
New Cryptanalysis of ZUC-256 Initialization
Using Modular Differences

Fukang Liu1, Willi Meier4, Santanu Sarkar5, Gaoli Wang6, Ryoma Ito2,
Takanori Isobe1,2,3

1 University of Hyogo, Hyogo, Japan
2 National Institute of Information and Communications Technology, Tokyo, Japan

3 PRESTO, Japan Science and Technology Agency, Tokyo, Japan
liufukangs@gmail.com,takanori.isobe@ai.u-hyogo.ac.jp,itorym@nict.go.jp

4 FHNW, Windisch, Switzerland
willimeier48@gmail.com

5 Indian Institute of Technology Madras, Chennai, India
santanu@iitm.ac.in

6 East China Normal University, Shanghai, China
glwang@sei.ecnu.edu.cn

Abstract. ZUC-256 is a stream cipher designed for 5G applications by the ZUC
team. Together with AES-256 and SNOW-V, it is currently being under evaluation
for standardized algorithms in 5G mobile telecommunications by Security Algorithms
Group of Experts (SAGE). A notable feature of the round update function of ZUC-256
is that many operations are defined over different fields, which significantly increases
the difficulty to analyze the algorithm. As a main contribution, with the tools of the
modular difference, signed difference and XOR difference, we develop new techniques
to carefully control the interactions between these operations defined over different
fields. While the designers expect that only simple input differences can be exploited
to mount a practical attack on 27 initialization rounds in the released document,
which is indeed implied in the 28-round practical attack discovered by Babbage and
Maximov, we demonstrate that under the same attack scenario much more complex
input differences can be utilized to achieve practical attacks on more rounds of
ZUC-256. The new attacks involve lots of nontrivial efforts to cancel differences from
the perspective of the modular difference, signed difference and XOR difference. At
the first glance, our techniques are somewhat similar to that developed by Wang et
al. for the MD-SHA hash family. However, as ZUC-256 is quite different from the
MD-SHA hash family and its round function is much more complex, we are indeed
dealing with different problems and overcoming new obstacles. With the discovered
complex input differences, we are able to present the first distinguishing attacks on 31
out of 33 rounds of ZUC-256 and 30 out of 33 rounds of the new version of ZUC-256
called ZUC-256-v2 with practical time and data complexities, respectively. Moreover,
with a novel IV-correcting technique, we show how to efficiently recover at least 16
key bits for 15-round ZUC-256 and 14-round ZUC-256-v2 in the related-key setting,
respectively. It is unpredictable whether our attacks can be further extended to more
rounds with more advanced techniques. Based on the current attacks, we believe that
the full 33 initialization rounds provide marginal security.

Keywords: 5G · stream cipher · ZUC-256 · differential attack · modular difference
· signed difference

mailto:liufukangs@gmail.com,takanori.isobe@ai.u-hyogo.ac.jp,itorym@nict.go.jp
mailto:willimeier48@gmail.com
mailto:santanu@iitm.ac.in
mailto:glwang@sei.ecnu.edu.cn

1 Introduction
The modular difference has been a prominent tool in the cryptanalysis of the MD-SHA hash
family due to a series of work [WLF+05,WY05,WYY05]. Since such a major breakthrough
in 2005, similar techniques have been applied to many MD4-like hash functions and there
is a large number of related publications [CR06,SSA+09,MNS11,SBK+17,LP19,LP20].
The effectiveness of this technique contributes to the dedicated control of the sign of the
difference. That is, while the standard XOR difference [BS90] captures the fact that a bit
is changed, the signed difference [WLF+05] will capture how the bit value is changed, i.e.,
from 1 to 0 or from 0 to 1. This feature of the signed difference makes it interact well
with the modular difference. As the addition modulo 2n (n ∈ {32, 64}) and some simple
boolean functions are used in the round update functions of these MD4-like hash functions
in a hybrid way, the attackers can view the modular difference from the perspective of
the signed difference when processing the difference transitions in the boolean functions.
In addition, they can cancel the difference from the perspective of the modular difference
when processing the modular addition. With these strategies, it is possible to carefully
deduce a collision-generating differential characteristic.

Despite the fact that it is a famous and powerful technique, there seem to be few
successful applications of this technique to cryptographic primitives following a quite
different design strategy from that of the MD-SHA hash family. A notable application
is to construct collision-generating differential characteristics for ARX constructions like
the hash function Skein [Leu13]. It should be mentioned that ARX constructions are still
similar to the MD-SHA hash famlily, which use modular Addition, bit Rotation and XOR
operation. For many other works on ARX constructions like [AFK+08,BVC16], the used
techniques are then quite different.

In this work, we demonstrate the huge potential of the signed difference in the crypt-
analysis of the stream cipher ZUC-256 [The18], which obviously follows a different design
strategy from that of ARX constructions and the MD-SHA hash family. In a nutshell, the
round update function of ZUC-256 involves such operations as addition modulo 231 − 1,
addition modulo 232, the XOR operation, the S-box transformation over GF (28) and the
linear transformation over GF (232). At the first glance, as many operations are defined in
different fields, developing non-trivial cryptanalytic techniques for ZUC-256 seems rather
challenging, especially when devising an attack by taking the interactions between all these
operations into account. Moreover, the prime field GF (231 − 1) seems to be only used in
the ZUC family, i.e., ZUC-128 and ZUC-256.

Although the modular additions, i.e., modulo 231 − 1 and 232, are used in ZUC-256, it
does not necessarily imply that the cryptanalysis with the tool of the modular difference
will be effective for it. The main obstacle is that there are 8-bit S-box transformations
and 32-bit linear transformations in the round function of ZUC-256. How to control the
difference transitions between the modular additions, the 8-bit S-boxes and the 32-bit
linear transformations is thus becoming a critical problem to solve in order to devise
advanced differential attacks. As far as we know, there is no corresponding technique
developed for this problem and it is in general difficult.

Backgrounds for the ZUC family. ZUC-128 is a stream cipher with 128-bit security and
has been adopted as the third suite of the 3GPP confidentiality and integrity algorithms
called 128-EEA3 and 128-EIA3.

As the successor of ZUC-128, ZUC-256 [The18] is designed for 5G applications with
256-bit security, which differs from ZUC-128 only in the initialization phase and message
authentication codes generation phase. Since its proposal in 2018, a distinguishing at-
tack [YJM20] on the keystream generation phase and a practical 28-round distinguishing
attack [BM20] on the initialization phase in the related-key setting have been published.
Regarding the distinguishing attack on the keystream phase [YJM20], the used techniques

2

are somewhat complicated and it requires 2236 data and time complexity. Although this
yields an academic attack on full ZUC-256, finding attacks on other aspects of ZUC-256
(e.g., the initialization phase) is still of great interest and importance to understand the
security of ZUC-256.

Very recently, a new version of ZUC-256 was published by the ZUC team [ETS21,Tea21],
where only the loading scheme at the initialization phase is changed. For convenience,
we call it ZUC-256-v2. Moreover, the designers describe a 27-round distinguishing attack
in [Tea21] in the related-key setting and expect that each state bit of ZUC-256-v2 will have
sufficient randomness after 32 rounds and finally conclude that the full 33 initialization
rounds are secure. It is not difficult to find that the 27-round attack is indeed implied in
the 28-round attack [BM20] because the differences in the 256-bit key are chosen in the
same way. More details will be discussed later.

The attack scenario. The described attack scenario of the distinguishing attacks in [BM20,
Tea21] is not commonly used in the cryptanalysis of stream ciphers because it requires
the attackers to know some information (e.g., some internal state bits) which cannot be
derived from the allowed observable outputs (the keystream). Such an attack scenario
in the related-key/single-key settings can date back to 2011, which is used to evaluate
the security of ZUC-128 by SAGE under 3GPP’s request before standardizing ZUC-128.
This in a way explains why the ZUC team took this attack vector into account again.
Similar to [BM20,Tea21], our distinguishing attacks also work under this attack scenario
in the related-key setting. In addition, by restricting that the attackers can only derive
information from the keystream, which is much more realistic and commonly used, we also
demonstrate the key-recovery attacks on a smaller number of rounds in the related-key
setting. We have to emphasize that it is unclear whether our distinguishing attacks in
this unusual attack scenario will affect the standardization process. However, as will be
seen, our developed techniques do advance the understanding of the security of ZUC-256
initialization phase and we view this as a more important contribution.

Our contributions. Due to the well-designed round function of ZUC-256, it is almost
impossible to improve the 28-round attack [BM20] by using simple input differences, which
is indeed expected by the designers as they treat the underlying idea in the 28-round
attack as a main exploitable property [Tea21].

To overcome the above obstacle, we perform a careful study on the interactions
between all the operations in the round function of ZUC-256 and develop advanced
techniques to control the difference transitions between the modular addition, the 8-bit
S-box transformations and the 32-bit linear transformations in ZUC-256.

As the first step towards our powerful attacks, we first identify advanced strategies to
inject differences in key bits and IV bits, which have the potential to achieve practical
attacks on more rounds. However, this does not necessarily mean that the corresponding
input difference must exist for the strategies. Hence, it is necessary to perform a search.

To search for a valid input difference, the problem is then reduced to solving a system
of equations, which are in terms of the modular difference, the XOR difference and the
value transitions. To tackle this problem, we use the signed difference to build the bridge
between the modular difference and the XOR difference, which is shown to be very useful
and efficient to solve these equations. In addition, as value transitions are involved in the
equations as well, the dependency between the difference transitions and value transitions
will be constantly checked in our algorithm in order to obtain a valid solution.

In general, we utilize a guess-and-determine technique to solve the defined equation
system. Moreover, to improve the quality of the solution, i.e., we expect that it can lead
to better attacks, some heuristic strategies will be exploited at the guessing phase.

It is found that our algorithm can produce a solution of the input difference in seconds.

3

As a result, we succeeded in finding an input difference that can lead to a practical
distinguishing attack on 31 out of 33 initialization rounds of ZUC-256, which seems to
indicate that the full 33 initialization rounds are marginal. Moreover, even though the
loading scheme is changed in ZUC-256-v2 and there are more constraints by the constant
bits, our algorithm is still applicable. Specifically, we also found an input difference that
can be utilized to construct a practical distinguisher for 30 out of 33 initialization rounds
of ZUC-256-v2, which again seems to imply that 33 rounds are marginal.

Moreover, based on the discovered input difference, we propose a novel IV-correcting
technique to achieve partial key-recovery attacks in the related-key setting. By observing
the first 32-bit keystream word, we are able to mount a key-recovery attack on 15-round
ZUC-256 and 14-round ZUC-256-v2, respectively. The details of our results are displayed
in Table 1. The used input differences are shown in Table 2 and Table 3, respectively.
Notice that for the complexity of a binary distinguisher, we adopt the formula 2 × e−2 to
estimate the data and time complexity to ensure a high success rate, where e is the bias of
the binary linear relation used for distinguishing attacks.

We expect that our techniques to control the difference transitions through operations
defined over different fields will provide a new perspective to study primitives like ZUC-256.
In addition, we believe that this work sheds more insight into the security of the round
update function of ZUC-256, i.e., it is possible to use much more complex differences to
significantly improve the attacks.

Table 1: Summary of the attacks on ZUC-256 and ZUC-256-v2, where at least 16 key bits
are recovered in the key-recovery attacks. All the attacks are in the related-key setting.

Target Attack Type Rounds Time Data Ref.
ZUC-256 distinguisher 28 (out of 33) 223 223 [BM20]
ZUC-256 distinguisher 31 (out of 33) 229 229 Section 6

ZUC-256-v2 distinguisher 30 (out of 33) 239.8 239.8 Section 6
ZUC-256 key recovery 15 (out of 33) 247 247 Section 6

ZUC-256-v2 key recovery 14 (out of 33) 258 258 Section 6

Organization of this paper. First, we introduce the used notation and the specification
of ZUC-256 and ZUC-256-v2 in Section 2. Then, the relations between the XOR differ-
ence, modular difference and signed difference will be studied in Section 3. Our critical
observations and how to identify advanced strategies to choose input differences will be
detailed in Section 4. The search for the input difference is then described in Section 5.
The discovered biased linear relations are demonstrated in Section 6. Finally, the paper is
concluded in Section 7.

2 Preliminaries
2.1 Notation
⊕, ∨, ∧, ≫ and ≪ represent the bitwise exclusive OR, OR, AND, right shift and left shift,
respectively. ⊞32 and ⊟32 represent addition and subtraction modulo 232, respectively. ⊞
and ⊟ represent addition and subtraction modulo 231 − 1, respectively. a||b represents the
concatenation of strings a and b. a · b represents a × b mod (231 − 1). a−1 represents the
inverse of a in GF (231 − 1), i.e., a · a−1 = 1. aL and aH represent the rightmost 16 bits
and the leftmost 16 bits of integer a, respectively. In addition, a[i] and a[j : i] represent
(a ≫ i) ∧ 0x1 and (a ≫ i) ∧ (2j−i+1 − 1), respectively. Moreover, we use ∆a, δa and ∇a
to represent the XOR difference a′ ⊕ a, the modular difference a′ ⊟ a, and the signed

4

difference of (a, a′). For the signed difference ∇a, we adopt the similar generalized notation
used in [CR06], i.e., ∇a[i] = n if (a[i] = 0, a′[i] = 1), ∇a[i] = u if (a[i] = 1, a′[i] = 0),
∇a[i] = = if (a[i] = a′[i]), ∇a[i] = 0 if (a[i] = a′[i] = 0) and ∇a[i] = 1 if (a[i] = a′[i] = 1).
Throughout this paper, p = 231 − 1, i ∈ [a, b] represents a ≤ i ≤ b and Pr[ζ] represents
the probability that the event ζ occurs.

We notice that in the ZUC-256 specification, each element in GF (p) belongs to the
set {i|1 ≤ i ≤ p} rather than {i|0 ≤ i < p}, though the two sets are identical in GF (p).
Therefore, for z = x ⊞ y, we will have x, y, z ∈ {i|1 ≤ i ≤ p}. However, in the sections of
cryptanalysis, when δz = δx ⊞ δy = p, we will simply write δz = 0 for readability.

2.2 Description of ZUC-256
The ZUC-256 stream cipher [The18] is a successor of the ZUC-128 stream cipher [ETS11]
with only minor modifications, regarding the initialization phase and the message authen-
tication codes generation phase. As we target the security of the initialization phase, in
the following, we will describe the specification of the ZUC-256 initialization. More details
of ZUC-256 can be referred to [The18].

The ZUC-256 initialization is depicted in Figure 1. It can be observed that the state
update of ZUC-256 involves three parts. The first part is a 496-bit linear feedback
shift register (LFSR) defined over GF (p), which is composed of sixteen 31-bit words
(S15, S14, . . . , S0) with 1 ≤ Si ≤ p (0 ≤ i ≤ 15). The second part is called bit reorganization
(BR), where four 32-bit words (X0, X1, X2, X3) will be computed according to some words
in the LFSR. The last part is called finite state machine (FSM), where there are two 32-bit
registers (R1, R2) used as the memory of FSM.

S15

S15H S14L

S14 S13 S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0

S11L S9H S7L S5H S2L S0H

215 217 221 220 1 + 28

mod (231 − 1)

LFSR

BR

⊕

R1 R2

⊕

<<< 16

S ◦ L1 S ◦ L2

FSM

W >> 1

Figure 1: The initialization phase of ZUC-256.

There are in total 32 + 1 = 33 initialization rounds. For the first 32 clocks, the state is
updated in the following way, where t ∈ [0, 31].

Xt
0 = St

15H ||St
14L, (1)

Xt
1 = St

11L||St
9H , (2)

Xt
2 = St

7L||St
5H , (3)

W t = (Rt
1 ⊕ Xt

0) ⊞32 Rt
2, (4)

St+1
i = St

i+1 (0 ≤ i ≤ 14), (5)
St+1

15 = (W t ≫ 1) ⊞ 257 · St
0 ⊞ 220 · St

4 ⊞ 221 · St
10 ⊞ 217 · St

13 ⊞ 215 · St
15, (6)

5

Rt+1
1 = S ◦ L1

(
(Rt

1 ⊞32 Xt
1)L||(Rt

2 ⊕ Xt
2)H

)
, (7)

Rt+1
2 = S ◦ L2

(
(Rt

2 ⊕ Xt
2)L||(Rt

1 ⊞32 Xt
1)H). (8)

In the above, operations (L1, L2, S) are used. For the operation S, four 8-bit S-boxes will
be applied to a 32-bit value in parallel, while the L1 and L2 are linear transformations
over GF (232). Their details can be referred to [ETS11].

At the 33rd clock, i.e., the last round, we only need to modify Eq. 6 as follows, while
keeping the remaining unchanged.

St+1
15 = 257 · St

0 ⊞ 220 · St
4 ⊞ 221 · St

10 ⊞ 217 · St
13 ⊞ 215 · St

15.

Specifically, the only difference is that W t is no more used to update St+1
15 .

The first 32-bit keystream word. After 33 initialization rounds, the first 32-bit keystream
word Z will be computed in the following way, where t = 33.

Xt
0 = St

15H ||St
14L, Xt

3 = St
2L||St

0H , Z =
(
(Rt

1 ⊕ Xt
0) ⊞32 Rt

2
)

⊕ Xt
3.

Loading the key and IV . We now describe how the initial values of (S0
15, . . . , St

0) and
(R0

1, R0
2) are defined, i.e., how to load the key and IV . For ZUC-256, the 256-bit key K

can be written as (K31, K30, . . . , K0) with Ki ∈ F8
2 (0 ≤ i ≤ 31) and IV can be written as

(IV24, IV23, . . . , IV0) with IVi ∈ F8
2 (0 ≤ i ≤ 16) and IVj ∈ F6

2 (17 ≤ j ≤ 24). There are
also some specified constants in ZUC-256, which can be written as (d15, d14, . . . , d0) with
di ∈ F7

2 (0 ≤ i ≤ 15) and are defined as follows:

d0 = 0x22, d1 = 0x2f, d2 = 0x24, d3 = 0x2a, d4 = 0x6d, d5 = 0x40,

d6 = 0x40, d7 = 0x40, d8 = 0x40, d9 = 0x40, d10 = 0x40, d11 = 0x40,

d12 = 0x40, d13 = 0x52, d14 = 0x10, d15 = 0x30.

The loading scheme is specified as follows:

R0
1 = 0, R0

2 = 0,

S0
0 = K0||d0||K21||K16, S0

1 = K1||d1||K22||K17,

S0
2 = K2||d2||K23||K18, S0

3 = K3||d3||K24||K19,

S0
4 = K4||d4||K25||K20, S0

5 = IV0||(d5 ∨ IV17)||K5||K26,

S0
6 = IV1||(d6 ∨ IV18)||K6||K27, S0

7 = IV10||(d7 ∨ IV19)||K7||IV2,

S0
8 = K8||(d8 ∨ IV20)||IV3||IV11, S0

9 = K9||(d9 ∨ IV21)||IV12||IV4,

S0
10 = IV5||(d10 ∨ IV22)||K10||K28, S0

11 = K11||(d11 ∨ IV23)||IV6||IV13,

S0
12 = K12||(d12 ∨ IV24)||IV7||IV14, S0

13 = K13||d13||IV5||IV8,

S0
14 = K14||(d14 ∨ K31[7 : 4])||IV16||IV9, S0

15 = K15||(d15 ∨ K31[3 : 0])||K30||K29.

The new loading scheme. Recently, the ZUC team published a new loading scheme [Tea21],
where the length of IV is reduced to 128 bits. To distinguish it from the above version,
we call ZUC-256 with the new loading scheme as ZUC-256-v2. In the new loading scheme,
IV is written as (IV15, IV14, . . . , IV0) with IVi ∈ F8

2 (0 ≤ i ≤ 15). The constants are also
changed and we write them as (D15, D14, . . . , D0). Di ∈ F7

2 (0 ≤ i ≤ 15) are specified as
follows:

D0 = 0x64, D1 = 0x43, D2 = 0x7b, D3 = 0x2a, D4 = 0x11, D5 = 0x05,

D6 = 0x51, D7 = 0x42, D8 = 0x1a, D9 = 0x31, D10 = 0x18, D11 = 0x66,

D12 = 0x14, D13 = 0x2e, D14 = 0x01, D15 = 0x5c.

6

For ZUC-256-v2, the initial state is defined as below:

R0
1 = 0, R0

2 = 0, S0
i = Ki||Di||K16+i||K24+i (0 ≤ i ≤ 6),

S0
i = Ki||Di||IVi−7||IVi+1 (7 ≤ i ≤ 14), S0

15 = K15||D15||K23||K31.

3 On Modular/XOR/Signed Differences
As the LFSR of ZUC-256 works in GF (p), we first explain some basic relations between
the modular difference, XOR difference and signed difference in GF (p).

3.1 Relations Between δa and ∇a

For each modular difference δa, it can always be written as

δa =
30∑

i=0
µi · 2i,

where the addition is defined over GF (p) and µi ∈ {0, 1, p ⊟ 1}. For simplicity, we write
p ⊟ 1 = −1. In this way, we have µi ∈ {−1, 0, 1}.

Fact 1. Given a signed difference ∇a, the modular difference δa is uniquely determined.
Specifically, µi = 0 if ∇a[i] = =, µi = 1 if ∇a[i] = n and µi = −1 if ∇a[i] = u.

Fact 2. If we restrict that ∇a[i] takes either n or = for 0 ≤ i ≤ 30, the signed difference
is uniquely determined for a given modular difference δa, i.e., ∇a[i] = n if δa[i] = 1 and
∇a[i] = = if δa[i] = 0.

3.2 A Relation Between δa and ∆a

In this paper, we will intensively exploit the following relation between δa and ∆a, as
specified below:

Proposition 1. To ensure that there exists a pair a, a′ ∈ GF (p) with ∆a[j : i] = 0
(0 ≤ i ≤ j ≤ 30) for a given (i, j), the necessary and sufficient condition is δa[j : i] = 0 or
δa[j : i] = 2j−i+1 − 1.

The proof is intuitive and we present it in Appendix A.2. We emphasize that it still
requires some efforts as the addition is modulo 231 − 1.

3.3 Relations Between ∇a and ∆a

In this work, we will exploit a simple and obvious relation between ∇a and ∆a. We
emphasize that some algorithms stated below are not optimized and one can even finish
the same task purely by hand in an efficient way. For full automation and simplicity of
the program, we only use very naïve methods. We further stress that these algorithms are
not the bottlenecks to search for input differences.

One can directly move to Section 4 if he/she wants to quickly grasp our attack framework
and why we can improve the attacks [BM20,Tea21]. The following details are only relevant
for the way how to solve complex equations obtained with the careful analysis of the
ZUC-256 round function in Section 4.

Before moving to the abstract problems, we first provide a small concrete example for
better understanding. Readers familiar with the signed difference and modular difference
can skip this example.

7

Example. Consider a simple example. If δa = 28 and ∆aH = 0, what is the set of
possible ∆a? It is obvious that we can simply obtain all the possible signed differences
∇a ∈ SET∇a = {∇h||∇ai

L, (0 ≤ i ≤ 6)}, which can correspond to the same modular
difference δa = 28, as listed below:

∇h = === ==== ==== ====, ∇a0
L = ==== ===n ==== ====,

∇a1
L = ==== ==nu ==== ====, ∇a2

L = ==== =nuu ==== ====,

∇a3
L = ==== nuuu ==== ====, ∇a4

L = ===n uuuu ==== ====,

∇a5
L = ==nu uuuu ==== ====, ∇a6

L = =nuu uuuu ==== ====.

Since ∆aH = 0, ∇aL = nuuu uuuu ==== ==== is an invalid signed difference, i.e.
∇aH [0] = n in this case. Therefore, there are 7 possible values of ∆a, which form
the set SET∆a = {0x100,0x300,0x700,0xf00,0x1f00,0x3f00,0x7f00}.

After determining SET∆a , we need to ask another question. Given two values b, b′ ∈
GF (p) with b ⊕ b′ = ∆b ∈ SET∆a, how to efficiently check whether ∇b ∈ SET∇a? Note
that the signed difference directly imposes some conditions on the value b. For example, if
∆b = 0x300, ∇b ∈ SET∇a is equivalent to b[9 : 8] = 1. Therefore, one feasible way is to
obtain the signed difference ∇b corresponding to ∆b and check the corresponding condition
on b imposed by ∇b. This is indeed not very friendly to programming. Therefore, we prefer
another way, i.e. to check whether b′ ⊟ b = 28. If this holds, there must be ∇b ∈ SET∇a .

Enumerating all possible ∆aH for an arbitrary δa: If aH [i] for i ∈ SETI = {i1, ..., in}
(1 ≤ ij ≤ 15) are constant bits, given an arbitrary δa, how to enumerate all possible
XOR differences for ∆aH? Note that we do not care about ∆aL in this case. For
simplicity of programming, we propose a naïve procedure to determine all ∆aH with
time complexity 217−n. Denote the set of all possible ∆aH by SET∆aH . Let us call this
procedure Enumeration-H.

Step 1: Initialize an empty set SET∆aH . Let a[14 : 0] ∈ {0, 0x7fff}. For each value of
a[14 : 0], move to Step 2.

Step 2: Traverse all the 216−n possible values of aH . For each a = aH ||a[14 : 0], compute
a′ = a ⊞ δa and ∆a = a′ ⊕ a. If ∆aH [i] = 0 for i ∈ SETI, add ∆aH to SET∆aH .

The reason to only consider a[14 : 0] ∈ {0, 0x7fff} is that we do not care about ∆aL.
Therefore, we only need to consider the carry from the 14th bit to the 15th bit. By fixing
a[14 : 0] ∈ {0, 0x7fff} and traversing all the 216−n possible values of aH , we indeed have
traversed all the possible pairs (a′

H , aH) for a′ = a ⊞ δa after the above procedure, thus
collecting all possible values of ∆aH . The proof of the correctness of the above procedure
is shown in Appendix A.3. We emphasize that as the addition is modulo 231 − 1, the proof
still requires some efforts, though it is still intuitive.

Checking the validity of (a′
H , aH) satisfying ∆aH ∈ SET∆aH for a given δa: After

determining the set SET∆aH , we are required to solve the problem of how to efficiently check
the validity of a pair (a′

H , aH) satisfying ∆aH ∈ SET∆aH . Specifically, we have already
known that each valid signed difference ∇aH will correspond to an element in SET∆aH .
However, this does not necessarily imply that any pair (a′

H , aH) satisfying ∆aH ∈ SET∆aH

can form the signed difference generating ∆aH . Indeed, with Enumeration-H to compute
SET∆aH , we have traversed all possible pairs (a′

H , aH) such that a′ = a ⊞ δa. Based on
this fact, the validity of (a′

H , aH) can be efficiently checked as follows and we call this
procedure Verification-H.

Step 1. If aH does not satisfy the conditions imposed by the constant bits, the pair is
treated as invalid.

8

Step 2. Otherwise, since ∆aH ∈ SET∆aH , a′
H must also satisfy the conditions imposed

by the constant bits. Then, we compute z = aH ||a[14 : 0] where a[14 : 0] ∈
{0, 0x7fff} and z′ = z ⊞ δa. If there exist an assignment to a[14 : 0] such
that z′

H = a′
H , output that the pair (a′

H , aH) is valid as it must appear in
Enumeration-H to generate ∆aH . If both assignments to a[14 : 0] cannot make
z′

H = a′
H , the pair is invalid as it could not appear in Enumeration-H to generate

∆aH .

Two variant problems: In our attacks, we indeed also need to handle two slightly different
problems. Specifically, given a modular difference δa satisfying a[15 : 0] ∈ {0, 0xffff},
how to enumerate all possible ∆aH with ∆aL = 0 and how to efficiently check the validity
of the pair (a′

H , aH). The problems can be easily solved by slightly modifying Step 2 in
Enumeration-H and Step 2 in Verification-H. Specifically, in Step 2 of Enumeration-H,
after computing a′ = a⊞ δa and ∆a = a ⊕ a′, when ∆aH [i] = 0 for i ∈ SETI and ∆aL = 0,
we add ∆aH to SET∆aH . Let us call the modified Enumeration-H Enumeration-H-M.
Then, in Step 2 of Verification-H, only when there exists an assignment to a[14 : 0]
such that z′

H = a′
H and (z′ ⊕ z)L = 0 will the program output that the pair (aH , a′

H) is
valid. Let us call the modified Verification-H Verification-H-M.

Enumerating all possible ∆aL for a given δa: Similarly, we are also required to deal
with another slightly different problem. Given an arbitrary δa, how to enumerate all
possible XOR differences ∆aL with ∆aH = 0. Note that ∆aH = 0 in this case, which
implies δa[30 : 15] ∈ {0, 0xffff}. Denote the set of all valid ∆aL by SET∆aL . Again,
we will use a naïve algorithm with time complexity 216, as stated below. Let us call this
procedure Enumeration-L.

Step 1: Initialize an empty set SET∆aL . Let a[30 : 15] ∈ {0, 0xffff}. For each assignment
to a[30 : 15], move to Step 2.

Step 2: Traverse all the 215 possible values of aL, i.e., a[15] has been fixed due to the
assignment to a[30 : 15]. For each a = a[30 : 16]||aL, compute a′ = a ⊞ δa and
∆a = a′ ⊕ a. If ∆aH = 0, add ∆aL to SET∆aL .

Enumerating all possible ∆a for a given δa: In our attacks, we further need to handle this
problem for high automation of the program. A naïve method will require time complexity
231−n if aH [i] for i ∈ SETI = {i1, ..., in} (1 ≤ ij ≤ 15) are constant bits. However, simply
enumerating ∆a is not friendly to our attacks. Indeed, we prefer that there exist two sets
(SET∆aH , SET∆aL) such that for each ∆aH ∈ SET∆aH and ∆aL ∈ SET∆aL , there always
exists a valid signed difference ∇a corresponding to (∆aH , ∆aL). An evident advantage
to use two independent sets is that we can have free choices for the elements in SET∆aH

and SET∆aL since they will always correspond to a valid signed difference. For such a
requirement, it is natural that for each ∆aH ∈ SET∆aH and ∆aL ∈ SET∆aL , there will be
∆aH [0] = ∆aL[15] as they correspond to the XOR difference of the same bit a[15].

The procedure to find all such (SET∆aH , SET∆aL) is described below. Let us call such
a procedure Enumeration-A.

Step 1: Traverse two possible values of a[15]. For each value of a[15], move to Step 2, Step
3, Step 4 and Step 5 to obtain the corresponding (SET∆aH , SET∆aL), respectively.

Step 2: Case-1: Initialize the sets SET∆aH and SET∆aL as empty. Traverse all the 215−n

possible values of aH , i.e., n bits of aH and a[15] are already fixed. For each aH ,
compute a′

H = aH + δaH . If a′
H < 216 and a′

H [i] ⊕ aH [i] = 0 for i ∈ SETI, add
(a′

H ⊕ aH) ∧ 0xffff to SET∆aH . After processing all possible aH , start traversing
all the 215 possible values of aL. For each aL, compute y = aL[14 : 0] + δa[14 : 0].

9

If y < 215, compute a′
L = aL + δaL and add (a′

L ⊕ aL) ∧ 0xffff to SET∆aL .
After processing all aL, if both sets are non-empty, output (SET∆aH , SET∆aL).
Otherwise, do not output anything and Case-1 is invalid for the current a[15].

Step 3: Case-2: Initialize the sets SET∆aH and SET∆aL as empty. Traverse all the 215−n

possible values of aH . For each aH , compute a′
H = aH + δaH + 1. If a′

H < 216

and a′
H [i] ⊕ aH [i] = 0 for i ∈ SETI, add (a′

H ⊕ aH) ∧ 0xffff to SET∆aH . After
processing all possible aH , start traversing all the 215 possible values of aL. For
each aL, compute y = aL[14 : 0] + δa[14 : 0]. If y ≥ 215, compute a′

L = aL + δaL

and add (a′
L ⊕ aL) ∧ 0xffff to SET∆aL . After processing all aL, if both sets are

non-empty, output (SET∆aH , SET∆aL). Otherwise, do not output anything and
Case-2 is invalid for the current a[15].

Step 4: Case-3: Initialize the sets SET∆aH and SET∆aL as empty. Traverse all the 215−n

possible values of aH . For each aH , compute a′
H = aH + δaH . If a′

H ≥ 216 and
a′

H [i]⊕aH [i] = 0 for i ∈ SETI,add (a′
H ⊕aH)∧0xffff to SET∆aH . After processing

all possible aH , start traversing all the 215 possible values of aL. For each aL,
compute y = aL[14 : 0] + δa[14 : 0] + 1. If y < 215, compute a′

L = aL + δaL + 1
and add (a′

L ⊕ aL) ∧ 0xffff to SET∆aL . After processing all aL, if both sets are
non-empty, output (SET∆aH , SET∆aL). Otherwise, do not output anything and
Case-3 is invalid for the current a[15].

Step 5: Case-4: Initialize the sets SET∆aH and SET∆aL as empty. Traverse all the 215−n

possible values of aH . For each aH , compute a′
H = aH + δaH + 1. If a′

H ≥ 216

and a′
H [i] ⊕ aH [i] = 0 for i ∈ SETI, add (a′

H ⊕ aH) ∧ 0xffff to SET∆aH . After
processing all possible aH , start traversing all the 215 possible values of aL. For each
aL, compute y = aL[14 : 0] + δa[14 : 0] + 1. If y ≥ 215, compute a′

L = aL + δaL + 1
and add (a′

L ⊕ aL) ∧ 0xffff to SET∆aL . After processing all aL, if both sets are
non-empty, output (SET∆aH , SET∆aL). Otherwise, do not output anything and
Case-4 is invalid for the current a[15].

As the addition is modulo p, when a + δa ≥ p, it is necessary to use a + δa − 231 + 1 as
the modular sum and we call such a situation cycle-carry. However, it can be observed
in Enumeration-A that we assume cycle-carry exists only when a + δa > p. One reason is
that for an arbitrary given δa, there is only one value of a satisfying a + δa = p among all
the 231 − 1 different values. In addition, for its application to ZUC-256-v2, as the 7-bit
constants D[i] ̸= 0x7f for i ∈ [0, 15], it is impossible that there are two values (aH , a′

H)
satisfying aH = 0xffff or a′

H = 0xffff forming a valid XOR difference belonging to
SET∆aH

, i.e., they cannot pass the test before being added to SET∆aH .

Some definitions. We will make some definitions before introducing our attacks, as listed
below:
Definition 1. A signed difference ∇a0 is said to be expanded from δa only when δa0 = δa.
Definition 2. The Hamming weight of the signed difference ∇a denoted by H(∇a) is
defined as the number of ∇a[i] ∈ {n, u} for i ∈ [0, 30].
Definition 3. The weight of the modular difference δa ∈ GF (p) denoted by W(δa) is
defined as the number of pairs (i, j) with 0 ≤ i ≤ j ≤ 30 satisfying one of the following
conditions:

Condition 1: a[v] = 1 (v ∈ [i, j], a[i − 1] = 0, a[j + 1] = 0, i ̸= 0, j ̸= 30).

Condition 2: a[v] = 1 (v ∈ [i, j], a[j + 1] = 0, i = 0, j ̸= 30).

Condition 3: a[v] = 1 (v ∈ [i, j], a[i − 1] = 0, i ̸= 0, j = 30).

10

Definition 4. The Hamming weight of the modular difference δa ∈ GF (p) denoted by H(δa)
is defined as min(W(δa),W(p − δa)), where min(x, y) = x if x ≤ y and min(x, y) = y
otherwise.

For example, H(0x7fff) = 1 and H(0x7fff7fff) = 1.

4 Cancelling Differences Using Modular Differences
In a public design and evaluation report [ETS11] on ZUC-128, which was undertaken in
response to the request made by 3GPP, it is written that:

“ [ETS11]Chosen IV/Key attacks target at the initialization stage of stream ciphers.
For a good stream cipher, after the initialization, each bit of the IV/Key should contribute
to each bit of the internal states, and any difference of the IV/Key will result in an
almost-uniform and unpredictable difference of the internal states."

The attack scenario: The above statement may be not very clear. According to the
description of the corresponding attacks on ZUC-128 in [ETS11], we can indeed interpret
it. Specifically, the attack scenario means that an attacker can choose differences in the IV
bits and key bits, and check after a certain number of initialization rounds whether the
differences of some LFSR state bits have some undesirable properties (e.g., the distribution
is non-uniform). If such properties can be detected, a distinguishing attack on the same
number of initialization rounds can be claimed. The shortcut is to focus on how to detect
undesirable properties in the state bits of Sr

15. If there are, we can claim an attack on
r + 15 rounds due to Sr+15

0 = Sr
15. In other words, we have 15 free rounds and this is why

the currently claimed attacks [Tea21,BM20] can reach such a large number of rounds, i.e.,
27 and 28. Note that this attack scenario is not commonly used in the cryptanalysis of
stream ciphers. However, the ZUC team still claimed security in this attack scenario, even
in the related-key setting [Tea21].

4.1 Revisiting Babbage-Maximov’s 28-Round Attack
Regarding the above distinguishing attack, Babbage and Maximov proposed a 28-round
distinguishing attack in [BM20] and the ZUC team also took into account this attack
vector [Tea21] and proposed a 27-round attack. The basic idea is the same, which is to inject
differences only in (S0

2 , S0
6L). Note that for the old and new loading schemes, (S0

2 , S0
6L) are

only related to the key bits. Therefore, both the attacks work in the related-key setting.
The following explanation for the 28-round attack will make it clear why the 27-round
attack [Tea21] is implied in the 28-round attack.

For the completeness of this paper, we briefly describe how Babbage and Maximov
found the input difference to mount distinguishing attacks in Appendix B.

The input difference used in the 28-round attack [BM20] is

∆S0
2 = 0x01000000, ∆S0

6 = 0x00001010.

After two clocks, (S0
6 , S0

2) will be shifted to (S2
4 , S2

0). Thus, at the 3rd clock, if
220 · δS0

6 ⊞ 257 · δS0
2 ̸= 0, there will be ∆S3

15 ̸= 0. For such a choice of (∆S0
6 , ∆S0

2), we
indeed can view it from the perspective of signed differences. Specifically, if

∇S0
6 = === ==== ==== ==== ===u ==== ===u ====,

∇S0
2 = === ===n ==== ==== ==== ==== ==== ====,

or

∇S0
6 = === ==== ==== ==== ===n ==== ===n ====,

11

∇S0
2 = === ===u ==== ==== ==== ==== ==== ====,

there must be 220 · δS0
6 ⊞ 257 · δS0

2 = 0.
When 220 · δS0

6 ⊞ 257 · δS0
2 = 0, ∆St

15 = 0 for t ∈ [0, 6]. Then, after 7 clocks, as
δS6

0 = δS0
6 ≠ 0, we have δS7

15 ̸= 0, δS7
i = 0 for i ∈ [0, 14] and (∆R7

1 = 0, ∆R7
2 = 0). After 4

more clocks, i.e., after 11 clocks, S7
15 is shifted to S11

11 . Therefore, at the 12th clock, active
S-boxes will appear in FSM for the first time. At the 13th clock, as S13

15 is computed before
updating FSM, the difference caused by FSM at the 12th clock will affect the difference of
the state words in LFSR for the first time, i.e., ∆S13

15 is affected by the difference appearing
in FSM.

In other words, we can equivalently say that ∆S13
15 is affected by only 1 round of update

in FSM, where active S-boxes start appearing. Since ∆S28
0 = ∆S13

15 , it is reasonable to
detect a biased linear relation in ∆S28

0 with a practical number of samples, i.e., only the
one-round update in FSM needs to be approximated.

The above analysis also implies that the authors of [BM20] randomly picked both the
key pair and IV pair for each sample in the experiments. Otherwise, if they randomly choose
a key pair and fix it and then randomly pick many IV pairs, there will be cases (probability
of 6/8 = 0.75) that a valid biased linear relation for 28 initialization rounds cannot be
detected as there are too many rounds of update in FSM required to be approximated.

Based on the above analysis, if we carefully choose a key pair satisfying 220 · δS0
6 ⊞

257 · δS0
2 = 0 for each sample, i.e., according to their signed difference, it is expected that

the bias can be improved. To support this claim, we repeated the experiments by always
choosing a key pair which can make 220 · δS0

6 ⊞ 257 · δS0
2 = 0 and found that

Pr[∆S28
0 [9] ⊕ ∆S28

0 [10] = 1] ≈ 0.5 − 2−8.6,

while Pr[∆S28
0 [9] ⊕ ∆S28

0 [10] = 1] ≈ 0.5 − 2−10.46 in [BM20].

The weak-key setting: Note that due to the usage of signed differences, our new method
naturally works in the weak-key setting. However, as explained above, the so-called
28-round attack [BM20] indeed only works in the weak-key setting due to the constraint
220 · δS0

6 ⊞ 257 · δS0
2 = 0. Similarly, the 27-round attack [Tea21] also only works in the

weak-key setting given each specified XOR input difference because it also relies on the
same simple constraint 220 · δS0

6 ⊞ 257 · δS0
2 = 0.

4.2 More Observations
The above observation reveals that using signed differences rather than simple XOR
differences will lead to a better bias. This is because signed differences are directly related
to modular differences, which can be cancelled with probability 1 due to the modular
addition in LFSR. To further improve the attack, we carefully investigated the round
update function of ZUC-256 and found some extra important observations.

The first observation: The first observation is that we can study the distribution of
δSt

15 rather than ∆St
15 if targeting a (t + 15)-round distinguisher. This observation

has been confirmed via experiments. Specifically, with the key difference discovered
in [BM20], we repeated the experiments by always choosing a key pair which can make
220 · δS0

6 ⊞ 257 · δS0
2 = 0. Instead of collecting the distribution of ∆S13

15 , we collected the
distribution of δS13

15 and eventually found the following biased linear relation:

Pr[δS28
0 [11] = 1] ≈ 0.5 + 2−6.

Obviously, this further improves the bias.

12

The second observation: When targeting the distinguisher reaching the largest number
of rounds, according to our analysis, it is inevitable to activate some 8-bit S-boxes and the
S-boxes are applied in parallel to a 32-bit state word in FSM. In addition, there is a 1-bit
right shift operation on W t−1 at the t-th clock, whose value is highly related to the two
registers in FSM. Therefore, we will only treat the following four different types of linear
relations as potential biased linear relations when targeting an attack on 15 + t rounds:

1. The first type of linear relations is only in terms of δSt
15[i] for i ∈ [0, 14].

2. The second type of linear relations is only in terms of δSt
15[i] for i ∈ [7, 22].

3. The third type of linear relations is only in terms of δSt
15[i] for i ∈ [15, 30].

4. The fourth type of linear relations is only in terms of δSt
15[i] for i ∈ {i|i ∈ [0, 6]}∪{i|i ∈

[23, 30]}, where ∪ is the union of sets.

Another benefit is that the memory complexity can be reduced from 231 to about 3×216

as we no longer need to store the full distribution table1 of δSt
15, i.e., storing the number

of times that δSt
15 takes the value i for each i ∈ GF (p). Instead, we only need to use 4

smaller tables to store the number of occurrences of δSt
15[14 : 0], δSt

15[22, 7], δSt
15[30 : 15]

and δSt
15[6 : 0]||δSt

15[30 : 23], respectively. The reduction in memory complexity also allows
to efficiently use multi-threaded programming as each thread only consumes negligible
memory.

4.3 Strategies to Inject Differences
With all the above observations in mind, we start considering whether it is possible to use
complex input differences to significantly improve the attack by fully utilizing the degrees
of freedom provided by the 256-bit key. To reach as many rounds as possible, the following
critical observation on the round update function will play a vital role to guide us to select
the best strategy to inject differences.

A critical observation on the round update function: As the active S-boxes will signifi-
cantly decrease the bias of a potential linear relation, it is necessary to make the active
S-boxes appear as late as possible. Suppose after t0 clocks, St0

15 is activated for the first
time, i.e., ∆St

15 = 0 for t ∈ [0, t0 − 1] and ∆St0
15 ̸= 0.

Then, after 4 more clocks, we have St0+4
11 = St0

15. If ∆St0+4
11L ≠ 0, at clock t0 + 5, during

the update in FSM, the active S-boxes will appear. Therefore, for a good input difference,
∆St0

15 should satisfy the following constraint after t0 clocks. In this way, at clock t0 + 5, no
active S-box will appear even if ∆St0

15 ̸= 0.

∆St0
15L = 0, ∆St0

15H ̸= 0.

Indeed, we can further impose that after t0 + 1 clocks, ∆St0+1
15 should satisfy

∆St0+1
15L = 0, ∆St0+1

15H ̸= 0.

In this way, at clock t0 +6, still no active S-box appears in FSM since ∆St0+5
11L = ∆St0+1

15L .
In other words, only starting from clock t0 + 7, the active S-boxes will appear since
∆St0+6

9H = ∆St0
15H ̸= 0. Without the above constraints on ∆St0

15, the active S-boxes will
appear starting from clock t0 + 5. Without the further constraints on ∆St0+1

15 , the active
S-boxes will appear starting from clock t0 + 6. Therefore, by properly choosing an input
difference, there is a great potential to extend a simple attack by two rounds, where only 1
round of update in FSM is required to be approximated. An intuitive explanation can be
referred to Figure 2.

1In [BM20], it is necessary to store it in order to detect a biased linear relation from it via Walsh-
Hadamard Transform (WHT).

13

1 round

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

S15

S15H S14L

S14 S13 S12 S11 S10 S9 S8 S7 S5 S4 S3 S1 S0

S11L S9H S7L S5H S2L S0H
X0 X1 X2 X3

S6 S2

(t0 − 2) rounds

? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

??

(t0 − 1) state words (17− t0) state words

1 round

? ??

? ? ? ?

1 round

? ? ?

No active S-box.

No active S-box.

? ?

No active S-box. 3 rounds

? ?? ? ? ? ?

No active S-box. 2 rounds

? ?

? ?

? ? ? ? ? ?

? ? ? ? ? ?? ?

?

?

?

1 round

1 round

The active S-box appears.

The active S-box starts affecting LFSR.

input difference

(t0 + 8) rounds

· · · · · ·

· · · · · ·

· · · · · ·

· · ·

· · ·

· · ·

· · ·

?zero difference unknown difference

Figure 2: The big picture of our attacks

14

Based on the above analysis, it is now clear that to reach as many rounds as possible,
it is necessary to identify an input difference such that t0 is as large as possible and that
the above constraints on ∆St0

15 and ∆St0+1
15 should hold.

According to Proposition 1, to ensure ∆St0
15L = 0 and ∆St0+1

15L = 0, there must be
δSt0

15L ∈ {0, 0xffff} and δSt0+1
15L ∈ {0, 0xffff}. However, we emphasize that even if

δaL ∈ {0, 0xffff}, it is still possible that ∆aL ̸= 0 since there still exist some signed
differences expanded from δa such that ∇a[i] ∈ {n, u} for some i ∈ [0, 15].

However, if δSt0
15L ∈ {0, 0xffff} and δSt0+1

15L ∈ {0, 0xffff} does not hold, there
could not be ∆St0

15L = 0 or ∆St0+1
15L = 0. In other words, if δSt0

15L ∈ {0, 0xffff} and
δSt0+1

15L ∈ {0, 0xffff} hold, it is possible to have ∆St0
15L = 0 and ∆St0+1

15L = 0 in sufficiently
many samples. In addition, for some δa, there is a high probability that ∆aL = 0, e.g.
δa = 0x10000.

Can we simply improve the attack? The above analysis is simple. Indeed, the 28-round
related-key distinguisher in [BM20] is obtained without the above constraints taken into
account. Then, it is natural to ask whether we can slightly modify the input difference
in [BM20] to attack more rounds. Specifically, is there an input difference (δS0

2 , δS0
6)

such that 220 · δS0
6 ⊞ 257 · δS0

2 = 0, δS0
2 [22 : 16] ∈ {0, 0x7f}, δS0

6H ∈ {0, 0xffff} and
δS7

15L ∈ {0, 0xffff}, where δS7
15 = 257 · δS0

6?
A simple loop for 216 − 2 possible values of δS0

6 shows that there does not exist a
non-zero δS0

6 which can make all the above conditions hold.

Advanced strategies: inject differences in 11 state words in LFSR. As stated before, to
reach as many rounds as possible, it is necessary to make t0 as large as possible such that
δSt0

15 ≠ 0 and δSi
15 = 0 for i ∈ [0, t0 − 1]. In addition, there should be δSt0

15L ∈ {0, 0xffff}
and δSt0+1

15L ∈ {0, 0xffff}. In this way, it is expected that we can find a biased linear
relation in δSt0+23

0 = δSt0+4+2+2
15 = δSt0+8

15 by pure simulations as only 1 round of update
in FSM needs to be approximated. In other words, it is possible to construct a distinguisher
for up to (t0 + 23) initialization rounds with practical time complexity.

After careful analysis, for ZUC-256, we choose t0 = 8 and will inject differences in S0
i

for i ∈ [0, 10]. If there is a solution to δS0
i (i ∈ [0, 10]), we can expect a practical attack on

31 rounds of ZUC-256.
For ZUC-256-v2, due to the fact that too many state bits of S0

i are restricted to
constants, we choose t0 = 7 and will again inject differences in S0

i for i ∈ [0, 10]. If there
exists a solution to δS0

i (i ∈ [0, 10]), we can expect a practical attack on 30 rounds of
ZUC-256-v2.

The pattern of the input difference is depicted in Figure 3.

S
0

15
S
0

14
S
0

13
S
0

12
S
0

11
S
0

10
S
0

9
S
0

8
S
0

7
S
0

6
S
0

5
S
0

4
S
0

3
S
0

2
S
0

1
S
0

0

Figure 3: The illustration of the input difference (marked in gray).

The big picture of our attacks: In a word, we expect to find an input difference satisfying
the pattern illustrated in Figure 3 such that

∆St
15 = 0 for t ∈ [0, t0 − 1],

∆St0
15L = 0,

∆St0+1
15L = 0

15

hold with a probability close to 1. This has already been illustrated in Figure 2. As
the input difference is so complex and the constraints are so strong, finding such an
input difference requires lots of efforts and is rather challenging. Indeed, it is not difficult
to observe this problem is very similar to finding collisions. In the following, we will
describe how to construct equations to make these constraints hold and how to solve the
corresponding equations.

4.4 More Details of the Strategies
To mount the attack on 31 rounds of ZUC-256, the problem now becomes how to find
δS0

i (i ∈ [0, 10]) such that δSt
15 = 0 (t ∈ [1, 7]). To achieve this, we need to consider the

following conditions:

Clock 1: At the first clock, it is required that

221 · δS0
10 ⊞ 220 · δS0

4 ⊞ 257 · δS0
0 = 0, ∆S0

5H ̸= 0, ∆S0
7L = 0, ∆S0

9H = 0.

In this way, after the first clock, δS1
15 = 0 holds. In addition, ∆R1

1 = 0 and
∆R1

2 ̸= 0, i.e., there will be differences appearing in FSM.

Clock 2: At the second clock, it is required that

((R1
2 ⊕ ∆R1

2) ≫ 1) ⊟ (R1
2 ≫ 1) ⊞ 220 · δS0

5 ⊞ 257 · δS0
1 = 0,

∆S0
8L = ∆R1

2H , ∆S0
10H = 0.

In this way, after the second clock, ∆R2
1 = 0 and ∆R2

2 ̸= 0.

Clock 3: At the 3rd clock, we need

((R2
2 ⊕ ∆R2

2) ≫ 1) ⊟ (R2
2 ≫ 1) ⊞ 220 · δS0

6 ⊞ 257 · δS0
2 = 0,

∆S0
9L = ∆R2

2H .

Again, after 3 clocks, δS3
15 = 0, ∆R3

1 = 0 and ∆R3
2 ̸= 0.

Clock 4: At the 4th clock, we need

((R3
2 ⊕ ∆R3

2) ≫ 1) ⊟ (R3
2 ≫ 1) ⊞ 220 · δS0

7 ⊞ 257 · δS0
3 = 0,

∆S0
10L = ∆R3

2H , ∆S0
8H = ∆R3

2L.

Similarly, there will be δS4
15 = 0. Due to the last two equations, ∆R4

1 = 0 and
∆R4

2 = 0 will hold. This implies that the difference in FSM is cancelled after 4
clocks.

Clock 5: At the 5th clock, the conditions become much simpler, as shown below:

220 · δS0
8 ⊞ 257 · δS0

4 = 0, ∆S0
9H = 0.

In this way, δS5
15 = 0, ∆R5

1 = 0 and ∆R5
2 = 0.

Clock 6: At the 6th clock, we need

220 · δS0
9 ⊞ 257 · δS0

5 = 0, ∆S0
10H = 0.

Then, δS6
15 = 0, ∆R6

1 = 0 and ∆R6
2 = 0.

Clock 7: At the 7th clock, we need the following equation to make δS7
15 = 0.

220 · δS0
10 ⊞ 257 · δS0

6 = 0.

16

Clock 8: At the 8th clock, it is required that

(257 · δS0
7)[15 : 0] ∈ {0, 0xffff}.

Clock 9: At the 9th clock, it is required that

(215 · (257 · δS0
7) ⊞ 257 · δS0

8)[15 : 0] ∈ {0, 0xffff}.

With all the above conditions satisfied, we can expect to find an attack on 31 rounds
of ZUC-256. It is not difficult to imagine that the most technical and difficult part is how
to cancel the difference in FSM after 4 clocks, where XOR differences, modular differences
and value transitions are involved. For better understanding, how to cancel the difference
in FSM after 4 clocks is depicted in Figure 4.

The obstacle to attack 32 or more initialization rounds: After presenting the strategy
for the 31-round attack, it is natural to ask whether we have tried to attack 32 initialization
rounds by making t0 = 9. Indeed, we have made some analysis of it. However, choosing
t0 = 9 implies that 220 · δS0

11 ⊞ 257 · δS0
7 = 0 should hold. As δS0

7 ̸= 0, it is necessary
to have δS0

11 ̸= 0. Obviously, we expect that ∆S0
11H = 0 in order that the difference in

FSM can be cancelled as early as possible, just as in our 31-round attack where ∆S0
9H = 0

and ∆S0
10H = 0. Otherwise, whether it is possible to cancel the difference in FSM is

questionable. If ∆S0
11H = 0, there must be ∆S0

11L ̸= 0. Then, we need to cancel the
difference in FSM after 5 clocks, which is one more clock than that in the 31-round attack.
However, at the fifth clock, there should also be ∆S0

9H ̸= 0 in order to fully cancel the
difference in FSM. This is due to the MDS property of the linear transform L2. Specifically,
supposing a = (a3, a2, a1, a0) ∈ F4

28 and b = (b3, b2, b1, b0) ∈ F4
28 are the input and output

of L2, respectively, when there are two bytes in a that are zero, there will be at least
3 non-zero bytes in b. Once ∆S0

9H ̸= 0, it is required to cancel the non-zero difference
caused by the two registers in FSM. Currently, we cannot find a feasible way to handle
the propagation of the differences in both registers in FSM. Hence, we leave it as an open
problem to further extend our attacks to more rounds, e.g. the full 33 rounds.

⊕ 0 0

0 0 0 0

0 0

∆S
0
5H

0 0

S ◦ L2

shift for registers

? ?

? ?

? ? ? ?

⊕

0 0

∆S
0
6H

0 0

S ◦ L2

shift for registers

? ?

? ?

? ? ? ?

∆S
0
8L

? ?

∆R
1
2

∆R
2
2

? ?

? ?

∆R
0
2

⊕

0 0

0 0

S ◦ L2

shift for registers

? ?

? ?

? ? ? ?

⊕

∆S
0
8H

? ?

∆S
0
10L

? ?

∆R
3
2

? ?

∆R
2
2

? ? ? ?
∆S

0
7H∆S

0
9L

? ?

0 0 0 0

S ◦ L2

shift for registers

∆R
4
2

0 0 0 0

0 0 0 0

Figure 4: The difference transitions in FSM for the first 4 clocks.

17

Tweaking the strategy for ZUC-256-v2: Another question naturally arises, which is
whether it is possible to apply this strategy to 31 initialization rounds of ZUC-256-v2.
Note that in this case we need (257 · δS0

7)[15 : 0] ∈ {0, 0xffff} and ∆S0
7L = 0. Due to

the modification of the loading scheme, ∆S0
7 [22 : 16] = 0 should also hold as these 7 bits

are constant. However, for the old loading scheme, we only need to ensure 1-bit extra
condition ∆S0

7 [22] = 0. In other words, there are at most 29 − 2 possible non-zero values
left for δS0

7 , i.e., δS0
7 [22 : 0] ∈ {0, 0x7fffff}. A simple loop for all possible values of

δS0
7 suggests that there does not exist a value satisfying (257 · δS0

7)[15 : 0] ∈ {0, 0xffff}.
Consequently, the above strategy cannot be simply applied to 31 initialization rounds of
ZUC-256-v2. However, we emphasize that this does not prove the resistance against this
attack vector as there may exist some more advanced strategies to inject differences and
to control the difference transitions in FSM.

The strategy to inject differences for 30-round ZUC-256-v2: Since the 31-round attack
fails for ZUC-256-v2, we turn to the attack on 30-round ZUC-256-v2. The overall strategy
to inject differences is the same, i.e., the difference will be still injected in 11 state words,
i.e., S0

i for i ∈ [0, 10]. Specifically, the conditions at clock i for i ∈ [1, 6] are the same as
that in the 31-round attack. For clock 7 and clock 8, we need to modify the conditions as
follows:

1. At the 7th clock, we need

(220 · δS0
10 ⊞ 257 · δS0

6)[15 : 0] ∈ {0, 0xffff}.

2. At the 8th clock, it is required that

(215 · (220 · δS0
10 ⊞ 257 · δS0

6) ⊞ 257 · δS0
7)[15 : 0] ∈ {0, 0xffff}.

As for clock 9, we no longer add strict conditions. One may ask why we need to inject
a difference at S0

10 in the 30-round attack since the following conditions also have the
potential to reach 30 rounds.

(257 · δS0
6)[15 : 0] ∈ {0, 0xffff},

(215 · (257 · δS0
6) ⊞ 257 · δS0

7)[15 : 0] ∈ {0, 0xffff}.

However, not injecting a difference in S0
10 also implies that the difference in FSM should

be cancelled after 3 clocks due to the MDS property of L2, i.e., ∆R3
2 = 0 and ∆S0

8H = 0.
Then, there will be the following condition as ∆R3

2 = 0:

220 · δS0
7 ⊞ 257 · δS0

3 = 0.

Note that for the new loading scheme, ∆S0
i [22 : 16] = 0 for i ∈ [0, 15] as these

7 bits are constant. Hence, δS0
3 [22 : 16] ∈ {0, 0x7f}, δS0

6 [22 : 16] ∈ {0, 0x7f} and
δS0

7 [22 : 0] ∈ {0, 0x7fffff}. A simple loop for the 29 − 2 possible values of δS0
7 and the

216 − 2 possible values of (257 · δS0
6) indicates that there does not exist any valid solution

to (δS0
3 , δS0

6 , δS0
7) satisfying the above three constraints.

Therefore, we need to inject a difference in S0
10 as it relaxes the constraint on (δS7, δS3).

Specifically, there will be ∆R3
2 ̸= 0 and the constraint on (δS0

7 , δS0
3) becomes

((R3
2 ⊕ ∆R3

2) ≫ 1) ⊟ (R3
2 ≫ 1) ⊞ 220 · δS0

7 ⊞ 257 · δS0
3 = 0.

Another benefit to use this strategy to attack 30-round ZUC-256-v2 is that we can
reuse the code to search for the input differences to attack 31-round ZUC-256 since the
core problem is the same, i.e., how to cancel the differences in FSM after 4 clocks. In the
following, we will describe how to tackle this core problem.

18

4.5 Searching for Valid Differences
As explained above, to mount attacks on 31-round ZUC-256 and 30-round ZUC-256-v2,
respectively, it is necessary to use complex input differences satisfying a set of equations.
The equations are rather complicated as the modular difference, the XOR difference and
the value transitions are all involved. To efficiently find a solution to these equations, we
utilize a three-step method, as stated below:

0 0

0 0

S ◦ L2

shift for registers

? ?

? ? ? ?

⊕

∆S0
8H

? ?

∆S0
10L

? ?

∆R3
2

? ?

0 0 0 0

∆IN3

⊕ 0 0

0 0 0 0

0 0

∆S0
5H

0 0

S ◦ L2

shift for registers

? ?

? ?

? ? ? ?

⊕

0 0

∆S0
6H

? ?

∆S0
8L

? ?

∆R1
2

? ?

? ?

∆R0
2

∆Y1

CheckCompute

R1

2
S5H

Step 1

Step 2? ? ? ?

⊕

0 0

∆S0
6H

? ?

∆S0
8L

? ?

∆R1
2

? ?

∆Y1

0 0

S ◦ L2

shift for registers

? ?

? ? ? ?

∆R2
2

⊕

0 0

? ?

? ?

∆S0
7H∆S0

9L

? ?

∆Y2

CheckCompute

R2

2
S6H

? ? ? ?

∆R2
2

⊕

0 0

? ?

? ?

∆S0
7H∆S0

9L

? ?

∆Y2

∆IN3

CheckCheck

∆IN3 S7H

Step 3 Step 4

Compute

∆IN3, IN3, R
3

2

Figure 5: The procedure to find valid difference transitions and value transitions in FSM
for the first 4 clocks.

Step 1: Pick a solution to the modular differences (δS0
0 , δS0

4 , δS0
8 , δS0

10, δS0
6 , δS0

7) that does
not contradict the equations. Then, based on the enumeration algorithms de-
scribed in Subsection 3.3, compute the set of XOR differences SET∆S0

6H
, SET∆S0

7H
,

SET∆S0
10L

, (SET∆S0
8H

, SET∆S0
8L

) for ∆S0
6H , ∆S0

7H , ∆S0
10L and (∆S0

8H , ∆S0
8L), re-

spectively, where (∆S0
8H , ∆S0

8L) can always correspond to a valid signed difference
expanded from δS0

8 .

Step 2: Pick a solution to δS0
9 such that ∆S0

9H = 0 and compute δS0
5 = 257−1 ·(p⊟220 ·δS0

9).
According to Enumeration-L, compute the set of all possible ∆S0

9L denoted by
SET∆S0

9L
. According to Enumeration-H, compute the set of all possible ∆S0

5H

denoted by SET∆S0
5H

Step 3: Only (δS0
1 , δS0

2 , δS0
3) are unknown. To determine whether there exists a solution to

(δS0
1 , δS0

2 , δS0
3) and to find the solution if there exists one, Procedure-DiCancel

[described in the following part] will be called, which is used to find valid difference
transitions and value transitions in FSM such that the differences in FSM can be
cancelled after 4 clocks. If there is no output in Procedure-DiCancel, move to
Step 2. Otherwise, a solution to the input difference is found.

19

We emphasize that the values of (δS0
0 , δS0

4 , δS0
8 , δS0

10, δS0
6 , δS0

7 , δS0
9) will be carefully

picked, the details of which will be explained later. In the following, we mainly focus on
how to cancel the differences in FSM after 4 clocks given the knowledge of (δS0

5 , δS0
6 , δS0

7)
and the set of XOR differences: SET∆S0

5H
, SET∆S0

6H
, SET∆S0

7H
, (SET∆S0

8H
, SET∆S0

8L
),

SET∆S0
9L

and SET∆S0
10L

.

Cancelling the differences in FSM after the first 4 clocks: Given the knowledge of
the above modular differences and the sets of XOR differences, in the following, we will
describe how to find valid solutions of (R1

2, R2
2, R3

2), (∆R1
2, ∆R2

2, ∆R3
2) and (δS0

1 , δS0
2 , δS0

3)
satisfying

((Ri
2 ⊕ ∆Ri

2) ≫ 1) ⊟ (Ri
2 ≫ 1) ⊞ 220 · δS0

i+4 ⊞ 257 · δS0
i = 0 for i ∈ [1, 3],

∆S0
8L = ∆R1

2H , ∆S0
9L = ∆R2

2H , ∆S0
10L = ∆R3

2H , ∆S0
8H = ∆R3

2L.

For better understanding, we recommend to refer to Figure 5 when reading this part. It
should be emphasized that there are conditions on some bits of (S0

5H , S0
6H , S0

7H) imposed
by the constant bits. For ZUC-256, the conditions are

S0
5H [7] = 1, S0

6H [7] = 1, S0
7H [7] = 1.

For ZUC-256-v2, the conditions are

S0
5H [7 : 1] = D5, S0

6H [7 : 1] = D6, S0
7H [7] = D7.

For simplicity, denote these conditions on (S0
5H , S0

6H , S0
7H) by (Con5, Con6, Con7).

The whole procedure can be divided into 4 steps, as detailed below. In general, the
main idea is to use the depth-first search and a meet-in-the-middle strategy. Let us call
this procedure Procedure-DiCancel.

Step 1: Handle the difference transitions at the 3rd clock, i.e., make ∆R3
2 = ∆S0

10L||∆S0
8H .

For simplicity, let ∆IN3 = ∆R2
2L ⊕ ∆S0

7H , i.e., ∆IN3 is a 16-bit value. Traverse
all the 216 possible values of ∆IN3 and compute ∆T3 = L2(∆IN3 ≪ 16) for
each ∆IN3. For each ∆T3, traverse all possible ∆S0

10L||∆S0
8H where ∆S0

10L ∈
SET∆S0

10L
and ∆S0

8H ∈ SET∆S0
8H

. For each pair (∆T3, ∆S0
10L||∆S0

8H), check
whether ∆T3 → ∆S0

10L||∆S0
8H is a valid difference transition according to the

differential distribution table (DDT) of the used 4 parallel S-boxes. If it is a
valid difference transition, compute the corresponding pair of outputs (R3

2, R3
2 ⊕

(∆S0
10L||∆S0

8H)) satisfying this difference transition and compute δS0
3 as follows:

δS0
3 = 257−1 · (p ⊟ (((R3

2 ⊕ (∆S0
10L||∆S8H)) ≫ 1) ⊟ (R3

2 ≫ 1) ⊞ 220 · δS0
7)).

If δS0
3 [22 : 16] ∈ {0, 0x7f}, compute IN3 = (L−1

2 ◦ S−1(R3
2)) ≫ 16 and insert the

tuple (∆T3, R3
2, IN3, δS0

3 , ∆S0
10L, ∆S0

8H) into the ∆IN3-th row of the 2-dimensional
array ARR3. Otherwise, try another valid pair of outputs. If all valid pairs of
outputs are traversed, consider the next candidate of ∆S0

10L||∆S0
8H and repeat

the same procedure. After all the possible values of ∆IN3 are traversed, move to
Step 2.

Step 2: Handle the difference transitions at the 1st clock. Specifically, traverse each element
in SET∆S0

5H
. For each ∆S0

5H ∈ SET∆S0
5H

, compute ∆T1 = L2(∆S0
5H ≪ 16). For

each ∆T1, traverse all possible ∆S0
8L||∆Y1 where ∆S0

8L ∈ SET∆S0
8L

and ∆Y1 ∈
[0, 216 − 1]. For each pair (∆T1, ∆S0

8L||∆Y1), check whether ∆T1 → ∆S0
8L||∆Y1 is

a valid difference transition according to the DDT of the used 4 parallel S-boxes.
If it is a valid difference transition, compute the corresponding pair of outputs

20

(R1
2, R1

2⊕(∆S0
8L||∆Y1)) satisfying this difference transition and compute (δS0

1 , S0
5H)

as follows:

δS0
1 = 257−1 · (p ⊟ (((R1

2 ⊕ (∆S0
8L||∆Y1)) ≫ 1) ⊟ (R1

2 ≫ 1) ⊞ 220 · δS0
5)),

S0
5H = (L−1

2 ◦ S−1(R1
2)) ≫ 16.

When δS0
1 [22 : 16] ∈ {0, 0x7f}, the tuple (S0

5H , S0
5H ⊕ ∆S0

5H , δS0
5) can pass the

test of Verification-H (see Subsection 3.3) and Con5 holds, move to Step 3. If
these constraints cannot be satisfied, try another pair of outputs until all pairs are
traversed.

Step 3: Handle the difference transitions at the 2nd clock. For each ∆S0
6H ∈ SET∆S0

6H
,

compute ∆T2 = L2((∆S0
6H ⊕ ∆Y1) ≪ 16). For each ∆T2, traverse all possi-

ble ∆S0
9L||∆Y2 where ∆S0

9L ∈ SET∆S0
9L

and ∆Y2 ∈ [0, 216 − 1]. For each pair
(∆T2, ∆S0

9L||∆Y2), check whether ∆T2 → ∆S0
9L||∆Y2 is a valid difference transi-

tion according to the DDT of the used 4 parallel S-boxes. If it is, compute the
corresponding pair of outputs (R2

2, R2
2 ⊕ (∆S0

9L||∆Y2)) satisfying this difference
transition and compute (δS0

2 , S0
6H).

δS0
2 = 257−1 · (p ⊟ (((R2

2 ⊕ (∆S0
9L||∆Y2)) ≫ 1) ⊟ (R2

2 ≫ 1) ⊞ 220 · δS0
6)),

S0
6H = ((L−1

2 ◦ S−1(R2
2)) ≫ 16) ⊕ R1

2L.

When δS0
2 [22 : 16] ∈ {0, 0x7f}, the tuple (S0

6H , S0
6H ⊕ ∆S0

6H , δS0
6) can pass the

test of Verification-H and Con6 holds, move to Step 4. Otherwise, try another
pair of outputs until all of them are traversed.

Step 4: Check the validity of S0
7H . For each ∆S0

7H ∈ SET∆S0
7H

, check the (∆S0
7H ⊕∆Y2)-th

row of ARR3. If this row is non-empty, traverse all the stored tuples in this row.
For each tuple, get the corresponding value IN3 and compute S0

7H as follows:

S0
7H = IN3 ⊕ R2

2L.

If the tuple (S0
7H , S0

7H ⊕ ∆S0
7H , δS0

7) can pass the test of Verification-H-M and
Con7 holds, a solution to the input difference is found and output the correspond-
ing (δS0

1 , δS0
2 , δS0

3), (R1
2, R2

2, R3
2), (S0

5H , ∆S0
5H), (S0

6H , ∆S0
6H), (S0

7H , ∆S0
7H), and

(∆R1
2, ∆R2

2, ∆R3
2) = (∆S0

8L||∆Y1, ∆S0
9L||∆Y2, ∆S0

10L||∆S0
8L). Otherwise, consider

the next tuple in this row until all of them are exhausted.

In the above procedure, (R1
2, R2

2, R3
2) are almost treated as independent of S0

i for
i ∈ [0, 15], which is indeed not the fact. In the following, the IV-correcting technique will
be used to deal with such an assumption.

4.6 The IV-Correcting Technique
For an arbitrary solution to (R1

2, R2
2, R3

2) found in Procedure-DiCancel, we demonstrate
that it is always possible to find an assignment to (K, IV) leading to this solution. The
basic idea is to carefully study the update on the two registers in FSM at the first 3 clocks,
as specified below:

R1
1 = S ◦ L1(S0

9H ||S0
7L), R1

2 = S ◦ L2(S0
5H ||S0

11L),
U = R1

1 ⊞32 (S0
12L||S0

10H),
R2

1 = S ◦ L1(UL||(R1
2H ⊕ S0

8L)), R2
2 = S ◦ L2((R1

2L ⊕ S0
6H)||UH),

V = R2
1 ⊞32 (S0

13L||S0
11H), R3

2 = S ◦ L2((R2
2L ⊕ S0

7H)||VH).

21

Note that (S0
5H , S0

6H , S0
7H) have been determined in Procedure-DiCancel and they will

not contradict with (R1
2, R2

2, R3
2). Hence, the next task is to determine

(S0
9H , S0

7L, S0
11L, S0

12L, S0
10H , S0

8L, S0
13L, S0

11H),

which can be finished as follows:

1. Modify S0
11L with S0

11L = (L−1
2 ◦ S−1(R1

2))L.

2. Compute UH with UH = (L−1
2 ◦ S−1(R2

2))L.

3. For arbitrarily given (S0
9H , S0

7L), compute R1
1 with R1

1 = S ◦ L1(S0
9H ||S0

7L).

4. For arbitrarily given S0
10H , compute UL with UL = (R1

1 + S0
10H) ∧ 0xffff.

5. Modify S0
12L with S0

12L = ((UH ||UL) ⊟32 R1
1)H .

6. For arbitrarily given S0
8L, compute R2

1 with R2
1 = S ◦ L1(UL||(R1

2H ⊕ S0
8L)).

7. Compute VH with VH = (L−1
2 ◦ S−1(R3

2))L.

8. For arbitrarily given S0
11H with S0

11H [0] = S0
11L[15], compute VL with VL = (R1

2 +
S0

11H) ∧ 0xffff.

9. Modify S0
13L with S0

13L = ((VH ||VL) ⊟32 R2
1)H .

In other words, for any assignment to (S0
9H , S0

7L, S0
10H , S0

8L, S0
11H), it is always possible to

find the corresponding assignment to (S0
11L, S0

12L, S0
13L) with time complexity 1 such that

they can lead to the given solution to (R1
2, R2

2, R3
2). Note that in both the old and new

loading schemes, (S0
11L, S0

12L, S0
13L) are all loaded with IV bits. This is why we call it the

IV-correcting technique.

Application to ZUC-256: According to the loading scheme for (S0
5 , S0

6 , S0
7), it is necessary

to fix (IV0, IV1, IV10, IV17, IV18, IV19) and (K5[7], K6[7], K7[7]).
Then, as

S0
7L = K7||IV2, S0

8L = IV3||IV11, S0
9H = K9||1||IV21||IV12[7],

S0
10H = IV5||1||IV22||K10[7], S0

11H = K11||1||IV23||IV6[7],
S0

11L = IV6||IV13, S0
12L = IV7||IV14, S0

13L = IV5||IV8,

we can say that for arbitrarily given (K7[6 : 0], K9, K10[7], K11), it is always possible to
find the corresponding assignment to IV such that a given solution to (R1

2, R2
2, R3

2) can be
satisfied.

Application to ZUC-256-v2: Similarly, based on the loading scheme for (S0
5 , S0

6 , S0
7), it

is necessary to fix (K5, K6, K7, K21[7], K22[7]) and IV0[7].
Then, since

S0
7L = IV0||IV8, S0

8L = IV1||IV9, S0
9H = K9||D9||IV2[7],

S0
10H = K10||D10||IV3[7], S0

11H = K11||D11||IV4[7],
S0

11L = IV4||IV12, S0
12L = IV5||IV13, S0

13L = IV6||IV14,

we can say that for arbitrarily given (K9, K10, K11), it is always possible to find the
corresponding assignment to IV that can lead to the given solution to (R1

2, R2
2, R3

2).

22

Feasibility for the key recovery: If the involved key bits are wrongly guessed and we still
modify IV bits as above, this assignment to IV indeed cannot lead to the given solution to
(R1

2, R2
2, R3

2) and hence the difference in FSM cannot be cancelled after 4 clocks. However,
due to the small influence of the value of S0

11H on the modification of S0
13L, i.e., only

VH is constrained by R3
2 and V = R1

2 ⊞32 (S0
13L||S0

11H), a wrong guess for the key bits
loaded into S0

11H may still lead to the targeted (R1
2, R2

2, R3
2). However, for key bits loaded

in (S0
7L, S0

9H , S0
10H), due to the influence of the L1, L2 and S operations, it is almost

impossible that they can still lead to the required (R1
2, R2

2, R3
2) if they are wrongly guessed.

Hence, it is very likely that we can recover at least (K7[6 : 0], K9, K10[7]) and (K9, K10)
for ZUC-256 and ZUC-256-v2, respectively.

5 Launching the Search
Finally, we are left with the problem of how to choose a proper solution to

(δS0
0 , δS0

4 , δS0
8 , δS0

10, δS0
6 , δS0

7 , δS0
9)

as the input to Procedure-DiCancel.

5.1 Picking (δS0
0, δS0

4, δS0
8, δS0

10, δS0
6, δS0

7, δS0
9) for ZUC-256

In our 31-round attack, it is required that

221 · δS0
10 ⊞ 220 · δS0

4 ⊞ 257 · δS0
0 = 0,

220 · δS0
i+4 ⊞ 257 · δS0

i = 0 for i ∈ [4, 6],
(257 · δS0

7)[15 : 0] ∈ {0, 0xffff},

(215 · (257 · δS0
7) ⊞ 257 · δS0

8)[15 : 0] ∈ {0, 0xffff}.

We use a heuristic strategy to pick the solutions to the above system of equations. Specifi-
cally, we expect that δS0

6 can be written as δS0
6 = 2i + j where 0 < j < 214 and i ∈ [15, 30].

This is to keep the simplicity of δS0
6H . Then, for each such δS0

6 , we compute δS0
10 with

δS0
10 = (220)−1 ·(p⊟28 ·δS0

6) and choose the pair (δS0
6 , δS0

10) satisfying δS0
10H ∈ {0, 0xffff}

and H(δS0
10) ≤ 2. There are only a few solutions left and we pick the one satisfying that

there exists a signed difference ∇S0
10 expanded from δS0

10 whose Hamming weight is 2, i.e.,
H(∇S0

10) = 2.
Then, for the chosen δS0

10, we exhaust all the 225 − 2 possible values of δS0
4 satisfying

δS0
4 [22 : 16] ∈ {0, 0x7f} and compute the corresponding (δS0

0 , δS0
8) with

δS0
0 = 257−1 · (p ⊟ 221 · δS0

10 ⊟ 220 · δS0
4),

δS0
8 = (220)−1 · (p ⊟ 257 · S0

4).

When the computed δS0
0 satisfies δS0

0 [22 : 16] ∈ {0, 0x7f}, store the corresponding δS0
8 in

a table denoted by S8Diff.
Finally, we constrain that δS8

15 = 257 · δS0
7 satisfies δS8

15L = 0. Exhaust all the 215

possible values of δS8
15 and compute δS0

7 = 257−1 · δS8
15 for each δS8

15. If the computed δS0
7

satisfies δS0
7L ∈ {0, 0xffff} and H(δS0

7) = 1, exhaust all possible δS0
8 stored in S8Diff

and check whether (215 · δS8
15 ⊞ 257 · δS0

8)L = 0 and H((215 · δS8
15 ⊞ 257 · δS0

8)) ≤ 2 hold.
If all the conditions are satisfied, output the corresponding (δS0

7 , δS0
8 , δS0

4 , δS0
10, δS0

0 , δS0
6)

as the candidate. In our configuration, we choose

δS0
0 = 0x0d80db05, δS0

4 = 0x20ff011e, δS0
6 = 0x10001fe0,

δS0
7 = 0x00020000, δS0

8 = 0x7f04fdff, δS0
10 = 0x7ffffefd.

23

For such a choice,

δS8
15 = 257 · δS0

7 = 0x02020000, (215 · δS8
15 ⊞ 257 · δS0

8) = 0x04030000.

As already mentioned, δS8
15L = 0 does not necessarily imply ∆S8

15L = 0. For our choice, to
make ∆S8

15L ̸= 0, i.e., ((S8
15 ⊞ δS8

15) ⊕ S8
15)L ̸= 0, it is required that S8

15[30 : 25] = 0x3f or
(S8

15[30 : 26] = 1f, S8
15[24 : 17] = 0xff), which holds with probability of about 2−6. This

also shows why we choose such modular differences, i.e., ∆S0
15L = 0 holds with a relatively

high probability of about 1 − 2−6. Similar analysis also applies to 0x04030000.
Finally, we determine the value of δS0

9 such that H(G) is small where

G = 215 · (215 · δS8
15 ⊞ 257 · δS0

8 ⊞ δS8
15) ⊞ 257 · δS0

9 .

In our configuration, we use δS0
9 = 0x7ffffdfb, which will cause G = 0x7ffe0000 and

H(G) = 1.
For the above choice of (δS0

0 , δS0
4 , δS0

8 , δS0
10, δS0

6 , δS0
7 , δS0

9 , δS0
5), we first compute the

set of XOR differences: SET∆S0
5H

, SET∆S0
6H

, SET∆S0
7H

, (SET∆S0
8H

, SET∆S0
8L

), SET∆S0
9L

and SET∆S0
10L

. Then, Procedure-DiCancel is used to determine the remaining unknown
variables. It is found that the program outputs many solutions in seconds. One solution is
shown in Table 2.

Table 2: The input difference for the attack on 31-round ZUC-256, where the positions to
set constants in the loading scheme are marked in red.

i δS0
i ∇S0

i

0 0x0d80db05 === nn=n n=== ==== nn=n n=nn ==== =n=n
1 0x7c00fb01 === =u== ==== ==== nnnn n=nn ==== ==n=
2 0x047f38cb === =n== n=== ==== uu== u=== nn== n=nn
3 0x7f8034c3 === ==== u=== ==== ==nn =n== nn== =n==
4 0x20ff011e =n= ===n ==== ==== uuuu uuuu ==n= ==u=
5 0x20003fc0 nu0 0001 111n uuuu uu== ==== =u== ====
6 0x10001fe0 00n 1010 0101 1101 nuu= ==== ==u= ====
7 0x00020000 110 1101 0110 1nu0 1=== ==== ==== ====
8 0x7f04fdff === unnn ==== =n=n ===u nnn= ==== ====
9 0x7ffffdfb === ==== ==== ==== ==== ==uu nnnn nn==
10 0x7ffffefd === ==== ==== ==== ==== ===u =unn nnn=
δS0

j = 0 for j ∈ [11, 15].
R1

2 = 0xc99de9d6, R2
2 = 0xb7b8cf96, R3

2 = 0xfaf5498c
∆R1

2 = 0x1e000604, ∆R2
2 = 0x03fc0870, ∆R3

2 = 0x017e1e0a

In the search, we made an implicit assumption that

((β′ ⊞32 γ) ≫ 1) ⊟ ((β ⊞32 γ) ≫ 1) = (β′ ≫ 1) ⊟ (β ≫ 1), (9)

where β′, γ, β ∈ F32
2 . For the input difference displayed in Table 2, there are three possible

pairs for (β′, β), as shown below:

(0xc99de9d6 ⊕ 0x1e000604 = 0xd79defd2, 0xc99de9d6),
(0xb7b8cf96 ⊕ 0x03fc0870 = 0xb444c7e6, 0xb7b8cf96),
(0xfaf5498c ⊕ 0x017e1e0a = 0xfb8b5786, 0xfaf5498c).

For each pair (β′, β), we then exhaust all the 232 possible values for γ and count the
number of γ which can make Equation 9 hold. It is found that for the three possible pairs
(β′, β), Equation 9 holds with probability of 2−0.08, 2−0.02 and 2−0.01, respectively. Hence,
this assumption is reasonable.

24

Remark. Note that we can choose different signed differences (∇S0
0 , ∇S1

1 , ∇S1
2 , ∇S1

3 , ∇S1
4)

based on (δS0
0 , δS0

1 , δS0
2 , δS0

3 , δS1
4).

The reason is that we only need to ensure ∆S0
i [22 : 16] = 0 for i ∈ [0, 4]. For

∇S0
5 and ∇S0

6 , as there are strong conditions on (∆S0
5H , ∆S0

6H), (∇S0
5H , ∇S0

6H) have
to be fixed. Then, only (∇S0

5 [14 : 0], ∇S0
6 [14 : 0]) can take some other forms. As for

(∇S0
7 , ∇S0

8 , ∇S0
9 , ∇S0

10), they have to be fixed due to the strong conditions on the XOR
differences. For example, the following signed differences are also valid, where the changed
parts are marked in blue.

∇S0
0 = === nn=n n=== ==== nn=n n=nn ==== =nnu,

∇S0
5 = nu0 0001 111n uuuu uu== ===u nn== ====.

5.2 Picking (δS0
0, δS0

4, δS0
8, δS0

10, δS0
6, δS0

7, δS0
9) for ZUC-256-v2

Note that some constraints in the 30-round attack are

221 · δS0
10 ⊞ 220 · δS0

4 ⊞ 257 · δS0
0 = 0,

220 · δS0
8 ⊞ 257 · δS0

4 = 0,

220 · δS0
9 ⊞ 257 · δS0

5 = 0,

(220 · δS0
10 ⊞ 257 · δS0

6)[15 : 0] ∈ {0, 0xffff},

(215 · (220 · δS0
10 ⊞ 257 · δS0

6) ⊞ 257 · δS0
7)[15 : 0] ∈ {0, 0xffff}.

Since S0
8H [7 : 1] is constant, for a given δS0

8 , we know that δS0
8H cannot take too many

values. Thus, to increase the possible values of ∆S0
10L||∆S0

8H , we choose a δS0
10 satisfying

δS0
10 = ±2i ± 2j for i, j ∈ [0, 14] and i ̸= j, where ± is addition or subtraction modulo p.

In this way, we can expect that the number of all possible ∆S0
10L is large.

For each such δS0
10, we make a loop for δS7

15 satisfying δS7
15 = ±2i for i ∈ [16, 29] and

compute δS0
6 = 257−1 · (δS7

15 ⊟ 220 · δS0
10). We then add a strong condition on δS0

6 , i.e.,
δS0

6 [30 : 16] ∈ {0, 0x7fff}. If this condition is satisfied, we next make a loop for the 29 − 2
possible values of δS0

7 and compute g = 215 · δS7
15 ⊞ 257 · δS0

7 . If gL ∈ {0, 0xffff} and
H(g ⊞ δS7

15) < 3, output the candidate (δS0
6 , δS0

7 , δS0
10).

For each candidate found with the above method, we compute the possible values of
δS0

8 . Specifically, exhaust all the 225 − 2 possible values of δS0
4 and compute

δS0
0 = 257−1 · (p ⊟ 221 · δS0

10 ⊟ 220 · δS0
4),

δS0
8 = (220)−1 · (p ⊟ 257 · S0

4)

for each δS0
4 . If δS0

0 [22 : 16] ∈ {0, 0x7f} and δS0
8 [22 : 16] ∈ {0, 0x7f}, we further compute

f0 = 220 · δS0
10 ⊞ 257 · δS0

6 , f1 = 215 · f0 ⊞ 257 · δS0
7 ⊞ f0 and f2 = 215 · f1 ⊞ 257 · δS0

8 ⊞ f1.
If H(f2) < 4, store the current δS0

8 in a table denoted by S8Table.
Based on the above heuristic strategy, in our configuration, we choose

δS0
0 = 0x017f82fd, δS0

4 = 0x6c00200f, δS0
6 = 0x0000fe02,

δS0
7 = 0x00800000, δS0

8 = 0x7e80c13d, δS0
10 = 0x7fffefef.

In this way,

δS7
15 = 0x7ffeffff, 215 · δS7

15 ⊞ 257 · δS0
7 = 0x800000.

Based on the above choice, we then make a loop for δS0
9 satisfying δS0

9 = ±2i for
i ∈ [0, 13]. For each δS0

9 , compute δS0
5 = 257−1 · (p ⊟ 220 · δS0

9) and check whether
δS0

5 [22 : 16] ∈ {0, 0x7f} holds. It is found that there exist such pairs for (δS0
5 , δS0

9). Then,
for each valid pair (δS0

5 , δS0
9), (δS0

0 , δS0
4 , δS0

8 , δS0
10, δS0

6 , δS0
7 , δS0

9 , δS0
5) are fully determined.

25

Table 3: The input difference for the attack on 30-round ZUC-256-v2, where the positions
to set constants in the loading scheme are marked in red.

i δS0
i ∇S0

i

0 0x017f82fd === ===n n=== ==== u=== ==nn ==== =u=n
1 0x037f2f49 === =n== u=== ==== uu=u ===u =n== n==n
2 0x1e00f305 =n= ==u= ==== ==== nnnn ==nn ==== =n=n
3 0x12fff85a ==n ==nn ==== ==== ==== u=== =n=n n=n=
4 0x6c00200f =u= nn== ==== ==== ==n= ==== ===n ====
5 0x007f00ff 001 110n u000 0101 uuuu uuuu ==== ===u
6 0x0000fe02 001 1101 1101 0001 nnnn nnn= ==== ==n=
7 0x00800000 111 0000 n100 0010 1=== ==== ==== ====
8 0x7e80c13d nnn nnn= n=== ==== nn=n uuu= uu== ==uu
9 0x00000008 === ==== ==== ==== ===n uuuu uuuu u===
10 0x7fffefef === ==== ==== ==== ==un unnn nnnn ====
δS0

j = 0 for j ∈ [11, 15].
R1

2 = 0xa21c991b, R2
2 = 0xcf1106f0, R3

2 = 0x32f0e1e3
∆R1

2 = 0xdec311a0, ∆R2
2 = 0x1ff810de, ∆R3

2 = 0x3ff0fd01

Similarly, we can use Procedure-DiCancel to determine the remaining unknown variables.
It is found that solutions are generated in seconds and one solution is shown in Table 3.

Similarly, it is necessary to take Equation 9 into account. The three pairs for (β′, β)
are

(0xa21c991b ⊕ 0xdec311a0 = 0x7cdf88bb, 0xa21c991b),
(0xcf1106f0 ⊕ 0x1ff810de = 0xd0e9162e, 0xcf1106f0),
(0x32f0e1e3 ⊕ 0x3ff0fd01 = 0x0d001ce2, 0x32f0e1e3).

For these three pairs, Equation 9 holds with probability of 2−0.23, 2−0.01 and 2−1, respec-
tively.

6 Searching for Biased Linear Relations
With the discovered input differences, the next step is to search for the best biased linear
relation via simulations as in [BM20]. Suppose we aim at an attack on t + 15 initialization
rounds.

The simulations are simple. First, construct four tables TAB0, TAB1, TAB2 and TAB3,
which are of size 215, 216, 216 and 215, respectively. The four tables are all initialized by
zero. Then, uniformly at random choose N pairs of (K, IV) and (K ′, IV ′) satisfying the
signed differences ∇S0

i for i ∈ [0, 15]. For each pair, use the IV-correcting technique to
correct IV such that the fixed (R1

2, R2
2, R3

2) can be satisfied and modify IV ′ accordingly
based on the signed differences, i.e., (IV, IV ′) has to satisfy certain signed differences.
Next, compute δSt

15[14 : 0], δSt
15[22 : 7], δSt

15[30 : 15] and δSt
15[6 : 0]||δSt

15[30 : 23]
for this pair and increase TAB0[δSt

15[14 : 0]], TAB1[δSt
15[22 : 7]], TAB2[δSt

15[30 : 15]] and
TAB3[δSt

15[6 : 0]||δSt
15[30 : 23]] by 1, respectively.

After N samples are all used, for the distribution table TABi, we apply Walsh-Hadamard-
Transform (WHT) to it and obtain the corresponding spectrum. Then, loop through the
spectrum and find the nonzero index where the absolute value is the largest. Denote the
spectrum at index j by Wj . Then, the absolute value of the bias for the linear mask j
can be computed as |Wj |/2W0. After applying WHT to the four tables, we pick the linear
mask whose bias is the largest and denote it by ϵ. To avoid the false-positive results,

26

similar to [BM20], we require that

N ≥ 24 × 1
ϵ2 . (10)

In other words, if Equation 10 cannot hold, we will increase N and repeat the same
procedure until we find a valid biased linear relation, i.e., Equation 10 holds.

The biased linear relation for 31-round ZUC-256: Based on the input difference in
Table 2, we found the following best biased linear relation with about 236.7 samples2.

Pr[δS31
0 [6] = 0] ≈ 0.5 + 2−13.5.

Hence, the time and data complexity3 of the attack on 31-round ZUC-256 are both
estimated as 21+27+1 = 229 as each pair corresponds to 2 inputs.

The attack procedure is essentially the same as in the simulation phase. Specifically, at
the first step, we randomly fix a pair of weak keys satisfying the conditions imposed by the
input difference. At the second step, we randomly generate about 228 IV pairs also satisfying
the signed difference. For each IV pair, we correct one with the IV-correcting technique
such that the conditions on (R1

2, R2
2, R3

2) can hold and modify the other according to the
condition on their XOR difference because the pair needs to satisfy the input difference.
After modifying each IV pair, we then compute δS31

0 [6] and count the number of times
when it takes 0. After processing all the 228 IV pairs, supposing there are N ′ IV pairs such
that δS31

0 [6] = 0, we expect that N ′/228 ≈ 0.5 + 2−13.5. The whole procedure is indeed
how the common linear attack is performed. The only difference is that we need to use the
IV-correcting technique to further modify each IV pair in order to correctly control the
difference transitions in FSM at the first few rounds. One can compare the IV-correcting
technique to the message modification technique for the MD-SHA hash family. In this way,
the role of the IV-correcting technique should be very clear.

The biased linear relation for 30-round ZUC-256-v2: Based on the input difference in
Table 3, the following biased linear relation is found with about 247 samples:

Pr[δS30
0 [29] = 0] ≈ 0.5 + 2−18.9.

Similarly, the time and data complexity of the attack on 30-round ZUC-256-v2 are both
estimated as 237.8+2 = 239.8.

6.1 Key-recovery Attacks Using the First Keystream Word
As already mentioned in the IV-correcting technique, it is possible to recover at least
16 key bits for ZUC-256 and ZUC-256-v2, respectively, if a proper distinguisher can be
constructed. Hence, we use the biased linear relation in the XOR difference ∆Z of the
first 32-bit keystream word to construct such a distinguisher. The way to detect biased
linear relations follows a similar idea used in the distinguishing attack.

2In our simulations, we use mt19937_64 in C++ to generate a 64-bit random value and then assign
this 64-bit value to the key bits and IV bits. A third party has verified our results by using ZUC-256 as
the random source.

3Notice that for a uniformly at random chosen element x in GF (231 −1), P r[x[i] = 0] ≈ 0.5+ 1
231−1 . As

1
231−1 is much smaller than 2−13.5, the found biased linear relation can be used to construct a distinguisher.
A more accurate estimation of the complexity to distinguish the two distributions will be almost the same
with our way.

27

Recovering 16 key bits for 15-round ZUC-256 in the related-key setting: With the
input difference displayed in Table 2 and about 232 samples, we found the following biased
linear relation in ∆Z when the number of initialization rounds is reduced to 15:

Pr[∆Z[7] = 0] ≈ 0.5 + 2−9.5.

Our key-recovery attack4 naturally works in the weak-key setting due to the constraints
of the signed differences. First, we generate many IV pairs (IV, IV ′) satisfying the signed
differences. Then, guess (K7[6 : 0], K9, K10[7], K11) and correct the IV pair using the
IV-correcting technique. If the key is correctly guessed, the above biased linear relation
will hold. However, if the key is wrongly guessed, the above linear relation will behave
randomly. As explained before, we can at least expect to recover (K7[6 : 0], K9, K10[7]).
According to the experiments discussed below, to increase the success rate, the time and
data complexity will be estimated as around 23+19+24+1 = 247.

Recovering 16 key bits for 14-round ZUC-256-v2 in the related-key setting: With the
input difference displayed in Table 3 and about 236 samples, we found the following biased
linear relation in ∆Z when the number of initialization rounds is reduced to 14.

Pr[∆Z[30] = 0] ≈ 0.5 − 2−14.5.

Based on a similar procedure, we can recover at least 16 key bits (K9, K10). To increase the
success rate, both the time and data complexity are estimated as around 23+29+24+1 = 258.

Experiments: To support our claim that at least 16 key bits can be recovered for ZUC-256
and ZUC-256-v2, respectively, we performed experiments for the key-recovery attacks on
14-round ZUC-256 and 13-round ZUC-256-v2. In such attacks, with the input differences
in Table 2 and Table 3, respectively, the best biased linear relations have much larger
biases as we even do not need to approximate the update in FSM. Specifically, in the
key-recovery attack on 14-round ZUC-256, there exists a linear relation with a bias of 2−3.2,
i.e., Pr[∆Z[7] = 0] ≈ 0.5 + 2−3.2. In the key-recovery attack on 13-round attack, there
exists a linear relation with a bias of 2−3.5, i.e., Pr[∆Z[14] = 0] ≈ 0.5 + 2−3.5. Hence,
we can repeat the experiments for several times to verify our claims due to the low time
complexity of the attacks.

In the experiment for the attack on 14-round ZUC-256, for each guess of the key bits,
we use 210 random samples of IV pairs and check whether Pr[∆Z[7] = 0] ≈ 0.5 + 2−3.2

holds. It is found that the 16 key bits (K7[6 : 0], K9, K10[7]) can always be correctly
recovered for ZUC-256, while there are still many possible candidates for K11.

In the experiment for the attack on 13-round ZUC-256-v2, for each guess of the key
bits, we again use 210 random samples of IV pairs and check whether Pr[∆Z[14] = 0] ≈
0.5 + 2−3.5 holds. It is found that the 16 key bits (K9, K10) are always correctly recovered,
while there are still many possible values for K11.

Therefore, our claim to recover at least 16 key bits for both, 15-round ZUC-256 and
14-round ZUC-256-v2 is correct.

7 Conclusion
While the round function of ZUC-256 is well designed to resist against differential attacks
with simple input differences, by carefully controlling the interactions between all the
operations in the round function, we report for the first time that complex input differences

4Obviously, the 30- and 31-round distinguishing attack may be converted into a partial key-recovery
attack if the attacker has access to S0 after these many rounds as well.

28

can be found and utilized to mount practical attacks on 31 and 30 initialization rounds
of ZUC-256 and ZUC-256-v2, which reduce their security margins against this kind of
distinguishing attacks to only 2 and 3 rounds, respectively. Finding such complex input
differences is challenging as it is essential to solve a system of complex equations. By using
the signed difference to build the bridge between the modular difference and the XOR
difference and developing advanced guess-and-determine techniques, we finally overcome
this obstacle and succeed in finding solutions to such equations. A notable feature of our
attacks is to control one memory register in FSM for 4 clocks. It is unclear whether better
ways can be found to further control the difference transitions in FSM.

Although our distinguishing attacks work in a very strong attack scenario, the scenario
has been taken into account by the ZUC team and SAGE and therefore we believe this
work is still meaningful. We view our main contribution as the introduction of modular
difference and signed difference in the context of ZUC-256 to significantly strengthen the
analysis of the interactions between LFSR, BR and FSM of the round function.

Acknowledgement. We thank Alexander Maximov for reviewing the preliminary version
of this paper and providing many important comments to improve its quality. Also, we
thank him for performing intensive simulations to verify the 30-round attack on ZUC-256-v2
with his efficient implementation of ZUC-256-v2.

References
[AFK+08] Jean-Philippe Aumasson, Simon Fischer, Shahram Khazaei, Willi Meier, and

Christian Rechberger. New Features of Latin Dances: Analysis of Salsa,
ChaCha, and Rumba. In Kaisa Nyberg, editor, Fast Software Encryption, 15th
International Workshop, FSE 2008, Lausanne, Switzerland, February 10-13,
2008, Revised Selected Papers, volume 5086 of Lecture Notes in Computer
Science, pages 470–488. Springer, 2008.

[BM20] Steve Babbage and Alexander Maximov. Differential Analysis of the ZUC-256
Initialisation. Cryptology ePrint Archive, Report 2020/1215, 2020. https:
//eprint.iacr.org/2020/1215.

[BS90] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryp-
tosystems. In Alfred Menezes and Scott A. Vanstone, editors, Advances in
Cryptology - CRYPTO ’90, 10th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 11-15, 1990, Proceedings, volume 537
of Lecture Notes in Computer Science, pages 2–21. Springer, 1990.

[BVC16] Alex Biryukov, Vesselin Velichkov, and Yann Le Corre. Automatic Search for
the Best Trails in ARX: Application to Block Cipher Speck. In Thomas Peyrin,
editor, Fast Software Encryption - 23rd International Conference, FSE 2016,
Bochum, Germany, March 20-23, 2016, Revised Selected Papers, volume 9783
of Lecture Notes in Computer Science, pages 289–310. Springer, 2016.

[CR06] Christophe De Cannière and Christian Rechberger. Finding SHA-1 Character-
istics: General Results and Applications. In Xuejia Lai and Kefei Chen, editors,
Advances in Cryptology - ASIACRYPT 2006, 12th International Conference on
the Theory and Application of Cryptology and Information Security, Shanghai,
China, December 3-7, 2006, Proceedings, volume 4284 of Lecture Notes in
Computer Science, pages 1–20. Springer, 2006.

29

https://eprint.iacr.org/2020/1215
https://eprint.iacr.org/2020/1215

[ETS11] ETSI SAGE. Specification of the 3GPP Confidentiality and Integrity Al-
gorithms 128-EEA3 & 128-EIA3. Document 4: Design and Evaluation Re-
port, 2011. https://www.gsma.com/aboutus/wp-content/uploads/2014/
12/EEA3_EIA3_Design_Evaluation_v2_0.pdf.

[ETS21] ETSI SAGE. LS (21) 04: Further discussion on ZUC-256, January
2021. https://www.3gpp.org/ftp/tsg_sa/WG3_Security/TSGS3_104e/
Inbox/Drafts/S3-212676%20with%20reference2%20and%204.zip (accessed
on 2021-08-20).

[Leu13] Gaëtan Leurent. Construction of Differential Characteristics in ARX Designs
Application to Skein. In Ran Canetti and Juan A. Garay, editors, Advances
in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa
Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, volume 8042 of
Lecture Notes in Computer Science, pages 241–258. Springer, 2013.

[LP19] Gaëtan Leurent and Thomas Peyrin. From collisions to chosen-prefix collisions
application to full SHA-1. In Yuval Ishai and Vincent Rijmen, editors, Advances
in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Darmstadt, Germany,
May 19-23, 2019, Proceedings, Part III, volume 11478 of Lecture Notes in
Computer Science, pages 527–555. Springer, 2019.

[LP20] Gaëtan Leurent and Thomas Peyrin. SHA-1 is a shambles: First chosen-prefix
collision on SHA-1 and application to the PGP web of trust. In Srdjan Capkun
and Franziska Roesner, editors, 29th USENIX Security Symposium, USENIX
Security 2020, August 12-14, 2020, pages 1839–1856. USENIX Association,
2020.

[MNS11] Florian Mendel, Tomislav Nad, and Martin Schläffer. Finding SHA-2 Char-
acteristics: Searching through a Minefield of Contradictions. In Dong Hoon
Lee and Xiaoyun Wang, editors, Advances in Cryptology - ASIACRYPT 2011 -
17th International Conference on the Theory and Application of Cryptology and
Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings,
volume 7073 of Lecture Notes in Computer Science, pages 288–307. Springer,
2011.

[SBK+17] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik
Markov. The first collision for full SHA-1. In Jonathan Katz and Hovav
Shacham, editors, Advances in Cryptology - CRYPTO 2017 - 37th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 20-24,
2017, Proceedings, Part I, volume 10401 of Lecture Notes in Computer Science,
pages 570–596. Springer, 2017.

[SSA+09] Marc Stevens, Alexander Sotirov, Jacob Appelbaum, Arjen K. Lenstra, David
Molnar, Dag Arne Osvik, and Benne de Weger. Short chosen-prefix collisions
for MD5 and the creation of a rogue CA certificate. In Shai Halevi, editor,
Advances in Cryptology - CRYPTO 2009, 29th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings, volume
5677 of Lecture Notes in Computer Science, pages 55–69. Springer, 2009.

[Tea21] ZUC Design Team. An addendum to the zuc-256 stream cipher. Cryptology
ePrint Archive, Report 2021/1439, 2021. https://ia.cr/2021/1439.

[The18] The ZUC Team. The ZUC-256 Stream Cipher, 2018. http://www.is.cas.cn/
ztzl2016/zouchongzhi/201801/W020180126529970733243.pdf.

30

https://www.gsma.com/aboutus/wp-content/uploads/2014/12/EEA3_EIA3_Design_Evaluation_v2_0.pdf
https://www.gsma.com/aboutus/wp-content/uploads/2014/12/EEA3_EIA3_Design_Evaluation_v2_0.pdf
https://www.3gpp.org/ftp/tsg_sa/WG3_Security/TSGS3_104e/Inbox/Drafts/S3-212676%20with%20reference2%20and%204.zip
https://www.3gpp.org/ftp/tsg_sa/WG3_Security/TSGS3_104e/Inbox/Drafts/S3-212676%20with%20reference2%20and%204.zip
https://ia.cr/2021/1439
http://www.is.cas.cn/ztzl2016/zouchongzhi/201801/W020180126529970733243.pdf
http://www.is.cas.cn/ztzl2016/zouchongzhi/201801/W020180126529970733243.pdf

[WLF+05] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Crypt-
analysis of the Hash Functions MD4 and RIPEMD. In Ronald Cramer, editor,
Advances in Cryptology - EUROCRYPT 2005, 24th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Aarhus,
Denmark, May 22-26, 2005, Proceedings, volume 3494 of Lecture Notes in
Computer Science, pages 1–18. Springer, 2005.

[WY05] Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions.
In Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005,
24th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings,
volume 3494 of Lecture Notes in Computer Science, pages 19–35. Springer,
2005.

[WYY05] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full
SHA-1. In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005: 25th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 14-18, 2005, Proceedings, volume 3621 of Lecture Notes in Computer
Science, pages 17–36. Springer, 2005.

[YJM20] Jing Yang, Thomas Johansson, and Alexander Maximov. Spectral analysis of
ZUC-256. IACR Trans. Symmetric Cryptol., 2020(1):266–288, 2020.

A Some Proofs
A.1 Proving Fact 2
If we restrict that ∇a[i] ∈ {n, =} (0 ≤ i ≤ 30), the signed difference is uniquely determined
for a given modular difference δa, as specified below:

∇a[i] =
{

n (δa[i] = 1)
= (δa[i] = 0)

Proof. Suppose there are two different signed differences ∇a0 and ∇a1 satisfying the
restrictions ∇a0[i] ∈ {n, =} and ∇a1[i] ∈ {n, =} for (0 ≤ i ≤ 30), while they both
correspond to the same modular difference δa. Denote the modular difference of ∇a0 and
∇a1 by δa0 and δa1, respectively. Note that

δa0 =
30∑

i=0
µ0

i · 2i, δa1 =
30∑

i=0
µ1

i · 2i,

where

uj
i =

{
1 (∇aj [i] = n)
0 (∇aj [i] = =)

As µ0
i , µ1

i ∈ F2 in this case, δa0 = δa1 is equivalent to µ0
i = µ1

i for 0 ≤ i ≤ 30.
When ∇a0 and ∇a1 are different, there must exist an index x such that (∇a0[x] =

=, ∇a1[x] = n) or (∇a0[x] = n, ∇a1[x] = =). For both cases, there must be µ0
x ̸= µ1

x, thus
contradicting with the assumption that δa0 = δa1.

Moreover, if ∇a satisfies

∇a[i] =
{

n (δa[i] = 1)
= (δa[i] = 0)

for 0 ≤ i ≤ 30, it must correspond to δa according to Fact 1. Hence, Fact 2 is proved.

31

A.2 Proving Proposition 1
Proof. Necessity:

When ∆a[j : i] = 0, there must be ∇a[x] = = for x ∈ [i, j]. Notice that

δa =
30∑

g=0
µg · 2g,

where µg = 0 for ∇a[g] = =, µg = 1 for ∇a[g] = n and µg = −1 for ∇a[g] = u. Therefore,
when ∇a[x] = = for (i ≤ x ≤ j), we have

δa =
i−1∑
g=0

µg · 2g ⊞
30∑

g=j+1
µg · 2g.

Let

ν0 =
i−1∑
g=0

µg · 2g, ν1 =
30∑

g=j+1
µg · 2g.

As the addition is defined over GF (p), we have that

ν0 ∈ {s|0 ≤ s < 2i} ∪ {s|p ⊟ 2i < s ≤ p ⊟ 1, s[t] = 1, i ≤ t ≤ 30}.

Similarly, we have

ν1 ∈ {0} ∪ {s|2j+1 ≤ s ≤ 231 ⊟ 2j+1, s[t] = 0, 0 ≤ t ≤ j}

or

ν1 ∈ {s|2j+1 ⊟ 1 ≤ s ≤ p ⊟ 2j+1, s[t] = 1, 0 ≤ t ≤ j}

Therefore, there are 6 possible combinations of (ν0, ν1).
When ν1 = 0, it is trivial to prove that (v0⊞v1)[j : i] = 0 or (v0⊞v1)[j : i] = 2j−i+1 −1.

Then, we are only left with 4 combinations.
When ν1 ∈ {s|2j+1 ≤ s ≤ 231 ⊟ 2j+1, s[t] = 0, 0 ≤ t ≤ j} and ν0 ∈ {s|0 ≤ s < 2i}, we

have (v0 ⊞ v1)[j : i] = 0.
When ν1 ∈ {s|2j+1 ≤ s ≤ 231 ⊟ 2j+1, s[t] = 0, 0 ≤ t ≤ j} and ν0 ∈ {s|p ⊟ 2i <

s ≤ p ⊟ 1, s[t] = 1, i ≤ t ≤ 30}, we have ν1[j : 0] = 0 and ν0[j : i] = 2j−i+1 − 1. As
231 = 1 mod (p), when ν1 +ν0 > 231, it can be derived that (v0⊞v1)[j : i] ∈ {0, 2j−i+1 −1}.
When ν1 + ν0 < 231, we have (v0 ⊞ v1)[j : i] = 2j−i+1 − 1.

When ν1 ∈ {s|2j+1 ⊟ 1 ≤ s ≤ p ⊟ 2j+1, s[t] = 1, 0 ≤ t ≤ j} and ν0 ∈ {s|0 ≤ s < 2i},
we have (v0 ⊞ v1)[j : i] = 2j−i+1 − 1.

When ν1 ∈ {s|2j+1 ⊟ 1 ≤ s ≤ p ⊟ 2j+1, s[t] = 1, 0 ≤ t ≤ j} and ν0 ∈ {s|p ⊟ 2i < s ≤
p⊟1, s[t] = 1, i ≤ t ≤ 30}, we have ν1[j : 0] = 2j+1 − 1 and ν0[j : i] = 2j−i+1 − 1. Similarly,
it can be derived that (v0 ⊞ v1)[j : i] = 0. This completes the proof for necessity.

Sufficiency:

According to Fact 2, given an arbitrary modular difference δa, there always exists a
corresponding signed difference ∇a such that

∇a[i] =
{

n (δa[i] = 1)
= (δa[i] = 0)

When δa[j : i] = 0, there always exists such a ∇a that ∇a[t] = = (i ≤ t ≤ j), which is
equivalent to that there exists a pair (a, a′) satisfying ∆a[j : i] = 0.

32

When δa[j : i] = 2j−i+1 − 1, there must be (p ⊟ δa)[j : i] = 0. Based on the above
proof, we can always find a pair (b, b′) satisfying ∆b[j : i] = 0 and b′ ⊟ b = p ⊟ δa ⇔
b′ ⊟ p = b ⊟ δa ⇔ b′ = b ⊟ δa. In other words, we can always find a pair (a, a′) = (b′, b)
such that a′ ⊟ a = δa and ∆a[j : i] = ∆b[j : i] = 0, which completes the proof.

A.3 Proving the Correctness of Enumeration-H

Proof. Let x = a+δa where a, δa ∈ [0, p) and x ∈ [0, 232−1). We discuss three possible cases
for δa[14 : 0] since the addition is modulo p, which are δa[14 : 0] = 0, δa[14 : 0] = 0x7fff
and δa[14 : 0] /∈ {0, 0x7fff}. It should be emphasized that a ⊞ δa = x when x < p and
a ⊞ δa = x − 231 + 1 when x ≥ p since 231 − 1 ≤ x < 232 − 2 ⇒ 0 ≤ x − 231 + 1 < 231 − 1.

Case-1: When δa[14 : 0] = 0, there will always be x[31 : 15] = aH + δaH . When
a[14 : 0] ̸= 0x7fff, there is always a′

H = x[30 : 15]. In other words, if a[14 : 0] ̸= 0x7fff
holds, whatever a[14 : 0] is, it will correspond to the same set of possible pairs (a′

H , aH)
satisfying a′ = a⊞δa. Therefore, by fixing a[14 : 0] = 0 and traversing aH , we can obtain all
the possible pairs (a′

H , aH) for the case a[14 : 0] ̸= 0x7fff. After fixing a[14 : 0] = 0x7fff
and traversing aH , all possible values of a[14 : 0] are taken into account and the generated
pairs (a′

H , aH) are all the possible pairs satisfying a′ = a ⊞ δa and we do not miss any of
them.

Case-2: For δa[14 : 0] = 0x7fff, when a[14 : 0] ̸= 0, there will be δa[14 : 0] + a[14 :
0] ≥ 215. Hence, there will always be x[31 : 15] = aH + δaH + 1 and x[14 : 0] ̸= 0x7fff.
Therefore, there must be a′

H = x[30 : 15]. In other words, if a[14 : 0] ̸= 0 holds, whatever
a[14 : 0] is, it will correspond to the same set of possible pairs (a′

H , aH) satisfying a′ = a⊞δa.
Therefore, by fixing a[14 : 0] = 0x7fff and traversing aH , we can obtain all the possible
pairs (a′

H , aH) for the case a[14 : 0] ̸= 0. After aH is also traversed for a[14 : 0] = 0, all
possible values of a[14 : 0] are considered and the generated pairs (a′

H , aH) are all the
possible pairs.

Case-3: For δa[14 : 0] /∈ {0, 0x7fff}, we classify a[14 : 0] into three categories, which
are a[14 : 0] + δa[14 : 0] ≥ 215, a[14 : 0] + δa[14 : 0] < 0x7fff and a[14 : 0] + δa[14 : 0] =
0x7fff.

Case-3-1: When a[14 : 0] + δa[14 : 0] ≥ 215, there is always x[31 : 15] = aH + δaH + 1
and x[14 : 0] ̸= 0x7fff. Due to x[14 : 0] ̸= 0x7fff, whatever x[31] takes, there is always
a′

H = x[30 : 15]. By fixing a[14 : 0] = 0x7fff, there must be a[14 : 0] + δa[14 : 0] ≥ 215.
Hence, for all a[14 : 0] satisfying a[14 : 0] + δa[14 : 0] ≥ 215, we obtain all possible pairs
(a′

H , aH) by fixing a[14 : 0] = 0x7fff and traversing aH . Denote this set of all possible
(a′

H , aH) by SET3-1.
Case-3-2: When a[14 : 0] + δa[14 : 0] < 0x7fff, there is always x[31 : 15] = aH + δaH .

Whatever x[31] is, there is always a′
H = x[30 : 15] due to x[14 : 0] ̸= 0x7fff. By fixing

a[14 : 0] = 0, there must be a[14 : 0] + δa[14 : 0] < 0x7fff. In other words, for all a[14 : 0]
satisfying a[14 : 0] + δa[14 : 0] < 0x7fff, we obtain all possible pairs (a′

H , aH) by fixing
a[14 : 0] = 0 and traversing aH . Denote this set of all possible (a′

H , aH) by SET3-2.
Case-3-3: When a[14 : 0] + δa[14 : 0] = 0x7fff, x[31 : 15] = aH + δaH still always

holds. If x[31] = 0, we will have a′
H = x[30 : 15]. For this case, when traversing aH , the

generated pairs (a′
H , aH) satisfying x[31] = 0 is a subset of SET3-2. If x[31] = 1, we will

have a′
H = x[30 : 15] + 1. For this case, when traversing aH , the generated pairs (a′

H , aH)
satisfying x[31] = 1 is a subset of SET3-1. Until now, all possible values of a[14 : 0] have
been taken into account. As the generated set of possible pairs (a′

H , aH) in Case-3-3 must
be a subset of SET3-1 ∪ SET3-2, it implies that traversing aH for a[14 : 0] ∈ {0,0x7fff}
is sufficient to generate all possible pairs (a′

H , aH) satisfying a′ = a ⊞ δa, which completes
the proof.

33

B Revisiting Babbage-Maximov’s Attacks [BM20]
A major difference between ZUC-256 and ZUC-128 is that there are more state bits loaded
by key bits. This naturally provides more degrees of freedom to choose the injected
differences for an attacker, which is indeed exploited in [BM20].

There are two kinds of attacks described in [BM20]. The first one is to inject differences
in up to 5 key bits, while the second one is to inject differences in IV bits in an advanced
way.

B.1 Injecting Differences in Key Bits
To find the optimal key differences, Babbage and Maximov treated ZUC-256 as a blackbox.
Specifically, they first randomly choose up to 5 key bits to inject differences. Then, for a
fixed key difference, randomly generate sufficiently many (K, IV) pairs satisfying the fixed
key difference and collect the corresponding XOR difference ∆St

15 if the target is t + 15
initialization rounds as ∆St+15

0 = ∆St
15. Supposing there are N samples, i.e., N random

pairs of (K, IV), they can collect a distribution table of ∆St
15 from these N samples.

Specifically, in this distribution table, the number of times that ∆St
15 takes the value i

for each i ∈ F31
2 will be recorded. After collecting the distribution table, they will apply

the Walsh-Hadamard Transform (WHT) to it in order to search for the boolean linear
relation in terms of the 31 bits of ∆St

15 with the highest bias. As the table is of size 231,
i.e., ∆St

15 is a 31-bit value, finding the best linear relation (linear mask) for ∆St
15 will take

time 231 × 31 by applying WHT to the distribution table. After obtaining the highest bias
denoted by ϵ by applying WHT, i.e., the best linear relation holds with probability 0.5 + ϵ

in these N samples, it is further required to check whether N ≥ 24

ϵ2 holds to rule out the
false-positive results. Finally, they will select the injected difference leading to the highest
bias as the final key difference.

The input difference used in [BM20] is as follows:

∆S0
2 = 0x01000000, ∆S0

6 = 0x00001010.

For such an input difference, the best biased linear relation in terms of ∆S28
0 is

Pr[∆S28
0 [9] ⊕ ∆S28

0 [10] = 1] ≈ 0.5 − 2−10.46,

which indicates that using about 225 samples, it is possible to construct a distinguisher for
28 (out of 33) rounds ZUC-256. Extending this method to more rounds becomes infeasible
because it requires an impractical number of samples. Notice that the biased linear relation
is fully derived via experiments.

B.2 Injecting Differences in IV Bits
In addition to the above attack strategy, the authors also explored how many rounds
such a distinguisher could reach by injecting differences in IV bits. To achieve this, they
observed that it was possible to control the difference transitions in FSM for the first 3
clocks. Specifically, they will inject differences at (S0

5H , S0
6H , S0

7H , S0
8L, S0

9L) due to the
restriction that the differences can only be injected in IV bits. To find a solution to the
input difference, they constructed the following equations:

∆R1
2 = S ◦ L2(S0

5H ||S0
11L) ⊕ S ◦ L2((S0

5H ⊕ ∆S0
5H)||S0

11L),
(R1

2 ≫ 1) ⊞ (S0
5H ≪ 4) = ((R1

2 ⊕ ∆R1
2) ≫ 1) ⊞ ((S0

5H ⊕ ∆S0
5H) ≪ 4),

∆S0
8L = ∆R1

2H ,

R1
1 = S ◦ L1(S0

9H ||S0
7L),

34

y = (R1
1 ⊞32 (S0

12L||S0
10H)) ≫ 16,

∆R2
2 = S ◦ L2((R1

2L ⊕ S0
6H)||y) ⊕ S ◦ L2((R1

2L ⊕ ∆R1
2L ⊕ S0

6H ⊕ ∆S0
6H)||y),

(R2
2 ≫ 1) ⊞ (S0

6H ≪ 4) = ((R2
2 ⊕ ∆R2

2) ≫ 1) ⊞ ((S0
6H ⊕ ∆S0

6H) ≪ 4),
∆S0

9L = ∆R2
2H ,

∆S0
7H = ∆R2

2L.

Based on the round update function, it is not difficult to observe that the above equations
are used to ensure that ∆St

15 = 0 for t ∈ [1, 3] and that the difference in FSM will be
cancelled after three clocks.

To solve the above equations, the authors used an optimized exhaustive search. In short,
they first loop for (S0

5H , S0
11L, ∆S0

5H) and derive ∆S0
8L . Then, they loop for (y, S0

6H , ∆S0
6H)

to derive (∆S0
7H , ∆S0

9L). Finally, they loop for (S0
9H , S0

7L) to derive S0
12L to satisfy y.

More details can be referred to [BM20]. It is now obvious that they did not exploit
the relations between the XOR difference and modular difference to solve the
above equations.

Based on the above strategy, they succeeded in finding several solutions to the input
difference. Then, based on similar sampling techniques discussed above, they finally
identified an input difference which can lead to a distinguisher for 26 rounds of ZUC-256.

35

	Introduction
	Preliminaries
	Notation
	Description of ZUC-256

	On Modular/XOR/Signed Differences
	Relations Between a and a
	A Relation Between a and a
	Relations Between a and a

	Cancelling Differences Using Modular Differences
	Revisiting Babbage-Maximov's 28-Round Attack
	More Observations
	Strategies to Inject Differences
	More Details of the Strategies
	Searching for Valid Differences
	The IV-Correcting Technique

	Launching the Search
	Picking (S00,S40,S80,S100,S60,S70,S90) for ZUC-256
	Picking (S00,S40,S80,S100,S60,S70,S90) for ZUC-256-v2

	Searching for Biased Linear Relations
	Key-recovery Attacks Using the First Keystream Word

	Conclusion
	Some Proofs
	Proving Fact 2
	Proving Proposition 1
	Proving the Correctness of Enumeration-H

	Revisiting Babbage-Maximov's Attacks cryptoeprint:2020:1215
	Injecting Differences in Key Bits
	Injecting Differences in IV Bits

