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Abstract. Deep learning is a powerful direction for profiling side-channel
analysis as it can break targets protected with countermeasures even with
a relatively small number of attack traces. Still, it is necessary to con-
duct hyperparameter tuning for strong attack performance, which can
be far from trivial. Besides a plethora of options stemming from the ma-
chine learning domain, recent years also brought neural network elements
specially designed for side-channel analysis.
An important hyperparameter is the loss function, which calculates the
error or loss between the actual and desired output. The resulting loss
is used to update the weights associated with the connections between
the neurons or filters of the deep learning neural network. Unfortunately,
despite being a highly relevant hyperparameter, there are no systematic
comparisons among different loss functions. This work provides a detailed
study on the performance of different loss functions in the SCA context.
We evaluate five loss functions commonly used in machine learning and
two loss functions proposed for SCA. Our results show that one of the
SCA-specific loss functions (called CER) performs very well and outper-
forms other loss functions in most evaluated settings. Finally, our results
show that categorical cross-entropy represents a good option for most
settings, especially if there is a requirement to work well with different
neural network architectures.
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1 Introduction

Side-channel analysis (SCAs) represents a powerful type of implementation at-
tack on cryptographic algorithms. A usual division of side-channel analysis is
into direct attacks and two-stage (profiling) attacks. Profiling attacks assume an
“open” device (or a copy of it). By building the templates based on the leakage
of this device, the key recovery of the attack device requires only a few mea-
surements. Today, the most powerful representatives of profiling attacks come
from the deep learning domain [3,17,28]. Literature indicates that such attacks
can break targets protected with countermeasures, but to reach that level of
performance, they also require a careful hyperparameter tuning [9]. Unfortu-
nately, due to the complexity of the deep learning techniques, finding the best
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hyperparameter combination is a challenging task. Additionally, since the de-
vices are commonly equipped with countermeasures and noise, it makes sense to
customize the neural networks to counter such difficulties.

Loss function, one of the tunable hyperparameters, plays a central role in
training a deep learning model. They are used to calculate the error or loss
between the actual and desired output. The resulting loss is propagated back
to learn, i.e., update the weights associated with the connections between the
neurons or filters of the deep learning network. The choice of the loss function can
influence the performance of the resulting deep learning model [8, 29], which is
also recognized in the SCA domain. Indeed, the custom loss functions proposed in
the recent works [31,33] report good attack performance on the chosen datasets.
However, one should note that a loss function that works for one specific attack
setting is not necessary to work on another. In other words, the attack efficiency
is influenced not only by a loss function but by many other factors such as the
number of traces, model architecture, and weight initialization. Unfortunately,
the generality of the proposed loss functions is not explored in these papers.

In this work, we aim to fill in that gap. More precisely, we systematically
compare commonly used loss functions and novel application-specific loss func-
tions in the context of side-channel analysis. We evaluate the attack performance
(guessing entropy), the number of trainable parameters, and the required train-
ing time. We evaluate different loss functions on two publicly available datasets
and with two commonly used leakage models. Our results show that the recently
proposed CER loss performs very well and manages to outperform other loss
functions. The especially strong performance can be observed for the Hamming
weight leakage model, which can represent a difficult scenario due to class im-
balance and the lack of reliability of machine learning metrics [20]. Ranking
loss, another recently proposed loss function, performs much worse and seems to
work with specific neural network architectures only. Finally, a common choice
in deep learning-based SCA, categorical cross-entropy, can be indeed confirmed
as a strong option, especially if the training time or good performance with
different neural network architectures is required.

2 Background

This section provides an introduction to profiling side-channel attacks. After-
ward, we discuss various loss functions and the datasets we use in our experi-
ments.

2.1 Deep Learning-based Side-channel Analysis

Supervised machine learning aims to learn a function f mapping an input to the
output based on examples of input-output pairs. The function f is parameterized
by θ ∈ Rn, where n denotes the number of trainable parameters. Supervised
learning happens in two phases: training and test. This corresponds to profiling
SCA phases, commonly denoted as profiling and attack phases.
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A dataset is defined as a collection of side-channel traces (measurements) T,
where each trace ti is associated with an input value (plaintext or ciphertext) di
and a key ki. We divide the dataset into disjoint subsets where the training set
has M traces, the validation set has V traces, and the attack set has Q traces.

1. The goal of the training phase is to learn θ (vector of parameters) minimizing
the empirical risk represented by a loss function L on a dataset T of size M
(i.e., on the profiling (training) set).

2. In the attack phase (also known as testing or inference), the goal is to make
predictions about the classes

y(x1, k
∗), . . . , y(xQ, k

∗),

where k∗ represents the secret (unknown) key on the device under the at-
tack. The outcome of predicting with a model f on the attack set is a two-
dimensional matrix P with dimensions equal to Q× c (where c denotes the
number of classes). The probability S(k) for any key candidate k is then
used as a maximum log-likelihood distinguisher:

S(k) =

Q∑
i=1

log(pi,v). (1)

The value pi,v is the probability that for a key k and input di, we obtain the
class v (with

∑c
v pi,v = 1,∀i). The class v is derived from the key and input

through a cryptographic function CF and a leakage model l.

In SCA, an adversary aims at revealing the secret key k∗. For this, standard
performance metrics are the success rate (SR) and the guessing entropy (GE) of
a side-channel attack [25]. In this work, we use the guessing entropy metric to
estimate the attack performance. Given Q amount of traces in the attack phase,
an attack outputs a key guessing vector g = [g1, g2, . . . , g|K|] in decreasing order
of probability. Thus, g1 is the most likely and g|K| the least likely key candidate.

This work considers two commonly used deep learning models: multilayer
perceptron (MLP) and convolutional neural networks (CNNs). Then, the func-
tion f is a deep neural network with the Softmax output layer. We encode classes
in one-hot encoding, where each class is represented as a vector of c values that
has zero on all the places, except one place, denoting the membership of that
class.

2.2 Loss Functions

Both the MLPs and CNNs in this work are used in the supervised learning
setting. The loss, calculated by a loss function, indicates the difference between
the outputs of the model (predicted label) and the actual labels that belong to
the input. The output of the loss function is used to update the weights in the
network, finally reduce the deviation between predicted and real labels.
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Mean Squared Error One of the simplest examples of a loss function is the
mean squared error (MSE) [24]. The MSE is calculated by taking the mean of
the pairwise squared differences between the elements of the prediction vector ŷ
and the vector y with the true values:

mse(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)2, (2)

where n denotes the number of tested samples. The MSE loss function and its
variations have been used to solve regression problems (thus, the output of the
function f is continuous) [24]. The loss is calculated evenly for each sample, re-
gardless of which class a sample belongs to. By minimizing the loss, we minimize
the distance between output labels and the true labels. MSE is also usable for
classification problems and has been used in the context of SCA as discussed
before [8].

One variation of the MSE is the mean squared logarithmic error (MSLE).
Instead of using the difference between the vectors directly, the MSLE is calcu-
lated by taking the difference of the natural logarithm applied to the true yi and
predicted ŷi values:

msle(y, ŷ) =
1

n

n∑
i=1

(log(yi + 1)− log(ŷi + 1))2. (3)

When using MSE, a large prediction error on a single value can increase the
overall loss substantially. With MSLE, this effect is less visible. The difference
in practice is that MSLE is less sensitive to outliers in the data.

Finally, we also consider the logarithm of the hyperbolic cosine (log cosh) as
a loss function. Log cosh loss, like MSLE, is also less sensitive to outliers [27]:

log cosh(y, ŷ) =
1

n

n∑
i=1

(log(cosh(ŷi − yi)). (4)

Classification Losses For classification, the de facto standard loss function is
the categorical cross-entropy, sometimes also called the negative log-likelihood,
softmax loss, log loss, or just cross-entropy. It has been used in various classifica-
tion tasks [6,10,30] and is also commonly used in SCA [2,9,13]. Cross-entropy is
a measure of the difference between two distributions. When used as a loss func-
tion, the two underlying distributions are the predictions and the true classes
of the samples. Minimizing the cross-entropy, which represents the difference
between the distribution modeled by the deep learning model and the true dis-
tribution of the classes, should therefore improve the predictions of the neural
network:

cce(y, ŷ) = − 1

n

n∑
i=1

c∑
j=1

yi,j log( ˆyi,j), (5)
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where c denotes the number of classes. Another loss function used for classifi-
cation is the (categorical) hinge loss. The hinge loss is designed to increase the
margin between the predicted probability for correct classes and wrong classes
with the highest predicted probability:

cat hinge(y, ŷ) = max(1− yi ∗ ŷi, 0). (6)

Custom SCA Losses More recently, two SCA-specific loss functions have
been proposed. One of them is the ranking loss (RKL) function proposed by
Zaid et al. [31]. The ranking loss uses both the output score of the model and
the probabilities produced by applying the softmax activation function to these
scores. The idea behind the ranking loss is to compare the rank of the correct
key byte and the other key bytes in the score vector before the softmax function
is applied:

rkl(s) =
∑
k∈K
k 6=k∗

(
log2

(
1 + e−α(s(k∗)−s(k))

))
, (7)

where s is the vector with scores for each key hypothesis generated by processing
the training samples by the model, K is the set of all possible key values, k∗ is
the correct key, and s(k) is the score for key guess k, calculated by looking at the
rank of k in k. Finally, α is a parameter that needs to be set dependent on the
size of the used profiling set. The implementation of the ranking loss function is
provided by [31] on Github 1.

The other custom loss function is the cross-entropy ratio (CER) loss proposed
by Zhang et al. [33]. The authors introduced the CER as a metric to estimate the
performance of a deep learning model in the context of SCA. They also showed
that their metric could be used as a loss function directly by using a shuffled set
of labels:

cer(y, ŷ) =
CE(y, ŷ)

1
n

∑n
i=1 CE(yri , ŷ)

, (8)

where CE is the categorical cross-entropy and yri denotes the vector with the
true probabilities, 1 for the correct class and 0 for all others, for each class but
shuffled. Here, the variable N denotes the amount of shuffled sets to use. [33]
do not provide a value for N but state that increasing N should increase the
accuracy of the metric. No comment is given on the value of N in the CER loss
function. In our first experiments, to balance between computational complexity
and the potential increase in accuracy, we use N = 10.

2.3 Datasets

The first dataset considered is the ASCAD dataset introduced by Benadjilla
et al. [2]. The ASCAD dataset is generated by taking measurements from an
ATMega8515 running masked AES-128 and is proposed as a benchmark dataset

1 https://github.com/gabzai/Ranking-Loss-SCA

https://github.com/gabzai/Ranking-Loss-SCA
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for SCA. The dataset consists of 50 000 profiling traces and 10 000 attack traces,
each trace consisting of 700 features. The profiling and attacking set both use the
same fixed key. We denote this dataset as ASCAD fixed. The dataset is provided
on the ASCAD GitHub repository 2.

The second ASCAD dataset uses variable keys. The ASCAD variable dataset
consists of 200 000 profiling and 100 000 attack traces, each consisting of 1 400
features. Different from the ASCAD fixed dataset, the keys used in the profiling
set are variable. The ASCAD variable dataset is available on the ASCAD GitHub
repository 3.

3 Related Works

In recent years, the usage of deep learning became more popular in the context
of SCA [3, 9, 13, 15, 21, 23, 26, 32]. Many of these works focus on improving cer-
tain aspects of the used MLP or CNN architectures. Those improvements aim
to increase the model’s attack performance by decreasing the number of traces
required to reach a guessing entropy of 1 for the correct key. However, all of these
works seem to have in common that no considerations about the used loss func-
tion are made. When they first explored the usage of deep learning techniques
for SCA [13], the authors mentioned that categorical cross-entropy or the mean
squared error are commonly used loss functions. Later work on deep learning
for SCA seems to exclusively use either categorical cross-entropy [2, 17, 32] or
mean squared error [16, 26]. Indeed, in [27], the authors show that minimizing
the categorical cross-entropy loss is equivalent to increasing the Perceived In-
formation (PI) [22], a metric commonly used in the context of SCA. Perin and
Picek conducted a related analysis where they explored the influence of different
optimizers for deep learning-based SCA [18].

More recently, two novel loss functions specifically for usage in the context
of SCA have been proposed. Zaid et al. [31] propose ranking loss (RKL), a
loss function that uses a pairwise comparison between the possible different
key hypotheses to maximize the models’ success rate. Zhang et al. [33] propose
the cross-entropy ratio (CER), which is the ratio between the categorical cross-
entropy of the original profiling traces and a set of profiling traces with shuffled
labels. The CER loss function should, according to the authors, be better suited
for imbalanced profiling data [33].

In both of these papers, the newly proposed loss functions are compared to the
categorical cross-entropy. However, the extent of these comparisons is limited,
and only a single architecture or leakage model is tested.

To the best of our knowledge, no broad comparison has been made between
commonly used loss functions such as categorical cross-entropy, mean squared

2 https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_

fixed_key
3 https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_

variable_key

https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_fixed_key
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_fixed_key
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_key
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_key
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error, or hinge loss and these novel SCA-based loss functions on different ar-
chitectures, leakage models, and datasets. This work systematically compares
commonly used loss functions and the novel loss functions, namely CER and
RKL.

4 Experiment Setup

In this section, we describe the setup of the experiments we performed. The
experiments were performed with a single CPU and an NVIDIA GTX 1080 Ti
graphics processing unit (GPU) with 11 Gigabytes of GPU memory and 3 584
GPU cores.

Several different hyperparameters influence the training process of a deep
learning model. These hyperparameters are, for example, the number of lay-
ers and neurons per layer, the activation function each neuron uses, and the
loss function. Using CNNs introduces even more hyperparameters, such as the
number of convolutional blocks and filters used. As mentioned, by picking a
single model with certain training hyperparameters, we could end up with cer-
tain hyperparameters that influence one loss function more than the others. A
demonstration is shown in Figure 1. Each model is trained with the same hy-
perparameters except for the loss function and learning rate. When the learning
rate is set to 0.00001 (Figure 1a), CER loss performs the best, followed by CCE
and RKL. However, when the learning rate is increased to 0.001 (Figure 1b),
the loss functions that lead to a converged GE (CCE and RKL) are not func-
tional anymore. At the same time, for the CER loss, the performance is even
increased. Indeed, Figure 1 indicate the influence of the hyperparameter on the
performance of the loss function. Benchmarking with a single attack model and
the fixed attack setting can not represent the generality of a loss function. Know-
ing this, we implemented the following testing scenarios for a fair loss function
comparison:
1. To reduce the effect of certain combinations of the loss function and other

hyperparameters, we use a median model to make our comparison. More pre-
cisely, we train 100 random models for each scenario and evaluate these mod-
els with the guessing entropy metric. Then, the median-performing model
(in terms of guessing entropy) is selected as a representative model to bench-
mark different loss functions.

2. The optimized training hyperparameters for a specific loss function might
lead to well-performing models that may not work for the median-performing
model. Therefore, we also perform hyperparameter optimization via a ran-
dom search for each considered loss function.

3. Recent papers proposed different MLP and CNN architectures that perform
well on the considered dataset and leakage model with a specific loss function
(CCE)s [2, 32]. The performance of these models with other loss functions
is unknown. These architectures might work well only with the categorical
cross-entropy, provide good performing models regardless of the chosen loss
functions, or perform even better with other loss functions. We, therefore,
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(a) Learning rate 0.00001 (b) Learning rate 0.001

Fig. 1: All models are trained with the same hyperparameters, except the learn-
ing rate. The learning rate influences the performance of models for some loss
functions more than others. In the scenario with the learning rate set to 0.001,
the performance of the CER loss is increased while the other losses fail to result
in a model converging to a GE of 1.

conduct experiments on these state-of-the-art architectures with different
functions and compare their performance.

To perform a broad comparison between the different loss functions, we define
12 different scenarios to make the comparison. Each of these scenarios combines
a dataset, a leakage model, and an architecture type.

Architecture Types We consider two architecture types: multilayer perceptrons
(MLPs) and convolutional neural networks (CNNs). Both of these types of deep
learning architectures are commonly used for SCA and have shown excellent
results in previous works [2, 13,32].

For both the median model generation and the hyperparameter optimiza-
tion, various model hyperparameters should be explored. In their work, [18]
specified a search space for the MLP and CNN hyperparameters that is bal-
anced between good performance in previous work and still allowing a broad
range of possible values per parameter. We use the same search space as a basis
for this experiment. [2] perform several experiments with a different number of
epochs and learning rates on the ASCAD datasets. They propose to use up to
800 epochs and a learning rate of 10−5 in combination with the RMSProp opti-
mizer. To balance computational cost and performance, we train each model for
200 epochs. In terms of optimizers, both the Adam and RMSProp optimizers
perform well [2, 18]. In addition to the hyperparameter ranges proposed in [18],
we add both optimizers as an option. Naturally, the range of learning rates is
broadened. The possible values for each hyperparameter for the MLP models
are given in Table 1.
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Table 1: Hyperparameter space for multilayer perceptrons.
Hyperparameter Min Max Step size

Dense layers 2 8 1
Neurons per layer 100 1 000 100
Learning rate 0.000001 0.001 0.00001
Batch size 100 1 000 100

Options

Activation function [ReLu, SELU, ELU, Tanh]
Optimizer [Adam, RMSProp]

For the CNN hyperparameters, the search space is again based on the work
of [18] with the same changes to the learning rate, the number of epochs, and
optimizers as for the MLPs. Additionally, a batch normalization layer, as intro-
duced by [7], is applied after the input layer and after each convolutional block,
as is done in earlier work to improve the performance of CNNs [2, 3, 18]. The
possible values for each hyperparameter for the MLP models are given in Table 2.

Table 2: Hyperparameter space for convolutional neural networks.
Hyperparameter Min Max Step size

Convolutional layers 1 2 1
Convolutional filters 8 32 4
Kernel size 10 20 2
Pooling size 2 5 1
Pooling stride 2 10 1
Dense layers 2 3 1
Neurons per layer 100 1 000 100
Learning rate 0.000001 0.001 0.00001
Batch size 100 1 000 100

Options

Activation function [ReLu, SELU, ELU, Tanh]
Optimizer [Adam, RMSProp]
Pooling type [Max pooling, Average pooling]

Loss Functions The loss functions that are tested are functions commonly used
in different deep learning applications and novel loss functions specifically devel-
oped for SCA, introduced in subsection 2.2. In almost all recent works on deep
learning for SCA, the categorical cross-entropy and mean squared error (MSE)
loss functions are used. In this paper, besides those commonly used functions,
several others are also considered. The hyperbolic cosine loss, also called the log
cosh loss, and mean squared logarithmic error (MSLE) are used because they
are similar to MSE but more robust when faced with outliers. We also con-
sider another loss function typically used for classification tasks, the categorical
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hinge loss. Furthermore, ranking loss [31], and cross-entropy ratio (CER) [33],
two recently proposed novel loss functions specifically for the SCA domain are
considered as well.

Pre-processing The pre-selected window of features is used for both datasets,
and no further selection of points of interest is made. Earlier work suggests that
scaling SCA features to values between 0 and 1 works well [12, 31]. Therefore,
a similar method is applied in this work, and for every experiment we perform,
the features are normalized to values between 0 and 1. This is done by using the
MinMaxScaler 4 from the scikit-learn Python module 5.

Random Architectures First, we have to find a median model to test each loss
function. To find such a model, we generate 100 models and take the median
model in terms of guessing entropy. We then use the hyperparameters of the
median model to train new models with each of the loss functions. To summarize,
for each of the scenarios, we perform the following steps:
1. Generate, train, and test 100 random models for each loss function.
2. Select the median model in terms of guessing entropy.
3. Train and test the median model 10 times to compensate for the effect of

random weight initialization.
4. From those ten models, select the median model per loss function based on

guessing entropy.
5. Compare the attack performance of each loss function in terms of guessing

entropy, training time, and the number of trainable parameters.
The second set of experiments optimized the training hyperparameter via a
random search for each loss function. When comparing with the previous test
scenario, the only difference comes from selecting the best-performing model
instead of the median-performing model. Similarly, the best models for each
loss function are then benchmarked on guessing entropy, training time, and the
number of trainable parameters.

Note that we train ten new models in both phases with the found median
or best-performing model (step 3). Indeed, the models with the same hyperpa-
rameters sometimes perform differently due to randomness in, for example, the
random initialization of the weights, outliers might occur in terms of perfor-
mance, or the training might fail. We, therefore, choose the median of those ten
models for our comparison. This setup allows us to compare the loss functions
on the same architecture, namely the median model in the first phase, and the
architectures optimized for each loss function in the second phase.

For all of the experiments, the same attack settings are used. The number of
profiling traces used is 50 000 for both datasets. In the attacking phase, we use
up to 2 000 traces for the ASCAD fixed dataset and up to 3 000 traces for the
ASCAD variable dataset.

4 https://scikit-learn.org/stable/modules/generated/sklearn.

preprocessing.MinMaxScaler.html
5 https://github.com/scikit-learn/scikit-learn

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://github.com/scikit-learn/scikit-learn
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State-of-the-art Architectures in Profiling SCA Different state-of-the-art deep
learning models proposed in recent papers only consider the categorical cross-
entropy loss function [2, 32]. Here, we will use the MLPbest architecture pro-
posed by [2], and the CNN architecture used in [31], which we will denote
CNNmethodology. Although there are some remarks in terms of the designing
of the CNNmethodology model [28], it is still one of the best performing CNN
models on the ASCAD fixed key dataset for which the used hyperparameters
are available. Therefore, it is a suitable model for our experiments.

Both models are trained and tested on the
ASCAD fixed and ASCAD variable datasets with each loss function. Although
the architecture is optimized for the ASCAD dataset with the fixed key, we
also test the performance on the ASCAD variable dataset for consistency. Like
before, we train the same model ten times for each of the datasets, leakage
models, and loss functions and take the median performing model in terms of
guessing entropy. As specified before, the evaluation metrics are guessing entropy,
training time, and the number of trainable parameters.

5 Experimental Results

In this section, we discuss the results for each of the experiments above. We will
look at the performance of the loss functions on median models and models opti-
mized via random search. The performance of the state-of-the-art architectures
with different loss functions is evaluated as well.

5.1 Median Model and Hyperparameter Optimization

ASCAD fixed We first consider the performance of the different loss functions
on the ASCAD fixed dataset. Figure 2 shows the guessing entropy over 100
attacks for each of the scenario’s median models. Figure 3 shows the guessing
entropy for each of the optimized models.

First, we notice that the ASCAD fixed dataset is vulnerable to SCA with
various attack settings. Most of the loss functions lead to a model which can
retrieve the correct key in less than 2 000 traces with median-performing MLP
architecture. When we look at the optimized models, we see that even a simple
parameter optimization approach via random search results in an improved at-
tack performance. For instance, CER models reach a GE of 1 in less than 500
traces, which is comparable to the state-of-the-art attack performances [28,31].

When looking at the performance of each loss function, as expected, the
commonly-used categorical cross-entropy does indeed perform very consistently
in these scenarios. It also shows to be quite robust to different hyperparameter
choices, performing well with a broader range of different combinations of hyper-
parameters. Figure 4 shows the 100 models generated for the hyperparameter
optimization experiment with a CNN architecture and the ID leakage model for
both the categorical cross-entropy and MSE.
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(a) MLP, ID leakage model (b) CNN, ID leakage model

(c) MLP, HW leakage model (d) CNN, HW leakage model

Fig. 2: GE of the median MLP and CNN models on the ASCAD fixed dataset.
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(a) MLP, ID leakage model (b) CNN, ID leakage model

(c) MLP, HW leakage model (d) CNN, HW leakage model

Fig. 3: GE of the optimized MLP and CNN models on the ASCAD fixed
dataset.
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(a) Models trained with CCE (b) Models trained with MSE

Fig. 4: The 100 random CNN models generated for hyperparameter optimization
with categorical cross-entropy and MSE as loss functions on the ASCAD fixed
dataset and ID leakage model. Almost all models trained with the categorical
cross-entropy perform well and converge towards a GE of 1 relatively fast, while
there is more variation in the models trained with MSE. The blue line indicates
the model with the lowest NTGE

.

On the other hand, looking at CER loss optimized for SCA, we also see
some interesting behavior. First, CER loss outperforms every other function in
all but two scenarios. In fact, it is only nonfunctional on the scenarios with a
median model and the ID leakage model Figure 3a. [33] introduced the CER
loss function to improve the performance of deep learning models on imbalanced
SCA data, i.e., when the HW leakage model is considered. Our results confirm
that this loss function performs well in those scenarios. Our results outperform
the MLP models of the original CER paper and performing much better than the
other loss functions. Furthermore, [33] showed that their CER metric is a good
estimator for the performance of a deep learning model regardless of the data
being balanced or imbalanced. However, they only test their CER loss function
on the HW leakage model, i.e., imbalanced data. Our results show that when the
rest of the hyperparameters are optimized, as shown in Figure 3a and Figure 3b,
the CER loss is also very suitable for the ID leakage model. Again, the models
trained with CER loss outperform the models trained with categorical cross-
entropy. Therefore, we can conclude that when the ASCAD fixed dataset is
considered, the best choice of loss functions is the CER loss. Especially when
the other hyperparameters are optimized, it significantly reduces the number of
traces needed to perform a successful attack compared to the categorical cross-
entropy and other loss functions.

The second novel loss function, ranking loss (RKL), performs less consis-
tently. [31] compared the RKL function to categorical cross-entropy and CER
loss, stating that the RKL outperforms both those functions. However, they only
compare a single CNN architecture and only consider the ID leakage model [31].
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Our CNN median and optimized model results for the ID leakage model show
that in those scenarios, RKL performs similarly or slightly better than the cat-
egorical cross-entropy and CER loss. However, in all the other scenarios, RKL
performs worse than these loss functions.

Another remark that has to be made when discussing these results is the
required training time. Figure 5 shows the training times for the median model
with each of the loss functions on both the HW and ID leakage models. When
all other hyperparameters are the same, the RKL and CER loss functions signif-
icantly reduce the training speed compared with other loss functions. In the case
of RKL, the cause for the slower training time is the pairwise comparison that is
part of the loss. This part of the loss is calculated by comparing the rank of the
correct key with all the other key guesses. This causes an impact on the train-
ing time when the HW leakage model is considered, where the output consists
of nine classes, and an even larger impact when the ID leakage model is used,
where there are 256 output classes. The increased training time in case of the
CER loss is also due to how the function is constructed. CER loss, as explained
in subsection 2.2. More precisely, it is calculated by dividing the cross-entropy
over the profiling traces by the average of N times the set of profiling traces
with shuffled labels. Calculating the cross-entropy over the shuffled traces N
times causes slower training than other loss functions. Since [33] do not analyze
the impact of different values for N , we chose N = 10 for these experiments.
However, as shown in Figure 6, different values of N except N = 20 result in
a NTGE

of approximately 500. For lower values like N = 1 or N = 2, there is
no noticeable difference in training time compared with, for example, the cate-
gorical cross-entropy, while there is still the increase in performance in GE. For
consistency, we have used N = 10 for all the following experiments.

(a) ID leakage model (b) HW leakage model

Fig. 5: For each of the loss functions, ten models were trained with the hyperpa-
rameters of the median model. For each loss function, the ten models with the
same hyperparameters are plotted. The red triangles mark the median training
times.
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(a) Guessing entropy (b) Training time

Fig. 6: Guessing entropy and training time for the optimized model with CER
loss using different values of N .

The only function that does not often lead to a converging model is the
categorical hinge loss. Only in two scenarios, namely the optimized MLP and
CNN models with the HW leakage model (Figure 3c and Figure 3d), the usage
of the categorical hinge loss leads to a converging model. A possible reason
for this could be the combination of a low learning rate and the low number
of classes when the HW leakage model is considered. The median models for
these scenarios all have a learning rate between 0.0001 and 0.0007, while the
optimized models with categorical hinge loss tend to have a higher learning
rate. Furthermore, if we look at the definition of the categorical hinge loss as
described in subsection 2.2, the negative part of the loss is calculated based on
the wrong class with the highest probability, i.e., the biggest classification error.
Unfortunately, there are too many wrong classes (255) and only one correct class
with the ID leakage model. Due to random initialization of the weights, the loss
coming from wrongly classified traces will stay approximately 1 at the start of
training, and the main contribution to the change of the loss has to come from
a correctly classified example. This will not occur often enough since, with the
ID leakage model, there are 256 classes. With the HW leakage model, there are
only nine classes to consider. Even with random guessing, a correct classification
will happen more often, impacting the loss and allowing the model to learn.
Consequently, due to the difference in the number of classes between the ID and
HW leakage models and a low learning rate, the categorical hinge loss works
better with the HW leakage model.

Finally, we look at the number of trainable parameters for the scenarios with
optimized hyperparameters. A smaller, less complex model in terms of the num-
ber of parameters is generally faster to train since there are fewer weights to
be updated. Table 3 shows the number of trainable parameters that each of
the optimized models per loss function has. We see that the optimized models
trained with the categorical cross-entropy often have the least trainable param-
eters compared to the other loss functions. Other functions, like MSE and CER
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loss, seem to perform well with smaller models as well, while the categorical
hinge and MSLE loss only perform well with larger models.

Table 3: The number of trainable parameters for the optimized models per loss
function and scenario. The smallest number of trainable parameters for each

scenario is marked blue, the largest orange.
Loss function MLP ID MLP HW CNN ID CNN HW

Categorical cross-entropy 116 156 302 809 53 244 1 124 565
Categorical hinge 1 295 656 3 882 609 1 022 920 2 852 165
CER loss 467 956 483 909 356 424 598 853
Log cosh 126 256 856 009 335 824 1 011 657
MSLE 543 456 1 449 909 5 738 736 1 335 177
MSE 166 656 754 809 214 564 291 409
RKL 543 456 604 809 186 616 1 056 421

Overall, when considering the ASCAD fixed dataset, we can conclude that
the CER loss seems to be the best choice of the loss function. It significantly
outperforms models with categorical cross-entropy, ranking loss, and other loss
functions. The resulting models still have a relatively low number of trainable
parameters and, when using N = 1, are still fast during training.

We also conducted experiments with this dataset and added a desynchroniza-
tion countermeasure (desynchronization equal to 50). Interestingly, both SCA-
specific loss functions (RKL and CER) perform poorly (do not converge) for
both the HW and ID leakage models, while CCE performs well.

ASCAD variable Next, we look at the results on the ASCAD dataset with
random keys used during the profiling phase. Figure 7 shows the GE performance
on the median models. Figure 8 shows the performance for the optimized models.

For the experiments performed on the ASCAD variable dataset, we see re-
sults comparable to those on the ASCAD fixed dataset. In most scenarios, the
models trained with CER loss perform the best, followed closely by those trained
with categorical cross-entropy. An exception to these similarities is visible in the
scenarios with a median model. In the experiment with MLPs and the HW leak-
age model in Figure 7c, the CER loss model does not converge. Compared to
other scenarios with the HW leakage model, the model with CER loss performs
extremely poorly in this case. The median model in this scenario consists of
four dense layers of 200 neurons, uses the ELU activation function, RMSprop
optimizer, and batch size of 300. The investigation of the training process of
models with these hyperparameters and CER loss shows that the loss some-
times becomes a NaN value during training. The underlying cause could be the
exploding gradients problem: gradients during the backpropagation are getting
too large or small, causing the learning process to fail [19]. To verify this, Figure 9
shows the largest and smallest gradient of the input layer for each of the epochs
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(a) MLP, ID leakage model (b) CNN, ID leakage model

(c) MLP, HW leakage model (d) CNN, HW leakage model

Fig. 7: GE of the median MLP and CNN models on the ASCAD variable
dataset.
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(a) MLP, ID leakage model (b) CNN, ID leakage model

(c) MLP, HW leakage model (d) CNN, HW leakage model

Fig. 8: GE of the optimized MLP and CNN models on the ASCAD variable
dataset.
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during the training process of one of these models. The cause of the exploding
gradient problem could come from the combination of several hyperparameters,
i.e., the ELU activation function, the loss function, and the 0-1 normalization
used during pre-processing. Indeed, normalizing all feature values to values be-
tween 0 and 1 removes any negative values from the profiling traces. The ELU
activation function’s output is equal to the input for all x > 0. This means that
the output is unbounded, i.e., there is no limit on how large it can get. What
is more, it also means that, since we normalized to values between 0 and 1,
the output of the activation function will always be positive (also holds for the
ReLU activation function). This, in combination with the CER loss function,
and some cases ranking loss, causes the gradients to get too large, leading to a
poorly performing model or even a failed training.

(a) 0-1 normalization (b) Z-score normalization

Fig. 9: The largest and smallest gradient of the input layer during training of
a model with CER loss in the median MLP with the HW leakage model when
different pre-processing is done. The gradients explode to large values with 0-1
normalization, but they do not with applied Z-score normalization.

ELU(x) =

{
x if x > 0

α(ex − 1) if x < 0
(9)

Some solutions to mitigate this problem do exist. We could use a different
combination of the loss function, activation function, and pre-processing method.
Figure 9b shows, for example, the same gradients but with the profiling traces
normalized by Z-score normalization (standardization) [28]. The attack perfor-
mance is similar to when 0-1 normalization is used. Consequently, when using
CER loss and RKL with activation functions such as ELU, standardization in-
stead of 0-1 normalization seems preferred. Another possible solution might be
clipping the gradients when they get too large or too small. For our experi-
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ments, we have kept the pre-processing similar for each experiment as described
in Table 4.

Some differences are visible if we compare the number of trainable parameters
of the optimized models. Table 4 shows the number of trainable parameters of
the optimized model for each of the loss functions. In contrast with the results
on the ASCAD fixed dataset, there is no clear function that works well with
smaller models in general. The log cosh loss does seem to perform well with
smaller CNN models, but the best performing MLP models with log cosh tend
to be very large. Similarly, the optimized categorical cross-entropy and ranking
loss MLP models are relatively small, while their CNN counterparts are larger.

Table 4: The number of trainable parameters for the optimized models per loss
function and scenario. The smallest number of trainable parameters for each

scenario is marked blue, the largest orange.
Loss function MLP ID MLP HW CNN ID CNN HW

Categorical cross-entropy 1 830 756 402 609 3 869 540 3 844 221
Categorical hinge 2 582 256 4 512 609 1 007 956 5 071 253
CER loss 1 966 656 2 079 909 1 602 260 937 253
Log cosh 6 662 256 3 701 709 314 616 245 481
MSLE 1 129 456 4 413 009 4 499 560 4 371 285
MSE 1 625 456 1 927 809 1 768 264 179 265
RKL 371 856 1 477 709 4 591 236 3 634 445

Similar to the ASCAD fixed dataset, we can conclude that the CER loss is
the preferred loss function when the ASCAD variable dataset is considered. It
again outperforms the categorical cross-entropy in terms of guessing entropy in
most of the scenarios. It sometimes reduces the required traces for a guessing
entropy of 1, NTGE

, more than threefold. When considering, for example, the
optimized CNN models, the categorical cross-entropy has a NTGE

of 2 520, while
for CER loss, this is reduced to 720.

5.2 State-of-the-art Architectures

Next, we present the results of the experiments where two state-of-the-art ar-
chitectures are considered, as described in section 4. First, we look at the re-
sults from the MLPbest model, introduced by [2], followed by the results of the
CNNmethodology model introduced by [32]. Figure 10 shows the performance in
guessing entropy for the models.

Observe that, in general, the MLPbest architecture is not performing very
well. Although the performance with the categorical cross-entropy is indeed sim-
ilar to that in the original paper, the median and optimized models from the
previous experiments outperform the MLPbest in every scenario. The authors
managed to successfully attack this model on the ASCAD fixed dataset and the
ID leakage model, but only when they train the model for 400 epochs or more.



22

(a) ASCAD fixed, ID leakage model (b) ASCAD fixed, HW leakage model

(c) ASCAD variable, ID leakage model (d) ASCAD variable, HW leakage model

Fig. 10: GE of the MLPbest models on the ASCAD fixed and ASCAD variable
datasets.
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In the context of the original paper, similar to the scenario in Figure 10a, the
categorical cross-entropy performs the best. Our results show that using another
loss does not improve the performance presented in their work, where they only
use the ID leakage model. When the HW leakage model is considered, the CER
loss again performs best but still not better than the previously shown median or
optimized models. Therefore, we can conclude that the MLP best architecture
does not perform particularly well, despite the loss function used.

The training times align with what we previously saw when comparing the
different loss functions, although it takes significantly longer than the optimized
and median models from our earlier experiments. Figure 11 shows, for example,
the training times for the models on the ASCAD fixed dataset with the ID
leakage model. Each of the optimized models is trained 2-3 times faster than the
MLPbest models. A probable explanation for this is the combination of more
trainable parameters and the small batch size of 100 that the authors proposed
for the MLPbest model. In comparison, almost all of the median and optimized
models have fewer layers (2-4 instead of 5), reducing the complexity and using
a larger batch size of 800-1 000. This is also visible in the number of trainable
parameters. The MLPbest has 352 456 trainable parameters, where most of the
optimized models had less than 200 000.

(a) MLPbest models (b) Optimized models

Fig. 11: Training times for the MLPbest and optimized models on the
ASCAD fixed dataset.

Next, we look at the performance of the CNNmethodology model. In their
work, [32] introduced a methodology to create small but well-performing CNN
architectures. For our experiments, we used their CNN model created for the
ASCAD fixed dataset. Note that this is also the model that was used by [31] to
demonstrate the performance of the ranking loss function. Figure 12 shows the
results in terms of guessing entropy.
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(a) ASCAD fixed, ID leakage model (b) ASCAD fixed, HW leakage model

(c) ASCAD variable, ID leakage model (d) ASCAD variable, HW leakage model

Fig. 12: Guessing entropy of the CNNmethodology models on the ASCAD fixed
and ASCAD variable datasets.
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Since the CNN architecture was created specifically for the ASCAD fixed
dataset and the ID leakage model, it is no surprise that the performance is best
in that scenario. Both the categorical cross-entropy and ranking loss can perform
a successful attack with less than 200 traces. This is comparable to the perfor-
mance of the model in the original paper [32]. However, in our experiments, the
ranking loss does not outperform the categorical cross-entropy. In contrast with
the ranking loss paper, the categorical cross-entropy performs slightly better.
One possible explanation of this difference with [31] is the way they present
their results. More precisely, they take the average NTGE

over ten converging
models and compare those averages. In our experiments, however, we take the
median of 10 models and observe that the models with ranking loss are less
consistent, e.g., there is a higher chance that one does not converge to a GE of
1 for the correct key.

Looking at the performance for the other dataset, we see that the model is not
very successful when the ID leakage model is used. This is no surprise since the
model is optimized for usage on the ASCAD fixed dataset with the categorical
cross-entropy in mind. In the HW leakage model, the models trained with the
CER loss outperform the other functions by quite a margin. They retrieve the
correct key for the ASCAD variable with less than 1 500 traces, where the models
with other functions are not successful or need more than 3 000 traces.

6 Discussion

With these experiments, we systematically compared different loss functions in
various deep learning-based SCA scenarios for the first time in the SCA domain.
The results reveal interesting behavior of the different loss functions. In general,
we see that the CER loss performs best in most of the experiments. Besides
working well with the HW leakage model, optimized models with CER loss
outperform models with other loss functions in many scenarios with the ID
leakage model. While [33] already demonstrated that CER loss might work on
balanced data, our experiments confirm this for datasets often used in the SCA
research domain. The other novel loss function proposed specifically for deep
learning-based SCA, ranking loss, fared less well in our experiments. Besides
being much slower to train than models with other functions, it only performed
best in a single scenario. In all the other scenarios, CER loss or categorical
cross-entropy are better choices.

Furthermore, our work also shows that the categorical cross-entropy, often
used by default in related works, is still a solid choice. It shows to be more
robust to different hyperparameter choices than the two novel functions, per-
forming well with almost any type of combination of hyperparameters within
the hyperparameter search space we defined. In terms of guessing entropy, mod-
els with categorical cross-entropy are also often only second to the performance
of CER loss. Besides that, our results show that it is faster to train and needs
less complex models. To conclude, it showed no obvious weaknesses.
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The other loss functions we considered did, in general, not show promising
results. While used before in related works, MSE and related loss functions such
as MSLE and log cosh are almost always outperformed by the categorical cross-
entropy and CER loss when an attack can be performed successfully. Besides
that, MSE also does not have any significant benefits in terms of training time
or model complexity.

In our results, we saw no consistent differences between the behavior of loss
functions with MLPs or CNNs. In general, loss functions that performed well
did so on both architecture types. If we look at the other hyperparameters, we
see differences between the loss functions. Functions that perform well, such as
categorical cross-entropy or CER loss, often do so with smaller models. The
best-performing models trained with the functions that do not perform well are
relatively complex. They require more neurons and dense layers or more filters.

We do not see large differences between the different loss functions despite
the more complex models in terms of the training time. The only function that is
significantly slower to train than others is the ranking loss. Especially when the
ID leakage model is considered, and the number of classes is high, the training
time is increased by up to a factor of ten, as visible in Figure 5. The CER loss is
also slower when a larger N is chosen. Nevertheless, a larger N is not required
for better-performing models.

Our work aims to improve the tools that researchers have when performing
SCA with deep learning. To that end, we created an overview of strengths and
weaknesses in Table 5 for each loss function as seen in our experiments.

Comparing the guessing entropy performance, models with the CER loss
function performed best in 20 tested scenarios, the categorical cross-entropy in
eight, and the ranking loss in four. Other functions like MSE, MSLE, or log
cosh loss only performed best in scenarios where all models failed to perform a
successful attack, e.g., reach a guessing entropy of 1 with less than 3 000 traces.
Our experiments also show that the categorical hinge loss is not very suitable
for application in the SCA domain.

The models in the scenarios where other hyperparameters are optimized most
often lead to a successful attack. For each of the loss functions, ten models with
the same optimized hyperparameters were trained per scenario. Since there are
eight scenarios (combinations of two datasets, two leakage models, two archi-
tecture types), a total of 80 models per loss function were trained. When we
compare the NTGE

for all those models with CER loss and categorical cross-
entropy, we see that 54 out of 80 models with CER loss reached a guessing
entropy of 1, with a median NTGE

of 590. For categorical cross-entropy, 37 mod-
els were successful with a median NTGE

of 1 560. To test the significance of the
difference in NTGE

between the two functions, we perform a Mann-Whitney-
U test [14]. We use n1 = 54, n2 = 37, and α = 0.05. The calculated statistic
U = 178.5 < Ucrit ≈ 756 with p < 0.00001 confirms that difference in NTGE

is indeed significant. The probability that a model with CER loss has a lower
NTGE

than a model with categorical cross-entropy is 0.91.
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Table 5: Strengths and weaknesses for each of the loss functions, based on the
results of our experiments.
Loss function Strengths Weaknesses

Categorical cross-entropy
– Good performance
– Robust to different archi-

tectures
– Training time

Categorical hinge
– Training time – Rarely leads to a success-

ful attack

CER loss
– Best performance
– Specifically good against

the HW leakage model

– Less robust to different
architectures

Log cosh
– Training time – Performance is mediocre

MSE
– Training time – Performance is mediocre

MSLE
– Training time – Requires complex models

– Performance is not good

Ranking loss
– Performance in some spe-

cific scenarios
– Training time
– Not robust to different

architectures
– Introduces new tunable

parameter α
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The other novel function, ranking loss, does not seem to increase the per-
formance. Considering all the optimized models again, 24 models with ranking
loss reach a NTGE

of 1. The median NTGE
of these models is 1 420 in compar-

ison to 1 560 for the models with categorical cross-entropy. We again test the
significance of the difference between these results with the Mann-Whitney-U
test. There are 37 models with categorical entropy, which successfully attacked
the considered datasets and 24 with ranking loss. We use n1 = 24, n2 = 37,
and α = 0.05. We calculate the statistic U = 336 > Ucrit ≈ 311 and p = 0.23.
Since 0.23 > 0.05, we cannot say that the difference in performance between the
ranking loss and categorical cross-entropy is significant. One explanation for this
difference in performance with the original paper might be the variation in the
used architectures. The performance we see with the architecture and leakage
model used by [31] in Figure 12a is similar to the performance presented in their
paper [31]. However, in scenarios with other architectures and leakage models,
the performance compared to the categorical cross-entropy shows no improve-
ment. Besides that, using ranking loss also severely impacts the training time
and introduces a new hyperparameter α, which has to be optimized for each
profiling dataset.

7 Conclusions and Future Work

This work investigates several loss functions commonly used in the machine
learning domain and compares them with two recently proposed SCA-specific
loss functions. We analyze two datasets and two leakage models, considering
guessing entropy, the number of trainable parameters, and the training size.
Our results show that the CER loss is, in most cases, the best choice for the
loss function when using deep learning for SCA. The categorical cross-entropy
is still a solid choice, while ranking loss, or other loss functions, should only be
considered in very specific cases.

Since our experiments indeed confirm that a custom SCA loss function is the
best, this opens interesting future research directions. In other domains in which
deep learning is applied, several works have also introduced new loss functions
that improve the performance in that context [1, 4, 5, 11]. These functions are
created to deal with certain characteristics of the targeted datasets, such as a
class imbalance or a low amount of samples per class. It remains an open question
how would such more complex loss functions perform in the SCA context. Next, it
would be interesting to explore what elements of loss functions perform well and
how to combine them to construct new loss functions for side-channel analysis.
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A Details of Optimized Architectures

Table 6: Hyperparameters optimized MLP models for the ID leakage model,
ASCAD fixed dataset.
Hyperparameter cce cat hinge cer loss log cosh msle mse rkl
Dense layers 3 3 3 4 2 8 2
Neurons per layer 100 600 300 100 400 100 400
Learning rate 0.0004 0.00078 0.00026 0.0008 0.00044 0.0003 0.00046
Batch size 200 1000 1000 400 800 300 900
Activation function SELU ReLU SELU tanh ReLU tanh ELU
Optimiser RMSprop RMSprop RMSprop RMSprop RMSprop Adam Adam

Table 7: Hyperparameters optimized MLP models for the HW leakage model,
ASCAD fixed dataset.
Hyperparameter cce cat hinge cer loss log cosh msle mse rkl
Dense layers 5 5 4 3 2 7 3
Neurons per layer 200 900 300 500 900 300 400
Learning rate 0.00016 0.00008 0.00056 0.0004 0.00026 0.00072 0.00016
Batch size 400 800 500 900 300 800 500
Activation function SELU SELU ReLU ELU ReLU ReLU ReLU
Optimiser RMSprop RMSprop Adam Adam RMSprop Adam RMSprop
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Table 8: Hyperparameters optimized CNN models for the ID leakage model,
ASCAD fixed dataset.
Hyperparameter cce cat hinge cer loss log cosh msle mse rkl
Convolutional layers 2 2 1 1 1 1 1
Convolutional filters 8 32 16 8 32 24 20
Kernel size 20 12 20 18 32 24 20
Pooling size 4 3 5 2 5 4 4
Pooling stride 10 10 10 10 5 10 10
Pooling type Average Average Average Max Average Max Average
Dense layers 3 3 3 2 2 3 3
Neurons per layer 100 600 200 300 1000 100 100
Learning rate 0.00014 0.0008 0.00008 0.00018 0.00022 0.00032 0.00022
Batch size 600 1000 900 500 600 100 300
Activation function SELU SELU tanh ReLU ReLU tanh ELU
Optimiser RMSProp Adam RMSprop Adam Adam Adam RMSprop

Table 9: Hyperparameters optimized CNN models for the HW leakage model,
ASCAD fixed dataset.
Hyperparameter cce cat hinge cer loss log cosh msle mse rkl
Convolutional layers 2 1 2 2 2 1 2
Convolutional filters 12 12 24 16 8 20 28
Kernel size 14 10 12 16 10 12 12
Pooling size 4 2 5 4 5 5 3
Pooling stride 5 10 5 5 10 5 5
Pooling type Average Average Average Average Average Average Average
Dense layers 2 3 2 2 3 2 2
Neurons per layer 900 1000 500 800 800 100 700
Learning rate 0.00002 0.00008 0.00002 0.00026 0.00094 0.00078 0.00002
Batch size 800 400 500 200 900 200 600
Activation function ELU SELU ELU ELU ELU ELU ReLU
Optimiser Adam RMSprop RMSprop RMSprop RMSprop Adam RMSprop

Table 10: Hyperparameters optimized MLP models for the ID leakage model,
ASCAD variable dataset.
Hyperparameter cce cat hinge cer loss log cosh msle mse rkl
Dense layers 5 8 2 6 8 7 2
Neurons per layer 500 500 800 1000 300 400 200
Learning rate 0.00026 0.00072 0.0004 0.0005 0.00038 0.0005 0.00052
Batch size 900 500 500 400 500 200 300
Activation function ELU SELU SELU ReLU ELU ELU ELU
Optimiser RMSprop Adam RMSprop Adam RMSprop Adam RMSprop
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Table 11: Hyperparameters optimized MLP models for the HW leakage model,
ASCAD variable dataset.
Hyperparameter cce cat hinge cer loss log cosh msle mse rkl
Dense layers 4 5 2 4 4 4 2
Neurons per layer 200 900 900 900 1000 600 700
Learning rate 0.00032 0.00006 0.00034 0.00002 0.00014 0.00022 0.00016
Batch size 300 900 700 400 200 100 400
Activation function ReLU SELU ReLU ELU ELU ELU tanh
Optimiser Adam RMSprop RMSprop RMSprop RMSprop Adam Adam

Table 12: Hyperparameters optimized CNN models for the ID leakage model,
ASCAD variable dataset.
Hyperparameter cce cat hinge cer loss log cosh msle mse rkl
Convolutional layers 1 1 1 2 1 1 1
Convolutional filters 8 20 16 16 16 24 20
Kernel size 20 12 16 12 16 14 16
Pooling size 5 3 5 5 5 4 5
Pooling stride 5 10 5 5 10 10 5
Dense layers 3 2 3 3 3 3 2
Neurons per layer 900 300 300 200 1000 400 700
Learning rate 0.00022 0.00046 0.00016 0.0006 0.00096 0.00054 0.0003
Batch size 1000 800 700 600 600 500 1000
Activation function ELU ReLU SELU ELU ReLU ReLU SELU
Optimiser RMSProp Adam RMSprop RMSprop RMSprop Adam RMSprop
Pooling type Average Max Average Average Average Average Average

Table 13: Hyperparameters optimized CNN models for the HW leakage model,
ASCAD variable dataset.
Hyperparameter cce cat hinge cer loss log cosh msle mse rkl
Convolutional layers 1 1 2 1 1 1 1
Convolutional filters 24 28 24 16 12 12 32
Kernel size 10 20 16 14 20 10 20
Pooling size 5 5 5 4 5 5 5
Pooling stride 10 5 5 10 5 10 10
Dense layers 2 2 2 3 2 2 2
Neurons per layer 900 600 500 100 1000 100 700
Learning rate 0.00082 0.00008 0.00002 0.00004 0.00004 0.00048 0.00002
Batch size 700 1000 200 400 400 500 700
Activation function ELU SELU ELU ELU ELU SELU ELU
Optimiser Adam RMSprop RMSprop RMSprop RMSprop RMSprop RMSprop
Pooling type Average Average Average Average Average Max Average

Table 14: Hyperparameters median MLP models for the ID and HW leakage
models, ASCAD fixed dataset.

Hyperparameter HW leakage ID leakage
Dense layers 6 5
Neurons per layer 900 300
Learning rate 0.0001 0.0007
Batch size 800 600
Activation function ELU Tanh
Optimiser Adam Adam
# trainable parameters 648556 4693509
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Table 15: Hyperparameters median CNN models for the ID and HW leakage
models, ASCAD fixed dataset.

Hyperparameter HW leakage ID leakage
Convolutional layers 1 1
Convolutional filters 8 16
Kernel size 10 14
Pooling size 4 3
Pooling stride 5 5
Dense layers 2 2
Neurons per layer 900 100
Learning rate 0.00046 0.00002
Batch size 600 400
Activation function ELU SELU
Optimiser RMSProp RMSprop
Pooling type Max pooling Average pooling
# trainable parameters 1828013 260328

Table 16: Hyperparameters median MLP models for the ID and HW leakage
models, ASCAD variable dataset.

Hyperparameter HW leakage ID leakage
Dense layers 4 2
Neurons per layer 200 200
Learning rate 0.00034 0.0006
Batch size 300 200
Activation function ELU ELU
Optimiser RMSprop RMSprop
# trainable parameters 402609 371856

Table 17: Hyperparameters median CNN models for the ID and HW leakage
models, ASCAD variable dataset.

Hyperparameter HW leakage ID leakage
Convolutional layers 1 1
Convolutional filters 20 32
Kernel size 18 14
Pooling size 4 4
Pooling stride 5 10
Dense layers 2 2
Neurons per layer 800 200
Learning rate 0.00026 0.00014
Batch size 500 700
Activation function Tanh RELU
Optimiser Adam RMSprop
Pooling type Average pooling Average pooling
# trainable parameters 5129229 988400
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