists of 𝑙 BFV ciphertexts
encrypting base-𝐵 decompositions of the plaintext𝑚. Z satisfies
that ∥Z · (−𝑠, 1)∥∞ is small.

2.2 Noise Estimate and Computational Cost of

Homomorphic Operations

As we have mentioned before, each homomorphic operation in SHE
increases the noise in the output ciphertext. It turns out different
operations result in drastically different noise growth, and this will
significantly impacts our design decisions. These operations also
have different computation costs, usually dominated by the number
of polynomial multiplications required. We elaborate below on the
noise growth and computation costs of different operations and
summarize them in Table 3. Let Err(𝑐) denote the variance of the
noise term in a ciphertext 𝑐 .
BFV ciphertext addition. This operation adds two BFV cipher-
texts and outputs a BFV ciphertext encrypting their sum. The noise
in the output ciphertext grows additively, i.e., the noise of the output
is the sum of the noise terms from the two inputs. This operation
does not involve polynomial multiplication and its cost is very small
compared to the other operations below.
BFV ciphertext-plaintext multiplication. This operations takes
as input a plaintext polynomial𝑚 and a BFV ciphertext, 𝑐 encrypt-
ing𝑚

′
. The output is a BFV ciphertext encrypting the product𝑚 ·𝑚′ .

The noise term is multiplied with the plaintext [26]. In terms of
computation, this operation requires 2 polynomial multiplications.
BFV ciphertext multiplication. This operations takes as input
two BFV ciphertexts, and outputs a BFV ciphertext encrypting
their product. The noise in the output ciphertext gets multiplied by
the plaintext modulus 𝑡 . This operation is also costly in terms of
computation as it requires a relinearization step. The total cost is
about 4 + 𝑙 polynomial multiplications, where 𝑙 is usually the same
as the decomposition factor 𝑙 in external products. Note that this
operation is also expensive in terms noise growth. And it is the
main culprit for the inefficiency of existing PIR schemes. We will
not use this operation and hence will not go into details about it.

2

Operation Cost Noise Growth
BFV ciphertext addition − 2 · Err(𝑐)

BFV ctxt-ptxt multiplication 2 Err(𝑐) · |𝑚 |
BFV ciphertext multiplication 4 + 𝑙 Err(𝑐) · 𝑡

External product 2𝑙 𝐵 · Err(𝐶) + Err(𝑑)

Table 1: Comparison of computational costs and noise growths of homo-
morphic operations. The computational cost of BFV ciphertext multiplica-
tion and external product depends on 𝑙 . Typically, 𝑙 is set to 5. The noise
growth is multiplicative in BFV ciphertext and ctxt-ptxt multiplications. In
contrast the noise growth in external product is additive only which allow
evaluating deeper circuits.

External Product. The external product operation takes as input
a BFV ciphertext d, encrypting 𝜇d, and a RGSW ciphertext C, en-
crypting 𝜇𝐶 , with respect to same secret key 𝑠 . The output is a BFV
ciphertext encrypting their plaintext product 𝜇𝐶 · 𝜇d.

It is not important to understand the details of the external prod-
uct operation for the purpose of understanding our PIR schemes.
But we give a brief description of external product below for com-
pleteness. Readers can refer to [18] for more details. We first define
a vector v’s gadget decomposition, denoted as 𝐺−1 (v) ∈ 𝑅𝑙 . Intu-
itively, the gadget decomposition of a vector has small coefficients
and when multiplied by the matrix 𝐺 , gives an approximation
of the original vector. In more detail, 𝐺−1 (v) has coefficients in
(−𝐵/2, 𝐵/2], such that decomposition error is upper bounded by
𝐵log𝑞/log𝐵−𝑙 . (Note that the result is a BFV ciphertext and we never
need to decrypt RGSW ciphertexts in this paper.)

The noise after external product is bounded by𝐺−1 (𝑑) ·Err(𝐶) +
|𝜇𝐶 | · Err(𝑑). In our paper, 𝜇𝐶 will always be a single bit (i.e., either
0 or 1). Also note that the coefficients of 𝐺−1 (𝑑) are bounded by
𝐵/2. Thus, the resultant noise term is roughly 𝐵 · Err(𝐶) + Err(𝑑).

It is important to note that external product operations increase
noise additively. That is to say, if we perform a series of 𝐿 external
products, the final noise will be roughly 𝐿 times larger. In sharp
contrast, if we apply the previous two types of multiplication oper-
ations 𝐿 times in a row, the final noise term will be exponential in
𝐿. This is why we will use external products in most steps of our
OnionPIR schemes.

3 OVERVIEW AND LIMITATIONS OF

CURRENT PROTOCOLS

The most basic single-server PIR scheme is given in the Figure 1.
The database is represented as an array of size 𝑁 . To access an
entry, the client generates a query vector of 𝑁 ciphertexts. The
ciphertext corresponding to the target item encrypts 1 whereas all
the other ciphertext encrypts either 0. The server homomorphically

computes a dot-product between the query vector and the plaintext
database to generate a response.

The above basic PIR has a request size linear in the the data-
base size. To reduce the request size, two techniques have been
suggested and adopted by existing PIR schemes. The first technique
is hierarchical query, which dates back to the earliest works on PIR
[21, 51]. It represents a database as a multi-dimensional hypercube.
To access a database entry, the client now sends 𝑑 query vectors,
each consisting of 𝑑

√
𝑁 ciphertexts, where 𝑑 is the number of dimen-

sions. In all existing protocols, 𝑑 is set to 2, and this reduces request

Inputs: The client inputs an index idx ∈ [𝑁] and the server
inputs database DB of size 𝑁 .

(1) Pre-processing database DB: The server database is en-
coded amenable format.

(2) Query Generation(idx): For 𝑖 from 1 to 𝑁 , the client sets
𝑞𝑖 (𝑖-th encrypted query bit) to Enc(𝑝𝑘, 1) if 𝑖 = idx and
Enc(𝑝𝑘, 0) if 𝑖 ≠ idx.

(3) Response Generation({𝑞𝑖 } [𝑁]): The server computes
𝑟 =

∑𝑁
𝑖=1 𝑞𝑖 · DB𝑖 .

(4) Output {𝑟 }.

Figure 1: Basic single-server PIR protocol. Step 3 uses plaintext-ciphertext
multiplication and homomorphic addition.

size to 2 2√
𝑁 ciphertexts. Another method to reduce PIR request size

is query compression, proposed recently by SealPIR [5]. Instead of
encrypting one bit per ciphertext, the client packs many bits within
a single ciphertext using lattice-based BFV homomorphic encryption.
The server can then expand this packed ciphertext into a list of
ciphertexts, each encrypting a single bit. The third method involves
sending only the second component of fresh BFV ciphertext to-
gether with the seed used to generate the first component (SealPIR
did not incorporate this trick but could easily do). The server then
uses the seed to generate the first component pseudorandomly [2].
This method reduces the size of the request in half. We will further
discuss this optimization in Section 4.3.

Combining the above techniques, SealPIR would be able to
achieve a request size of only 32 KB for databases with up to four
million entries. After that, the request size will increase proportion-
ally to 2√

𝑁 .
To the best of our knowledge, SealPIR is currently the state-of-

the-art single-server PIR. However, SealPIR still suffers from large
response size and high computation cost, which we explain in more
detail below.

Why response size is large. The cause for the large response size
lies in the way state-of-the-art schemes use homomorphic opera-
tions in hierarchical PIR. Figure 2 illustrates the hierarchical PIR
idea in state-of-the-art PIR protocols [5, 44] for a database of size
𝑛 = 16. The database is represented as a two-dimensional matrix of
size 4 × 4 and the query consist of 2 vectors each consisting of 4
BFV ciphertexts 1 . As shown in the figure, for the first dimension,
the server performs dot-product between each column of plaintext
database and the query vector. The output of this multiplication is
a vector of ciphertexts corresponding to the matrix row selected by
the first query vector 2A . However, these ciphertexts are not di-
rectly used in the dot product with the second query vector. Instead,
each of these ciphertexts are first split into 4 chunks and then each
chunk is treated as plain-text in the dot-product with the second
query vector 2B . The reason behind this ciphertext split design is
to avoid homomorphic ciphertext multiplications that would have
added very large noise to the resulting ciphertext as discussed in
Section 2. Of course, the downside of this ciphertext split design is
that now the response consists of 𝐹 BFV ciphertexts 3 where 𝐹 is
the ciphertext expansion factor as described in Section 2. Although
we used 𝐹 = 4 as an example in the figure, in the actual SealPIR

3

8765 8765
8765
8765

F=4
1'st Query Vector

2'nd Query Vector

4

8

12

16

3

7

11

15

2

6

10

14

1

5

9

13

0

1

0

0
0 1 0 0

8765 6
6

6
6

1 2-A 2-B 3

2'nd Query Vector
0 1 0 0

Response

BFV Ciphertext

Plaintext

Figure 2: A basic hirarchical PIR in two dimension.

protocol, 𝐹 is 10. Recall that the network overhead of a single ci-
phertext is equal to the expansion factor 𝐹 . As the above scheme
sends 𝐹 ciphertexts, the overall response overhead would become
𝐹 2, which is around 100x.
Why computation cost is high. The computation cost is 𝑂 (𝑁)
since every entry in the database is involved in a homomorphic
operation. In fact, one can argue that this is a fundamental barrier
in the standard PIR model rather than a drawback of SealPIR
or any particular scheme. If some entries are not involved in the
computation, it would reveal to the server that these entries are not
what the client is interested in, which violates the privacy guarantee
of PIR. Thus, there is little room for computation reduction in the
standard PIR model. Looking ahead, we will incorprate the stateful
PIR framework [47] to reduce computation.

4 RESPONSE EFFICIENT PIR

4.1 A Warm-up Protocol

We first present a warm-up protocol that drastically reduces the
response size at the expense of higher computation. This basic pro-
tocol will serve as a stepping stone to introduce our main OnionPIR
protocol, which will improve both response size and computation.

Our warm-up protocol will adopt SHE and the hierarchical query
framework. The top part of Figure 3 illustrates a sample execution
of the protocol. Compared to prior works such as SealPIR and XPIR,
we make three key changes.
Use of external products. The first change is that the client query
vectors now consist of RGSW ciphertexts and the server uses ex-
ternal product (instead of ciphertext-plaintext multiplication) 1 .
Recall that SealPIR had to split the intermediate ciphertexts after
the first multiplication because BFV ciphertext multiplications in-
crease noise rapidly, i.e., in a multiplicative fashion. In contrast,
as mentioned in Section 2, the noise only grows additively after
each external product. Therefore, we no longer have to split the
intermediate ciphertexts and can use them directly for the second
dimension of multiplication 2 . As a result, the response, which
is the output of the second multiplication, is only a single BFV
ciphertext 3 , rather than 𝐹 BFV ciphertext. In other words, the
response overhead is now simply the ciphertext expansion factor
𝐹 , down from 𝐹 2.
Parameterization for smaller ciphertext expansion factor 𝐹 .

Next, we optimize the parameter choices of BFV SHE to reduce the
ciphertext expansion factor 𝐹 . Note that the smaller noise growth

from external product already gives a minor improvement in 𝐹

to our warm-up protocol over prior works. For a fixed ciphertext
modulus 𝑞, if the noise growth is smaller, we can leave less room
to noise growth and use a larger plain-text modulus 𝑡 . This will
reduce the ciphertext expansion factor 𝐹 .

Furthermore, we will use a larger 𝑞 to further reduce 𝐹 . As one
can see from Table 3, the noise growth does not depend on 𝑞. Thus
increasing 𝑞 allows more room for a larger 𝑡 , and this helps decrease
𝐹 even further. However, a larger𝑞means a bigger ciphertext, which
in turn implies a larger request size. Therefore, we use a moderately
large 𝑞 in our implementation; concretely, we use 124-bit 𝑞 and it
allows us to set a 60-bit 𝑡 .

Higher-dimensional cube.While prior works represent the data-
base as a two-dimensional matrix, we can represent the database
as a higher-dimensional cube, again thanks to the smaller noise
growth of external product. Using a higher dimension will help
us further decrease the ciphertext expansion factor 𝐹 for reasons
that will become clear later in Section 4.3. For now, we remark that
even with more dimensions, the response will still be a single BFV
ciphertext in our protocol.

Limitation of the warm-up protocol. Unfortunately, the warm-
up protocol suffers from higher computational costs. Recall from
Section 2 that the computational cost of is dominated by the total
number of polynomial multiplication operations. Observe that in
thewarm-up protocol the server performs at least one external prod-
uct for each database entry. Each external product requires 2𝑙 poly-
nomial multiplications due to the size of the RGSW ciphertext. So
the number of polynomial multiplications from the first dimension
alone is 2𝑙𝑁 . In comparison, SealPIR’s computational bottleneck
lies in its first dimension of 𝑁 BFV ciphertext-plaintext multiplica-
tion. Each BFV ciphertext-plaintext multiplication requires only 2
polynomial multiplications, giving a total computational cost of 2𝑁
polynomial multiplications. Typically 𝑙 = 5, so the computational
cost of the warm-up protocol is at least 5x higher than SealPIR.

4.2 Optimizing the Computation

As mentioned, the warm-up protocol achieves a small noise growth
and good ciphertext expansion factor, at the expense of higher
computation. Here is a simple method to improve the computation
cost: revert back to BFV ciphertext-plaintext multiplication in the
first dimension and make the first dimension slightly larger than
the remaining dimensions. Let 𝑁𝑖 denote the size of 𝑖-th dimension.

4

651'st Query Vector

87
2

4

1

3 external product

0

1

1

0 1

2

1

0

3'rd Query Vector

Response

3 4

7 8
3 4

8
4 8

2'nd Query Vector

Plaintext

BFV Ciphertext

RGSW Ciphertext

1'st Query Vector
10

12

9

11

13 14

1615

2

4

1

3

5 6

87

Plaintext

0

1

0 1 RGSW Ciphertext

2

1

0

3'rd Query Vector

Response

3 4

11 12
3 4

12
4 12

2'nd Query Vector

1

0

0BFV Ciphertext

external product

Figure 3: Examples of different variants of three dimensional hierarchical PIR. In the top figure the client queries are composed of all RGSW ciphertexts and
the output of each dimension is BFV ciphertexts. In the bottom figure, first dimension’s query vector consists of BFV ciphertexts, remaining query vectors are
still RGSW ciphertexts and the first dimension is slightly larger than the other dimension.

(1) pt
′
= {pt1, pt2} ← DecompPlain(𝑝𝑡): Decompose input

𝑝𝑡 into two parts each of size log(𝑡)/2 bits.
(2) ct

′
= {ct1, ct2} ← DecompEncrypt(𝑞): Takes as input a

query bit 𝑞, and output two BFV ciphertexts encrypting
{𝑞 · 2log(𝑡)/2, 𝑞}.

(3) (ct) ← DecompMul(pt′, ct′): Computes dot-product be-
tween pt

′
and ct

′
and outputs a single BFV ciphertext.

Figure 4: Decomposed ciphertext-plaintext product. Output of
DecompMul is a single BFV ciphertext encrypting 𝑞 · pt. The noise in this
output ciphertext is only increased by log(𝑡)/2 bits.

With some foresight, we will set the first dimension size to be
𝑁1 = 128 and subsequent dimension sizes to 𝑁2 = 𝑁3 = . . . = 4.
This way, the total computation cost is once again dominated by
the first dimension and will be comparable to prior art.

But as mentioned in Section 2, BFV ciphertext-plaintext multipli-
cation introduce large noise, on the order of the plaintext modulus 𝑡 .
This will force us to reduce 𝑡 which hurts the ciphertext expansion
factor. Therefore, we need a scheme that strikes a balance between
noise growth and computational cost for the first dimension.

Inspired by the external product technique which reduces noise
growth by decomposing a ciphertext into smaller parts, our solution
is to decompose the plaintext before multiplying them with the BFV
ciphertexts. A similar approach is proposed in [30].

The details of this technique are in Figure 4. We found that
decomposing into two components gives us good enough noise
growth with our parameter choices. In this case, each DecompMul
operation adds about log(𝑡)/2 bits of noise. As mentioned, we

also make the first dimension slightly larger. The server first uses
DecompPlain function to decompose each database entry. Similarly,
the client encrypts the first query vector using DecompEncrypt for
each bit. The server then performs the first dimension of dot prod-
uct using DecompMul operations. All subsequent dimensions will
use external products to control noise growth.

With this technique, each DecompMul operation is about twice
as expensive as BFV ciphertext-plaintext multiplication. But note
that we have a much better ciphertext expansion factor 𝐹 , which
means each ciphertext in OnionPIR contains a lot more plaintext
data than prior works. Overall, we actually expect to see an small
improvement in computation cost.

4.3 Query Compression

Sending one ciphertext per query bit results in a large request size.
As discussed earlier, previous works have proposed the query com-
pression technique [5, 17] to reduce the query size. The high-level
idea is that the client can pack many independent bits into a single
ciphertext. The server then obliviously expands this ciphertext into
an encryption of each bit separately. In OnionPIR we adopted the
query compression algorithm given by Chen et al. [17].

Query packing. Algorithm 1 represents query packing in Onion-
PIR. All the query vectors are packed into a single plaintext 𝑝𝑡 ,
which is then encrypted using BFV encryption. Chen et al. [17]
show that for each query bit 𝑞 , it is sufficient to only pack 𝑙 val-
ues, corresponding to first 𝑙 rows of RGSW ciphertext. Similarly,
for the first dimension, we pack 2 values for each bit in the first
query vector. There is a chance that query vectors may not fit into
a single plaintext. However, later in the section, we show that a
single plaintext is sufficient in OnionPIR.

5

Algorithm 1:QueryPack algorithm used in OnionPIR

Input: {𝑞𝑖 }𝑑𝑖=1 a set of plaintext query vectors one for each
dimension

Output: 𝑞 a single BFV ciphertext packing all the query
vectors

Notation :

- 𝑑 ,- number of dimensions
- 𝑁𝑖 , size of 𝑖-th dimension
- 𝑒 , number of components for each kind of encryption
- 𝑞𝑖, 𝑗 , 𝑗-th bit in 𝑖-th vector

1 𝑝 = 0
2 Sets plaintext pt as follows:
3 for 𝑖 = 1 : 𝑑 do

4 for 𝑘 = 1 : 𝑒 do
5 ⊲ 𝑒 = 2 for first-dimension and 𝑒 = 𝑙 for rest.
6 for 𝑗 = 1 : 𝑁𝑖 do

7 pt𝑝+𝑗+𝑘 = 𝑞𝑖, 𝑗 [𝑘]
8 end

9 end

10 𝑝 = 𝑝 + 𝑁𝑖 + 𝑒
11 end

12 BFV-encrypts pt to get 𝑞 = BFV(pt) and outputs 𝑞

Query unpacking. Algorithm 2 represents query unpacking in
OnionPIR. The algorithm first calls BFV expansion procedure given
in Algorithm 3 of [17]. This procedure outputs an array of BFV
ciphertexts, encrypting individual values. The algorithm parses the
first query vector. For the remaining query vectors, BFV expansion
only gives the first 𝑙 rows of each RGSW ciphertexts. To get second
𝑙 rows for each RGSW ciphertext, the algorithm performs external
products between RGSW encryption of client secret-key and first 𝑙
rows. We refer the user to Section 4.3 of [17] for further explanation
on this trick.

But as it turns out, query compression increases noise in the
output ciphertext. The noise growth is multiplicative to the number
of entries packed in one ciphertext. So, it is desirable to have fewer
entries that need to pack. This is why we opt to represent the
database as a high-dimensional hypercube (cf. Section 3) and set all
dimensions small, i.e., 𝑁2 = 𝑁3 = . . . = 4, after the first dimension
of 𝑁1 = 128 (cf. Section 4.2). This makes the number of dimensions
𝑑 logarithmic in the database size, or 𝑑 = 1 + ⌈log4 (𝑁 /128)⌉.

We pack two values for each query bit therefore in total 256
values. Likewise, for the remaining 𝑑 − 1 dimensions combined, we
have 4𝑙 (𝑑 − 1) values to pack. Concatenating them gives a plaintext
vector of size 256 + 4𝑙 (𝑑 − 1). This means that for a database with
one million entries and 𝑙 = 5, a total of 386 values will be packed. In
our implementation, each ciphertext has 𝑛 = 4096 plaintext slots, so
we pack all these plaintexts into a single BFV ciphertext. Unpacking
these entries will add only a small amount of noise in the resulting
ciphertexts.
Pseudorandomfirst component in ciphertexts.We can further
reduce the request size by using the optimization given in [2]. Re-
call that each BFV ciphertexts consists of two components (𝑐0, 𝑐1),

Algorithm 2:QueryUnpack algorithm adopted from algo-
rithm 4 in [17]. We assume that𝐴 is provided by each client
at the time of initialization. This algorithm outputs a single
encrypted query vector for each dimension.
Input: (𝑞) a single BFV ciphertext packing all the query

vectors, 𝐴 = RGSW(−𝑠) rgsw encryption of client
secret key

Output: {q̂𝑗 }𝑑𝑗=1 set of encrypted query vectors
Notation :

- 𝑞𝑖, 𝑗 , 𝑗-th ciphertext component of 𝑖-th query vector.
- 𝑐 [], single BFV ciphertext.
- Remaining as defined in Algorithm 1.
Subroutines :

- expandRlwe, BFV expansion procedure given in algorithm 3 of
[17]

1 c = expandRlwe(𝑞) ⊲ flat array of all expanded ciphertexts
2 q̂1,: [0] = 𝑐 [1 : 𝑁1] ⊲ setting first query vector
3 q̂1,: [1] = 𝑐 [𝑁1 + 1 : 2𝑁1]
4 𝑝𝑡𝑟 = 2𝑁1
5 for 𝑖 = 2 : 𝑑 do

6 ⊲ setting higher query vectors
7 for 𝑘 = 0 : 𝑙 − 1 do
8 for 𝑗 = 1 : 𝑁𝑖 do

9 𝑞𝑖, 𝑗 [𝑘] = c[𝑝𝑡𝑟 + 𝑘𝑁𝑖 + 𝑗]
10 𝑞𝑖, 𝑗 [𝑘 + 𝑙] = ExtProd(𝐴, c[𝑝𝑡𝑟 + 𝑘𝑁𝑖 + 𝑗])
11 end

12 end

13 𝑝𝑡𝑟 = 𝑝𝑡𝑟 + 𝑙𝑁𝑖

14 end

15 Outputs {q̂𝑗 }𝑑𝑗=1

where in a fresh ciphertext the first component is sampled uniform
randomly from 𝑅 mod 𝑞. Thus, instead of sending a truly random 𝑐0,
the client use a pseudorandom 𝑐0 can send a short random seed in-
stead, and the server can derive 𝑐0 from the seed. This optimization
reduces the request size in half.

4.4 OnionPIR Full Protocol

The final OnionPIR protocol is given in the Algorithm 3. We have
introduced all the components of the algorithm separately in previ-
ous sections. Below we give a full description putting together all
the techniques.

The database is represented as a hypercube of 𝑑 dimensions. The
size of the first dimension 𝑁1 = 128 and each of the remaining
dimensions is of size 4. The total number of dimensions is thus
𝑑 = 1 + ⌈log4 (𝑁 /𝑁1⌉.

As a pre-processing step of the protocol, the server decomposes
each entry of the database into two parts. The client represents the
desired index idx into𝑑 query vectors, one for each dimension of the
hypercube. The client then packs all of the query bits into a single
BFV ciphertext and sends the ciphertext to the server. The server
unpacks this ciphertext into separate encrypted query vectors. Each

6

Algorithm 3: OnionPIR Protocol.
Input: DB server database of size 𝑁
Notation :

- 𝑁 , database size
- DB𝑖 , 𝑖-th record
- id, client’s index
- 𝑞𝑖 , encrypted query vector for 𝑖-th dimension dimension
- DB

′
, intermediate database

- All the notations defined in Algorithm 1 and 2
- shaded part is executed by server

1 Server computes {pt𝑗 }𝑁𝑗=1 = {DecompPlain(DB𝑗)}𝑁𝑗=1

2 Client represents the index idx as a vector (𝑖1, · · · 𝑖𝑑), where
𝑖 𝑗 is the position of 𝑖𝑑𝑥 entry in 𝑗-th dimension of
hypercube.

3 Client generates query vectors {𝑞 𝑗 }𝑑𝑗=1 corresponding to
(𝑖1, · · · 𝑖𝑑), such that only 𝑞 𝑗 [𝑖 𝑗] is equal to 1 and
remaining all 0.

4 Client computes 𝑞 = QueryPack({𝑞 𝑗 }𝑑𝑗=1), and sends 𝑞 to
server

5 Server computes:
6 {q̂𝑗 }𝑑𝑗=1 = QueryUnpack(𝑞) ⊲ query expand
7 𝑠 = 𝑁 /𝑁1
8 for 𝑗 = 1 : 𝑠 do
9 DB

′
𝑗
=
∑𝑁1
𝑘=1 DecompMul(𝑞1,𝑘 , pt𝑘+(𝑗∗𝑁1))

10 ⊲ first dimension

11 end

12 for 𝑖 = 2 : 𝑑 do

13 𝑠 = DB
′/𝑁𝑖

14 for 𝑗 = 1 : 𝑠 do
15 D̃B𝑗 =

∑𝑁𝑖

𝑘=1 ExtProd(𝑞𝑖,𝑘 ,DB
′

𝑘+(𝑗∗𝑁𝑖))
16 end

17 DB
′
= D̃B

18 ⊲ remaining dimensions

19 end

20 Server sends 𝑟 = DB
′
(a single record now) to the client

Client decrypts 𝑟 to get data of record 𝑖𝑑

entry in the first query vector consists of two BFV ciphertexts and
each entry in subsequent dimensions is a RGSW ciphertexts.

For the first dimension, the server performs a dot-product (using
DecompMul operation) between the first query vector and each
(plaintext) column of the hyper cube. The output is an encrypted

hypercube of one fewer dimension. The server then continues to
process higher dimensions in the same manner but now using
external products. After the dot-product at each dimension, the
output is an intermediate hypercube of one fewer dimension and
it is treated as the input to the next dot-product. The final output
after the last dot-product is a single BFV ciphertext encrypting the

desired entry. This is sent to the client as the response and the client
decrypts it to get the desired database entry.

Request size.The request of OnionPIR is a single BFV ciphertext.
Using the optimization discussed in Section 4.3, the request size is
64 KB.

Response size.We set the ciphertext modulus 𝑞 to 124 bits (in the
implementation, we pad it to 128 bits). As the plaintext modulus,
𝑡 has 60 bits this gives a ciphertext expansion factor 𝐹 ≈ 4.2. The
response is thus only 4.2x larger than the plaintext entry.

Computational cost. Query expansion requires around 𝑤 · 𝑙2
polynomial multiplications [34] where 𝑤 is the total number of
packed bits. Because of the high dimensions, only a logarithmic
number of bits are packed. Therefore, query expansion is not the
computation bottleneck.

The total number of polynomial multiplications required by the
dot product operations is about 2 · 𝑁 + 4 · 𝑙 (𝑁

𝑁1
+ 𝑁

4𝑁1
+ 𝑁

16𝑁1
+ · · ·).

Recall that 𝑁1 = 128 is the size of the first dimension. Thus, the
term 𝑁 /𝑁1 is very small, and the computational cost is dominated
by the 2𝑁 polynomial multiplications in the first dimension.

Due to the larger 𝑡 and the larger polynomial degree 𝑛 = 4096,
each ciphertext in our protocol contains 30 KB of plaintext data.
This is 10 times more than SealPIR. On the other hand, the first
dimension in our protocol uses decomposition and hence twice
as many polynomial multiplications. Furthermore, each polyno-
mial multiplication in our protocol is about 4.2x more expensive
because of our doubled values of log𝑞 and 𝑛. Therefore, in theory,
the computation cost of our protocol will be about 1.25x better than
SealPIR. In our actual implementation and experiments, we found
that the computational costs of OnionPIR and SealPIR are almost
identical.

Noise growth estimate. In OnionPIR, the noise in the output ci-
phertext largely results from the query expansion and the ciphertext-
plaintext multiplications in the first dimension.

The noise in the expanded ciphertext (RGSW and BFV both) is
bounded by [17]:

Err(ct𝑒𝑥𝑝) ≤ 𝑂 (𝑤2) · Err(BFV) (2)

Here, Err(BFV) is the initial noise in the packed input ciphertext
and𝑤 is the number of packed bits. As mentioned earlier, there are
fewer bits to be packed in OnionPIR, so query expansion adds less
noise than prior art.

In the first dimension, the noise increases by a factor of𝑂 (𝑁1𝐵
′).

Here, 𝑁1 is the size of the first dimension and it appears due to the
homomorphic additions; 𝐵

′
is the maximum value of the decom-

posed plaintext. Therefore, the estimated total noise after the first
dimension is around:

Err(ct1) = 𝑂 (𝑤2𝑁1𝐵
′
) · Err(BFV)

Subsequent dimensions use external products and the noise increase
is additive and insignificant.

From the above analysis, the total noise in the response cipher-
text is bounded by

Err(ct𝑟𝑒𝑠𝑝.) ≤ Err(ct1) +𝑂 (𝑑) · Err(ct𝑒𝑥𝑝) (3)
7

As a comparison, we remark that had we used BFV ciphertext
multiplications instead of external products, the noise in the out-
put ciphertext would have grown exponentially to Err(ct𝑟𝑒𝑠𝑝.) ≤
𝑂 (𝑡𝑑 · 𝑁) · Err(BFV). This noise grows too fast with the number
of dimensions 𝑑 , which is why prior works were limited to 𝑑 = 2.

5 STATEFUL PIR

Although OnionPIR has a very small response size and request size,
the computational burden on the server is still quite large (about
the same as the prior art SealPIR). Note that the server has to
perform at least one ciphertext-plaintext multiplication per database
entry, resulting in 𝑂 (𝑁) computation cost on the server. This is
a somewhat fundamental barrier in computation in the standard
PIR model: if some entries are not involved in the computation, it
would reveal to the server that these entries are not what the client
is interested in, which violates the privacy guarantee of PIR.

To overcome this computation bottleneck, Patel et. al [47] pro-
posed an elegant framework called Private Stateful Information

Retrieval (PSIR). PSIR significantly outperforms prior best single-
server PIR schemes in terms of computation. The main idea of the
PSIR framework is that the client is often stateful and can store
some helper data retrieved in an offline phase. Then in the online
phase, the client uses its state (helper data) to make cheaper PIR
queries.

The challenge is how to retrieve the required state privately in
the offline phase. The approach recommended by Patel et al. is to
simply download the entire database which results in large offline
response size, which is clearly impractical for many applications.

To address the above limitation and make the PSIR framework
practical, we propose a technique that allows the client to effi-
ciently and privately retrieve the required state. We further inte-
grated OnionPIR with our proposed offline technique into a stateful
PIR framework. The resulting scheme achieves about 7x reduction
in computation cost over vanilla OnionPIR for relatively large
databases and entry sizes. Compared to Patel et al.’s scheme, our
stateful scheme reduces the offline response size by 22x at the
expense of 2.2x increase in request size and 9x increase in compu-
tation.

In the remainder of this section, we will first provide a high-
level overview of the PSIR framework of [47] and then present our
improved offline phase.

5.1 Private Stateful Information Retrieval

At a high level, the PSIR protocol by Patel et al. [47] has an offline
phase and an online phase:
Offline phase. In the offline phase, the client privately retrieves
some states from the server. This step is defined as Private batched
sum retrieval (PBSR) problem in [47], which is defined as follows:
Given 𝑐 subsets 𝑆1, · · · , 𝑆𝑐 , where each subset consists of 𝑘

′
random

indexes. Privately fetch 𝑐 values corresponding to the sum of all
the entries in each subset. The client stores the subset and their
corresponding sums locally. The privacy of PBSR requires that the
server should not learn the 𝑐 input subsets.
StreamPBSR. To perform PBSR, the main protocol of Patel et al.
ultimately proposes that the server streams the entire database to
the client. Every time the client runs out of local state or a new

client joins, the server has to stream the database again. For any
practical application streaming the entire database to each client is
not plausible. For example, for private video streaming application
with database sizes in terabytes downloading the entire database
for millions of users is essentially impractical.
BatchCodePBSR. In appendix E.3 of [47], the authors also sketch
a construction based on batch codes and homomorphic encryption.
In this construction, the server encodes the database into batch
codes and the client then runs a private batch retrieval protocol
given in [5] to privately retrieve the subset sums. Although this
construction gets rid of database streaming. The authors found that
the computational overhead of this construction is so high that the
computation of stateful PIR becomes comparable to vanilla PIR.
Online phase. In the online phase, the client uses the subset sums
she obtained from the server to retrieve the entries. In this paper, we
will not modify the online phase of Patel et al.’s PSIR protocol [47],
so it is not important to understand its details. But we still briefly
describe it below for completeness.

Suppose in the online phase the client wants to retrieve an entry 𝑖 ,
the client will find an unused subset in the local storage the does not
contain 𝑖 . Let that subset and its corresponding sum be denoted as 𝑆 ′
and 𝑠 ′. After that, the client generates a random ordered partition
of the database such that there are 𝑚 = 𝑁 /(𝑘 ′ + 1) partitions
𝑃1, 𝑃2, · · · , 𝑃𝑚 , each of size 𝑘 ′+1 and a random partition 𝑃𝑟 is equal
to 𝑆 ′ ∪ 𝑖 , where 𝑟 is randomly picked from [𝑚]. The client then
sends a succinct description of the partition to the server. The server
then represents the database in the form of a matrix where each
row contains entries corresponding to a partition and add up each
row. The client then performs a PIR query to retrieve the 𝑟 -th sum.
The client can now recover the 𝑖-th entry by subtracting 𝑠 ′ from it.
Once the client runs out of subsets it will perform the offline phase
again to get new states. The privacy of the protocol is based on the
privacy of the offline PBSR and the online PIR.

Observe that in the online phase, the client’s PIR query is eval-
uated on a database of size𝑚 which is 𝑘 ′ + 1 times smaller than
the original database. This results in a factor of 𝑘 ′ + 1 reduction in
server computation. The online phase of is hence quite efficient. In
the next subsection, we will provide an efficient construction for
the offline PBSR phase.

5.2 Efficient Private Batch Sum Retrieval

In this subsection, we introduce a novel PBSR construction. Al-
though we motivated our construction for PSIR, it can be of inde-
pendent interest. Our key observation is that the PBSR problem has
a similar interface to copying networks.
Copy Networks PBSR. A copy network is a special kind of com-
puter network, that replicates input packets from various sources
simultaneously. At a high level, the copy network can be config-
ured on the fly to copy each input packet for a requested number
of times to the destinations. Precisely, a copy network is a 𝑁 × 𝑁
interconnection network with 2 log𝑁 − 1 stages. Each stage con-
tains 𝑁 /2 nodes where each node is a 2× 2 switch. Packets arriving
at each switch can either be routed on one of the output links or
replicated and sent out on both of the links. Figure 5 depicts an
example of five-stage copy network. White switches route the in-
coming packets on output wires and the grey switches replicate

8

1 , 2

2 , 3

3 , 3

4 , 0

5 , 0

6 , 0

7 , 0

8 , 0

1

1

2

2

2

3

3

3

Input Data Copied Data

Copy

Routing

Benes Copy Network

value copies

Figure 5: Benes copy network. Each intermediate node is a controlled
swap gate that either routes the inputs or copies one of the inputs to output
wires. Each input node has a value and number of copies. First element is
copied twice while element two and three are each copied three times.

them. The network replicates the first input packet twice and the
second and third input packets three times each.

Deng et. al. [24] showed that it is possible to find control bits for
each switch that satisfies all the copy requests. The only restriction
is that the total number of requested copies does not exceed the
number of destinations. They provide an efficient routing algorithm
that outputs control bits for the switches. We refer interested read-
ers to [24] for further details on the copy networks and the routing
algorithm.

If we evaluate the copy network homomorphically, the client
could use it to perform PBSR by the following approach:
(1) The client picks 𝑐 random subsets of size 𝑘 ′, such that 𝑐𝑘 ′ = 𝑁 .
(2) For each database entry, the client counts the number of subsets

that include the entry.
(3) The client uses these counts as copy requests in the routing

algorithm to generate control bits.
(4) The client then encrypts and sends these bits to the server.
(5) The server uses these encrypted control bits to homomorphi-

cally evaluate the copy network on the database.
(6) The client then asks the server to homomorphically add outputs

of the copy network into 𝑐 sums and return the results.
In Step 6 the client will ask the server to add values corresponding

to each subset together. If multiple subsets include the same entry,
the client will pick a different copy for each sum. The server gains no
information about the elements added together from the encrypted
output in Step 5.
Homomorphic evaluation of copy network. Note that the net-
work structure of the copy network is independent of the input
values or the copy requests. Therefore as long as the switching logic
is evaluated homomorphically, the server does not learn any infor-
mation. In [17], Chen et al. use external products to construct an
encrypted version of the controlled mux gates. Specifically, they en-
crypted each input as BFV ciphertexts and the swap bits as RGSW
ciphertexts. They used these gates to homomorphically evaluate a
permutation network. We note that evaluating the copy network
is quite similar to the permutation network. The only difference is
that each switch either route or replicate the incoming messages.
In Figure 6 we show that such a switch can by constructed using

01

S0

01

S0

Control Bits

Figure 6: 2 × 2 switch using two mux gates. Inputs are not shown.

StreamPBSR BatchCodePBSR Our PBSR
Response 𝑂 (𝑁) 𝑂 (𝑐) 𝑂 (𝑐)
Request − 𝑂 (𝑁𝑐) 𝑂 (𝑁 log𝑁)
Computation − 𝑂 (𝑁𝑐) 𝑂 (𝑁 log𝑁)

Table 2: Comparison of response, request and computation of our pro-
posed PBSR scheme with StreamPBSR and BatchCodePBSR. Our PBSR has
significantly smaller response than StreamPBSR. Also, in Patel et al. scheme
𝑐 >> log𝑁 , therefore Our PBSR has better request and computation than
BatchCodePBSR.

two mux gates. Each input ciphertext in the copy network passes
through 2 log𝑁 − 1 switches and each switch evaluates two exter-
nal products. As a result, the noise in the output ciphertext only
logarithmically increases.

One remaining minor issue is that the server knows that the
adjacent outputs from the copy network are likely copies of the
same element. That may leak information to the server about subset
overlapping. Thus, after evaluating the copy network in Step 5, the
client and the server first homomorphically permute the output
using a permutation network [17] and then perform the Step 6.

Table 2 compares the asymptotic complexity of our proposed
PBSR with the two PBSR schemes given by Patel et al [47]. Our con-
struction has a significantly smaller response size than StreamPBSR.
The response size of BatchCodePBSR is similar to our construc-
tion, but the request size and server computation are linear in the
number of subsets 𝑐 . In our construction, they do not depend on
𝑐 . Therefore, for large 𝑐 , our construction has better asymptotic
efficiency than BatchCodePBSR.

6 IMPLEMENTATION AND EVALUATIONS

6.1 Implementation Details

We implemented OnionPIR atop the SEAL Homomorphic Encryp-
tion Library. SEAL only provides a BFV encryption scheme. So
we implemented RGSW and external products in SEAL. We also
implemented the CRT representation of RGSW encryption, which
is more efficient than using multi-precision arithmetic operations.
Optimizing polynomial multiplications. In SEAL the polyno-
mial multiplications are performed using number-theoretic trans-
formation (NTT). Each NTT operation has a complexity of 𝑛 log𝑛,
where 𝑛 is the size of the polynomial. However, we notice that the
implementation of NTT in SEAL is quite slow, which in turn hurts
the computation time of our protocol. Thus, for NTT, we instead
use NFLlib [48], an efficient library that uses several arithmetic

9

SealPIR OnionPIR
𝑁 = 216 𝑁 = 218 𝑁 = 220 𝑁 = 224 𝑁 = 216 𝑁 = 218 𝑁 = 220 𝑁 = 224

Response size (KB) 3, 200 3, 200 3, 200 3, 200 128 128 128 128
Request size (KB) 32 32 32 64 64 64 64 64

Query Unpack (sec) 5.49 10.79 21.59 86.36 3.67 4.13 4.6 5.5
Dot-Products (sec) 20.51 91.21 381.41 6, 361.64 21.33 96.87 396.4 6, 410.4

Total Computation (sec) 26 102 403 6, 448 25 101 401 6, 416

Server cost (US cents) 0.034 0.055 0.139 1.818 0.008 0.029 0.112 1.792
Table 3: Performance comparison of OnionPIR and SealPIR for different database sizes. Red boxes represent worse efficiency and blue boxes represent
better efficiency. OnionPIR has significantly smaller response size and computation comparable SealPIR. Regarding request size, for database until one
million entries request size in SealPIR half of OnionPIR. But for database with 16 million entries request size of OnionPIR and SealPIR is equal.

Stateful OnionPIR OnionPIR Patel et al. Scheme
𝑁 = 220 𝑁 = 224 𝑁 = 220 𝑁 = 224 𝑁 = 220 𝑁 = 224

Online
Response size (KB) 1, 280 1, 280 1, 280 1, 280 32, 000 32, 000
Request size (KB) 162 431 64 64 130 399
Computation (sec) 62 253 4, 010 64, 480 63 264

Response size (KB) 1, 280 1, 280 − − 24, 769 107, 088
Offline Request size (KB) 128 576 − − − −

Computation (sec) 516 2, 664 − − − −
Response size (KB) 2, 560 2, 560 1, 280 1, 280 56, 769 139, 088

Total Request size (KB) 291 1, 007 64 64 130 399
(amortized) Computation (sec) 578 2, 917 4, 010 64, 480 63 264

Server Cost (US cents) 0.18 0.83 1.12 17.92 0.54 1.26

Client Storage (GB) 3.8 14 − − 3.8 14
Table 4: Comparison of stateful OnionPIR with vanilla OnionPIR construction for databases of size 314 GB and 5, 033 GB. Each database entry is of 300 KB.
For database with one million entries, number of entries in hint 𝑐 = 12, 700 and for 16 million entries, 𝑐 = 47, 000. In both cases, the client storage is less than
2% of total server storage.

optimizations and AVX2 specialization for arithmetic operations
over polynomials. We note that the NTT implementation in NFLlib
is 2 − 3x faster than SEAL. We integrated NFLlib’s NTT with SEAL.
In total, our modifications consist of around 3000 lines of C++ code.

6.2 Experimental Setup

We run our experiments on Amazon EC2 instances. Specifically, we
used a t2.2xlarge instance with 32 GB ram and 8 CPU cores with
AVX enabled. We run each experiment 10 times and report the aver-
ages. Monetary costs is the sum of CPU cost for server computation
and the cost of network traffic. These costs were computed using
standard rates from Amazon EC2 Instance prices [1], which at the
time of writing were at one cent per CPU-hour and 9 cents per GB
of internet traffic.

Parameters. We choose security parameters based on the FHE
standard [3]. We set the polynomial degree 𝑛 to 4096, and size of
coefficient modulus 𝑞 to 124 bits. This provides us around 128 bits

of security. In SealPIR, 𝑛 is set to 2048 and 𝑞 is set to 60 bits, which
provides 128 bits of security.

For basic OnionPIR experiments, we set the size of each database
entry to 30 KB and for stateful OnionPIR experiments we consider
each entry to be of 300 KB. As mentioned before, due to the lower
noise growth, we can set plaintext modulus 𝑡 to 60 bits. This means
that in OnionPIR 30 KB of data can fit in a single plaintext. In
contrast, in SealPIR each plaintext could accommodate only 3 KB
of data.

6.3 Evaluation Results of OnionPIR

We evaluate OnionPIR with different database sizes and report the
computational cost, request size, and response size in Table 3 and
compare with SealPIR.

Computational. In OnionPIR and SealPIR, the server mainly per-
forms two tasks: Query unpacking and the Dot-products between
the query vectors and the database. Query unpacking in OnionPIR
takes less time than SealPIR because we pack only a logarithmic

10

number of query bits (q.v. Section 4.3), while in SealPIR sub-linear
number of bits are packed in each query ciphertext. Also, we ob-
serve that dot-products take a significant proportion of total server
computation. Polynomial multiplication is a core operation used in
each dot-product. Therefore, improving the performance of polyno-
mial multiplications could significantly improve the performance
of both schemes.

In the theoretical analysis in Section 4.4, we estimated that
OnionPIR is 1.25x better than SealPIR in terms of computation.
But in the actual experiments, we observe that the computational
cost of OnionPIR is almost identical to SealPIR across all database
sizes. This is in part due to the cost from RGSW decomposition.

Request Size. For databases with up to one million entries, the re-
quest size in OnionPIR is twice as large as SealPIR. This is because
each ciphertext in OnionPIR is four times bigger than the SealPIR
ciphertext. But for a database with 16 million entries, request size
of SealPIR and OnionPIR is equal.

Response Size. OnionPIR shines in response size. Specifically, the
response size is only 128 KB where the response size in SealPIR is
3, 200 KB. For applications with an even bigger entry size, Onion-
PIR is an ideal candidate as it significantly reduces the network
overhead.

Server Cost. For smaller databases, the server cost in OnionPIR is
orders of magnitude smaller than SealPIR. But for bigger databases,
the cost of both schemes becomes almost equal. In the case of a
smaller database, the server computation is small and the response
size is the bottleneck. With the increase in database size, the server
computation becomes the bottleneck which is comparable in both
schemes. As an example, for a database with 65, 536 entries, the
server cost of OnionPIR is four times less than SealPIR. But Onion-
PIR only has 19% less cost for a database with one million entries.

6.4 Evaluation Results of stateful OnionPIR

For stateful OnionPIR, we integrate PBSR construction given in
Section 5.2, into the stateful PIR framework along with OnionPIR.
In Table 4 we compare the performance of stateful OnionPIR with
vanilla OnionPIR and Patel et al. scheme. Patel et al. scheme uses
StreamPBSR [47] in the offline phase and SealPIR in the online
phase.

Amortization of offline phase. As discussed in Section 5.2, for
stateful PIRs, the client interacts with the server to run the offline
phase once and retrieve 𝑐 subset sums. The client then uses this
state to make 𝑐 cheaper queries in the online phase. In other words,
each offline phase is amortized to 𝑐 queries. In our experiments,
for a database with one million entries, 𝑐 is set to 12, 700 and for a
database of 16 million entries, 𝑐 is set to 47, 000.

ComparisonwithOnionPIR. As discussed before, vanilla Onion-
PIR has a high computational cost. Specifically, for our experimental
database sizes, the computation times would be 1.1 hours and 18
hours. It is quite clear that for any application, 18 hours of com-
putation is impractical. Stateful OnionPIR significantly reduces
these times to 9 and 48 minutes, which is a factor of 7x and 22x
improvement over vanilla SealPIR. The trade-offs are request and
response sizes. Specifically, the response size increases by a factor

of two, and the request size increases by a factor of 4.5 and 15,
respectively.

Comparison with Patel et al.. The amortized response size in
Patel et al. scheme is 55 MB and 136 MB for the two databases.
With our proposed PBSR scheme, the amortized response size in
stateful OnionPIR is reduced to 2.5 MB for both database sizes. A
trade-off here is that our request size is 2 ∼ 2.5x larger and the
computation is 9 ∼ 11x higher. This is because the StreamPBSR
in their scheme does not require any server computation or client
input.

Summary. Stateful OnionPIR provides a nice middle ground be-
tween computation and communication. Even though vanilla Onion-
PIR has moderately better request and response sizes, its compu-
tation cost is too high for large databases. Similarly, Patel et al.
has better request size and computation, but downloading the en-
tire database results in very high response size for large databases.
Overall, stateful OnionPIR has moderate costs across all the perfor-
mance metrics. This reflects in the smaller monetary cost of stateful
OnionPIR, which is 6x less than vanilla OnionPIR and 3x less than
Patel et al. scheme.

7 RELATEDWORK

Early single-server PIR schemes. Some of the early single-server
PIR protocols are based on Additive homomorphic encryption (AHE).
These schemes followed the blueprint of Kushilevitz and Ostro-
vsky [42]: the database is represented as high dimensional hyper-
cube and the client’s request is encrypted under an AHE. The
original protocol of the Kushilevitz and Ostrovsky scheme has a
request size of 𝑂 (

√
𝑁 log𝑁) and response size of 𝑂 (

√
𝑁). Cachin

et al. [14] proposed a PIR protocol based on 𝜙-Hiding assump-
tion. The protocol has request size of𝑂 (log4 𝑁) and polylogarithm
response size 𝑂 (log𝑑 𝑁). Gentry and Ramazan [28] generalized
Cachin et al.’s approach and proposed a communication-efficient
PIR protocol with a request size of 𝑂 (log3−𝑜 (1) 𝑁). Chang [16]
follows the Kushilevitz-Ostrovsky scheme but uses Pailer homo-
morphic encryption to construct PIR with 𝑂 (

√
𝑁 log𝑁) request

size and 𝑂 (log𝑁) response size. Lipmaa [43] uses the Damgard-
Jurik encryption scheme [23] to achieve𝑂 (log2 𝑁) request size and
𝑂 (log𝑁) response size.

Sion and Carbunar [50] observe that these schemes in practice
often perform slower than downloading the entire database when
the network bandwidth is a few hundred Kbps. The poor perfor-
mance is due to the fact that , in all of the these schemes, the server
needs to perform at least 𝑁 big-integer modulus multiplications
or modulus exponentiations. The computational cost of such an
operation is often higher than simply sending the data to the client.

Recent practical single-server PIR schemes.Recent single-server
PIR constructions are based on lattice-based cryptography, and in
particular, Ring Learning with error (RLWE) encryption. Aguilar-
Melchor et al. [44] present XPIR with good computation cost. Specif-
ically, to retrieve a 30 KB entry from a database with one million
entries, their protocol takes around 383 seconds, which is slightly
less than our OnionPIR. However, the downside of their protocol
is that the request size is 17 MB and the response size overhead

11

is 100𝑥 . SealPIR [5] addresses the request size bottleneck by in-
troducing a novel query compression technique. This results in a
significant reduction in request size (to 32 KB) at a cost of a slight in-
crease in overall computation; their response size is similar to XPIR.
Very recently, Park and Tibouchi [46] present a construction based
on TFHE [18] that improves the response overhead of SealPIR to
16x; but their computation cost more than doubled compared to
SealPIR.

Concurrent work.Ali et al. [4] also gives a protocol that improves
upon SealPIR’s response size. Their main technique is to use BFV
ciphertext multiplication in the second dimension followed by mod-
ulus switching to reduce the response size. To handle the higher
noise growth from BFV ciphertext multiplication (cf. Table 3), their
protocol requires larger FHE parameters, which lead to higher sever
computation cost. Overall our OnionPIR performs better than their
scheme in all the metrics. Concretely, to retrieve 60 KB entry2 from
a database with one million entries takes around 900 seconds with
the response size of 357 KB and request size of 119 KB. In compari-
son, for the same database, OnionPIR requires 800 seconds with
the response size of 256 KB and request size of 64 KB.

Multi-server PIR. While the focus of our paper is single-server
PIR, we mention that there also exist many PIR protocols based
on multiple non-colluding servers [7–9, 19, 20, 25, 31, 52, 53]. The
first multi-server PIR schemes are proposed by Chor et al. [20] and
they provide information-theoretic security. At a high level, the
client sends XOR-based secret shares of the query to each server
and the server performs plaintext XOR operations. The request size
is 𝑂 (
√
𝑁) with two servers. Protocols with better request size are

known using three or non-colluding more servers. The best known
three-server schemes have a request size of 2𝑂

√
log𝑁 log log𝑁 [25,

53]. Gilboa et al. [31] proposed a two-server PIR computationally
secure PIR scheme with a poly-logarithmic request size based on
distributed point functions. The server computation consists of𝑂 (𝑁)
PRG evaluations and XOR operations. Overall, these multi-server
schemes have superior computational efficiency than single-server
schemes because their server computation does not involve costly
cryptographic operations.

Stateful PIR. Patel et al. [47] introduced stateful PIR where the
client retrieves some helper data in the offline phase and use them
to make the online phase cheaper. The construction of Patel et al.
uses a single server. The amortized computation cost of their frame-
work is still linear in the database size, but most of the operations
involve only symmetric-key cryptography. The number of public-
key operations dropped to sub-linear, which leads to a substantially
reduction in amortized computation cost over vanilla stateless PIR.
However, their scheme requires the client to download the entire
database in the offline phase. For applications with large database
sizes downloading the entire database is not practical.

In a recent pioneering work, Corrigan-Gibbs and Kogan have
proposed two-server stateful PIR schemes with amortized sublin-
ear computation complexity [22, 41]. This two-server PIR scheme

2Ali et al.’s scheme works best when the record size is a multiple of 20 KB while
OnionPIR works best when the record size is multiple of 30 KB. This is why we chose
60 KB for a fair comparison.

shows promising efficiency in both theory and in practice. Corrigan-
Gibbs and Kogan also proposed a single-server variant of their state-
ful PIR utilizing FHE. This single-server variant, however, is much
less efficient. Specifically, the single-server variant needs to run the
offline phase again after every single online query. Therefore, it
only reduces the online cost while the overall cost is actually even
worse than vanilla stateless PIR.
Orthogonal directions to improve PIR computation.Wemen-
tion two orthogonal directions to reduce server computation in PIR.

One direction is called batched PIR, which allows the server
to answer a batch of PIR queries with lower cost than answering
each query separately. This general strategy has been adopted in
a setting where the queries comes from single client [5, 37, 38]
or multiple clients [10, 39]. Our protocol can also be extended to
support batched queries but we remark that this approach is not
always applicable as in many scenarios, the client has only one
query to make at a time.

Another direction is PIR with preprocessing, first proposed by
Beimel et al. [10]. In their scheme, the server first performs a lin-
ear preprocessing step; after that, the server’s work per query is
sub-linear. Their protocol requires multiple non-colluding servers.
Recently, Canetti et al. [15] and Boyle et al. [13] constructed single-
server PIR with preprocessing, which is also called doubly efficient
PIR. These schemes have been proposed in both symmetric-key and
public-key settings. In the symmetric-key variant, the database can
only be accessed by a single client, which does not fully match the
public database model of PIR. In other words, this would require
the server to store a separate copy of the prepossessed database
for each client. On the other hand, the current public key variant
requires strong cryptographic assumptions such as obfuscation,
which also means they are still impractical at the moment.
Related privacy-preserving primitives. Oblivious Ram (ORAM)
provides access pattern privacy for a private database [32, 33]. The
client state contains a secret key that is used to decrypt the data.
The secret key enables the ORAM to use sublinear computation
and bandwidth. However, these schemes could not be used for PIR
because they do not support multiple clients [11, 40]. Several works
have considered extending ORAM schemes to enable access to a
large group of clients. But these approaches are highly inefficient
because they either require running a separate ORAM for each
client or multiple non colluding servers.

Hamlin et al. recently introduced Private Anonymous Data Ac-
cess (PANDA) [36]. PANDA is build on symmetric-key DEPIR, with
additional feature that the server is stateful and maintains informa-
tion between multiple requests. The schemes guarantee privacy if
the number of corrupted clients is below a certain threshold. The
downside of their scheme is that the client and server computation
is linear in the number of colluding clients.

8 CONCLUSION

In this paper, we have proposed a response-efficient single-server
PIR scheme. Our protocol has a response overhead of just 4.2x in
comparison to an insecure baseline. Additionally, the computation
cost of our scheme is comparable to SealPIR, which makes it the
most efficient single-server PIR scheme. We further improve the
Stateful PIR scheme of [47] by introducing a novel offline phase that

12

drastically reduces the response overhead of the overall protocol.
We further integrated OnionPIR in the Stateful PIR framework to
show around 7x improvement in total computation time.

Future Directions. In OnionPIR we have mainly focused on im-
proving the response size. However, like prior homomorphic
encryption-based schemes, the computational cost of vanilla Onion-
PIR protocol is still quite high. The recent stateful PIR scheme
has significantly improved the computational cost however, these
schemes are not useful for the applications where the database is up-
dated frequently and the client has limited storage, such as mobile
devices. Therefore, it is still desirable to reduce the computational
overhead of vanilla single server PIR schemes. One potential direc-
tion that could improve the computation time is to improve protocol
implementation. In our experiments, we noticed that more than 80
percent of the server compute time is due to number-theoretic trans-
formation (NTT) based polynomial-polynomial multiplications. In
our implementation of OnionPIR, we have used the NFLlib library
that has implemented NTT using AVX2 specialization. This results
in a factor of four improvements for each polynomial multiplication.
Recent research efforts have demonstrated that using specialized
hardware such as GPU and FPGA could significantly reduce the
computational overhead of polynomial multiplications [49]. An
interesting future direction is to improve the computation time of
PIR schemes by integrating them with specialized hardware.

For the applications in which the database remains static or
updates less frequently, a stateful PIR framework is a promising
option. Although in this paper we have removed the requirement
of downloading the entire database in a stateful PIR framework,
our proposed PBSR construction still requires considerable server
computation and client state. Hence, it is interesting to explore
further improvements to PBSR.

REFERENCES

[1] [n.d.]. Amazon EC2 On-Demand Pricing. https://aws.amazon.com/ec2/pricing/
on-demand/. Accessed: 2021-07-13.

[2] 2016. Faster Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1
Seconds. In Advances in Cryptology - ASIACRYPT - 22nd International Conference

on the Theory and Application of Cryptology and Information Security, ,2016,
Jung Hee Cheon and Tsuyoshi Takagi (Eds.).

[3] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey
Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam,
Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai, and Vinod
Vaikuntanathan. 2018. Homomorphic Encryption Security Standard. Technical
Report. HomomorphicEncryption.org, Toronto, Canada.

[4] Asra Ali, Tancrède Lepoint, Sarvar Patel, Mariana Raykova, Phillipp Schoppmann,
Karn Seth, and Kevin Yeo. [n.d.]. Communication-Computation Trade-offs in
PIR. IACR Cryptol. ePrint Arch. 2019 ([n. d.]).

[5] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty. 2018. PIR with
Compressed Queries and Amortized Query Processing. In 2018 IEEE Symposium

on Security and Privacy, SP.
[6] Sebastian Angel and Srinath T. V. Setty. 2016. Unobservable Communication

over Fully Untrusted Infrastructure. In 12th USENIX Symposium on Operating

Systems Design and Implementation,OSDI.
[7] Omer Barkol, Yuval Ishai, and Enav Weinreb. 2010. On Locally Decodable Codes,

Self-Correctable Codes, and t-Private PIR. Algorithmica (2010).
[8] Richard Beigel, Lance Fortnow, andWilliam I. Gasarch. 2006. A tight lower bound

for restricted pir protocols. Comput. Complex. (2006).
[9] Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Ilan Orlov. 2012. Share Conver-

sion and Private Information Retrieval. In Proceedings of the 27th Conference on

Computational Complexity, CCC 2012.
[10] Amos Beimel, Yuval Ishai, and Tal Malkin. 2004. Reducing the Servers’ Compu-

tation in Private Information Retrieval: PIR with Preprocessing. (2004).
[11] Erik-Oliver Blass, Travis Mayberry, and Guevara Noubir. 2017. Multi-client

Oblivious RAM Secure Against Malicious Servers. In Applied Cryptography and

Network Security - 15th International Conference, ACNS 2017, Kanazawa, Japan,

July 10-12, 2017, Proceedings (Lecture Notes in Computer Science).
[12] Nikita Borisov, George Danezis, and Ian Goldberg. 2015. DP5: A Private Presence

Service. Proc. Priv. Enhancing Technol. (2015).
[13] Elette Boyle, Yuval Ishai, Rafael Pass, and Mary Wootters. 2017. Can We Ac-

cess a Database Both Locally and Privately?. In Theory of Cryptography - 15th

International Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017,

Proceedings, Part II.
[14] Christian Cachin, Silvio Micali, and Markus Stadler. 1999. Computationally

Private Information Retrieval with Polylogarithmic Communication. In Advances

in Cryptology - EUROCRYPT ’99, International Conference on the Theory and

Application of Cryptographic Techniques, 1999.
[15] Ran Canetti, Justin Holmgren, and Silas Richelson. 2017. Towards Doubly Efficient

Private Information Retrieval. In Theory of Cryptography - 15th International

Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings,

Part II.
[16] Yan-Cheng Chang. 2004. Single Database Private Information Retrieval with Log-

arithmic Communication. In Information Security and Privacy: 9th Australasian

Conference, ACISP 2004, Sydney, Australia, July 13-15, 2004. Proceedings (Lecture

Notes in Computer Science).
[17] Hao Chen, Ilaria Chillotti, and Ling Ren. 2019. Onion Ring ORAM: Efficient

Constant Bandwidth Oblivious RAM from (Leveled) TFHE. ACM.
[18] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2020.

TFHE: Fast Fully Homomorphic Encryption Over the Torus. J. Cryptol. (2020).
[19] Benny Chor and Niv Gilboa. 1997. Computationally Private Information Retrieval

(Extended Abstract). In Proceedings of the Twenty-Ninth Annual ACM Symposium

on the Theory of Computing, 1997.
[20] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. 1995. Private

Information Retrieval. In 36th Annual Symposium on Foundations of Computer

Science, Wisconsin, USA, 23-25 October 1995.
[21] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. 1998. Private

Information Retrieval. (1998).
[22] Henry Corrigan-Gibbs and Dmitry Kogan. 2020. Private Information Retrieval

with Sublinear Online Time. In Advances in Cryptology - EUROCRYPT 2020 - 39th

Annual International Conference on the Theory and Applications of Cryptographic

Techniques, Zagreb, Croatia, May 10-14, 2020.
[23] Ivan Damgård and Mads Jurik. 2001. A Generalisation, a Simplification and

Some Applications of Paillier’s Probabilistic Public-Key System. In Public Key

Cryptography, 4th International Workshop on Practice and Theory in Public Key

Cryptography, PKC 2001 (Lecture Notes in Computer Science).
[24] Yun Deng and Tony T. Lee. 2006. Crosstalk-free Conjugate Networks for Optical

Multicast Switching. CoRR abs/cs/0610040 (2006).
[25] Klim Efremenko. 2009. 3-query locally decodable codes of subexponential length.

In Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC

2009.
[26] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Homo-

morphic Encryption. IACR Cryptol. ePrint Arch. (2012).
[27] Eric Fung, Georgios Kellaris, and Dimitris Papadias. 2015. Combining Differential

Privacy and PIR for Efficient Strong Location Privacy. In Advances in Spatial

and Temporal Databases - 14th International Symposium, SSTD (Lecture Notes in

Computer Science).
[28] Craig Gentry and Zulfikar Ramzan. 2005. Single-Database Private Information

Retrieval with Constant Communication Rate. In Automata, Languages and Pro-

gramming, 32nd International Colloquium, ICALP 2005 (Lecture Notes in Computer

Science).
[29] Craig Gentry, Amit Sahai, and Brent Waters. 2013. Homomorphic Encryp-

tion from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster,
Attribute-Based. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryp-

tology Conference, 2013.

[30] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter, Michael
Naehrig, and John Wernsing. 2016. CryptoNets: Applying Neural Networks
to Encrypted Data with High Throughput and Accuracy. In Proceedings of the

33nd International Conference on Machine Learning.
[31] Niv Gilboa and Yuval Ishai. 2014. Distributed Point Functions and Their Applica-

tions. In Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International

Conference on the Theory and Applications of Cryptographic Techniques.
[32] Oded Goldreich. 1987. Towards a Theory of Software Protection and Simulation

by Oblivious RAMs. In Proceedings of the 19th Annual ACM Symposium on Theory

of Computing, 1987, New York, New York, USA, Alfred V. Aho (Ed.).
[33] Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Simulation

on Oblivious RAMs. J. ACM (1996).
[34] Matthew Green, Watson Ladd, and Ian Miers. 2016. A Protocol for Privately

Reporting Ad Impressions at Scale. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security.
[35] Trinabh Gupta, Natacha Crooks, Whitney Mulhern, Srinath T. V. Setty, Lorenzo

Alvisi, and Michael Walfish. 2016. Scalable and Private Media Consumption
with Popcorn. In 13th USENIX Symposium on Networked Systems Design and

Implementation, NSDI.

13

https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/

[36] Ariel Hamlin, Rafail Ostrovsky, Mor Weiss, and Daniel Wichs. 2019. Private
Anonymous Data Access. In Advances in Cryptology - EUROCRYPT 2019 - 38th

Annual International Conference on the Theory and Applications of Cryptographic

Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part II.
[37] Ryan Henry. 2016. Polynomial Batch Codes for Efficient IT-PIR. Proc. Priv.

Enhancing Technol. (2016).
[38] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. 2004. Batch codes

and their applications. In Proceedings of the 36th Annual ACM Symposium on

Theory of Computing, 2004.
[39] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. 2006. Cryp-

tography from Anonymity. In 47th Annual IEEE Symposium on Foundations of

Computer Science (FOCS 2006), 2006.
[40] Nikolaos P. Karvelas, Andreas Peter, and Stefan Katzenbeisser. 2016. Blurry-

ORAM: A Multi-Client Oblivious Storage Architecture. IACR Cryptol. ePrint Arch.

(2016).
[41] Dmitry Kogan and Henry Corrigan-Gibbs. 2021. Private Blocklist Lookups with

Checklist. IACR Cryptol. ePrint Arch. (2021).
[42] Eyal Kushilevitz and Rafail Ostrovsky. 1997. Replication is NOT Needed: SIN-

GLE Database, Computationally-Private Information Retrieval. In 38th Annual

Symposium on Foundations of Computer Science, FOCS ’97.
[43] Helger Lipmaa. 2005. An Oblivious Transfer Protocol with Log-Squared Commu-

nication. In Information Security, 8th International Conference, ISC 2005 (Lecture

Notes in Computer Science).
[44] Carlos Aguilar Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier Killijian.

2016. XPIR : Private Information Retrieval for Everyone. Proc. Priv. Enhancing
Technol. (2016).

[45] Prateek Mittal, Femi G. Olumofin, Carmela Troncoso, Nikita Borisov, and Ian
Goldberg. 2011. PIR-Tor: Scalable Anonymous Communication Using Private
Information Retrieval. In 20th USENIX Security Symposium.

[46] Jeongeun Park and Mehdi Tibouchi. 2020. SHECS-PIR: Somewhat Homomorphic
Encryption-Based Compact and Scalable Private Information Retrieval. In 25th

European Symposium on Research in Computer Security, ESORICS 2020.
[47] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. 2018. Private Stateful Information

Retrieval. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and

Communications Security, CCS. ACM.
[48] Quarkslab. [n.d.]. quarkslab/NFLlib. https://github.com/quarkslab/NFLlib
[49] M. Sadegh Riazi, Kim Laine, Blake Pelton, and Wei Dai. 2020. HEAX: An Archi-

tecture for Computing on Encrypted Data. In ASPLOS ’20: Architectural Support

for Programming Languages and Operating Systems, James R. Larus and Karin
Strauss (Eds.).

[50] Radu Sion and Bogdan Carbunar. 2007. On the computational practicality of pri-
vate information retrieval. In Proceedings of the Network and Distributed Systems

Security Symposium. Internet Society.
[51] Julien P. Stern. 1998. A New Efficient All-Or-Nothing Disclosure of Secrets

Protocol. In Advances in Cryptology - ASIACRYPT ’98, International Conference on

the Theory and Applications of Cryptology and Information Security, Proceedings,
Kazuo Ohta and Dingyi Pei (Eds.).

[52] Stephanie Wehner and Ronald deWolf. 2005. Improved Lower Bounds for Locally
Decodable Codes and Private Information Retrieval. In Automata, Languages and

Programming, 32nd International Colloquium, ICALP 2005.
[53] Sergey Yekhanin. 2007. Towards 3-query locally decodable codes of subexpo-

nential length. In Proceedings of the 39th Annual ACM Symposium on Theory of

Computing, 2007.

14

https://github.com/quarkslab/NFLlib

	Abstract
	1 Introduction
	2 Background and Preliminary
	2.1 Somewhat Homomorphic encryption
	2.2 Noise Estimate and Computational Cost of Homomorphic Operations

	3 Overview and Limitations of Current Protocols
	4 Response Efficient PIR
	4.1 A Warm-up Protocol
	4.2 Optimizing the Computation
	4.3 Query Compression
	4.4 OnionPIR Full Protocol

	5 Stateful PIR
	5.1 Private Stateful Information Retrieval
	5.2 Efficient Private Batch Sum Retrieval

	6 Implementation and Evaluations
	6.1 Implementation Details
	6.2 Experimental Setup
	6.3 Evaluation Results of OnionPIR
	6.4 Evaluation Results of stateful OnionPIR

	7 Related Work
	8 Conclusion
	References

