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Abstract. In this article we propose three optimizations of indifferentiable hashing onto
(prime order subgroups of) ordinary elliptic curves over finite fields Fq. One of them is dedi-
cated to elliptic curves E provided that q ≡ 11 (mod 12). The other two optimizations take
place respectively for the subgroups G1, G2 of some pairing-friendly curves. The performance
gain comes from the smaller number of required exponentiations in Fq for hashing to E(Fq),
G2 (resp. from the absence of necessity to hash directly onto G1). In particular, our results
affect the pairing-friendly curve BLS12-381 (the most popular in practice at the moment)
and the (unique) French curve FRP256v1 as well as almost all Russian standardized curves
and a few ones from the draft NIST SP 800-186.
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1 How to hash onto pairing-friendly curves

This is an addendum to our recent articles [1], [2], [3]. So, with your permission, we do
not provide a detailed introduction in order to avoid repetition. Good surveys on how to
hash into (or onto) elliptic curves over finite fields are also represented in [4, §8], [5]. It is
worth emphasizing that throughout this text we mean hashing indifferentiable from a random
oracle (in the sense of [12, §2.2]).

Let E1 be an ordinary pairing-friendly elliptic curve of embedding degree k > 1 over a
finite field Fq. Besides, let E2 be a twist of E1 of degree d := #Aut(E1) over the field Fqe , where
e := k/d ∈ N. As is customary, for a common prime divisor r of the orders N1 := #E1(Fq) and
N2 := #E2(Fqe) denote by G1 ⊂ E1(Fq) and G2 ↪→ E2(Fqe) the eigenspaces of the Frobenius
endomorphism on E1[r] ⊂ E1(Fqk), associated with the eigenvalues 1, q respectively. Note that
the condition e ∈ N is not automatically met, i.e., this is our assumption. It is claimed (e.g., in
[4, Theorem 3.3.5]) that for any prime divisor r | N1 there is always a unique non-trivial Fqe-
twist E2 (of degree d) such that r | N2. By abuse of notation, we identify the order r subgroup
G2 ⊂ E1(Fqk) with its image under an Fqe-isomorphism E1

∼−→ E2. Thus G1 = E1(Fq)[r] and
G2 = E2(Fqe)[r]. Besides, d ∈ {2, 4, 6} and d = 2 if and only if j(Ei) 6= 0, 1728 (respectively,
d = 4 iff j(Ei) = 1728 and d = 6 iff j(Ei) = 0).

This section explains how to hash onto G2 more efficiently and why we do not need to hash
directly onto G1. In the first case, we significantly exploit the presence of clearing the cofactor
c2 := N2/r. In the second one, on the contrary, clearing the cofactor c1 := N1/r can be fully
avoided. The fact is that optimal ate pairings a : G2×G1 → µr ⊂ F∗

qk
[4, Theorem 3.3.4] can
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be painlessly (unlike E2(Fqe)×G1) extended to G2×E1(Fq), at least in main pairing-based
protocols.

At the moment, due to [6, Table 1] the curve BLS12-381 is a de facto standard in pairing-
based cryptography. More generally, the Barreto–Lynn–Scott family with k = 12 and d = 6
(see, e.g., [7, §3.1]) possesses the parameters

r(z) = z4 − z2 + 1, q(z) = (z − 1)2r(z)/3 + z.

By definition, BLS12-381 is generated by z := −0xd201000000010000 and hence

dlog2(−z)e = 64, dlog2(r)e = 255, dlog2(q)e = 381.

Notice that r � q in contrast to the Barreto–Naehrig family [4, Example 4.2].
Earlier for the curve BLS12-381 (and a number of others) the author constructed in

[1], [2] encodings h1 : F2
q → E1(Fq) and h2 : Fq → E2(Fq2) computable in constant time of one

exponentiation in Fq. Combining the new ideas with these encodings, we obtain hash functions
{0, 1}∗ → E1(Fq) and {0, 1}∗ → G2, which seem to be difficult to speed up even more. We
will discuss (respectively in §1.1, §1.2) how much performance gain they provide over hash
functions that are actively applied in the industry.

Recall that almost all known hash functions Hi : {0, 1}∗ → Gi are the compositions Hi =
[c′i] ◦ hi ◦ ηi. Here ηi : {0, 1}∗ → Si are hash functions to some finite sets, h1 : S1 → E1(Fq) and
h2 : S2 → E2(Fqe) are just maps traditionally called encodings, and finally c′i ∈ N such that
ci | c′i, r - c′i. The scalar multiplication [c′i] on the curve Ei is said to be clearing cofactor.
Surprisingly, due to Fuentes-Castaneda et al. [8] it is more efficient to multiply points by
scalars c′i greater than ci. The sets Si are usually very simple, hence it is easy to combine ηi
from existing hash functions {0, 1}∗ → {0, 1}` for ` ∈ N. The most complicated component
of Hi is no doubt hi, because its essence is based on high-dimensional algebraic geometry.

The majority of pairing-based protocols requires a hash function to at most one group G1

or G2. Of course, any such protocol can be equivalently implemented for hashing to the other
group. Without using point compression-decompression methods, elements of G1 (resp. G2)
are obviously represented by 2dlog2(q)e (resp. 2edlog2(q)e) bits. Therefore the choice often
depends on whether a hash value should be more compact than the second pairing argument
or vice versa. Besides, there are rarely used protocols, for example the Scott identity-based
key agreement [9], where both hash functions Hi are necessary. Thus the more cumbersome
hashing to G2 can not be replaced by hashing to G1 in all situations.

1.1 How not to hash onto G1

As far as we know, (non-degenerate) optimal ate pairings a : G2×G1 → µr ⊂ F∗
qk

are only
used in today’s real-world cryptography. The fact is that the corresponding Miller loop has the
hypothetically smallest length ≈ log2(r)/ϕ(k), where ϕ is Euler’s totient function. However
it is more practical to take the whole group E1(Fq) instead of G1. In this case, the pairing
a : G2×E1(Fq)→ µr becomes degenerate, but this is not important. A similar trick is done
in [10, §5] for the Tate pairing in the context of isogeny-based cryptography, where, on the
contrary, G2 is replaced by E1(Fqk) in our notation.

Indeed, first, the length of the Miller loop depends only on the order of G2. Second, if for
points P ∈ E1(Fq) and Q ∈ G2 we have a(Q,P ) = 1, then a fortiori a(Q, c′1P ) = a(Q,P )c

′
1 =

2



1. We stress that popular protocols (such as the Boneh–Franklin identity-based encryption [4,
§1.6.4] or the aggregated BLS signature [11]) work correctly whether the order of P equals r
or not. Nevertheless, it should be borne in mind that the strong unforgeability property (unlike
the usual existential one) is not satisfied anymore as emphasized in [11, §5.2]. Finally, the
complexity of computing a(Q,P ) remains the same as that of computing a(Q, c′1P ), because
P , c′1P are equally defined over Fq.

In [1] we construct an encoding h1 : F2
q → E1(Fq) for elliptic curves E1 : y2 = x3 + b (of

j-invariant 0) provided that
√
b ∈ Fq. There we prove that h1 is admissible in the sense of [12,

Definition 4], which leads (in compliance with [12, Theorem 1]) to the indifferentiable hash
function h1 ◦ η1. Moreover, h1 can be implemented in constant time of raising to some power
n1 ∈ N in the field Fq (not counting a few additions and multiplications). In particular, our
encoding is applicable to the curve BLS12-381 for which b = 4 and n1 = (q − 10)/27.

Recall that the famous (indirect) Wahby–Boneh encoding hWB [13, §4] (based on the
simplified SWU one [12, §7]) is also valid for BLS12-381. It requires to extract one square
root in Fq, which for that curve is equivalent to raising in Fq to the power n2 := (q − 3)/4 ∈ N.
The hash function H2 from [13, §5] twice applies hWB in order to act as a random oracle. By
the way, the other indifferentiable hash function H3 is even slower than H2 by virtue of [13,
Figure 1].

To be exact, the Hamming weight w(n1) = 192 and w(n2) = 228. Denote by `(ni) the
length of a shortest addition chain for ni. In accordance with [14, §9.2.1] we obtain the
inequalities

382 ≤ `(n1) . 419, 385 ≤ `(n2) . 422.

We can not claim that these upper bounds are mathematically correct, because we omit-
ted o(1) in the original inequality. However, in any case, the sought bounds are very close
(probably equal) to ours.

On the other hand, following the sliding window method [14, §9.1.3] (with k = 5), one can
explicitly derive an addition chain for n1 (resp. n2) whose the length equals 449 (resp. 458).
We invite the reader to independently check our conclusion, since the mentioned method is
simple and has many public implementations. Curiously, a similar chain for n2 of the same
length 458, obtained by means of more advanced methods, appears in the optimized library
[15]. Thus the encoding hWB applied twice is much slower than ours h1 applied once. Indeed,
2·458− 449 = 467 is a significant amount of multiplications in Fq that can be eliminated by
giving priority to h1.

1.2 How to hash onto G2

To our knowledge, optimal ate pairings do not have a natural extension to E2(Fqe)×G1.
Conversely, (non-degenerate) twisted optimal ate pairings [4, Theorem 3.3.8] of the form
G1×G2 → µr are readily extended to G1×E2(Fqe). But, unfortunately, for them the Miller
loop is of a larger length than for (usual) optimal ate pairings. It is generally recognized that
a pairing is a more laborious operation than an elliptic curve scalar multiplication. Therefore
reducing the Miller loop seems a better solution than avoiding the multiplication by c′2.

For the next theorem we need the notions of (B-)well-distributed [16, Definitions 5, 7] and
(ε-)regular map [16, Definition 3] (with respect to the uniform distribution on its domain).
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In the definition of an admissible map the regularity is essentially the only property that is
difficult to satisfy. So it is necessary to focus on establishing it. For the sake of convenience,
consider so-called tensor multiplication of any two maps h : S → G, g : T → G from sets S,
T to the same group (G,+):

h⊗ g : S×T → G (s, t) 7→ h(s) + g(t).

Theorem 1. Assume there is a B-well-distributed encoding h2 : Fq → E2(Fqe) (for B ∈ R>0)
and a point of E2(Fqe) of order m | c2 (or, equivalently, m | c′2). Then the map [c′2] ◦ h2 : Fq →
G2 is ε-regular, where ε := B

√
N2/(mq).

Proof. Pick any point P ∈ E2(Fqe) of order m. According to [16, Corollary 1] the map F :=
h2 ⊗ g, where

g : [0,m)→ E2(Fqe) t 7→ tP,

is ε-regular for ε as in the statement of the theorem. It is readily checked that the composition
[c′2] ◦ F is still ε-regular. Since [c′2] ◦ h2 = [c′2] ◦ F , the theorem is proved.

For e = 2 an example of the desired encoding h2 is given in [2] (modulo notation) as
the composition h2 := ψ ◦ ϕ ◦ h. Here h : Fq → H(Fq) is an encoding to some Fq-curve H of
geometric genus two, ϕ : H → E ′ is a (quadratic) Fq2-cover to an auxiliary elliptic Fq2-curve
E ′ of j-invariant 6∈ Fq, and finally ψ : E ′ → E2 is an Fq2-isogeny of small degree. By virtue of
[3, Corollary 1], [2, Theorem 1] the encodings h and ϕ ◦ h are 2-well-distributed. The same
is true for h2 whenever ψ : E ′(Fq2) ∼−→ E2(Fq2), which follows if

(
deg(ψ), N2

)
= 1.

For the BLS12 family we have the parametrizations

c2(z) = (z8 − 4z7 + 5z6 − 4z4 + 6z3 − 4z2 − 4z + 13)/9, c′2(z) = 3(z2 − 1)c2(z)

according to [7, §4.1]. Recall that BLS12-381 has the form E2 : y2 = x3 + 4(1 + i) (where
i :=
√
−1 6∈ Fq) and, as mentioned in [2, Introduction], there is the desired isogeny ψ of

degree 7 - N2. Besides, the group E2(Fq2) possesses a point of order m = c2/(13·23), because
this number is square free. As a result,

ε = 2
√

13·23r/q 6 2−115/2

is a negligible value. Incidentally, this can not be said about BN curves, since for them
r/q = 1 +O(q−1/2).

It is worth noting that the encoding h can be computed in constant time of extracting one
square root in Fq. This is equally true for h2, since ϕ, ψ are algebraic maps of small degrees.
Among other things, the denominators of their defining functions do not need to be inverted,
because Jacobian projective coordinates (see, e.g., [13, §2]) are preferred for use in practice.

By analogy with Theorem 1, the map [c′2] ◦Map2 (for Map2 from [13, §5]) also turns
out to be regular, that is the hash function H4 from there actually acts as a random oracle.
However this circumstance was not noticed in that article. In comparison to the Wahby–
Boneh encoding hWB, ours h2 nevertheless allows to avoid extracting one square root in Fq.
The fact is that a square root in Fq2 (which appears in the simplified SWU map), as is well
known, can be expressed via two square roots in Fq. By the way, the other hash functions
H5, H6 are even slower than H4 by virtue of [13, Figure 1].
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2 How to hash onto E(Fq) if q ≡ 11 (mod 12)

Hash functions to classical (i.e., non-pairing-friendly) elliptic curves have become more
and more in demand. Indeed, according to [17, Table I] they are actively used in many PAKE
(Password Authenticated Key Exchange) protocols. Several years ago CFRG (Crypto Forum
Research Group) conducted the PAKE selection process [18] in which the protocols CPace
[19] and OPAQUE [20] won. Besides, hashing to elliptic curve is necessary for some blind
signatures (such as in [21, §3.3]), which serve as a basis, e.g., for electronic voting schemes.

Let us freely utilize notions arisen in previous sections. Consider an elliptic curve
E : y2 = x3 + ax+ b defined over a finite field Fq. Under the condition q ≡ 2 (mod 3) (resp.
j(E) 6= 0, 1728), Icart’s encoding hI [22] (resp. the simplified SWU one hsSWU) is available.
In accordance with [22, Lemma 4], [12, Lemma 6] for any P ∈ E(Fq) we have #h−1I (P ) 6 4
and #h−1sSWU(P ) 6 8. In fact, if an implementation of hsSWU takes into account the sign of
the y-coordinate, then #h−1sSWU(P ) 6 4. At the same time, by virtue of [23, §5] the encod-
ing hI (resp. hsSWU) is B-well-distributed with B = 13 (resp. B = 53) at least for q of a
cryptographic size. Applying [16, Corollary 1], we thus get

Theorem 2. Suppose that q ≡ 2 (mod 3) and j(E) 6= 0, 1728. Then the map F := hI ⊗
hsSWU : F2

q → E(Fq) is ε-regular for the negligible value ε := 26
√
N/q, where N := #E(Fq).

From now on we assume in addition that q ≡ 3 (mod 4). Obviously,

q ≡ 2 (mod 3), q ≡ 3 (mod 4) ⇔ q ≡ 11 (mod 12).

For the sake of compactness, we put e := (q + 1)/4 and k := (q + 1)/12. Notice that for
Z = n/d such that n, d ∈ F∗q we obtain

z := Zk = nk ·dq−1−k = nk ·d(11q−13)/12 = nd9 ·(nd11)(q−11)/12, z6 = Z(q+1)/2 =
(Z
q

)
Z,

where
(
Z
q

)
is the Legendre symbol. In particular, z = 6

√
Z whenever Z is a quadratic residue

in Fq.
Given (t, s) ∈ F2

q we need to evaluate hI(t) and hsSWU(s). As is known, separately each
of these points can be computed in constant time of one exponentiation in Fq (the case of
hsSWU see in [13, §4.2]). Let’s show that this is also possible simultaneously for the two
points (and hence for F (t, s)). The only cumbersome part of hI (resp. hsSWU) consists in the
exponentiation 3

√
f = f (2q−1)/3 (resp. ±ge such that (ge)2 =

(
g
q

)
g), where

f :=

(
3a− t4

6t

)2

− b− t6

27
, g := − b

a

(
1 +

1

s4 − s2

)
.

Evidently, 3
√
f is the unique cubic root of f in Fq and for our purpose it is sufficient to find

ge up to a sign. For the sake of simplicity, let us exclude from consideration the zeros and
poles of the functions f , g. As usual, they can be processed individually.

We suggest to act in a similar way as in [24, §3], that is for Z := f 2g3 to compute z = Zk

(almost 6
√
Z) instead of separate computing 3

√
f and ±ge (almost

√
g). Note that

z = f (q+1)/6 ·ge =
(f
q

)
3
√
f ·ge, z2 = 3

√
f 2 ·
(g
q

)
g.
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Introducing the auxiliary notation θ := fg/z2, we get the equalities

3
√
f =

(
g
q

)
fg

z2
=
(g
q

)
θ, ge =

z(
f
q

)
3
√
f

=
z(

fg
q

)
θ
.

We see that θ3 =
(
g
q

)
f and z6 =

(
g
q

)
Z. Therefore the symbol

(
g
q

)
can be determined for free.

More formally,

(
3
√
f, ±ge

)
=


(
θ, z/θ

)
if θ3 = f, i.e., z6 = Z,(

−θ, z/θ
)

otherwise.

Bearing in mind the formula above for (n/d)k without the inversion operation, we em-
phasize again that

Remark 1. The map F (in contrast to h⊗2I and h⊗2sSWU) can be computed in constant time
of one exponentiation in Fq.

Of course, by analogy with §1.1, given q it is not difficult to derive explicit short addition
chains for raising to the power k.

Since [12, Algorithm 1] continues to be correct for two different encodings, we eventually
establish

Corollary 1. The map F : F2
q → E(Fq) is admissible.

Remark 1 is still valid when hsSWU is replaced by any encoding implementable with the
cost of extracting one square root in Fq. We chose hsSWU , because it is the most universal
among such encodings known in the literature. In particular, this encoding is relevant even if
N is a prime (that is the cofactor equals 1), which is the case for many classical elliptic curves.
Note that for q ≡ 11 (mod 12) curves of j-invariants 0, 1728 are supersingular in compliance
with [14, §24.2.1.c]. Since such curves pose special challenges for security by virtue of [4,
Remark 2.22], the map hsSWU does not have restrictions in the current context.

There is a lot of standardized elliptic curves over fields Fq such that q ≡ 11 (mod 12). It
is readily checked that this condition is fulfilled, e.g., for the French curve FRP256v1 [25],
for the curves P-192, P-384, and Curve448-Goldilocks from NIST SP 800-186 [26, §4.2.1] as
well as for all Russian curves [27, Appendix B] except for id-GostR3410-2001-CryptoPro-B-
ParamSet. Possibly, Remark 1 can be generalized to the case q ≡ 2 (mod 3), q ≡ 5 (mod 8)
when a square root is still expressed via one exponentiation (see, e.g., [5, Appendix I.2]).
However we did not find standardized curves over such fields, hence we decided to stop in
order not to complicate the text.
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