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Abstract—Many decentralized applications require a common
source of randomness that cannot be biased by any single party.
Randomness beacons provide such a functionality, allowing any
(third) party to periodically obtain random values and verify
their validity (i.e. check that they are indeed produced by
the beacon and consequently random). Protocols implementing
randomness beacons have been constructed via a number of
different techniques. In particular, several beacons based on time-
based cryptography, Publicly Verifiable Secret Sharing (PVSS),
Verifiable Random Functions (VRF) and their threshold variant
(TVRF) have been proposed. These protocols provide a range of
efficiency/randomness quality trade-offs but guarantee security
under different setups, assumptions and adversarial models.

In this work, we propose Mt. Random, a multi-tiered ran-
domness beacon that combines PVSS and (T)VRF techniques in
order to provide an optimal efficiency/quality trade-off without
sacrificing security guarantees. Each tier is based on a different
technique and provides a constant stream of random outputs
offering progressing efficiency vs. quality trade-offs: true uniform
randomness is refreshed less frequently than pseudorandomness,
which in turn is refreshed less frequently than (bounded) biased
randomness. This wide span of efficiency/quality allows for
applications to consume random outputs from an optimal point
in this trade-off spectrum. In order to achieve these results,
we construct two new building blocks of independent interest:
GULL, a PVSS-based beacon that preprocesses a large batch of
random outputs but allows for gradual release of smaller “sub-
batches”, which is a first in the literature of randomness beacons;
and a publicly verifiable and unbiasable protocol for Distributed
Key Generation protocol (DKG), which is significantly more
efficient than most of previous DKGs secure under standard
assumptions and closely matches the efficiency of the currently
most efficient biasable DKG protocol.

Mt. Random (and all of its building blocks) can be proven
secure under the standard DDH assumption (in the random
oracle model) using only a bulletin board as setup, which is
a requirement for the vast majority of beacons. We showcase the
efficiency of our novel building blocks and of the Mt. Random
beacon via benchmarks made with a prototype implementation.
Our experimental results confirm the benefits of our multi-tiered
approach, showing that even though higher tiers provide fresh
random outputs more often, lower tiers can be executed fast
enough to keep higher tiers freshly seeded.

I. INTRODUCTION

Randomness is essential for constructing provably secure
cryptographic primitives and protocols. For several applica-
tions, it does not suffice that parties simply have a local source
of randomness, but we require instead a randomness beacon
that can periodically provide the same fresh random values
to all parties. This is particularly important in Proof-of-stake
protocols [31], [18], [14], where such random beacons are

needed to carry out the leader elections to decide the next party
to publish a block. In addition, random beacons are important
for other blockchain-related applications where committees
must be elected, such as sharding [43], [19], [45], as well
as for smart contracts that require a source of randomness. In
such settings it is desirable to implement a random beacon as
a protocol among the mutually distrustful participants of the
corresponding system, i.e., without assistance of a trusted third
party; moreover, we want to have a protocol with guaranteed
output delivery, and whose output correctness can be publicly
verified. The output of the protocol should not be predictable
beforehand and/or biasable by an adversary that corrupts up
to a certain threshold of the parties.

To illustrate the non-immediate nature of the problem,
notice that a simple commit-and-open strategy where parties
commit to local randomness and then output the sum of the
opened values not quite enough, as parties can bias the output
with a selective abort strategy, where they open or not their
commitments depending on their view so far.

Given that challenge, several alternatives for constructing
randomness beacons have been proposed based on crypto-
graphic primitives, such as publicly verifiable secret sharing
(PVSS) [31], [11], [12], [41], [39], verifiable random func-
tions (VRF) [14], [18], [17], [29], [24], [42], verifiable delay
functions (VDF) [8], [44], [6], [5], [38] and homomorphic
encryption [15]. Moreover, achieving fairness against rational
adversaries has also been considered in works that rely on
financial incentives or punishments to encourage parties to
behave honestly [2], [1], [7], [32], [4]. In particular, this
rational approach has been proposed in the specific context
of randomness beacons by the RANDAO project [36].

Constructions of beacons from these different primitives
present a trade-off between the complexity of the construc-
tion (in terms of computation and communication) and how
unbiasable or unpredictable they really are. In this work, we
will focus on the two first types of random beacons, namely
based on PVSS and VRFs, because their security is based on
standard assumptions. In fact, we consider two different types
of VRF-based constructions, one using plain VRFs and another
using so-called threshold VRFs [42], [24], [29] (or TVRF,
also called distributed VRF or DVRF). Before describing our
approach, we give a brief overview of the complexity vs.
randomness quality trade-offs given by each of these types
of beacons.

Constructions using plain VRFs require very little computa-



tion and communication, but are open to the type of selective
abort bias that we mentioned above. Since they rely on the
computation of a VRF that can only be carried out by a party
having its secret key, an adversary can always bias the final
output by choosing whether to reveal or not its own VRF
output, a fact that is captured in previous security analysis of
this type of beacon [18].

Distributed VRFs get rid of this bias by always allowing a
set of parties larger than a threshold (e.g. a majority of parties)
to compute the verifiable random function, after a setup that
consists on a distributed key generation protocol. Nevertheless,
TVRF-based random beacons that have been proposed consist
on a round-by-round protocol where at each round the TVRF
is applied to the output of the previous round (and the random
beacon output is defined to be some fixed function of that
output). This has the inconvenience of requiring a fixed initial
seed to which the TVRF is applied in the first round, and since
the entropy of such seed is of course finite, the unpredictability
guarantees of the process will on the long run necessarily
deteriorate. To the best of our knowledge there is no analysis
of how this exactly plays out.

Finally, PVSS-based beacons such as SCRAPE [11] and
ALBATROSS [12] enhance the commit-and-open strategy
mentioned above by having parties commit to their inputs via
publicly verifiable secret sharing. This approach renders the
selective abort strategy useless, since unopened secrets can
always be reconstructed by honest parties (provided there is
an honest majority). On the downside, such protocols require
more communication and computation from the parties. The
recent proposal ALBATROSS [12] amends this to some extent
by allowing parties to generate a much larger output than
SCRAPE at the cost of little additional communication and
computation. Nevertheless, in ALBATROSS there is still the
issue that, while the parties generate a large batch of elements
in a group as output, these elements are all known at once,
so it may not be usable in scenarios where one should
generate randomness gradually, as it happens with TVRF
based protocols.

Recently, there is a growing interest in constructing beacons
from time based primitives, such as Time Lock Puzzles
(TLP) [37], [9], [30], [22] and the Related notion of Verifiable
Delay Functions (VDF) [8], [35], [44], [20]. Such randomness
beacons [8], [6], [5] achieve communication complexity linear
in the number of parties while requiring only a common
reference string as setup. However, these constructions are
based on sequential computation assumptions that are not
well understood, such as the hardness of problems over
supersingular isogenies [20] and of iterated squarings over
groups of unknown order [37]. Since little is known about
concrete security parameters for such constructions, we focus
our approach on PVSS and (T)VRF based beacons. However,
since these approaches provide uniform pseudorandom values,
they can potentially be used as Tier 2 of our beacon (which
will be discussed in details).

A. Our Contributions

In this work, we aim to combine the PVSS and (threshold)
VRF approaches to obtain a best-of-both worlds “multi-tiered”
randomness beacon construction. Moreover, as a key part of
Mt. Random’s construction, we design a novel protocol for
publicly verifiable and unbiasable distributed key generation.
Finally we also present GULL (Gradually UnLeashed aLba-
tross), a new PVSS-based beacon that generates a large batch
of random outputs like ALBATROSS but allows for gradually
releasing of smaller “sub-batches” of outputs. All of our
constructions are publicly verifiable and proven secure against
malicious adversaries under a single standard assumption, i.e.
Decisional Diffie Hellman (DDH).

Mt. Random: A multi-tiered randomness beacon: More
precisely, Mt. Random is a protocol where VRF, TVRF and
PVSS based random beacons are run as independent tiers
executed in parallel. Each tier offers a different trade-off
between complexity and randomness quality. By using the
outputs of each tier as seeds for the next one, we aim at
constructing a flexible architecture for randomness beacons
that achieves good concrete efficiency without sacrificing
security guarantees. Moreover, our approach allows for higher
level protocols to choose what tier to use when obtaining
randomness, according to the best complexity vs. randomnness
quality trade-off for each application. At a glance, Mt. Random
is constructed as follows:

• Tier 1 - Uniform Randomness via PVSS: This tier
provides batches of uniformly random outputs while only
requiring a Public Ledger and a Random Oracle as setup.
However, communication and computational complexities
are quadratic in the number of parties executing the tier.

• Tier 2 - Uniform Pseudorandomness via TVRFs: Be-
sides the setup required for Tier 1, this tier requires a
setup phase for distributed key generation, after which it
provides uniformly pseudorandom outputs (one per execu-
tion). Communication and computational complexities are
linear in the number of parties executing the tier. Since the
seed must be periodically refreshed, this tier uses outputs
from Tier 1 as seeds every time a refresh is needed.

• Tier 3 - Bounded-Biased Pseudorandomness via VRFs:
Regarding setup, besides a Public Ledger and a Random
Oracle, this tier requires a random nonce, which is obtained
from the outputs of Tier 2. Communication and computa-
tional complexities can be adjusted at the expense of output
bias, i.e. the lower the complexity the higher the upper
bound for the bias an adversary can introduce.

Publicly Verifiable Distributed Key Generation: We show
that the SCRAPE and ALBATROSS protocols can be adapted
to create a publicly verifiable distributed key generation
(DKG) protocol that can provide both the keys needed for the
TVRF and for the threshold encryption that we use in GULL.
This protocol gives each party a threshold public key/private
key pair (tpki, tski) where tski is a Shamir sharing of a global
secret key sk in a prime-order field Zq and tpki = gtski

in a DDH-hard cyclic group of order q generated by g;



the global public key tpk = gsk is also publicly known.
The security of our DKG scheme is entirely based on DDH
(in the random oracle model) and, as a consequence of the
unbiasability of SCRAPE and ALBATROSS, it does not suffer
from the problem that the public key may be biased by a
rushing adversary (which happens in some other alternatives).
In terms of communication and computational complexities,
our protocol is more efficient than previous unbiasable DKG
schemes and essentially as efficient as the best biasable scheme
(as discussed in Appendix E). We are not aware of this
protocol being described anywhere else.

GULL (Gradually UnLeashed aLbatross): Finally we in-
troduce GULL, a PVSS-based random beacon that generates
large batches of outputs that remain secret until a opening
phase where smaller “sub-batches” can be gradually released.
GULL is constructed by modifying and augmenting the
ALBATROSS beacon using threshold encryption. Basically,
instead of revealing their shares as in ALBATROSS, parties in
GULL threshold encrypt (functions of) their shares and prove
in zero knowledge that the resulting ciphertexts are correctly
generated. In order to do that, we present an efficient zero
knowledge proof for the required language.

Due to the added threshold encryption and zero knowledge
proof machinery, GULL is understandably slower than AL-
BATROSS in case a full batch of random outputs is required.
However, in case many fresh unpredictable uniformly random
outputs are required, the ability to gradually release sub-
batches of outputs makes GULL significantly more efficient
than ALBATROSS: instead of re-executing the full protocol in
order to obtain a full batch that is completely revealed, GULL
allows for simply opening an encrypted sub-batch, which is
much cheaper than the full protocol execution. In other words,
GULL allows for preprocessing a large amount of sub-batches
of uniformly random outputs that can later be revealed at a
low cost (instead of generating new outputs on-the-fly).

B. Other Related Works

Since one of the contributions of this paper is a distributed
key generation protocol for discrete logarithm based schemes,
in Appendix E we give an overview of some relevant works
in the extensive literature on this topic, namely [34], [26],
[23]. Here we note briefly that these protocols have diverse
pros and cons: [34], [26] only assume DDH hardness as our
protocol, while [23] uses Paillier encryption and therefore
needs the decisional composite residue assumption but it only
requires one round of communication (in contrast, [34] may
require 3 rounds in case of complaints, our protocol may
require 4, and [26] may require up to 5). Another issue is
that the output global key in [34] and [23] may be biased
by a rushing adversary, even though this may not be a
big problem for many applications as shown in [28], and
seems quite inherent to low round complexity. We also note
that [28] also constructed a distributed key generation protocol
with improved communication complexity based on a gossip
strategy; however, this construction does not generate finite
field as secret keys, like the other alternatives we mention, but

rather group elements, so they may not be used for example
in our application.

II. PRELIMINARIES

A. General notation

For integers m ≤ n we denote by [m,n] the set {m,m +
1, . . . , n}. We let [n] = [1, n], i.e. {1, . . . , n}. Our protocols
will take place in a cyclic group G of prime order q. Observe
that, in such a group, any element distinct from the identity
is a generator. We denote by Zq the finite field of q elements,
consisting of the integers modulo q, and note that we can
speak of ga for g ∈ G, a ∈ Zq and this respects the rule
ga · gb = ga+b where the sum is in Zq . We will assume the
DDH problem is hard in our group, i.e. given (g, ga, gb, gc)
where g is in G, a, b are uniformly random and independent
in Zq and c may be (with same probability) either uniformly
random in Zq and independent of (a, b) or defined by c = a·b,
then it is hard to decide in which of the two cases we are with
probability non-negligibly larger than 1/2.

B. Adversarial and Communication Models

The protocols analysed in this work are proven secure
against a malicious static adversary, i.e. the adversary may
arbitrarily deviate from the protocol but it must choose what
parties to corrupt before the execution starts. For the sake
of simplicity, we assume access to an authenticated bulletin
board. Once a party posts a message to the bulletin board,
it becomes immutable and immediately available to all other
parties, who can also verify the authenticity of the message
(i.e. that it was indeed posted by a given party). Notice that
such a bulletin board could be substituted by a blockchain
based public ledger, a public key infrastructure and digital
signatures. However, modeling the corner cases that arise
in this scenario introduces a number of technicalities that
are not the main focus of this work. Moreover, we assume
synchronous communication, i.e. all messages sent (or posted
to the bulletin board) within a round are guaranteed to be
received by all parties before the next round.

C. Packed Shamir secret sharing

Secret sharing allows to distribute a secret among n parties
P1, . . . , Pn by delivering a share to each party, so that only
certain subsets of these parties can later reconstruct it by
pooling together their received shares.

We recall the secret sharing scheme we refer to as (t, `)-
packed Shamir secret sharing, a well-known generalization of
Shamir’s secret sharing scheme that allows to share a vector
of ` secrets (s0, s1, . . . , s`−1) in Z`q as long as n + ` ≤ q.
Standard Shamir’s scheme is the case ` = 1.

To share the secret, the dealer selects a polynomial of degree
at most t+ `− 1 such that f(−j) = sj for j ∈ [0, `− 1] and
sends the evaluation σi = f(i) to Pi for i ∈ [n].

Polynomial interpolation uniqueness properties guarantee
that the secret is distributed independently from any set of
t or fewer shares (t-privacy); while on the other hand it can
be fully reconstructed from any set of t + ` shares or more



((t+ `)-reconstruction). Indeed given a set A of exactly t+ `
shares, we apply Lagrange interpolation in each coordinate of
the secret, namely

sj =
∑
i∈A

σiLi,A(−j)

for j = 0, . . . , `− 1, where

Li,I(X) :=
∏

k∈I,k 6=i

X − i
k − i

.

A larger subset can reconstruct the secret by applying this
process to the shares of some subset A of t+ ` parties.

D. Non-interactive zero knowledge proofs

In a zero knowledge proof of knowledge a prover wants
to convince a verifier of the veracity of a statement and of
the fact that she knows a piece of information (witness) that
makes the statement true, without revealing anything about
this witness. Non-interactive proofs carry out this with a single
message from the prover. Proofs considered here will be for
public verifiers, meaning anyone can verify the proof. We
need non-interactive zero-knowledge proofs of knowledge for
two types of statements in a cyclic group of prime order
q: discrete logarithm equality (DLEQ) proofs [13] and low-
degree exponent interpolation (LDEI) [12]. In fact, DLEQ
proofs can be seen as a special case of LDEI proofs, and
both can realized from standard Sigma-protocol techniques.

In a LDEI proof, we consider the cyclic group G of prime
order q, and let α1, . . . , αm be fixed public pairwise-different
elements in the field Zq . The statement is given by a vector of
elements g1, ..., gm, x1, ..., xm of the cyclic group, and some
integer 0 ≤ d < m. The prover needs to show that there
exists a polynomial w(X) in Zq[X] of degree at most d that
interpolates the discrete logarithms of the xi’s with respective
bases gi on evaluation points αi, i.e., xi = g

w(αi)
i for all

i ∈ [m].
A non-interactive proof of knowledge of the polynomial

w(X) was presented in [12] and is given in Figure 1. The
proof works in the random oracle model, and we denote it by

πLDEI((gi)
m
i=1, (xi)

m
i=1, d).

A well known special case is d = 0, where we obtain a discrete
logarithm equality, or DLEQ, statement: what the prover is
showing in that case is that the discrete logarithms of the xi
with respective base gi are all equal, i.e., xi = gwi for all
i ∈ [m] where now w ∈ Zq . We subsequently define

πDLEQ((gi)
m
i=1, (xi)

m
i=1) := πLDEI((gi)

m
i=1, (xi)

m
i=1, 0)

E. Publicly Verifiable Secret Sharing (PVSS)

A publicly verifiable secret sharing scheme allows any ex-
ternal party to verify the correct sharing and reconstruction of
a secret, with the help of zero knowledge proofs posted respec-
tively by the dealer and the reconstructing parties. We will base
our constructions upon techniques from SCRAPE [11] and the
subsequent modifications in ALBATROSS [12]. The PVSSs

Low-degree exponent interpolation (LDEI) ZKPoK
πLDEI((gi)

m
i=1, (xi)

m
i=1, d)

Setup: Group G, fixed pairwise distinct elements α1, . . . , αm in
Zq , a random oracle H(·)
Statement: {(g1, ..., gm, x1, ..., xm, d) ∈ G2m × Z : ∃w(X) ∈
Zq[X], degw ≤ d, xi = g

w(αi)
i ∀i ∈ [m]} (and the prover knows

w(X)).
Protocol:
• The prover samples u(X) ← Zq[X] with deg u ≤ d and

computes ai = g
u(αi)
i for all i ∈ [m], in addition to

e = H(g1, . . . , gm, x1, . . . , xm, a1, . . . , am), and z(X) =
u(X)− e · w(X). The proof is (e, z).

• The verifier computes ai = g
z(αi)
i xei for all i and checks

that e = H(g1, . . . , gm, x1, . . . , xm, a1, . . . , am) and that
deg z ≤ d, accepts if these two conditions are true, and
otherwise rejects.

Fig. 1: LDEI zero knowledge proof of knowledge πLDEI
from [12].

in these papers follow in turn the blueprint of Schoenmakers’
PVSS [40].

We describe the PVSS in ALBATROSS, which can be seen
as a generalization of SCRAPE that allows for a flexible trade-
off where the dealer can share a vector of ` group elements,
while at most t ≤ (n − `)/2 parties can be corrupted if we
want both t-privacy and n − t-reconstruction, which will be
necessary later. In contrast, the parameters in SCRAPE (and
in Schoenmakers’ PVSS) would correspond to the case ` = 1.
One important point in favor of this generalization is that the
amortized computation and communication per secret shared
becomes much better as ` grows. The construction of the PVSS
in ALBATROSS can be seen in Figure 2.

PVSSs can be used to construct random beacons as follows:
parties commit to a secret random choice in a group (in the
case of ALBATROSS the group would be G`) by PVSSing
it among the remaining participants. At that point all parties
and any external verifier can check the validity of each sharing
and determine the set Q of parties which have dealt correctly.
Once the set Q of parties that have correctly shared a secret
is pinpointed, each of these secrets will always be opened,
even if the dealer refuses to open it; indeed, they can be
reconstructed by the remaining parties, and also this process is
publicly verifiable. In fact at the point where Q is determined,
the output is also fully fixed. This output is constructed by
applying a randomness extractor to the opened secrets, so that
the result is independent from the input choice of any t parties.

This randomness extractor could simply consist on the
group operation applied to the opened secrets. The result
would be independent of any set of all but one of these secrets.
However, ALBATROSS exploits the fact that by assumption
there is more than one honest party in Q, and extracts a larger
output. This requires the notion of t-resilient matrix.

Definition 1. A matrix M ∈ Zr×mq is t-resilient if for
any A = {i1, ..., it} ⊆ [m] of size t, Mv is indepen-
dent from the coordinates of v indexed by A, i.e. for any



Packed PVSS in ALBATROSS [12].

Parameters: Let n be the number of parties that receive shares,
and 1 ≤ t ≤ (n− `)/2 be the corruption threshold, where ` ≥ 1
is an integer.
Setup: A public bulletin board, field Zq , and DDH-hard group G
with generator g. Every party has a private key ski ∈ Zq , and
public key pki = gski ∈ G.
Sharing:
The secret is a tuple (gs0 , . . . , gs`−1) ∈ G`, for (s0, . . . , s`−1) ∈
Z`q chosen by the dealer.

1) The dealer constructs Shamir’s shares for (s0, . . . , s`−1) ∈
Z`q by selecting a polynomial f ∈ Zq[X] of degree at most
t + ` − 1, with f(−j) = sj , j = 0, . . . , ` − 1, defines
σi = f(i), i = 1, ..., n. We refer to sj , σi as “Shamir secret
and shares”.

2) The dealer posts the “encrypted group shares” Ŝi =
pkσii on the bulletin board, together with the NIZK proof
πLDEI((pki)

n
i=1, (Ŝi)

n
i=1, t + ` − 1), asserting that indeed

(σ1, . . . , σn) = (f(1), . . . , f(n)) for a polynomial f of
degree at most t+ `− 1.

Sharing verification:
1) Check whether πLDEI is correct.

Reconstruction: A set A containing at least t + ` honest parties
(whose existence is guaranteed if there are ≤ t corruptions) can
reconstruct (gs0 , . . . , gs`−1) as follows:

1) Using ski, the i-th party computes Si = (Ŝi)
sk−1

i . Note this
is supposed to be Si = gσi , the “group share”.

2) The i-th party posts Si on the bulletin board to-
gether with a NIZK proof of correct decryption πi =
πDLEQ((g, Si), (pki, Ŝi)).

a

3) Given any subset I ⊆ A of exactly t + ` decrypted shares
(Si)i∈I for which πi is correct (e.g. the first t+ ` with that
condition), any party or external verifier can reconstruct each
gsj via Lagrange interpolation in the exponent:

gsj =
∏
i∈I

S
Li,I (−j)
i .

aIndeed note that gski = pki, S
ski
i = Ŝi, and Pi knows ski. We also

remark that swapping the roles of pki and Si would not work, as Pi does
not know the common exponent σi that would be needed for the proof in
that case.

Fig. 2: Packed PVSS in ALBATROSS.

(y1, . . . , yt) ∈ Ztq , the distribution of Mv when conditioned
to vi1 = y1, . . . , vit = yt and (vj)j /∈A being uniform in Zm−tq ,
is uniform in Zrq .

A t-resilient matrix with the parameters above needs to
satisfy r ≤ m−t. An optimal choice (i.e. r = m−t) results of
taking M to be a transpose of a Vandermonde matrix (we are
assuming q ≥ m). For computation efficiency reasons, [12]
choose M to also be itself Vandermonde, i.e. Mij = αij for
some α ∈ Zq of large enough order. In summary, the random
beacon protocol is as in Figure 3.

The parameter `′ = n − 2t is the size of the output of
the t-resilient function. In ALBATROSS, parameters were set
such that `′ = `, and in SCRAPE, `′ = ` = 1. In this latter
case we obtain that (for the optimal corruption 2t = n − 1),
M ∈ Z1×(n−t)

q is in fact the vector (1, 1, . . . , 1). The output
consists of 1 element of the group in that case, namely the

ALBATROSS Random beacon from PVSS

Setup and parameters: Parameters are exactly as in Figure 2,
in particular 1 ≤ t ≤ (n − `)/2 for some integer ` ≥ 1. Define
`′ = n − 2t and note that ` ≤ `′. Let M ∈ Z`

′×(n−t)
q be a

t-resilient matrix.
Protocol:

1) (Sharing) Each party Pa shares a random secret
(gs

(a)
0 , . . . , gs

(a)
`−1) ∈ G` with the sharing phase of the

PVSS (Figure 2).
2) (Verification) After the sharing round is finished, Every party

executes the sharing verification phase on every shared secret.
Since verification is public, this fixes a set Q of the first n−t
parties Pa, a ∈ Q who have correctly shared.

3) (Reconstruction) Every party Pa in Q opens the Shamir
secret (s(a)0 , . . . , s

(a)
`−1) and the randomness used and parties

verify it is consistent with the sharing posted before and
if so, set Pa’s group secret as (gs

(a)
0 , . . . , gs

(a)
`−1). If Pa

refuses to open, or opens an invalid secret, the group secret
(gs

(a)
0 , . . . , gs

(a)
`−1) is reconstructed using the reconstruction

phase in the PVSS.
4) (Aggregation) At this point we have a matrix of opened

secrets, with rows corresponding to a ∈ Q, and columns
j ∈ [0, ` − 1]. Now to every column j, the randomness
extractor given by the t-resilient matrix M is applied (this
can just be done by each party locally, as everything is public
now). Index the columns of M with a ∈ Q and rows with
k ∈ [`′]. Then for every k ∈ [`′], and every j ∈ [0, ` − 1],
the (k, j)-th output is

ok,j = g
∑

a∈QMk,as
(a)
j .

where okj can be computed from public information as

ok,j =
∏
a∈Q

(gsj
(a)

)Mk,a .

This is a total of ` · `′ values (which is `2 if ` = `′).

Fig. 3: ALBATROSS Random beacon using PVSS [12].

element g
∑

a∈Q s
(a)

where s(a) is the (in SCRAPE’s case,
single) Shamir secret shared by Pa. We remark that, in this
paper, we keep ` and `′ = n− 2t as two separate parameters.

F. Verifiable Random Functions (VRFs)

A verifiable random function (VRF) [33] is a pseudorandom
function that can be evaluated by the owner of a secret key,
who at the same time produces a proof or correct evaluation,
which can be verified by using the corresponding public key. A
VRF scheme consists on three algorithms (λ denotes a security
parameter):

• KeyGen(1λ): outputs a pair (pk, sk) of a public and a
secret key.

• Eval(sk, x) is a deterministic algorithm which outputs a
pair (y, π) where y is the output of the function and π is
a proof.

• Verify(pk, x, y, π) is a probabilistic algorithm that outputs
0 or 1 (respectively meaning ”reject” or ”accept” the
proof).



It has been observed in [18] that the standard VRF definition
is not sufficient in the randomness beacon setting. Notice
that pseudorandomness only holds in case the key pair has
been honestly generated (i.e. by KeyGen) but not when it
is generated maliciously, allowing the adversary to bias VRF
outputs computed under maliciously generated keys. Indeed, in
VRF based beacons (e.g. Figure 4), the adversary can generate
its own key pairs maliciously. Hence, in this setting, we require
the VRF to be unpredictable under maliciously key generation
as defined in [18]. In Appendix A we present the definition and
a construction of a VRF with unpredictability under malicious
key generation.

We show in Figure 4 a construction of a VRF based random
beacon from [18]. The beacon uses an initial seed which
may come from a CRS or, as will happen in our multi-
tiered beacon, as an output from some protocol. The beacon
proceeds iteratively as follows: Each party has a key-pair for
a VRF and evaluates the VRF on the seed. The parties define
the output of that round to be the hash of the XOR of the
correctly computed evaluations (which the can check using
the verification procedure and the public keys), and use that
output to define the seed for the next round. Note this process
opens the door for biasing strategies: malicious parties may
simply wait until honest parties publish their evaluations of
the VRF and then decide whether they publish theirs, thereby
deciding the final result.

VRF-based beacon

Setup: The setup contains some initial seed σ0, and a random
oracle H : {0, 1}`V RF → {0, 1}m.
Beacon:

1) Each party executes KeyGen(1λ) of the VRF obtaining a
key-pair (pki, ski), and publishes pki.

2) At round r = 1, 2, . . . : Let mr = r||σr−1.
a) Every party Pi computes and publishes (σir, π

i) =
Eval(ski,mr).

b) Each party verifies proofs of the remaining parties by
applying Verify(pki,mr, σ

i
r, π

i), defines I to be the set of
parties that have posted a correct (σir, πi), and computes
σr =

⊕
i∈I σ

i
r . The output of this round is wr = H(σr)

Fig. 4: VRF-based beacon from [18].

G. Threshold Verifiable Random Functions (TVRFs)

Analogously to the case of signatures, one can also define
a distributed notion of verifiable random functions, where
each party can compute a partial evaluation, and any t + 1
valid partial evaluations can be combined to obtain the global
evaluation of the VRF. Following [25] we define a DVRF as
the tuple of algorithms below, where as usual t denotes the
corruption threshold:
• DistKeyGen(1λ): outputs secret keys tski, i ∈ [n], corre-

sponding public partial keys tpki and a global public key
tpk.

• PartialEval(x, tski, tpki) is a deterministic algorithm
which outputs a pair mi = (yi, πi) where yi is the

evaluation of the (implicit) random function F at x and
πi is a proof.

• Combine(tpk, {tpki}, x, A, (mi)i∈A) is a probabilistic al-
gorithm that takes a set of at least t + 1 evaluations
(indexed by A) and outputs either a pair (y, π) consisting
of a global evaluation y and a global proof π, or ⊥.

• Verify(tpk, x, y, π) is a probabilistic algorithm that out-
puts 0 or 1 (respectively meaning “reject” or “accept” the
proof).

Security definitions and a construction of a TVRF can be
found in Appendix B.

Notice that, in the threshold scenario, the pseudorandomness
property of the standard definition is sufficient to guarantee
that VRF outputs are unbiased because the distributed key
generation procedure guarantees that keys are correctly gen-
erated.

We present in Figure 5 a TVRF-based random beacon
proposed by the DRAND [42] and Dfinity [29] projects and
proven secure in [25]. The idea is to apply the verifiable
random function iteratively starting with some seed as initial
TVRF input and, in every subsequent round, applying the
TVRF to the output of the previous round. The random beacon
output at a certain round is the hash of that round’s TVRF
output.

The DRAND/Dfinity beacon

We assume t ≤ (n−1)/2, so there are at least t+1 honest parties.
We fix an initial seed σ0 and H ′ : G→ {0, 1}∗ a hash function.

1) Parties invoke DistKeyGen from the TVRF to obtain the keys
(tsk, tski, tpki).

2) At round r = 1, 2, . . . : Let mr = r||σr−1.
a) Pi computes and broadcasts (yi, πi) =

PartialEval(mr, tski, tpki).
b) Each party applies locally Combine(pk, {tpki}i∈[n],

mr, [n], ((yi, πi))i∈[n]) obtaining values (y, π).
c) We define σr = y (for use in the next round). The output

of round r is z = H ′(σr).
Note that at each step, a public verifier can attest the correctness
of the computation by running Verify(tpk, x, y, π).

Fig. 5: The DRAND/Dfinity beacon.

H. Threshold Encryption

A threshold encryption scheme allows to encrypt a message
towards a group of receivers, such that the message can be
decrypted by any t + 1 of them, but not less. Similar to
threshold signatures and threshold verifiable random functions,
threshold encryption schemes require a distributed key genera-
tion protocols providing every decrypting party with a partial
secret key, and publishing corresponding partial public keys
and a global public key, the latter of which is used by any
sender to encrypt a message, while the partial public keys
guarantee that each decrypting party carries out the decryption
correctly. In this work consider here El Gamal threshold
encryption [21], which requires exactly the same ensemble
of keys as the TVRF we have seen above. We present further



security definitions threshold encryption and a construction of
threshold El Gamal in Appendix C.

III. DISTRIBUTED KEY GENERATION VIA PVSS
In the following section we will need to run El Gamal

threshold encryption protocol, and we therefore need a dis-
tributed key generation protocol to provide keys to the parties
involved. We could use some of the existing protocols dis-
cussed in Appendix E but here we present an alternative based
on the ideas from SCRAPE and ALBATROSS that is fully
based on the DDH-assumption and compares rather positively
to these alternatives.

Recall that our goal is to establish a common public key
tpk = gtsk, partial public keys tpki = gtski such that tski
are Shamir shares for tsk, and in addition party Pi receives
tski. Thinking of the case ` = 1, `′ = 1 in ALBATROSS
one realizes that the two first requirements are given by that
protocol: the parties will have established a random value gtsk

(the output of ALBATROSS in that case), and can easily obtain
the partial public keys gtski from the information known at
the end of the protocol: while we did not need to compute
these values explicitly in Figure 3, the i-th partial key can be
computed by aggregating the decrypted shares of the i-th party
for each of the secrets, in the same way as gtsk is computed
from the reconstructed group secrets.

However we still have the problem of how party Pi can
compute tski. This requires to modify the secret sharing phase
so that when Pa deals a secret s(a) this party sends information
that allows Pi not only to reconstruct gσ

(a)
i but also σ(a)

i (recall
σ
(a)
i is the Shamir share of s(a)). We solve this by also sending

a ciphertext E(a)
i = σ

(a)
i ⊕H(gσ

(a)
i ) containing σ(a)

i that can
only be decrypted by learning gσ

(a)
i , which in turn can only

be obtained by party Pi with its secret key. We need then
to discuss what happens if the encrypted message in E

(a)
i

does not correspond to the value in the exponent of pk
σ
(a)
i
i

which the dealer has also posted. In comparison to Fouque-
Stern DKG, where the use of Paillier encryption allows the
dealer to construct an elegant non-interactive proof of the fact
that the two values are indeed the same, here we do not have
this possibility. What we do is to simply have Pi complain if
it sees that the value in E(a)

i does not match the exponent in

pk
σ
(a)
i
i , in which case the dealer needs to reveal σ(a)

i . This is
not a problem since at this point we know that one of Pa or
Pi is cheating. If party Pa is cheating, all values σ(a)

i for all
i ∈ [n] will be ignored. On the other hand, if Pa is honest, the
cheating complainer Pi reveals an additive share of its own
tski.

Finally, we also point out the following modification with
respect to the order of operations in ALBATROSS, which
we will also exploit later in GULL: in ALBATROSS parties
would first decrypt their shares for each of the shared secrets
(and prove decryption correctness) and reconstruct the secrets
of each dealer (step 3 of Figure 3), and then these opened
secrets would be aggregated (step 4); here, we note that instead
parties can first aggregate their shares and then decrypt them

and reconstruct the final result directly. Indeed, note that from

the posted encrypted shares pk
σ
(a)
i
i to Pi the aggregated value

pk
∑

a∈Q σ
(a)
i

i can be computed publicly; Pi can decrypt each
value to gσ

(a)
i secretly , aggregate all to g

∑
a∈Q σ

(a)
i and then

post this value and a DLEQ proof that it is correct with respect

to pk
∑

a∈Q σ
(a)
i

i . The complete protocol is in Figure 6.
The distributed key generation protocol has the properties

that [26] called correctness and that are called robustness
in [28], namely that all honest parties agree on a global
public key, whose corresponding global secret key can be
reconstructed from any set of partial secret keys containing at
least t+1 honest ones, and the public transcript. In addition the
public key is unbiasable. In order to capture these properties,
we define an ideal functionality FDDH−DKG in Figure 7,
which is tailored to the DDH setting we are working on.
FDDH−DKG essentially outputs random partial public keys
and secret key shares to honest parties while allowing for
the adversary to arbitrary secret key share (and consequently
arbitrary partial public keys) for corrupted parties. We remark
that FDDH−DKG can be used as the DKG building block for
a number of protocols, e.g. threshold El Gamal and the TVRFs
in [25] (including the Dfinity TVRF).

We formally analyse the security of πDDH−DKG from
Figure 6 in the real/ideal simulation paradigm with sequential
composition. This paradigm is commonly used to analyse
cryptographic protocol security and provides strong security
guarantees, namely that several instance of the protocol can
be executed in sequence while preserving their security. More
details about this model can be found in [10].

Theorem 1. Under the DDH assumption and assuming an
authenticated bulletin board, πDDH−DKG securely realizes
FDDH−DKG in the random oracle model against a malicious
static PPT adversary A corrupting at most t ≤ n−1

2 parties.

Proof. In order to prove this theorem, we construct a simulator
S that interacts with the adversary A and with functionality
FDDH−DKG in such a way that view of A in a real execution
of πDDH−DKG is indistinguishable from its view in an ideal
execution with S and FDDH−DKG. Let PA be the set of
corrupted parties. S simulates the bulletin board and the
random oracle towards A and proceeds as follows:

1) In round 1, S proceeds as follows:
• Upon receiving (GEN, sid, Pa) from FDDH−DKG for

an honest party Pa, S acts exactly as an honest party
would, sampling a random s(a) ∈ Zq , dealing it with
the SCRAPE PVSS and, for all i ∈ [n], posting
Ŝ
(a)
i , π(a), E

(a)
i on the bulletin board. Finally, add Pa

to Q, i.e. the set of parties who provide valid shares.
• When A posts Ŝ(a)

i , π(a), E
(a)
i for i = 1, . . . , n on the

bulletin board on behalf of a corrupted party Pa ∈ PA,
S checks whether to add Pa to Q or not:
a) Verify the proof π(a) is valid.
b) Use the extractor from the zero knowledge proof

πLDEI to obtain σ(a)
i from π(a) for all i ∈ [n].



Distributed key generation via SCRAPE - πDDH−DKG

Parameters: Let n be the number of parties that receive shares,
and let 1 ≤ t ≤ (n− 1)/2 be an integer, the corruption threshold.
Setup: A public bulletin board, field Zq , and DDH-hard group
G with generator g. Every party in the system has a private key
ski ∈ Zq , and public key pki = gski . A random oracle H :
G→ {0, 1}dlog qe. We also assume some injective encoding Zq →
{0, 1}dlog qe which is easy to invert.
Protocol

1) In round 1, each party Pa proceeds as follows:
• Pa chooses s(a) ∈ Zq and deals it with the SCRAPE

PVSS: Pa selects a polynomial f (a) ∈ Zq[X] of degree
at most t, with f (a)(0) = s(a) and, for all i ∈ [n], defines
σ
(a)
i = f (a)(i), computes Ŝ(a)

i = pki
σ
(a)
i and computes

π(a) = πLDEI((pki)
n
i=1, (Ŝ

(a)
i )ni=1, t).

• For all i ∈ [n], Pa computes E(a)
i = σ

(a)
i ⊕ H(gσ

(a)
i )

and posts Ŝ(a)
i , π(a), E

(a)
i on the bulletin board.

2) In round 2, for all i, Pi verifies the proof π(a) for all a; for
those a for which the proof rejects, Pi posts a complaint
against Pa on the bulletin board. Moreover Pi computes
σ
(a)
i from E

(a)
i as σ(a)

i = H((Ŝ
(a)
i )

1
ski )⊕E(a)

i and checks

whether Ŝ(a)
i = pk

σ
(a)
i
i . If this does not hold then Pi posts

a complaint against Pa to the bulletin board. Otherwise, Pi
sets S(a)

i = gσ
(a)
i .

3) If no complaints were posted, ignore this round and execute
the instructions of round 4. Otherwise, in round 3, for all i,
Pi proceeds as follows:
• If a proof π(a) receives more than t complaints, Pa is

disqualified.
• If a party Pa receives a complaint from Pi about its

encrypted share, then Pa reveals σ(a)
i . If Ŝ(a)

i 6= pki
σ
(a)
i

or E(a)
i 6= σ

(a)
i ⊕H(gσ

(a)
i ), Pa is disqualified.

Let Q be the set of parties who have posted encrypted shares
and proofs without being disqualified.

4) In round 4, for all i, party Pi proceeds as follows:
a) Pi computes Ŝi =

∏
a∈Q Ŝ

(a)
i and σi =

∑
a∈Q σ

(a)
i .

Also Pi sets Si =
∏
a∈Q S

(a)
i .

b) Pi publishes Ŝi, Si and πDLEQ(g, Si, pki, Ŝi) in the
bulletin board.

5) Finally, after round 4, all parties proceed as follows:
a) For all Ŝi, Si, πDLEQ((g, Si), (pki, Ŝi)) posted to the

bulletin board, verify Ŝi =
∏
a∈Q Ŝ

(a)
i and the proof

πDLEQ((g, Si), (pki, Ŝi)). Let I be the set of all indices
for which these checks pass.

b) Let J ⊆ I be a set of cardinality t + 1 (e.g. the first
t + 1). The output global public key is tpk = S =∏
i∈J S

Li,J (0)

i . The i-th partial public key (for i ∈ I)
is tpki = Si. The i-th partial secret key (for i ∈ I) is
tski = σi. Finally, note the global secret key is implicitly
defined as tsk = s =

∑
a∈Q s

(a).

Fig. 6: Protocol πDDH−DKG for distributed key generation
via SCRAPE.

c) Verify that E(a)
i = σ

(a)
i ⊕H(gσ

(a)
i ) for all i ∈ [n].

d) If and only if all these checks pass, add Pa to Q.
When Round 1 is finished, S has computed Q exactly
as in πDDH−DKG, since it checked that all messages
Ŝ
(a)
i , π(a), E

(a)
i from corrupted partiers pass the checks

Functionality FDDH−DKG
FDDH−DKG is parameterized by a DDH-hard cyclic group G of
prime order q, with generator g. Let n and 1 ≤ t ≤ (n− 1)/2 be
integers. FDDH−DKG interacts with parties P1, . . . , Pn and an
adversary S that corrupts at most t parties. FDDH−DKG works
as follows:
• Upon receiving (GEN, sid, Pi) from a party Pi:

1) If Pi is honest, forward (GEN, sid, Pi) to S.
2) If Pi is corrupted, wait for S to send (SETSHARE,

sid, Pi, σi) where σi ∈ Zq and set tpki = gσi .
3) Let J be the set of all parties Pj who sent (GEN, sid, Pj).

If all honest parties are in J , proceed as follows:
a) Sample a random polynomial f of degree at most t with
f(i) = σi for all σi sent by S in step 2). a For every
honest party Ph, set tpkh = gσh with σh = f(h).

b) Set tpk = gf(0).
c) For all corrupted parties Pc ∈ J , send (KEYS,
sid, σc, {tpkj}j∈J , tpk) to S.

d) Wait for S to answer with (ABORT, sid, C) where C
is a set of corrupted parties.

e) For all j ∈ J \ C, send (KEYS, sid, σj , {tpkk}k∈J\C ,
tpk) to Pj . b

aThis is possible since the adversary can only set at most t values σi.
bNotice that {tpkk}k∈J\C can always be used to obtain tpk = gf(0)

by Lagrange interpolation because |J \ C| ≥ n− t > t.

Fig. 7: Distributed Key Generation Functionality FDDH−DKG

in Rounds 2 and 3 before adding these parties to Q.
2) For every corrupted party Pi ∈ PA ∩ Q, S computes

the secret key shares σi =
∑
a∈Q σ

(a)
i and sends (GEN,

sid, Pi) and (SETSHARE, sid, Pi, σi) to FDDH−DKG.
S waits for message (KEYS, sid, σi, {tpkj}j∈Q, tpk) for
Pi ∈ PA from FDDH−DKG. Notice that S can do
that since it knows σ(a)

i provided by simulated honest
parties and it has extracted the corresponding values from
corrupted parties.

3) In rounds 2 and 3, S executes exactly the same instruc-
tions as an honest party. Notice that this will yield the
same set Q computed in step 1.

4) In round 4, for every i such that Pi ∈ Q is hon-
est, computes Ŝi =

∏
a∈Q Ŝ

(a)
i , uses the simulator

from the ZK proof πDLEQ to generate an accepting
proof πDLEQ(g, tpki, pki, Ŝi) and posts Ŝi, tpki and
πDLEQ(g, tpki, pki, Ŝi) on the bulletin board.

5) After round 4, let C be the set of corrupted parties who
post Ŝi, Si and πDLEQ(g, Si, pki, Ŝi) with an invalid
proof πDLEQ(g, Si, pki, Ŝi). S sends (ABORT, sid, C) to
FDDH−DKG.

6) S executes the remainder of the protocol as an honest
party would and, when A terminates, outputs whatever
A outputs.

We now show that the execution with S and FDDH−DKG
is indistinguishable from an execution of πDDH−DKG with
A. First of all, notice that in rounds 1, 2 and 3 all messages
sent from S to A (through the bulletin board) are distributed
exactly as in πDDH−DKG. Moreover, notice that after round



1 is finished S computes the same set Q as parties would
compute after round 3 of πDDH−DKG. This is so because
S is able to perform all the verification done by individual
parties in rounds 2 and 3 all at once after extracting σ(a)

i from
π(a) for all corrupted parties Pa. Having determined Q, S is
able to determine the choices of secret key shares σa from all
corrupted parties, which might be made after the adversary has
seen all honest party messages in round 1. Hence, S provides
consistent values σa to FDDH−DKG.

It remains to be shown that the messages exchanged by S
and A in round 4 are indistinguishable from those exchanged
by honest parties and A in an execution of πDDH−DKG,
which intuitively means that A cannot bias the global public
key even though it can choose secret key shares σa for
corrupted parties. In round 4, we take advantage of the fact
that, for i and a such that parties Pi ∈ Q and Pa ∈ Q
are honest, Ŝ(a)

i and E
(a)
i reveal no information about σ(a)

i

to A. First, notice that it is proven in [11] that Ŝ(a)
i is

indistinguishable from a random group element for A under
the DDH assumption. Moreover, since A is PPT, it can only
guess σ(a)

i such that E(a)
i = σ

(a)
i ⊕ H(σ

(a)
i ) and thus learn

σ
(a)
i via E

(a)
i with negligible probability, since it can only

make poly(k) queries to the random oracle and σ(a)
i is chosen

uniformly at random from a exp(k) large space where k is
the security parameter. Hence, for all a where Pa ∈ Q is an
honest party, A learns only t values σ(a)

i and S(a)
i , which are

not sufficient to recover the degree t polynomials that defines
honest parties’ S(a)

i values and consequently tpka. Since A
learns nothing about tpki values of honest parties before round
4, leveraging the zero knowledge property of πLDEI , S can
generate an accepting proof that honest parties have obtained
tpki from Ŝ

(a)
i instead of the value they should have obtained

from S
(a)
i .

As an aside, we remark two interesting extensions of our
distributed key generation, which we only explain informally.

Remark 1 (Refreshing partial keys). The protocol can be
modified to one that, given a distributed key ensemble
(pk, {pki}, {ski}) in the form above (not necessarily created
by our protocol) outputs fresh random partial secret and public
keys tski, tpki corresponding to the same global keys tsk, tpk.
This is done by having each party Pa share the value s(a) = 0
in step 1) of Figure 6. It is easy to modify the LDEI proof to
additionally prove in zero knowledge that the PVSS is indeed
a sharing to 0 (in Figure 1, the prover just chooses u(X)
with the additional condition u(0) = 0 and the verifier checks
that z(0) = 0). Modifying the DKG protocol in this way will
output the ensemble (pk′, {pk′i}, {sk

′
i}) with pk′ = 1G. Now

parties can define p̃ki = pki · pk
′
i and (privately by party Pi)

s̃ki = ski + sk′i, and output the ensemble (pk, {p̃ki}, {s̃ki}).

Remark 2 (Outputting `′ key ensembles). Our DKG protocol
would correspond to the case ` = `′ = 1 in the analogy
with ALBATROSS, but of course we can also easily adapt the
protocol for ` = 1, `′ ≥ 1, where assuming now t ≤ (n −

`′)/2, we would obtain as output `′ independent instances
(tpkk, {tpkki }, {tsk

k
i }), k ∈ [`′].

The protocol works in the same way until step 4.
In step 5 parties Pi compute Ŝi,k =

∏
a∈Q(Ŝ

(a)
i )Mk,a ,

σi,k =
∑
a∈QMk,aσ

(a)
i and Si,k =

∏
a∈Q(S

(a)
i )Mk,a for

k = 1, . . . , `′. Then steps 6, 7, 8 are executed indepen-
dently for each k (where in step 7 parties verify Ŝi,k =∏
a∈Q(Ŝ

(a)
i )Mk,a ).

Moreover, the refreshing technique (Remark 1) can clearly
be extended to deal with refreshing `′ ensembles.

IV. GULL: GRADUAL RELEASE OF PVSS OUTPUTS VIA
THRESHOLD ENCRYPTION

While the ALBATROSS construction provides a large uni-
formly random output, one problem is that the whole output
is reconstructed by the participants at once. For applications,
it is instead desirable that parts of this output are released
gradually, while the rest of the output is still hidden. In this
section, we depart from ALBATROSS to construct GULL,
a random beacon that can accomplish this. Recall that in
ALBATROSS as described in Figure 3, the output consisted of
a total of `·`′ group elements, that we can think of as consisting
of `′ blocks of ` elements each; in our modification, parties
carry out the beginning of the protocol as in ALBATROSS
(until the whole output is fixed), but then are able to release
every block independently. Every block can be released with
little communication and computation and, furthermore, the
blocks that have not yet been released are unpredictable given
the ones that are known already.

In order to do this, we reutilize a trick from the previous
section: note that after step 2 of the protocol in Figure 3, a
set Q of well-behaved dealers (dealers who have shared their
secret correctly) has been set. What we do now is to swap
the order of steps 3 and 4, i.e., we have every party aggregate
the shares before reconstructing the secrets. More precisely,
we can do this in the following way: every party can compute
from public information Rik =

∏
a∈Q(Ŝ

(a)
i )Mk,a for every i

and every k ∈ [1, `′]. Additionally, each Pi can compute the
value Sik = R

sk−1
i

ik . Note that Sik =
∏
a∈Q(S

(a)
i )Mk,a .

Note that for every k, Pi could prove the correctness of
the value Sik if Pi were to open it, since Rik is known by
everyone, and Pi could then use πDLEQ((g, Sik), (pki, Rik)).
However, in our case Pi will not directly open Sik, but rather
encrypt it with threshold El Gamal. Namely, Pi publishes
Eik = Enc(tpk, Sik) = (grik , tpkrik ·Sik) := (cik, dik) (where
the randomness rik must be independent of each other for
k ∈ [1, `′]) and provides a zero-knowledge proof πEG that the
value Sik encrypted as Eik satisfies Sski

ik = Rik where ski is
the same as in the equation gski = pki. This proof is slightly
more complicated than the DLEQ proof mentioned above, and
we detail it in Appendix D.

Parties can now agree on a set I of t + ` + 1 parties that
have published correct proofs for every k ∈ [1, `′]. For every
k ∈ [1, `′] and every j ∈ [0, ` − 1], and from the encrypted



values everyone can compute Okj = Enc(tpk,
∏
i∈I S

Li,I(−j)
ik )

using the linearity of El Gamal.
Then, at the opening stage parties could decrypt Okj indi-

vidually by using the threshold decryption protocol to obtain
the outputs okj one by one. Nevertheless, one needs to take
into account that opening one okj reveals information about
the values okj′ for other j′ ∈ [0, `−1]. Therefore we consider
that the batch (ok0, ok1, . . . , ok(`−1)) is opened at once. How-
ever, the independence of the output “holds in the other coor-
dinate”, i.e., having opened batches (ok0, ok1, . . . , ok(`−1)) for
k ∈ [1, `′∗], for some `′∗ < `′, the remaining unopened batches
(ok0, ok1, . . . , ok(`−1)), k ∈ [`′∗ + 1, `′] remain uniformly
random in the view of the adversary.

Indeed, fix any j. We recall that okj is defined as
g
∑

a∈QMk,as
(a)
j with s

(a)
j having been chosen by participant

Pa, a ∈ Q. The properties of the t-resilient matrix imply
that if v is the vector with containing all s(a)j , the output
y = Mv is uniformly random in Z`′q and independent from
any set of t coordinates of v (which are the ones known by the
adversary). Therefore, conditioned to some of the coordinates
of this output y being revealed, the rest of the coordinates of
y are still uniformly random in the view of the adversary. This
translates of course to the independence of the unopened okj .1

As for unbiasability and uniformity of the random output,
notice that GULL differs from ALBATROSS at a point where
the output is already determined, and hence it inherits those
properties from ALBATROSS.

V. CONSTRUCTING MT. RANDOM

In this section, we present Mt. Random, our multi-tiered
beacon composed by the building blocks presented so far.
As discussed earlier, we have three tiers: Tier 1 - Uniform
Randomness, Tier 2 - Pseudorandomness and Tier 3 - Bounded
Biased Randomness. Starting from Tier 1, going up each
tier represents a trade-off between efficiency and randomness
quality, where more efficiency in gained at the cost of quality.
In other words, higher tiers generate random outputs faster
than lower tiers albeit with losses in randomness quality, i.e.
going from uniformly random values to values with a bounded
adversarial bias. Moreover, each higher tier uses outputs from
the previous tier as seeds, ensuring that all tiers operate within
a desired level of bias while maintaining efficiency.

In this work, we use the DDH assumption (in the random
oracle model) to prove the security of all of Mt. Random’s
building blocks, i.e. PVSS, DKG, TVRF and VRF. The goal
is to obtain a final construction whose security can be anal-
ysed based on a single standard assumption while achieving
competitive concrete efficiency. However, we remark that other
constructions of these building blocks can be used within our
framework in order to achieve better efficiency at the cost
of having security underpinned by multiple and possibly less
standard assumptions.

1We remark that the randomness rik chosen by party Pi in the El Gamal
encryption of her shares must be independent for different values of k,
as otherwise the adversary could obtain information about okj from their
encryptions Okj and the opened ok′j .

GULL: PVSS beacon with gradual release

Setup: A public bulletin board, field Zq , and DDH-hard group
G with generator g. Every party in the system has a private key
ski ∈ Zq , and public key pki = gski . A t-resilient matrix M ∈
Z`
′×(n−t)
q which we can take by setting its elements to Mij = αij

for some α ∈ Z∗q of order at least max{n− t, `′}.
Setup from DKG: We assume that parties have established a
global threshold public key tpk, partial threshold keys tpki and
partial threshold secret keys tski for threshold El Gamal.
Protocol:

1) Round 1 - (Sharing) Each party Pa shares a random secret
(gs

(a)
0 , . . . , gs

(a)
`−1) ∈ G` with the sharing phase of the PVSS.

2) Round 2:
a) (Verification) Every party executes the sharing verification

phase on every shared secret. Since verification is public,
this fixes a set Q of the first n− t parties Pa, a ∈ Q who
have correctly shared.

b) (Aggregation) Every party can compute

Rik =
∏
a∈Q

(Ŝ
(a)
i )Mk,a

for every i ∈ [n] and every k ∈ [1, `′]. Additionally each

Pi computes Sik = R
sk−1

i
ik for every k ∈ [1, `′].

c) (Encryption) For every k ∈ [`′], Pi posts

Eik = Enc(tpk, Sik) = (grik , tpkrik · Sik) := (cik, dik)

and a non-interactive proof πEG for the language

{((g, pki, Rik, tpk, cik, dik), (ski, rik, Sik)) :

gski = pki, g
rik = cik, dik = tpkrik · Sik, Sski

ik = Rik}

which we detail in Appendix D.
3) (Lagrange computation) After round 2 is finished, let I be the

set of the first t + ` parties who have posted correct proofs
for every k. For every k ∈ [`′] and every j ∈ [0, ` − 1],
parties compute:

Ok,j = (
∏
i∈I

(c′ik)
Li,I (−j),

∏
i∈I

(cik)
Li,I (−j)).

4) (Opening) At any point after round 2 is finished, to open
batch k′ where k′ ∈ [`′], parties threshold-decrypt Ok′j for
every j ∈ [0, `− 1] to obtain output (ok′0, . . . , ok′(`−1)).

Fig. 8: GULL: PVSS beacon with gradual release.

We present the general structure of Mt. Random in Figure 9.
In the remainder of this section, we discuss the building blocks
used for each of Mt. Random’s tiers and provide a security
analysis of the full multi-tiered beacon.

A. Tier 1: Uniform Randomness via PVSS

The first tier of Mt. Random outputs true uniform random-
ness. It is important that this tier outputs uniformly random
values because these outputs will be used as high min-entropy
seeds for the next tier. In our construction we will instantiate
this tier with GULL (Figure 8) using threshold encryption keys
generated by our new DKG protocol (Figure 6). Being based
on this protocol, this tier will arguably have the highest exe-
cution time and communication, outputting uniformly random



values less frequently than higher tiers. On the other hand,
instead of outputting a single value, Tier 1 will output a batch
of uniformly random values that can be used to seed Tier 2
multiple times (instead of requiring a full execution of Tier 1
every time Tier 2 needs a new seed).

In the original ALBATROSS [12] protocol, the full batch of
uniformly random outputs is revealed as soon as the protocol
terminates. This is not an issue when seeding Tier 2, since Tier
2 outputs cannot be predicted without a threshold key. How-
ever, it might be a problem in the case where fresh uniformly
random outputs from Tier 1 are required for applications other
than seeding Tier 2. Hence, we instantiate Tier 1 with GULL
(Figure 8), which allows for gradually revealing smaller “sub-
batches” of outputs. Under this regime, whenever a fresh
uniformly random output is required for other applications,
a fresh sub-batch can be revealed, which is significantly more
efficient than re-executing the full ALBATROSS protocol.
Nevertheless, previously revealed but unused outputs can still
be used as seeds for Tier 2.

B. Tier 2: Pseudorandomness via Threshold VRFs

The second tier of Mt. Random outputs pseudorandom
values instead of truly uniformly random values. While these
values are not suitable for some applications (e.g. seeding
PRGs), they are sufficient for a number of popular applica-
tions (e.g. selecting random committees). In our construction,
Tier 2 is instantiated with a DDH based version of the
DRAND/Dfinity TVRF proposed in [25] coupled with our new
DKG protocol (Figure 6). As discussed before, we choose to
use a DDH based TVRF in order to instantiate all of our
building blocks from a single standard assumption. However,
a more efficient TVRF (e.g. GLOW [25]) can be used for
better performance at the cost of a stronger assumption.

There are two main hurdles in using TVRF-based beacons:
1. keys must be generated in a distributed manner; 2. being
essentially a distributed PRG, the beacon must be re-seeded
periodically. Mt. Random respectively solves these issues by
employing our new DDH-based DKG (Figure 6) and by
periodically re-seeding Tier 2 with uniformly random outputs
from Tier 1. Using our DKG, we maintain public verifiability
of threshold key validity and consequently of Tier 2’s output
without requiring extra assumptions. Moreover, as pointed out
in Remark 1, our DKG protocol can be used to refresh secret
key shares if parties are compromised.

C. Tier 3: Bounded Biased Randomness via VRFs

The third tier of Mt. Random outputs pseudorandom val-
ues that may be biased by the adversary up to a certain
upper bound. While this sort of biased randomness finds
less applications than unbiased pseudorandomness or uniform
randomness, it is still sufficient for important applications such
as selecting block creators in Proof-of-Stake based blockchains
(e.g. Ouroboros Praos [18]). In fact, we instantiate Tier 3 with
the VRF and VRF-based beacon protocols from Ouroboros
Praos, which are secure under the CDH assumption (implied
by DDH). However, differently from the original Ouroboros

Praos beacon, which seeds each of its execution with the
output of its last execution, we seed this protocol with an
output from Tier 2. This crucial difference has the advantage
of reducing the potential adversarial bias in Tier 3 outputs.

1) Combining Bounded Biased Randomness and Uniform
Randomness: Apart from outputting bounded biased random-
ness, Tier 3 can also be used in conjunction with Tier 1 outputs
and an extractor in order to obtain correlated but uniform
randomness. Basically, an uniformly random output from Tier
1 can be used as a seed for an extractor that takes as input a
sequence of outputs from Tier 3, outputting correlated (due to
the use of the same seed) but uniform randomness.

D. Seeding Upper Tiers vs. Unpredictable Randomness

An important aspect of Mt. Random is that each lower tier
is used to seed the next upper tier, i.e. Tier 1 seeds Tier 2,
which in turn seeds Tier 3. When randomness from Tier 1
or 2 is requested to be used as a seed in the next tier, it is
not necessary wait for a fresh random value to be produced.
For this reason, Tiers 1 and 2 respectively keep lists AlbUn
and TVRFUn of random outputs that have been obtained in
the past but that have not yet been used as a seed by the
next layer. However, many applications (e.g. a lottery and
committee selection) require unpredictable random values that
are not known in advance. In this case, a fresh unpredictable
output can be obtained from Tier 1 or 2 as follows:
• Tier 1: A fresh unpredictable uniformly random output

can be obtained from Tier 1 by executing Step 2 of
the output request procedure, which decrypts an unused
block of threshold encrypted outputs from AlbUnEnc and
returns the first output from the freshly decrypted block.

• Tier 2: A fresh unpredictable pseudorandom output can
be obtained by waiting for the output of the next round
of the beacon executed by Tier 2.

E. Security Analysis

In order to analyse the security of Mt. Random, we first
argue about the initialization phase and then focus on the
security guarantees offered by each layer. Notice that in the
initialization phase we execute our DKG protocol (Figure 6)
before initiating the execution of the tiers. Due to the security
of the DKG protocol (Theorem 1), the resulting global and
partial public keys tpk, tpki and tpk, tpk′i for i ∈ [n] are
guaranteed to be unbiased and each party Pi is guaranteed
to have obtained its secret share tski, tsk

′
i as well as the same

view of the public keys. This fact will be important when
arguing about the security of Tiers 1 and 2, where these keys
will be used for threshold encryption and TVRFs, respectively.

In Tier 1, we only execute GULL from Figure 8 using
keys tpk, tpki, tski, which gives us two main guarantees as
discussed in Section IV: 1) Executing up to Step 3 results in
`′ output blocks that are guaranteed not only to be recoverable
by a majority of the parties but also to remain secret until
decryption is executed in Step 4; 2) All ` values of each
output block are guaranteed to be uniformly random. Hence,
when Tier 1 is initiated, `′ output blocks with ` uniformly



Mt. Random: Multi-tiered Randomness Beacon
Parameters:
• n participants Pi, i ∈ [n].
• Integer ` ≥ 1 (number of secrets in GULL output block).
• Integer corruption threshold 1 ≤ t ≤ (n− `)/2.
• Integer `′ = n− 2t (number of blocks outputted by one round

of GULL).
• Integers `TV RF and `V RF denoting the bitlength of outputs

from Tier 2 and Tier 3 respectively.
• Integer TVRFmax ≥ 0 (number of times the TVRF-based

beacon at Tier 2 is applied iteratively starting from a given seed).
If it is 0 then we are not using this tier

• Integer VRFmax ≥ 0 (number of times the TVRF-based beacon
at Tier 3 is applied iteratively starting from a given seed). If it
is 0 then we are not using this tier.

Setup: An authenticated public bulletin board (BB), field Zq , and
DDH-hard group G with generator g. Every party in the system
has a private key ski ∈ Zq and a public key pki = gski (registered
in BB) for Tier 1. A t-resilient matrix M ∈ Z`

′×(n−t)
q given by

Mij = αij for some α ∈ Z∗q of order at least max{n− t, `′}.

Initialization: All parties Pi keep initally empty Tables AlbUn,
AlbUnEnc and TVRFUn. the first two tables will store unused
GULL outputs from Tier 1: AlbUn stores plain outputs and
AlbUnEnc stores outputs encrypted under threshold-El Gamal.
Table TVRFUn stores outputs from Tier 2. All parties first execute
the Distributed Key Generation phase and then execute Tier 1,
Tier 2 and Tier 3 as soon as seed randomness from the previous
tier is available. Tiers are re-executed as more outputs are needed.

Distributed Key Generation: All parties execute πDDH−DKG
(Figure 6) to obtain keys for Tiers 1 and 2 (see Remark 2). The
public outputs are global threshold public keys tpk, tpk′ and partial
threshold public keys tpki, tpk

′
i for i ∈ [n], while each party

Pi, i ∈ [n] obtains partial threshold secret keys tski and tsk′i.

Tier 1: Using keys tpk and tski obtained in the Distributed
Key Generation phase, all parties execute GULL from Figure 8
until Step 3. At this point all parties obtain `′ blocks Bk =
(Ok1, Ok2, . . . , Ok`), k ∈ [`′] consisting of threshold El-Gamal
encryptions of okj under tpk, which are stored in AlbUnEnc.
When an output is requested:

1) If AlbUn is not empty, return the next output okj ∈ AlbUn and
remove okj from AlbUn.

2) If AlbUn is empty and AlbUnEnc is not empty, all parties
decrypt the next Bk ∈ AlbUnEnc, store the resulting values
ok1, ok2, . . . , ok` in AlbUn and remove Bk from AlbUnEnc.
Return the next okj ∈ AlbUn and remove okj from AlbUn.

3) If AlbUn and AlbUnEnc are empty, return ⊥ and execute GULL
until Step 3 to refill AlbUnEnc.

Tier 2: Parties request an output okj from Tier 1 (repeating
the request until okj 6=⊥) and execute the protocol in Figure 5
using tpk′, tpk′i, tsk

′
i with initial seed σ0 = okj . In each round

r ∈ {1, . . . ,TVRFmax}, a value zr ∈ {0, 1}`TV RF is out-
putted by the protocol and stored in table TVRFUn. When an
output is requested, if TVRFUn is not empty, return the next
zr ∈ TVRFUn and remove zr from TVRFUn, else, return ⊥.
When r = TVRFmax, reset r to 0 and re-start Tier 2.

Tier 3: All parties request an output zr from Tier 2 (repeating the
request until zr 6=⊥) and run the VRF-based beacon in Figure 4
using zr as initial seed. In each round r′ ∈ {1, . . . ,VRFmax},
the output w′r ∈ {0, 1}`V RF is the output of the beacon. When
r′ = VRFmax, r is reset to 0 and Tier 3 is started again.

Fig. 9: Mt. Random: Multi-tiered Randomness Beacon.

Fig. 10: Comparison of time for carrying out each Tier with
fixed t = bn3 c, ` = 1

random values become available. When an output is requested,
executing the procedures of Tier 1 clearly returns either an
uniformly random output (or ⊥, in case more encrypted
output blocks must be generated). In case fresh unpredictable
randomness is required, we remark that it can be obtained by
executing step 2 of Tier 1’s output request procedure, which
decrypts the next unused encrypted output block and returns
the first freshly decrypted output value.

In Tier 2, we execute the TVRF-based beacon protocol
from Figure 5, which is proven to output pseudorandom
values in [25]. Since we periodically re-seed this protocol
with uniformly random values from Tier 1, its outputs are
guaranteed to be pseudorandom even after long execution
times. Notice that we can re-seed Tier 2 with outputs from
Tier 1 that are already revealed but still not used as a Tier
2 seed. By the security of the TVRF scheme used in Tier
2 (proven in [25]), an adversary who controls less than the
required threshold of parties cannot predict the output of the
TVRF on any given input. Hence, the outputs of Tier 2 cannot
be predicted by the adversary (who only corrupts a minority
of the parties) upon learning the seed. Notice that again the
TVRF security properties hold since we use unbiased threshold
keys tpk′, tpk′i, tsk

′
i.

In Tier 3, we execute the protocol from Figure 4, which is
proven to output bounded biased values in [18] even when it
is seeded with outputs of a previous execution of itself. Hence,
seeding this protocol with the unbiased pseudorandom outputs
from Tier 2, not only preserves but improves on the proven
bias bounds for its outputs. Once again, using outputs from
Tier 2 that are already known but still not used as a seed in
Tier 3 preserves the security of the scheme, since even by
knowing the seed in advance the adversary can only bias the
output of this tier by a bounded amount (as proven in [18]).



Fig. 11: Comparison of communication size for carrying out
each Tier with fixed t = bn3 c, ` = 1

VI. EFFICIENCY ANALYSIS

We provide a reference implementation for each one of
the tiers.2 Our main goal is to demonstrate the trade-off
in efficiency between the three tiers. We also highlight the
sensitivity of the different random beacons to changing number
of parties n, the threshold t and culprits c when relevant.
All our measurements were done on a t3.medium AWS
instance (2 vCPU of Intel(R) Xeon(R) Platinum 8259CL CPU
@ 2.50GHz, 4GB RAM). Our experiments do not include
network latency or delay. The reason is simple: Network
latency is larger than our computation times and therefore
will mask them. Since the number of rounds of Tier 1 is
larger than the number of rounds in Tier 2 and Tier 3, and
communication size of Tier 2 is larger than communication
size of Tier 3, if we include latency, we trivially get our
expected hierarchy. Network delay is of no interest because
for all tiers the communication bandwidth is small enough for
network to not be a bottleneck. All our measurements were
done using a benchmark tool and are averaged over many runs.

Computation time and communication size: In Figure 10
we compare the computation time for a single run of each
tier as a function of the number of parties n. As can be seen
from the figure, Tier 1 is the slowest, Tier 3 is the fastest
and Tier 2 is in the middle. This is coherent with how we
suggest to hierarchically compose the different tiers in the
paper. Figure 11 shows the communication size of the three
tiers, for various number of parties n. Here again we see a
clear hierarchy where Tier 1 requires the most communication,
Tier 3 the last and Tier 2 is in the middle. For completeness,
we provide in appendix E the same measurements, but for
running distributed key generation for tiers 1 and 2. Key
generation and setup is not our focus as we consider it a one-
time operation running at the beginning of the execution. On

2All our code is open sourced and provided here:
https://github.com/ZenGo-X/random-beacon

Fig. 12: Amortized cost of a single random element generated
at Tier 1 with fixed n = 25, t = 8. For given `, number of
output random elements is 9`

Fig. 13: Average total running time of Tier 1 for various
threshold t with fixed n = 25, ` = 1

the other hand, producing random values is done over and over
again throughout the life time of the system.

Tier 1 and Tier 2 sensitivity: We measured Tier 1 without
gradual release (Albatross), that is, all random values are
released at once. In Figure 12 we show how changing `,
a parameter proportional to the number of random elements
output by Tier 1 impacts the amortized cost of a single random
element. As expected, the more random elements we pack in a
single run the more efficient the amortized computation per a
single random element is. This result hints to the effectiveness
of running GULL in settings were fresh unpredictable output
is needed by an application other than Tier 2. In Figures 13
and 14 we fix the number of parties and change the threshold t
and number of culprits c, respectively. As can be viewed from

https://github.com/ZenGo-X/random-beacon


Fig. 14: Average total running time of Tier 1 for various
number of culprits c with fixed n = 25, t = 8

Fig. 15: Average total running time of Tier 2 for various
threshold t with fixed n = 25

the figures both parameters impact the total running time in
a meaningful way. Increasing threshold t decreases running
time as it decreases number of output random elements and
decreases number of messages every party needs to process.
Finally, for Tier 2, we conducted an experiment, Figure 15,
for fixed number of parties n and various threshold t. Observe
that as expected, the computation time is linear in the number
of parties.
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elgamal à la pedersen: Application to helios. In Proceedings of the
12th annual ACM Workshop on Privacy in the Electronic Society, WPES
2013, pages 131–142. ACM, 2013.

[17] P. Daian, R. Pass, and E. Shi. Snow white: Provably secure proofs
of stake. Cryptology ePrint Archive, Report 2016/919, 2016. https:
//eprint.iacr.org/2016/919, To Appear in the Proceedings of Financial
Crypto 2019.

[18] B. David, P. Gazi, A. Kiayias, and A. Russell. Ouroboros praos: An
adaptively-secure, semi-synchronous proof-of-stake blockchain. In J. B.
Nielsen and V. Rijmen, editors, EUROCRYPT 2018, Part II, volume
10821 of LNCS, pages 66–98. Springer, Heidelberg, Apr. / May 2018.

[19] B. David, B. Magri, C. Matt, J. B. Nielsen, and D. Tschudi. Gearbox:
An efficient uc sharded ledger leveraging the safety-liveness dichotomy.
Cryptology ePrint Archive, Report 2021/211, 2021. https://eprint.iacr.
org/2021/211.

https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://eprint.iacr.org/2020/784
https://eprint.iacr.org/2020/537
https://eprint.iacr.org/2019/1320
https://eprint.iacr.org/2016/919
https://eprint.iacr.org/2016/919
https://eprint.iacr.org/2021/211
https://eprint.iacr.org/2021/211


[20] L. De Feo, S. Masson, C. Petit, and A. Sanso. Verifiable delay functions
from supersingular isogenies and pairings. In S. D. Galbraith and
S. Moriai, editors, ASIACRYPT 2019, Part I, volume 11921 of LNCS,
pages 248–277. Springer, Heidelberg, Dec. 2019.

[21] Y. Desmedt and Y. Frankel. Threshold cryptosystems. In G. Brassard,
editor, CRYPTO’89, volume 435 of LNCS, pages 307–315. Springer,
Heidelberg, Aug. 1990.

[22] N. Ephraim, C. Freitag, I. Komargodski, and R. Pass. Non-malleable
time-lock puzzles and applications. Cryptology ePrint Archive, Report
2020/779, 2020. https://eprint.iacr.org/2020/779.

[23] P.-A. Fouque and J. Stern. One round threshold discrete-log key
generation without private channels. In K. Kim, editor, PKC 2001,
volume 1992 of LNCS, pages 300–316. Springer, Heidelberg, Feb. 2001.

[24] D. Galindo, J. Liu, M. Ordean, and J.-M. Wong. Fully distributed
verifiable random functions and their application to decentralised random
beacons. Cryptology ePrint Archive, Report 2020/096, 2020. https:
//eprint.iacr.org/2020/096.

[25] D. Galindo, J. Liu, M. Ordean, and J.-M. Wong. Fully distributed
verifiable random functions and their application to decentralised random
beacons. Cryptology ePrint Archive, Report 2020/096, 2020. https:
//eprint.iacr.org/2020/096.

[26] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed
key generation for discrete-log based cryptosystems. In J. Stern, editor,
EUROCRYPT’99, volume 1592 of LNCS, pages 295–310. Springer,
Heidelberg, May 1999.

[27] J. Groth. Non-interactive distributed key generation and key resharing.
2021. https://eprint.iacr.org/2021/339.

[28] K. Gurkan, P. Jovanovic, M. Maller, S. Meiklejohn, G. Stern, and
A. Tomescu. Aggregatable distributed key generation. 2021.
https://eprint.iacr.org/2021/005.

[29] T. Hanke, M. Movahedi, and D. Williams. Dfinity technology overview
series, consensus system, 2018.

[30] J. Katz, J. Loss, and J. Xu. On the security of time-lock puzzles and
timed commitments. In R. Pass and K. Pietrzak, editors, TCC 2020,
Part III, volume 12552 of LNCS, pages 390–413. Springer, Heidelberg,
Nov. 2020.

[31] A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A
provably secure proof-of-stake blockchain protocol. In J. Katz and
H. Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS,
pages 357–388. Springer, Heidelberg, Aug. 2017.

[32] R. Kumaresan and I. Bentov. How to use bitcoin to incentivize correct
computations. In G.-J. Ahn, M. Yung, and N. Li, editors, ACM CCS
2014, pages 30–41. ACM Press, Nov. 2014.

[33] S. Micali, M. O. Rabin, and S. P. Vadhan. Verifiable random functions.
In 40th FOCS, pages 120–130. IEEE Computer Society Press, Oct. 1999.

[34] T. P. Pedersen. A threshold cryptosystem without a trusted party
(extended abstract) (rump session). In D. W. Davies, editor, EURO-
CRYPT’91, volume 547 of LNCS, pages 522–526. Springer, Heidelberg,
Apr. 1991.

[35] K. Pietrzak. Simple verifiable delay functions. In A. Blum, editor, ITCS
2019, volume 124, pages 60:1–60:15. LIPIcs, Jan. 2019.

[36] randao.org. RANDAO: Verifiable random number generation, 2017.
https://www.randao.org/whitepaper/Randao v0.85 en.pdf accessed on
20/02/2020.

[37] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and
timed-release crypto, 1996.

[38] P. Schindler, A. Judmayer, M. Hittmeir, N. Stifter, and E. R. Weippl.
Randrunner: Distributed randomness from trapdoor vdfs with strong
uniqueness. In 28th Annual Network and Distributed System Security
Symposium, NDSS 2021, virtually, February 21-25, 2021. The Internet
Society, 2021.

[39] P. Schindler, A. Judmayer, N. Stifter, and E. R. Weippl. HydRand:
Efficient continuous distributed randomness. In 2020 IEEE Symposium
on Security and Privacy, pages 73–89. IEEE Computer Society Press,
May 2020.

[40] B. Schoenmakers. A simple publicly verifiable secret sharing scheme
and its application to electronic. In M. J. Wiener, editor, CRYPTO’99,
volume 1666 of LNCS, pages 148–164. Springer, Heidelberg, Aug. 1999.

[41] E. Syta, P. Jovanovic, E. Kokoris-Kogias, N. Gailly, L. Gasser, I. Khoffi,
M. J. Fischer, and B. Ford. Scalable bias-resistant distributed random-
ness. In 2017 IEEE Symposium on Security and Privacy, pages 444–460.
IEEE Computer Society Press, May 2017.

[42] D. team. DRAND project website, 2020. https://drand.love accessed on
21/03/2021.

[43] G. Wang, Z. J. Shi, M. Nixon, and S. Han. Sok: Sharding on blockchain.
In Proceedings of the 1st ACM Conference on Advances in Financial
Technologies, AFT 2019, Zurich, Switzerland, October 21-23, 2019,
pages 41–61. ACM, 2019.

[44] B. Wesolowski. Efficient verifiable delay functions. In Y. Ishai and
V. Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS,
pages 379–407. Springer, Heidelberg, May 2019.

[45] M. Zamani, M. Movahedi, and M. Raykova. RapidChain: Scaling
blockchain via full sharding. In D. Lie, M. Mannan, M. Backes, and
X. Wang, editors, ACM CCS 2018, pages 931–948. ACM Press, Oct.
2018.

APPENDIX

A. Verifiable Random Functions: Definition and Construction

A VRF scheme (KeyGen(1λ),Eval(sk, x),Verify(pk, x, y, π))
with unpredictability under malicious key generation is secure
if it holds that:
• (complete provability): for every (pk, sk) generated by
KeyGen, and every x, then if (y, π) = Eval(sk, x), we
have that Verify(pk, x, y, π) = 1 with overwhelming
probability;

• (unique provability): for every x, for any y1 6= y2, and any
proofs π1, π2, then at least one of Verify(pk, x, y1, π1) or
Verify(pk, x, y2, π2) output 0 with overwhelming proba-
bility.

• (pseudorandomness): no PPT adversary can distinguish
between Eval(sk, x) and a uniformly random string, even
when having chosen x, after seeing pk.

• (unpredictability under malicious key generation) no PPT
adversary who generated (pk, sk) arbitrarily can distin-
guish between Eval(sk, x) and a uniformly random string
for an unknown uniformly random x.

We describe in Figure 16 the VRF with unpredictability
under malicious key generation from [18].

VRF from Ouroboros Praos

Setup: Let G be a cyclic group of prime order q, with generator
g. Let H : {0, 1}∗ → {0, 1}`V RF and H ′ : {0, 1}∗ → G be
random oracles. In addition we implicitely need a random oracle
H∗ : {0, 1}∗ → Zq for the DLEQ proof.
Commands:
• KeyGen(1λ) chooses a uniformly random sk ∈ Zq , sets pk =
gsk and outputs (pk, sk)

• Eval(sk, x) sets y = H(x, u) where u = H ′(x)sk. It
moreover defines π = (u, πDLEQ((g,H

′(x)), (pk, u))), the
latter being the proof that gk = pk and H ′(x)k = u for a
common k, in this case k = sk. It outputs (y, π).

• Verify(pk, x, y, π) parses π = (u, π′), checks that π′ is a
correct DLEQ proof for (g,H ′(x)), (pk, u)) and checks y =
H(x, u). It accepts if all these checks pass.

Fig. 16: VRF with unpredictability under malicious key gen-
eration [18].

B. Threshold Verifiable Random Functions: Definition and
Construction

A Threshold Verifiable Random Function (TVRF) has the
following properties:

https://eprint.iacr.org/2020/779
https://eprint.iacr.org/2020/096
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https://eprint.iacr.org/2020/096
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https://drand.love


• Consistency: Given any x, when we apply Combine to
any ≥ t+1 correct partial evaluations (mi)i∈A, we obtain
the same y.

• Robustness: If Combine outputs a pair (y, π), then
Verify(tpk, x, y, π) = 1

• Uniqueness: for every x, for any y1 6= y2, and any
proofs π1, π2, then at least one of Verify(tpk, x, y1, π1) or
Verify(tpk, x, y2, π2) output 0 with overwhelming proba-
bility.

• Pseudorandomness: roughly, the adversary correcting t
parties cannot distinguish the output of the function from
a uniformly random value, even when chosing the input.

We describe in Figure 17 a DDH-based threshold VRF in-
spired by a threshold Boneh-Lynn-Shacham (BLS) signatures
from in [25]. Notice that the original DRAND/Dfinity TVRF
uses actual pairing based threshold BLS signatures in order
to achieve compact proofs. Both this construction and the
improved GLOW TVRF construction are proven secure in [25]
and could serve as a building block for the DRAND/Dfinity
beacon. However, we present the DDH based version for the
sake of simplicity and for making it clear that all Mt. Random
building blocks can be instantiated from DDH in the ROM.
Note that we do not make the instantiation of DistKeyGen
explicit, as we both introduced our own scheme in Section III
and discuss a number of alternatives in Appendix E.

DDH-based threshold VRF (DDH-DVRF in [25])

Setup: Let G be a cyclic group of prime order q, with generator g.
Let H : {0, 1}∗ → G a random oracle. In addition we implicitly
need a random oracle H∗ : {0, 1}∗ → Zq for the DLEQ proof.
Commands:
• DistKeyGen(1λ) The distributed key generation creates
tski ∈ Zq such that (tski)ni=1 is a valid Shamir sharing of
some secret tsk ∈ Zq . It outputs public tpki = gtski and
tpk = gtsk, and privately tski only to party Pi, for i ∈ [n].

• PartialEval(x, tski, tpki): yi is computed by
Pi as yi = H(x)tski . In addition compute
πi = πDLEQ((g,H(x)), (tpki, yi)).

• Combine(pk, {tpki}, x, A, (yi, πi)i∈A): A subset A′ ⊆ A is
selected such that A′ has cardinality t+1 and πi is accepted
for i ∈ A′. Then y =

∏
i∈A′ y

Li,A′ (0)

i and π = (yi, πi)i∈A′
• Verify(tpk, x, y, π): Parse π = (yi, πi)i∈A′ , verify all πi for
i ∈ A′, and check whether y =

∏
i∈A′ y

Li,A′ (0)

i . Output 1
if all checks pass, otherwise output 0.

Fig. 17: DDH-based threshold VRF (DDH-DVRF in [25]).

C. Threshold Encryption: Defintion and Construction

A threshold encryption scheme is composed by the follow-
ing algorithms:

• DistKeyGen(1λ): outputs secret keys tski, i ∈ [n], corre-
sponding public partial keys tpki and a global public key
tpk.

• Enc(tpk,m) takes as input the global public key and a
message m, and outputs a cyphertext E

• LocalDec(tpki, tski, E) takes a cyphertext E and a partial
key pair (tpki, tski), and outputs a partial decrypted
message xi.

• GlobalDec(tpk, I, {tpki}i∈I , {xi}i∈I , E) takes as input a
set I ⊆ [n] with |I| ≥ t + 1, the global public key, the
partial public keys of I , the cyphertext E and the partial
decrypted messages xi and outputs a decrypted message
m′ or an error ⊥.

We describe informally the properties we want from a
threshold encryption scheme, following the work of [16],
which we refer to for formal definitions.
• Completeness: If the keys have been honestly generated

with DistKeyGen, a message m honestly encrypted, and a
set I of at least t+1 honest parties have computed correct
partial decryptions xi of the corresponding cyphertexts
with their keys, then GlobalDec, taking that cyphertext
and the public keys and partial decryptions of I , will
output m

• Robustness: Given as inputs 2 subsets I and J of at least
t + 1 parties and their corresponding partial decryptions
of a same cyphertext, if GlobalDec does not reject then
it outputs the same message on both inputs with over-
whelming probability.

• IND-CPA against static corruption: We assume the adver-
sary corrupts a set A of at most t parties at the beginning
of the protocol. The scheme is IND-CPA secure if the
adversary cannot guess (with success probability non-
negligibly larger than 1/2) the plaintext corresponding
to a given cyphertext, even if this a cyphertext encrypts
a message from a set of 2 possible messages that the
adversary has chosen, and given of course that the ad-
versary knows all the public keys and the secret keys
corresponding to A.

The threshold version of El Gamal is then as in Figure 18

Threshold El Gamal encryption scheme.

Setup: Let G be a cyclic group of prime order q, with generator
g.
Commands:
• DistKeyGen(1λ): The distributed key generation creates
tski ∈ Zq such that (tski)ni=1 is a valid Shamir sharing of
some secret tsk ∈ Zq . It outputs public tpki = gtski and
tpk = gtsk, and privately tski only to party Pi, for i ∈ [n].

• Enc(tpk,m): To encrypt a message m ∈ G, sample r
uniformly at random in Zq , and output E = (gr, tpkr ·m) :=
(c, d) ∈ G2

• LocalDec(tpki, tski, E) outputs xi = (yi, πi) where yi =
ctski and πi = πDLEQ((g, c), (tpki, yi)).

• GlobalDec(tpk, I, {tpki}i∈I , {xi}i∈I , c) outputs ⊥ if no
more than t DLEQ proofs πi, i ∈ I pass. Otherwise, it takes
a subset I ′ ⊆ I of cardinality exactly t+ 1 such that πi∈I′
are all correct, and computes

m′ = d · (
∏
i∈I′

y
−Li,I′ (0)

i )

Fig. 18: Threshold El Gamal encryption scheme



D. Zero-knowledge proof πEG

In this section we provide a zero-knowledge proof for
the EG relation that we need in the GULL construction in
Section IV, which is a discrete logarithm equality type of
relation, except that one of the elements that would be public in
the DLEQ relation now is encrypted by El Gamal (threshold)
encryption. In order to alleviate the notation, the relation and
its elements will be denoted as follows for the rest of the
section:

{((g1, x1, x2, t, c, d), (s, r, g2)) ∈ G6 × (Z2
q ×G) :

gs1 = x1, g
r
1 = c, d = tr · g2, gs2 = x2}

The problem here is that g2 is part of the witness, and
should not be revealed. The third and fourth equalities can be
combined by raising the third to s and substituting gs2 = x2 in,
but this results in an equation ds · t−rs = x2 with a product rs
in the exponent. This is now solved by linearization, namely
consider w = −rs as a new variable and, using one of the
first two equations, for example the second, introduce a new
one that guarantees that w is of the right form.

More concretely, the prover will show knowledge of expo-
nents r, s, w with:

gr1 = c

gs1 = x1

ds · tw = x2

cs · gw1 = 1

This can be proved by a standard Σ-protocol, as we will
see. If the prover is honest then w = −rs will satisfy the
equations. On the other hand, knowledge of (r, s, w) satisfying
these equations implies knowledge of (r, s, g2) satisfying the
relation, so the only way of a cheater prove to succeed
convincing the verifier of a false statement is by breaking
the soundness of the protocol for this system of equations,
which will happen with negligible probability. Zero-knowledge
is quite trivial. We formally state and prove security of the
protocol now.

Protocol πEG

Setup: A random oracle H
1) The prover chooses ur, us, uw ∈ Zq unifomly at ran-

dom, and constructs a1 = gur
1 , a2 = gus

1 , a3 =
du3 · tuw , a4 = cus · guw

1 . She creates e =
H(g1, x1, x2, t, c, d, a1, a2, a3, a4). She computes zr =
ur + e · r, zs = us + e · s, zw = uw − e · r · s. The
proof is (e, zr, zs, zw)

2) The verifier computes a1 · ce = gzr1 , a2 · xe1 = gzs1 , a3 ·
xe2 = dzs · tzw , a4 = czs · gzw1 and accepts if e =
H(g1, x1, x2, t, c, d, a1, a2, a3, a4), otherwise rejects.

Fig. 19: Protocol πEG

Proposition 1. Protocol πEG is a correct proof of knowledge
of (s, r, g2) with special soundness (with soundness error 1/q),

and zero knowledge in the random oracle model, assuming the
Fiat-Shamir heuristic holds.

Proof. We prove that the interactive public-coin version of
this protocol where e is chosen uniformly at random by the
verifier is correct, special-sound and zero knowledge and the
Fiat-Shamir heuristic implies the properties above for the
non-interactive version.

Correctness: The protocol is easily seen to be correct, as
setting w = −rs implies ds · tw = x2, cs · gw1 = 1 if the
relation is correct, as argued above, and hence all of the
checks will pass.

Special-soundness: Now suppose that a prover can answer
two different challenges e 6= e′ with zr, zs, zw and respectively
z′r, z

′
s, z
′
w. This means that the 4 checks by the verifier pass

in both cases. From here it is easy to see that ce−e
′

= g
zr−z′r
1

and xe−e
′

1 = g
zs−z′s
1 so one can extract

r = (zr−z′r)/(e−e′) , s = (zs−z′s)/(e−e′) and g2 = d·t−r

Note that these values satisfy that gs1 = x1, g
r
1 = c, d =

tr · g2, so in order to show that the extracted (s, r, g2) is a
witness, we only need to additionally show that gs2 = x2

From the fact that the fourth check passes in both cases,
we get that 1 = czs−z

′
s · gzw−z

′
w

1 , which implies 1 =

cs(e−e
′)g

zw−z′w
1 . Since we already knew c = gr1 for the

extracted r, this means grs(e−e
′)+zw−z′w

1 = 1. Since we are
in a group of prime order, so g1 is a generator, it must hold
that

rs(e− e′) + zw − z′w = 0.

Finally from the fact that the third check passes in both
instances we have xe−e

′

2 = dzs−z
′
stzw−z

′
w , which, using the

information deduced in the previous line and the expression
for the extracted s, means

xe−e
′

2 = (dst−rs)e−e
′
.

Now since e− e′ 6= 0 and we are in a group of prime order,
this means x2 = dst−rs. But the right hand side is exactly gs2
so x2 = gs2 as we wanted to show.

Zero knowledge: The simulator samples zr, zs, zw, e in-
dependently and uniformly at random in Zq , and defines
a1 · ce = gzr1 , a2 · xe1 = gzs1 , a3 · xe2 = dzs · tzw , a4 = cvs · gvw1 .
This generates a transcript which is indistinguishable from one
of an actual protocol, as it is easy to see.

E. Distributed Key Generation

There are many known instantiations of the distributed
key generation protocol DistKeyGen(1λ) from Figure 17. The
structure of most of these protocols is similar to the one we
have presented, namely parties each secret share a random
field element with Shamir’s secret sharing and post some



Scheme Comp. (Exp/Enc/Dec) Comm. (bits) Rounds Bias Assump.
Pedersen [34] nt+ 5n+ t+ 1 (2n2 + tn+ n)kq 1 + 2 Yes DDH

Gennaro et al. [26] 2nt+ 11n+ 3t+ 3 (4n2 + 2tn+ 2n)kq 2 + 3 No DDH
Fouque-Stern [23] (nt+ 5n+ t+ 1) Exp. (2n2 + tn+ n)kq 1 Yes DDH

+4n Enc+n Dec +2n2kh + 3n2kN +DCR
Fouque-Stern [23] in (nt+ 18005n+ t+ 1) Exp. (28n2 + tn+ n)kq 1 Yes DDH
terms of Exp. and kq +DCR

Our Result 9n+ t+ 2 (2n2 + tn+ 5n)kq 2 + 2 No DDH

TABLE I: Comparison of DKG schemes where n is the total number of parties, t is the number of corrupted parties, kq is the
number of bits of an element of Gq or Zq , kN is the number of bits of the Paillier cryptosystem modulus N and kh is the
output length of a hash function. Exp, Enc, Dec stand for operation of G (i.e. exponentiation), Paillier encryption and Paillier
decryption, respectively. We consider that Pedersen and Gennaro et al. have private messages encryted under El Gamal. For
typical parameters kq = 256, kN = 2048, we have kN = 8kq , Enc=3600 Exp and Dec=4880 Exp.

related information. The global implicit secret key is the sum
of the secrets dealt by a set Q of parties who have shared
correctly (the partial secret keys are similarly computed by
the corresponding party by summing the received shares from
parties in Q), and the public information is used to derive
the public partial and global keys. The differences lie on how
parties can prove the correct sharing of their initial secrets,
and their consistency with the public information they post.

Possibly the best known is Pedersen’s protocol [34], where
parties use a verifiable secret sharing scheme (VSS), namely
Feldman’s VSS to do this, while they post a commitment to the
coefficients of the polynomial. Parties reach an agreement, via
the VSS properties, on a set Q of parties that have correctly
shared their value. The protocol has 1 round of interaction,
and 2 additional rounds if there are disputes.

As discussed in Gennaro et al. [26], one caveat of Pedersen
distributed key generation protocol is the fact that malicious
parties can bias the public global key. [26] also showed a
modification of the protocol that fixes this problem, using a
different commitment to the coefficients of the sharing poly-
nomial. However this introduces a new round of interaction
and a new round of dispute resolution.

[23] proposed a one-round distributed key generation pro-
tocol based on Paillier cryptosystem, where parties only speak
once, by posting their message in a public bulletin board. This
protocol is publicly verifiable but again the public key can be
biased by a rushing adversary.

Nevertheless, a recent work by Gurkan et al. [28] shows
that the public key biasability from [26] should not be a
problem for applications to threshold encryption, signatures
and verifiable random functions, due to a property named
rekeyability, introduced in that work. We also remark that in
the same work [28], the authors construct a publicly verifiable
distributed key generation protocol with a much improved
asymptotical communication complexity O(n), based on the
notion of aggregation via gossip. However, this protocol is not
only based on pairing assumptions (stronger than our DDH
assumption), but also outputs group elements as secret keys
(rather than elements in Zq), i.e., the output is to be used
with pairing-based threshold schemes, so it cannot be used
for example for its use with threshold El Gamal encryption
scheme, at least directly. It would be very interesting to achieve

the type of output keys we need with their gossip techniques.
Another recent work [27] introduces a non-interactive (but

biasable) DKG protocol that generates keys with the same
structure as ours. However, the preliminary version of [27]
does not present any efficiency analysis of the proposed
protocol, making it hard to present a comparison. Moreover
that construction requires pairing hardness assumptions.

In Table I, we compare the amount of computation, com-
munication, number of rounds (separated in number of fixed
rounds plus number of rounds that may be required to resolve
disputes), assumptions and biasability of the globel public key
tpk by a rushing adversary. We denote by kq the number of
bits to describe a field element in Zq , which we assume to
also be roughly equal to the number of bits to describe an
element in G; in the case of Fouque-Stern, we denote by
kN the number of bits to describe an element in ZN for the
use of Paillier scheme (hence 2kN describes an element in
ZN2 ). Since Pedersen’s and Gennaro et al.’s protocols involve
private communication between parties, in order to properly
compare the communication complexity, we have assumed that
this communication is done through the public ledger using
El Gamal encryption, which requires posting 2kq bits and
computing 2 exponentiations per encryption, while decryption
costs 1 exponentiation. For the sake of comparison to Fouque-
Stern we measured the time for Paillier encryption and decryp-
tion with 128-bit security, obtaining 180 milliseconds and 244
milliseconds, respectively, on a Intel(R) Core(TM) i7-10510U
CPU @ 1.80GHz using the RELIC library [3]. On the same
platform and security level, a group operation over a DDH-
hard group takes 50 microseconds.

As one can see, our protocol requires almost the same com-
munication as Pedersen’s, differing only in lower order terms,
and less communication than Gennaro et al. and Fouque-Stern,
especially when compared with the latter, since kN is typically
larger than kq (we can currently assume kq = 256, kN = 2048
). On the other hand, Pedersen and of course Fouque-Stern
have better round complexity, at the cost of allowing bias on
the public key.

Our novel DKG protocol’s performance is further show-
cased in our benchmarks. Figures 20 and 21 show the DKG
computation time and communication size for changing num-
ber of parties n for tiers 1 and 2.



Fig. 20: DKG computation time for tiers 1 and 2 for changing
number of parties n with fixed t = bn3 c

Fig. 21: DKG communication size for tiers 1 and 2 for
changing number of parties n with fixed t = bn3 c
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