
On Actively Secure Fine-grained Access
Structures from Isogeny Assumptions

Philipp Muth
Technische Universität Darmstadt,

Germany
muth@seceng.informatik.tu-darmstadt.de

Fabio Campos
Max Planck Institute for Security and Privacy,

Germany
campos@sopmac.de

Abstract—We present an actively secure threshold
scheme in the setting of Hard Homogenous Spaces
(HHS) which allows fine-grained access structures.
More precisely, we elevate a given passively secure
isogeny based threshold scheme to an actively secure
setting. We prove the active security and simulatability
of our advanced schemes. By defining some characteris-
ing properties, we are able to expand the range of secret
sharing schemes which support the given scheme.
Furthermore, we show that Shamir’s scheme has our
generalised properties, and thereby our approach truly
represents a less restrictive generalisation.

Keywords—post-quantum cryptography, isogeny-
based cryptography

I. INTRODUCTION

The principal motivation for a secret sharing
scheme is to split private information into fragments
and securely distribute these shares among a group
of participants. Then, any collaborating set with a
sufficient number of participants/shares is able to
reconstruct the shared private information.

Since their introduction in the 1970s by Blak-
ley [1] and Shamir [2], the field of secret sharing
schemes, information theoretic and computational,
has been studied extensively. In previous years, due
to applications in blockchain and other scenarios, the
interest in new developments and applications for
secret sharing schemes has increased [3], [4], [5],
[6].

Post-quantum schemes have, however, only re-
ceived little attention with respect to secret sharing.
Recently, De Feo and Meyer [7] proposed a key
exchange mechanism and a signature scheme mak-
ing use of isogeny based public key cryptography
for which the secret key is stored in a Shamir
shared way. Their approach enables decapsulation
for the key exchange mechanism and signing for
the signature scheme in a round-robin way with-
out reconstructing the secret key in clear for any

sufficiently large set of shareholders. Yet in ap-
plying Shamir’s secret sharing scheme they restrict
themselves to simple threshold access structures.
Furthermore, their protocols are only passively se-
cure, in that while a misbehaving shareholder cannot
obtain information on the secret key shares of other
shareholders participating in a decapsulation or a
signing execution via maliciously formed inputs, he
can also not be detected when providing malformed
inputs. We aim to tackle both caveats by propos-
ing an actively secure isogeny based key exchange
mechanism, for which the secret key is secret shared
by a trusted dealer. We further transform the key ex-
change mechanism into an actively secure signature
scheme with shared secret key.

Our Contribution. Our contribution is manifold.
First, we transfer the active security measures out-
lined in [8] from their setting of full engagement
protocols to a setting of threshold secret sharing.
We thereby achieve higher versatility as well as
greater efficiency for said measures. Second, we
propose an actively secure key exchange mechanism
with secret shared secret key utilising the adapted
measures for active security. Third, we present an
actively secure signature scheme by applying a Fiat-
Shamir-transform to our key exchange mechanism.
And forth, we characterise the necessary properties
for a secret sharing scheme to be compatible with
our key exchange mechanism and signature scheme,
hence we open those schemes to a significantly wider
field of applications.

Related work. Cozzo and Smart [9] investigated
the possibility of constructing shared secret schemes
based on the Round 2 candidate signature schemes
in the NIST standardization process1. Based on
CSI-FiSh [10], De Feo and Meyer [7] introduced
threshold variants of passively secure encryption and
signature schemes in the Hard Homogenous Spaces

1https://csrc.nist.gov/Projects/post-quantum-cryptography/
Post-Quantum-Cryptography-Standardization

https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-Cryptography-Standardization

(HHS) setting. Cozzo and Smart [11] presented
the first actively secure but not robust distributed
signature scheme based on isogeny assumptions. In
[8], the authors presented CSI-RAShi, a robust and
actively secure distributed key generation protocol
based on Shamir’s secret sharing in the setting of
HHS, which necessitates all shareholders to partici-
pate.

Outline. In Section II the terminology, primitives
and security notions relevant for this work are in-
troduced. Section III presents an actively secure
threshold key exchange mechanism and proves our
scheme’s active security and simulatability. The ac-
tively secure signature scheme resulting from apply-
ing the Fiat-Shamir-transform to our key exchange
mechanism is discussed in Section IV. Finally, the
necessary properties for a secret sharing scheme to
be compatible with our key exchange mechanism
and signature scheme are characterised in Section
V in order to enable applying a more general class
of secret sharing schemes.

II. PRELIMINARIES

Throughout this work we use a security param-
eter λ ∈ N. It is implicitly handed to a protocol
whenever needed, that is protocols with computa-
tional security. Information theoretic schemes and
protocols such as secret sharing schemes used in this
work are not affected by this.

A. Secret Sharing Schemes

A secret sharing scheme is a cryptographic prim-
itive to distribute a secret s from a secret space
among a set of shareholders. An instance S is
defined by a secret space G, a set of shareholders
S and an access structure ΓS ⊂ 2S . A set S′ ∈ Γ
is called authorised and can from their respective
shares reconstruct a shared secret. If the instance
S is clear from the context, we omit the index in
the access structure Γ. In this work, we consider
monotone access structures, that is for any A,B ⊂ S
with A ∈ Γ and B ⊃ A, we also have B ∈ Γ.

A secret sharing instance S provides two algo-
rithms: Share and Rec. A dealer executes S.Share(s)
to generate shares s1, . . . , sk of a secret s. A share
si is assigned to a shareholder Pϕ(i) via a surjective
map ϕ : {1, . . . , k} → {1, . . . , n} induced by ΓS . A
set of shareholders S′ ∈ ΓS executes

S.Rec
(
{si}Pϕ(i)∈S′

)
on their respective shares to retrieve a previously
shared secret.

Definition 1 (Superauthorised sets)
For a secret sharing instance S = (G,S,ΓS), we
call a set of shareholders S′ superauthorised, if for
any P ∈ S′, we have

S′ \{P } ∈ ΓS .

The set of superauthorised sets of shareholders is
denoted by Γ+

S .

Any superauthorised set is also authorised.

Example 2 (Shamir’s secret sharing)
Shamir’s secret sharing scheme is defined by
S = {P1, . . . , Pn}, the access structure Γ =
{S′ ⊂ S : #S′ ≥ t} for some fixed threshold 1 ≤
t ≤ n and the secret space G = Zp := Z mod p
for some prime p > n. To share a secret s ∈ Zp,
a random polynomial f ∈ Zp [X] of degree t − 1
with constant term s is sampled and the shares are
defined by

si = f(i)

for i = 1, . . . , n. The assigning function ϕ is simply
the identity function, thus Pi’s share is f(i), 1 ≤
i ≤ n. Reconstruction for an authorised set S′ is
achieved via Lagrange interpolation, that is

s =
∑

Pi∈S′

Li,S′si =
∑

Pi∈S′

∏
Pj∈S′

j ̸=i

j

j − i
f(i),

where Li,S′ denotes the Lagrange interpolation co-
efficients.

The superauthorised sets Γ+ are

{S′ ⊂ S : #S′ > t} .

B. Hard Homogeneous Spaces

We present our key exchange mechanism and
signature scheme in the context of hard homoge-
neous spaces (HHS). HHS were first discussed by
Couveignes [12] in 2006. He defines a HHS (E ,G) as
a set E and a group (G,�) equipped with a transitive
action ∗ : G × E → E . This action has the following
properties:

• Compatibility: For any g, g′ ∈ G and any E ∈
E , we have g ∗ (g′ ∗ E) = (g � g′) ∗ E.

• Identity: For any E ∈ E , i ∗E = E if and only
if i ∈ G is the identity element.

• Transitivity: For any E,E′ ∈ E , there exists
exactly one g ∈ G such that g ∗ E = E′.

For ease of notation we define the following.

Definition 3 (Notation)
For a secret sharing instance S with secret space Zp

and a hard homogeneous space (E ,G), where p|#G,

2

we fix a g ∈ G with order p and denote from now
on

[s]E := gs ∗ E

for all s ∈ Zp and all E ∈ E .

The following problems are assumed to be easily
computable in a HHS (E ,G), i.e., there exist poly-
nomial time algorithms to solve them:

• Group operations on G (membership, inverting
elements, evaluating �).

• Sampling elements of E and G.
• Testing the membership of E .
• Computing the transitive action ∗: given g ∈ G

and E ∈ E as input, compute g ∗ E.

Whereas the subsequent problems are assumed
to be hard in a HHS (E ,G).
Problem 1 (Group Action Inverse Problem (GAIP))
Given two elements E,E′ ∈ E as input, the chal-
lenge is to provide g ∈ G with E′ = g ∗ E.

Due to the transitivity property of hard homoge-
neous spaces, such a g always exists, thus any given
instance of the GAIP has a solution.

Problem 2 (Parallelisation Problem)
An instance of the Parallelisation Problem is defined
by a triple (E,E′, F) ∈ E3 with E′ = g ∗ E. The
challenge is to provide F ′ with F ′ = g ∗ F .

The intuitive decisional continuation of this prob-
lem is as follows.

Problem 3 (Decisional Parallelisation Problem)
An instance of the Decisional Parallelisation Prob-
lem is defined by a base element E ∈ E and a
triple (Ea, Eb, Ec) with Ea = [a]E, Eb = [b]E and
Ec = [c]E. The challenge is to distinguish whether
c = a+ b or c←$Zp was randomly sampled.

Remark
It is obvious that the decisional parallelisation prob-
lem reduces to the parallelisation problem, which in
turn reduces to the group action inverse problem.

C. Threshold Group Action

Assume, that a secret s has been shared in a
Shamir secret sharing instance, thus each shareholder
Pi holds a share si of s, i = 1, . . . , n. Let E
be an arbitrary but fixed element of E . The action
E′ ← [s]E can be computed by any authorised set
S′ without reconstructing s by executing the protocol
given in algorithm 1.

If algorithm 1 is executed without aborting, we
have by the compatibility property of ∗ and the

Algorithm 1: Threshold group action
Input: E,S′

E0 ← E
k ← 0
for Pi ∈ S′ do

if Ek 6∈ E then
Pi outputs ⊥ and aborts.

else
k ← k + 1
Pi outputs Ek ← [Li,S′si]E

k−1

return Ek

repeated application of

Ek ← [Li,S′si]E
k−1

the result

E#S′
=

[∑
Pi∈S′

Li,S′si

]
E = [s]E.

D. Piecewise Verifiable Proofs

A piecewise verifiable proof (PVP) is a crypto-
graphic primitive in the context of hard homoge-
neous spaces and was first introduced in [8]. It is
a compact non-interactive zero-knowledge proof of
knowledge of a witness f ∈ Zq [X] for a statement

((E0, E1) , s1, . . . , sn) , (II.1)

where E1 = [s0]E0 ∈ E and si = f(i) for i =
0, . . . , n. A PVP provides two protocol. The proving
protocol PVP.P takes a statement x of the form
(II.1) and a witness f as input and outputs a proof(
π,{πi}i=0,...,n

)
, where (π, πi) is a proof piece for

the partial statement xi, i = 0, . . . , n. The verifying
protocol PVP.V takes an index i ∈ {0, . . . , n}, a
statement piece xi and a proof piece (π, πi) as input
and outputs true or false.

Let R denote the set of all tuples {(x, f)}, where
f is a witness for the statement x. Furthermore, for
I ⊂ {0, . . . , n}, we let RI denote the set of partial
relations {(xI , f)}, where there exists (x, f) ∈ R
so that x|I = xI .

Definition 4 (Completeness)
We call a PVP complete, if, for any (x, f) ∈ R and(

π,{πi}i=0,...,n

)
← PVP.P (f, x) ,

the verification succeeds with overwhelming proba-
bility, i.e.,

Pr[PVP.V (j, xj , (π, πj)) = true] = 1

3

for all j ∈ {0, . . . , n}.
Definition 5 (Soundness)
A PVP is called sound if, for any adversary A, any
I ⊂ {0, . . . , n} and any statement x for which there
exists no witness f with (xI , f) ∈ RI ,

Pr[PVP.V (j, xj , (π, πj)) = true]

is negligible in the security parameter λ for all j ∈ I ,
where

(
π,{πi}i∈I

)
← A

(
1λ

)
.

Definition 6 (Zero-knowledge)
A PVP is zero-knowledge, if for any I ⊂ {1, . . . , n}
and any (x, f) ∈ R, there exists a simulator Sim
such that for any polynomial-time distinguisher A
the advantage∣∣∣Pr[ASim(xI)

(
1λ

)
= 1

]
− Pr

[
AP (x,f)

(
1λ

)
= 1

]∣∣∣
is negligible in the security parameter λ, where
P is an oracle that upon input (x, f) re-
turns

(
π,{πj }j∈I

)
with

(
π,{πj }j=0,...,n

)
←

PVP.P (f, x).

We refer to [8] for the precise proving and
verifying protocols and the security thereof. In com-
bination they state a complete, sound and zero-
knowledge non-interactive PVP.

A prover can hence show knowledge of a sharing
polynomial f to a secret s0 = f(0) with shares
si = f(i). In Section III, we adjust [8]’s proving
protocol to our setting of threshold schemes, so that
knowledge of a subset of interpolation points for a
modified sharing polynomial is proven instead of all
interpolation points.

E. Zero-Knowledge Proofs for the GAIP

We define a proving and a verifying protocol
to non-interactively prove knowledge of an element
s ∈ Zp in zero-knowledge with respect to the group
action inverse problem. That is a prover shows the
knowledge of s so that

E′
i = [s]Ei,

for Ei, E
′
i ∈ E and i = 1, . . . ,m, simultaneously,

without revealing s.

To prove the knowledge of s, the prover samples
bj ∈ Zp and computes

Êi,j ← [bj]Ei

for i = 1, . . . ,m and j = 1, . . . , λ. He
then derives challenge bits (c1, . . . , cλ) ←
H
(
E1, E

′
1, . . . , Em, E′

m, Ê1,1 . . . , Êm,λ

)
via a

hash function H : E(2+λ)m →{0, 1}λ and prepares

the answers rj ← bj − cjs, j = 1, . . . , λ. The proof
π = (c1, . . . , cλ, r1, . . . , rλ) is then published.

The verification protocol is straight forward:
for a statement (Ei, E

′
i)i=1,...,m and a proof

π = (c1, . . . , cλ, r1, . . . , rλ), the verifier computes
Ẽi,j ← [rj]Ei if cj = 0 and Ẽi,j ← [rj]E

′
i

otherwise, for i = 1, . . . ,m and j = 1, . . . , λ.
Then he generates verification bits (c̃1, . . . c̃λ) ←
H
(
E1, E

′
1, . . . , Em, E′

m, Ẽ1,1 . . . , Ẽm,λ

)
and ac-

cepts the proof if (c1, . . . , cλ) = (c̃1, . . . , c̃λ).

A sketch of the proving and verifying protocols
can be found in algorithm 2 and algorithm 3, respec-
tively.

Algorithm 2: The ZK proving protocol for
the GAIP

Input: s, (Ei, E
′
i)i=1,...,m

for j = 1, . . . , λ do
bj ←$Zp

for i = 1, . . . ,m do
Êij ← [bj]Ei

(c1, . . . , cλ)←
H

(
E1, E

′
1, . . . , Em, E′

m, Ê1,1, . . . , Êm,λ

)
for j = 1, . . . ,m do

rj ← bj − cjs

return π ← (c1, . . . , cλ, r1, . . . , rλ)

Algorithm 3: The ZK verifying protocol
for the GAIP

Input: π, (Ei, E
′
i)i=1,...,m

Parse (c1, . . . , cλ, r1, . . . , rλ)← π
for i = 1, . . . ,m and j = 1, . . . , λ do

if cj == 0 then
Ẽi,j ← [rj]Ei

else
Ẽi,j ← [rj]E

′
i

(c′1, . . . , c
′
λ)←

H
(
E1, E

′
1, . . . , Em, E′

m, Ẽ1,1, . . . , Ẽm,λ

)
return (c1, . . . , cλ) == (c′1, . . . , c

′
λ)

We again refer to [8] for the proof of the pre-
sented algorithms being complete, sound and zero-
knowledge with respect to the security parameter λ.

F. The Adversary

We consider a static and active adversary. At
the beginning of a protocol execution, the adversary
corrupts a set of shareholders. The adversary is able

4

to see their inputs and control their outputs. The
set of corrupted shareholders cannot be changed
throughout the execution of the protocol.

The adversary’s aim is two-fold. On the one hand
it wants to obtain information on the uncorrupted
parties’ inputs, on the other hand it wants to falsify
the output of the execution of our protocol without
being detected.

G. Communication channels

Both our schemes assume the existence of a
trusted dealer in addition to the shareholders engaged
in a secret sharing instance. The dealer samples and
shares a private key and publishes the according pub-
lic key. The shareholders store the private key and
execute the multiparty protocols for decapsulation in
our key exchange mechanism (KEM) and signing in
our signature scheme.

For the communication between the dealer and
the shareholders we assume secure private channels.
Thus messages sent through these channels cannot be
tampered with or eavesdropped upon without detec-
tion. For the communication between the sharehold-
ers, however, a simple public channel is sufficient,
since all messages sent by shareholders are being
broadcast. The means of how to establish secure
private channels and immutable broadcast channels
are out of scope of this work.

III. KEY EXCHANGE MECHANISM

We present our actively secure key exchange
protocol with secret shared private key. A key ex-
change mechanism (KEM) provides three functions:
KeyGen, Encaps and Decaps.

A. Public Parameters

We fix the following public parameters.

• A Shamir sharing instance S with shareholders
S = {P1, . . . , Pn}, threshold t < n and secret
space Zp. In Section V we elaborate possible
extensions to other, more general secret sharing
schemes.

• A hard homogeneous space (E ,G) with fixed
starting point E0 ∈ E .

• An element g ∈ G with ordg = p for the
mapping [·] : G × E → E ; s 7→ gsE.

B. Key Generation

We assume the existence of a trusted dealer,
yet even an untrusted dealer can be accommodated
with little overhead. For key generation, the dealer
samples the secret key s ∈ Zp and publishes the

public key pk ← [s]E0. The secret key s is shared
via (s1, . . . , sn)← S.Share(s). Then, each share si,
1 ≤ i ≤ n, is shared once more, resulting in n sets
of n shares each.

∀i = 1, . . . , n : {si1, . . . , sin} ← S.Share(si)

The dealer then sends the following set to share-
holder Pi, i = 1, . . . , n:{

si,{sij }j=1,...,n ,{ski}k=1,...,n

}
,

thus each shareholder Pi receives his share si of the
secret key s. He also receives the shares by which si
was shared and his shares of each other shareholder’s
share of s.

For ease of notation we denote the polynomial
with which the secret key s was shared by f and the
polynomial with which si was shared by fi, where
i = 1, . . . , n.

This key generation protocol can be considered
as a "two-level sharing", where each share of the
secret key is itself shared again among the share-
holders. A sketch of it can be found in algorithm 4.

Algorithm 4: Key generation
s←$Zp

pk← [s]E0

{s1, . . . , sn} ← S.Share(s)
for i = 1, . . . , n do
{si1, . . . , sin} ← S.Share(si)

publish pk
for i = 1, . . . , n do

send
{
si,{sij }j=1,...,n ,{ski}k=1,...,n

}
to Pi

C. Encapsulation

With a public key pk ∈ E as input, the encapsu-
lation protocol returns an ephemeral key K ∈ E and
a ciphertext c ∈ E .

Our encapsulation protocol is identical to the
protocol of [7], thus we just give a short sketch and
refer to De Feo’s and Meyer’s work for the respective
proofs of security.

Algorithm 5: Encapsulation
Input: pk
b←$G
K ← b ∗ pk
c← b ∗ E0

return (K, c)

5

D. Decapsulation

A decapsulation protocol takes a ciphertext c and
outputs a key K.

De Feo and Meyer [7] applied the threshold
group action (algorithm 1) to a ciphertext c to have
an authorised set of shareholders compute [s] c =
[s] (b ∗ E0) = b ∗ ([s]E0), thereby decapsulating the
ciphertext and obtaining the session key. While their
approach is simulatable and thereby does not leak
any information on the shares of the secret key, it is
only passively secure. Thus, a malicious shareholder
can provide malformed input to the protocol and
thereby falsify the output without being detected.

We extend their approach to enable detecting
misbehaving shareholders in a decapsulation. For
that we maintain the threshold group action, yet
we apply the PVP and zero-knowledge proof layed
out in Section II. Since the PVP does not fit our
setting of threshold group action, we first discuss the
necessary modifications to the PVP. We then present
our actively secure decapsulation protocol.

1) Amending the PVP: In the PVP protocol, that
we sketched in Section II, a prover produces a proof
of knowledge for a witness polynomial f of the
statement

((E0, E1) , s1, . . . , sn) ,

where E0←$ E , E1 = [s0]E0 and si = f(i) for
i = 0, . . . , n. He thereby proves knowledge of the
sharing polynomial f of s0 := f(0).

This does not fit the threshold group action,
since, for an authorised set S′, a shareholder Pi’s
contribution to the round-robin approach is not
Ek ← [si]E

k−1, where Ek−1 denotes the previous
shareholder’s output, but Ek ← [Li,S′si]E

k−1.
Authorised sets also do not necessarily contain all
shareholders {P1, . . . , Pn}. The following example
illustrates a further conflict with of the PVP with the
threshold group action.

Example 7
Let sk be a secret key generated and shared by
KeyGen. That is each shareholder Pi holds{

si,{sij }Pj∈S ,{sji}Pj∈S

}
.

Also let S′ ∈ Γ be a minimally authorised set
executing algorithm 1, i.e., for any Pi ∈ S′, S′\{Pi}
is unauthorised. Thus, for any arbitrary but fixed
s′i ∈ Zp, there exists a polynomial f ′

i ∈ Zp [X]k−1
so that f ′

i(j) = Li,S′sij and R′ = [f ′
i(0)]R for any

R,R′ ∈ E . Thus, Pi can publish
(
π,{πj }Pj∈S′

)

with(
π,{πj }Pj∈S

)
←

PVP.P
((

(R,R′) , (Li,S′sij)Pj∈S

)
, f ′

i

)
which to S′ \{Pi} is indistinguishable from

PVP.P
((

(E0, E1) , (Li,S′sij)Pj∈S

)
, Li,S′fi

)
with E0←$ E and E1 = [Li,S′si]E0. Thus, for a
minimally authorised set S′, the soundness of the
PVP does not hold with respect to Pi ∈ S′ and fi.

We resolve the conflicts by amending [8]’s PVP
protocol, so that, for a superauthorised set S∗, a
shareholder Pi ∈ S∗ proves knowledge of a witness
polynomial Li,S∗fi for a statement(

(R,R′) , (Li,S∗sij)Pj∈S∗

)
,

where R←$ E , R′ = [Li,S∗si]R, sij = fi(j) for
Pj ∈ S∗ and si was shared via fi. The inputs
of our amended proving protocol are the proving
shareholder’s index i, the witness polynomial f , the
superauthorised set S∗ ∈ Γ+ and the statement(
(R,R′) , (sij)Pj∈S∗

)
. The protocol can be found in

algorithm 6. By C we denote a commitment scheme.
The verifying protocol in turn has the prover’s and
the verifier’s indices i and j, respectively, a set
S∗ ∈ Γ+, a statement piece xj and a proof piece
(π, πj) as input, where xj = (R,R′) ∈ E2 if j = 0
and xj ∈ Zp otherwise. The verifying protocol is
given in algorithm 7.

The definitions of soundness and zero-knowledge
for a threshold PVP scheme carry over from the
non-threshold setting in Section II intuitively, yet we
restate the completeness definition for the threshold
setting.

Definition 8 (Completeness in the threshold setting)
We call a threshold PVP scheme complete if, for
any S′ ∈ Γ, any (x, f) ∈ R, any Pi ∈ S′ and(
π,{πj }Pj∈S′

)
← PVP.P (i, f, S′, xS′), we have

Pr[PVP.V (i, j, S′, xj , (π, πj)) = true] = 1

for all Pj ∈ S′.

The proofs for soundness, correctness and zero-
knowledge for Beullens et al.’s [8] approach are
easily transferred to our amended protocols, thus we
do not restate them here.

We arrive at our decapsulation protocol, executed
by a superauthorised set S∗: The partaking share-
holders fix a turn order. A shareholder Pi’s turn
consists of the following steps.

6

Algorithm 6: Proving protocol of the
threshold PVP

Input: i, f, S∗, ((E0, E1), (sij)Pj∈S∗)
for l ∈ 1, . . . , λ do

bl←$ZN [x]≤k−1

Êl ← [bl(0)]E0

y0, y
′
0←$ {0, 1}λ

C0 ← C
(
Ê1‖ . . . ‖Êλ, y0

)
C ′

0 ← C(E0‖E1, y
′
0)

for Pj ∈ S∗ do
yj , y

′
j ←$ {0, 1}λ

Cj ← C(b1(j)‖ . . . ‖bλ(j), yj)
C ′

j ← C
(
Li,S∗ · sij , y′j

)
C ← (Cj)Pj∈S∗

C ′ ←
(
C ′

j

)
Pj∈S∗

c1, . . . , cλ ← H(C,C ′)
for l ∈ 1, . . . , λ do

rl ← bl − cl · Li,S∗ · f
r← (r1, . . . , rλ)(
π,{πj }Pj∈S∗

)
←(

(C,C ′, r) ,
{(

yj , y
′
j

)}
Pj∈S∗

)
return

(
π,{πj }Pj∈S∗

)

Algorithm 7: Verifying protocol of the
threshold PVP

Input: i, j, S∗, xj , (π, πj)
parse (C,C ′, r)← π
parse (yj , y

′
j)← πj

c1, . . . , cλ ← H(C,C ′)
if j == 0 then

if C ′
j 6= C(xj , y

′
j) then

return false
for l ∈ 1, . . . , λ do

Ẽl ← [rl(0)]Ecl

return C0 == C
(
Ẽ1‖ . . . ‖Ẽλ, y0

)
else

if C ′
j 6= C

(
Li,S∗xj , y

′
j

)
then

return false
return Cj == C(r1(j) + c1 · Li,S∗ ·
xj‖ . . . ‖rλ(j) + cλ · Li,S∗ · xj , yj)

1) If the previous shareholder’s output Ek−1 is
not in E , Pi outputs ⊥ and aborts. The first
shareholder’s input E0 is the protocol’s input
ciphertext c.

2) Otherwise Pi samples Rk←$ E and computes
R′

k ← [Li,S′si]Rk.
3) Pi computes and pub-

lishes
(
πk,

{
πk
j

}
Pj∈S∗

)
←

PVP.P
(
i, fi, S

∗,
(
(Rk, R

′
k) , (sij)Pj∈S∗

))
4) Each shareholder Pj ∈ S∗ \ {Pi}

verifies PVP.V
(
i, j, S∗, sij ,

(
πk, πk

j

))
and

PVP.V
(
i, 0, S∗, (Rk, R

′
k) ,

(
πk, πk

0

))
. If either

should fail, Pj issues a complaint against
Pi and publishes sij . If Pi is convicted of
cheating by more than #S∗

/2 shareholders,
decapsulation is restarted with an S∗′ ∈ Γ+,
so that Pi 6∈ S∗′.

5) If the PVP was accepted, Pi

computes Ek ← [Li,S∗si]E
k−1 as

well as the zero-knowledge proof
zk ← ZK.P

(
(Rk, R

′
k) ,

(
Ek−1, Ek

)
, Li,S∗si

)
.

He publishes both.
6) If ZK.V

(
(Rk, R

′
k) ,

(
Ek−1, Ek

)
, zk

)
fails to

verify, decapsulation is restarted with a set
S∗′ ∈ Γ+, where Pi 6∈ S∗′.

7) Otherwise, Pi’s turn is finalised and the next
shareholder continues with Ek as input from
Pi.

8) The protocol terminates with the last share-
holder’s E#S∗

as output.

The combination of the PVP and the zero-knowledge
proof in steps 3 and 5 ensure, that Pi not only has
knowledge of the sharing polynomial Li,S∗fi but
also inputs Li,S∗fi(0) to compute Ek. The precise
protocol can be found in algorithm 8.

Definition 9
A KEM with secret shared private key is correct, if
for any authorised set S′, any public key pk and any
(K, c)← Encaps(pk), we have

K = K′ ← Decaps(c, S′).

The correctness of our KEM presented in algo-
rithm 4, algorithm 5 and algorithm 8 follows from
the correctness of the threshold group action (algo-
rithm 1). Let pk be a public key and sk = [pk]E0

be the respective secret key, that have been generated
by KeyGen, thus each shareholder Pi holds a share
si of sk, i = 1, . . . , n. For an authorised set S′ we
therefore have

sk =
∑

Pi∈S∗

Li,S∗si.

Furthermore let (K, c) ← Encaps(pk). To show
correctness, K′ = K has to hold, where K′ ←

7

Algorithm 8: Decapsulation
Input: c, S∗

E0 ← c
k ← 0
for Pi ∈ S∗ do

if Ek 6∈ E then
Pi outputs ⊥ and aborts.

k ← k + 1
Rk←$ E
R′

k ← [Li,S∗si]Rk(
πk,

{
πk
j

}
Pj∈S∗

)
← PVP.P

(
i, fi, S

∗, ((Rk, R
′
k), (Li,S∗sij)Pj∈S∗)

)
Pi publishes (Rk, R

′
k) and

(
πk,

{
πk
j

}
Pj∈S∗

)
Each Pj ∈ S∗ \{Pi} checks
bj ← PVP.V

(
i, j, S∗, Li,S∗sij ,

(
πk, πk

j

))
if bj = false for some Pj then

Pj publishes sij
if Pi is convicted then

return Decapsulation
(
c, S∗′) with S∗′ ∈ Γ ∧ Pi 6∈ S∗′

Ek ← [Li,S∗si]E
k−1

zkk ← ZK.P
(
(Rk, R

′
k) ,

(
Ek−1, Ek

)
, Li,S∗si

)
Pi publishes

(
Ek, zk

)
Each Pj ∈ S∗ \{Pi} checks
if ZK.V

(
(Rk, R

′
k) ,

(
Ek−1, Ek

)
, zk

)
= false then

return Decapsulation
(
c, S∗′) with S∗′ ∈ Γ ∧ Pi 6∈ S∗′

return K ← Ek

Decaps(c, S′). Now, after executing Decaps(c, S′),
we have K′ = E#S′

, which emerges as a result of
applying the threshold group action to c. This gives
us

K′ =

[∑
Pi∈S′

Li,S′si

]
c = [sk] (b ∗ E0) = b∗pk = K.

Our decapsulation is executed by superauthorised
sets S∗, which are authorised. This shows that our
KEM is correct.

E. Security

There are two aspects of security to consider:

• Active security: A malicious shareholder cannot
generate his contribution to the decapsulation
protocol dishonestly without being detected. We
prove this by showing that an adversary that
can provide malformed inputs without detection
can break either the PVP or the zero-knowledge
proof of knowledge.

• Simulatability: An adversary that corrupts an
unauthorised set of shareholders cannot learn

any information about the uncorrupted share-
holders’ inputs from an execution of the decap-
sulation protocol. We show this by proving the
simulatability of Decaps.

1) Active security:

Theorem 10
Let S∗ ∈ Γ+ and let (pk, sk) ← KeyGen be a
public/secret key pair, where sk has been shared.
Also let (K, c)← Encaps(pk). Denote the transcript
of Decaps(c, S∗) by(
Ek, (Rk, R

′
k) ,

(
πk,

{
πk
j

}
Pj∈S∗

)
, zkk

)
k=1,...,#S∗

.

Let Pi ∈ S∗ be an arbitrary but fixed shareholder.
If Decaps(c, S∗) terminated successfully and Pi′ ’s
output was generated dishonestly, then there exists
an algorithm that breaks the soundness property of
PVP or ZK.

Proof: Let Pi′ be the malicious shareholder
and let k′ be the index of Pi′ ’s output in the tran-
script. Since Decaps(c, S∗) terminated successfully,

8

we have

PVP.V
(
i′, j, S∗, Li′,S∗si′j ,

(
πk′

, πk′

j

))
=true

(III.1)

PVP.V
(
i′, 0, S∗, (Rk′ , R′

k′) ,
(
πk′

, πk′

0

))
=true

(III.2)

ZK.V
((

Ek′−1, Ek′
)
, (Rk′ , R′

k′) , zkk
′
)
=true

(III.3)

for all Pj ∈ S∗ \ {Pi′ }. Ek′
was generated dishon-

estly, thus we have

Ek′
= [α]Ek′−1,

for some α 6= Li′,S∗si′ . We distinguish two cases:
R′

k′ 6= [α]Rk′ and R′
k′ = [α]Rk′ .

In the first case, Pi′ published a zero-knowledge
proof zkk

′
so that (III.3) holds, where Ek′

=
[α]Ek′−1 yet R′

k′ 6= [α]Rk′ . Pi′ thus broke the
soundness property of the zero-knowledge proof.

In the second case, Pi′ published(
πk′

,
{
πk′

j

}
Pj∈S∗

)
so that (III.1) and (III.2)

hold for all Pj ∈ S∗ \ {Pi′ } and for j = 0. Thus,
Pi′ proved knowledge of a witness polynomial f ′

with
f ′(j) = Li′,S∗sij (III.4)

for all Pj ∈ S∗ \ {Pi′ } and R′
k′ = [f ′(0)]Rk′ , that

is
f ′(0) = α.

Since f ′ has degree at most k− 1, it is well-defined
from (III.4). Thus we have f ′ ≡ Li′,S∗fi′ , where
fi′ is the polynomial with which si was shared,
i.e., fi(0) = si. This gives us α = f ′(0) =
Li′,S∗fi′(0) = Li′,S∗si′j . We arrive at a contradic-
tion, assuming the soundness of the PVP.

2) Simulatability: We show, that an adversary
who corrupts an unauthorised subset of shareholder
does not learn any additional information from an
execution of the decapsulation protocol. For that we
prove the simulatability of the decapsulation.

Theorem 11
The decapsulation protocol presented in algorithm 8
is simulatable.

Proof: We give a finite series of simulators, the
first of which simulates the behaviour of the uncor-
rupted parties faithfully and the last of which fulfills
the secrecy requirements. This series is inspired by
the simulators, that [8] gave for the secrecy proof of
their key generation algorithm, yet differs in some
significant aspects. The outputs of the respective

simulators will be proven indistinguishable, hence
resulting in the indistinguishability of the first and
last one. As a slight misuse of the notation, we
denote the set of corrupted shareholders by A, where
A is the adversary corrupting an unauthorised set of
shareholders. This means Pi is corrupted iff Pi ∈ A.

The input for each simulator is a ciphertext c, a
derived key K and the adversary’s knowledge after
KeyGen was successfully executed, that is{

si,{sij }Pi∈S∗ ,{sji}Pj∈S∗\A

}
Pi∈A

.

1) The adversary corrupted an unauthorised set A,
hence each share of the secret key is uniformly
distributed from his view. Sim1 samples a poly-
nomial f ′

i ∈ Zp [X]k−1 with

∀Pj ∈ A : f ′
i(i) = sij

uniformly at random for each Pi ∈ S∗ \ A.
Since A is unauthorised, f ′

i exists.
Sim1 then proceeds by honestly producing
the output of each Pi ∈ S∗ \ A
according to the decapsulation protocol,
i.e., it samples Rk←$ E , computes
R′

k ← [Li,S∗f ′
i(0)]Rk and outputs

PVP.P
(
i, f ′

i , S
∗,
(
(Rk, R

′
k) , (Li,S∗sij)Pj∈S∗

))
,

Ek ← [Li,S∗s′i]E
k−1 and

ZK.P
(
(Rk, R

′
k) ,

(
Ek−1, Ek

)
, Li,S∗f ′

i(0)
)
,

where k is the index of Pi’s output in the
transcript, sij := f ′

i(j) for Pj ∈ S∗ \ A
and s′i := f ′

i(0). Since, for all Pi ∈ S∗ \ A,
si is information theoretically hidden to the
adversary, the resulting transcript is identically
distributed to a real transcript.

2) Let i′ denote the index of the last honest party
in the execution of the decapsulation protocol
and k′ the index of its output. Sim2 behaves
exactly as Sim1 with the exception, that it
does not compute the PVP itself but calls
the simulator SimPVP for the PVP to gener-
ate the proof

(
πk′

,
{
πk′

j

})
for the statement(

(Rk′ , R′
k′) , (Li,S∗si′j)Pj∈S∗

)
. Since the PVP

is zero-knowledge, Sim2’s output is indistin-
guishable from that of Sim1.

3) Sim3 behaves identical to Sim2 apart from not
generating the zero-knowledge proof for Pi′

itself, but outsourcing it to the simulator for
the zero-knowledge proof. That is Sim3 hands
tuples (Rk′ , R′

k′) and
(
Ek′−1, Ek′

)
to SimZK

and publishes its answer as the zero-knowledge
proof. With ZK being zero-knowledge, the out-
put of Sim3 is indistinguishable from that of
Sim2.

9

4) The final simulator, Sim4, enforces the correct
decapsulation output, that is E#S∗

= K. Since,
for Pj ∈ A, sj was provided as input and Pi′

is the last honest shareholder in the order of
decapsulation execution, Sim4 computes∑

Pj∈S′

Lj,S∗sj ,

where S′ contains the shareholders, whose turn
is after Pi′ ’s. To achieve the correct output of
the decapsulation E, Sim4 thus sets

Ek′
←

− ∑
Pj∈S′

Lj,S∗sj

E

instead of Ek′ ← [Li′,S∗s′i′]E
k′−1. Assuming

the soundness of the PVP as well as of the zero-
knowledge proof, this guarantees the result to
be E#S∗

= E, since

E#S∗
=

 ∑
Pj∈S′

Lj,S∗sj

Ek′
= E

holds. It remains to show, that the output of
Sim4 cannot be distinguished from that of Sim3.
The following reasoning is similar to that of [8],
yet for completeness we give a reduction B′,
that uses a distinguisher A′, that distinguishes
Sim3 from Sim4, to break the decisional paral-
lelisation problem. We highlight the necessary
modifications.
Let (Ea, Eb, Ec) be an instance of the deci-
sional parallelisation problem with base element
c. B′ computes

Ek′
←

 ∑
Pj∈S∗\(S′∪{Pi′ })

Lj,S∗sj

Ea.

With si′ looking uniformly distributed from A’s
view, this choice of Ek′

is indistinguishable
from Ek′

= [Li′,S∗s′i′]E
k′−1. B′ furthermore

does not sample Rk′ ←$ E but puts Rk′ ← Eb

and R′
k′ ← Ec. The resulting transcript is

handed to A′ and B′ outputs whatever A′

outputs.
Comparing the distributions, we see that

Ek′
= [a]Ek′−1

= [a]

 ∑
Pj∈S∗\(S′∪{Pi′ })

Lj,S∗sj

 c


if and only if Ea = [a]c, where sj := s′j for
Pj 6∈ A. Furthermore,

R′
k′ = [a]Rk′

is equivalent to

Ec = [a]Eb.

In the case of Ea = [a]c and Ec = [a]Eb,
the transcript handed to A′ is identically dis-
tributed to Sim3’s output. If, on the other hand,
(Ea, Eb, Ec) is a random triple, then the tran-
script follows the same distribution as Sim4’s
output. B′ thus breaks the DPP with the same
advantage as A′ distinguishes Sim3 from Sim4.

Sim4 outputs a transcript of the decapsulation
protocol with input c and output K that cannot be
distinguished from the output of Sim1, which is
indistinguishable from a real execution protocol.

F. Efficiency

Each shareholder engaged in an execution of the
decapsulation protocol has one round of messages to
send. The messages of the k-th shareholder consist of
the tuple (Rk, R

′
k), a PVP proof

(
πk,

{
πk
j

}
Pj∈S∗

)
,

the output Ek and the zero-knowledge proof zk.
Thus the total size of a shareholder’s messages is

2x+ 2c+ λk log p+ 2λ(#S∗) + x+ λk log p+ λ

=3x+ 2c+ λ (1 + 2(#S∗) + 2k log p)

where x is the bit representation of an element of
E and c is the size of a commitment produced
in PVP.P . Assuming x, c and the secret sharing
parameters k and p to be constant, the message
size is thus linear in the security parameter λ with
moderate cofactor.

IV. ACTIVELY SECURE SECRET SHARED
SIGNATURE PROTOCOLS

We convert the key exchange mechanism in
algorithm 4, algorithm 5 and algorithm 8 into an
actively secure signature scheme with secret shared
signing key. We concede, that applying active se-
curity measures to a signature scheme to ensure
the correctness of the resulting signature is counter-
intuitive, since the correctness of a signature can
easily be checked through the verifying protocol.
Yet verification returning false only shows that the
signature is incorrect, a misbehaving shareholder
cannot be identified this way. An actively secure
signature scheme achieves just that. An identified
cheating shareholder can hence be excluded from
future runs of the signing protocol.

A signature scheme consists of three protocols:
key generation, signing and verifying. We transfer
the unmodified key generation protocol from the
KEM in section III to our signature scheme. The

10

signing protocol is derived from the decapsula-
tion protocol (algorithm 8) by applying the Fiat-
Shamir-transformation, the verifying protocol fol-
lows straightforward. The protocols are given in
algorithm 9 and algorithm 10.

Both simulatability and active security of the
signing protocol can be proven in a manner similar
to that of Theorem 10. Thus we skip the proofs
deeming them only little instructive.

V. GENERALISING THE SECRET SHARING
SCHEMES

We constructed the protocols above in the context
of Shamir’s secret sharing protocol [2]. The key
exchange mechanism in section III as well as the
signature scheme in section IV can be extended
to more general secret sharing schemes. We first
list the requirements that a secret sharing scheme
has to meet in order to successfully implement the
KEM and the signature scheme, then we give some
examples of secret sharing schemes that fulfill said
requirements.

A. Compatibility requirements

Definition 12 (Independent Reconstruction)
We say a secret sharing instance S = (S,Γ, G) is
independently reconstructible, if, for any shared
secret s ∈ G, any S′ ∈ Γ and any shareholder Pi ∈
S′, Pi’s input to reconstructing s is independent of
the share of each other engaged shareholder Pj ∈ S′.

A secret sharing scheme compatible with our
KEM and signature scheme has to have indenpen-
dent reconstruction, since each shareholder’s input
into the threshold group action is hidden from every
other party by virtue of the GAIP.

Definition 13 (Self-contained reconstruction)
A secret sharing instance S = (S,Γ, G) has self-
contained reconstruction, if, for any S′ ∈ Γ and any
share s ∈ G, the input of each shareholder Pi ∈ S′

to reconstructing s is in G, so that reconstruction
can be represented as an iterated application of the
action of G.

For the secret space, G = Zp for some prime
p is necessary to enable the mapping · 7→ [·]. This
requirement may be loosened by replacing · 7→ [·]
with an appropriate alternative. Also, for a secret s
and any si ∈ {s1, . . . , sk } ← S.Share(s), si ∈ G
has to hold to enable key generation with two-level
sharing.

Furthermore, a PVP scheme, that is compatible
with the secret sharing scheme, has to exist and

agree with a zero-knowledge proof with respect to
the GAIP.

B. Examples of secret sharing schemes

We give two examples of secret sharing schemes
that fulfill the aforementioned conditions and two
counter examples.

• It is evident, that Shamir’s approach fulfills
all aforementioned requirements. We point out,
that the two-level sharing and the PVP have
been tailored to Shamir’s polynomial based
secret sharing approach.

• Tassa [13] introduced a hierarchical secret shar-
ing scheme also based on sharing via a ran-
domly sampled polynomial. To share a secret
s, a polynomial f in Zp [X] is sampled with
constant term s. Shareholders of the top rank in
the hierarchy are assigned interpolation points
of f . The second rank is assigned points on the
first derivative, in short, shareholders of the k-
th rank obtain interpolation points of the k−1st
derivative. With the shares being in Zp, this
enables the necessary two-level sharing. The
polynomial based sharing approach agrees with
the PVP protocol given above with some minor
adjustments. Thus, transferring the KEM and
the signature scheme to Tassa’s secret sharing
can easily be achieved.

• In 2006, Damgard and Thorbek proposed a
linear integer secret sharing scheme [14]. They
enable a wide range of access structures by
representing a given access strucure as a sharing
matrix. For an integer secret s to be shared,
a random vector with first entry s is sampled
and multiplied with the sharing matrix. Thus
reconstruction for an authorised set is achieved
by inverting the corresponding submatrix cor-
responding and multiplying the set of their
shares with the inverted matrix. With s and
the shares being unbounded, Damgard’s and
Thorbek’s scheme is not compatible with the
mapping · 7→ [·]. Also their scheme does not
comply with our PVP scheme. In its current
form, our KEM and signature scheme cannot be
instantiated with [14]’s approach. If a suitable
PVP and substitution for · 7→ [·] can be found,
an instantiation with their scheme is feasible.

• Additive secret sharing is the simplest of secret
sharing schemes. For a given secret s, each
shareholder Pi receives a share si, i = 1, . . . , n,
with s =

∑
Pi

si. Additive secret sharing has
self-contained as well as independent recon-
struction. Yet it is a full threshold secret sharing
scheme, that is Γ = {S} = {{P1, . . . , Pn}}.
Thus for any Pi ∈ S, the remaining sharehold-

11

Algorithm 9: Secret Shared Signing Algorithm
Input: m,S∗(
E0

1 , . . . , E
0
λ

)
← (E0, . . . , E0)

k ← 0
for Pi ∈ S∗ do

k ← k + 1
for l ∈ 1, . . . , λ do

Pi samples bil←$Zq [X]≤k−1

Pi publishes Rk
il←$ E

Pi publishes R′
il
k ← [bil(0)]R

k
il

Pi publishes
(
π,{πj }Pj∈S∗

)
← PVP.P

(
i, bil, S

∗,
((

Rk
il, R

′
il
k
)
, (bil(l))Pj∈S∗

))
Pi outputs Ek

l ← [bil(0)]E
k−1
l

Pi publishes zk ← ZK.P
((

Rk
il, R

′
il
k
)
,
(
Ek−1

l , Ek
l

)
, bil(0)

)
if ZK.V

((
Rk

il, R
′
il
k
)
,
(
Ek−1

l , Ek
l

)
, zk

)
= false then

restart without Pi

(c1, . . . , cλ)← H
(
E#S∗

1 , . . . , E#S∗

λ ,m
)

for Pi ∈ S∗ do
for l ∈ 1, . . . , λ do

Pi outputs zil = bil − cl · Li,S∗ · si
for Pj ∈ S∗ do

Pj computes b′il(j)← zil(j) + clLi,S∗sij
and verifies
PVP.V (i, j, S∗, b′il(j), π, πj) ∧ PVP.V

(
i, 0, S∗,

(
Rk

il, R
′
il
k
)
, π, π0

)
if Pi is convicted of cheating then

restart without Pi

for l ∈ 1, . . . , λ do
zj ←

∑
Pi∈S∗ zij

return ((c1, . . . , cλ) , (z1, . . . , zλ))

Algorithm 10: Signature verification pro-
tocol

Input: m, s, pk
parse (c1, . . . , cλ, z1, . . . , zλ)← s
for j = 1, . . . , λ do

if cj == 0 then
E′

j ← [zj]E0 =
[∑

Pi∈S∗ bij
]
E0

else
E′

j ← [zj] pk =[∑
Pi∈S∗ bij − Li,S∗si + s

]
E0

(c′1, . . . , c
′
λ)← H(E′

1, . . . , E
′
λ,m)

return (c1, . . . , cλ) == (c′1, . . . , c
′
λ)

ers {P1, . . . , Pn} \ {Pi} form an unauthorised
set. Thus active security cannot be provided
for the threshold group action, making additive

secret sharing incompatible with our KEM and
signature scheme.

VI. CONCLUSION AND FUTURE WORK

In this work, we presented an actively secure
key exchange mechanism based on Shamir’s secret
sharing scheme and derived a signature scheme
from it. The active security measures consist of
a piecewise verifiable proof and a zero-knowledge
proof for the GAIP, that in combination prove the
knowledge of the correct share of the secret key and
ensure its use in the protocol. For that we reworked
the piecewise verifiable proof and zero-knowledge
proof introduced in [8] to fit the threshold setting
of Shamir’s secret sharing and applied it to the
threshold group action of [7]. Active security and
simulatability were proven under the assumption of
hardness of the decisional parallelisation problem.

12

Furthermore, we characterised the properties nec-
essary for a secret sharing scheme in order for our
KEM and signature scheme to be based on it. We
gave [2] and [13] as two examples of secret sharing
schemes that fulfill the necessary conditions and to
which our scheme can feasible be transfered to. The
linear integer secret sharing scheme of [14] is incom-
patible with our schemes, yet a workaround does not
seem unfeasible. With additive secret sharing we also
gave a counter-example, to show the limits of our
model. We thereby demonstrated that cryptographic
schemes with secret shared private key in the HHS
setting are not limited to threshold secret sharing
schemes, but a wider variety of schemes and access
structures can be utilised.

For future work we envision transferring a wider
range of public key cryptographic schemes to a
secret shared setting in hard homogeneous spaces,
that is not restricted to Shamir’s approach. Another
promising direction is improving the efficiency of
the PVP and zero-knowledge proof to reduce the
message size, since the main portion of communica-
tion is spent on these security measures and thereby
improving the overall efficiency considerably. Also,
generalising our scheme to enable an even wider
field of secret sharing schemes to be applied is an
interesting task.

VII. ACKNOWLEDGEMENTS

We thank Lena Ries, Luca De Feo, and Michael
Meyer for inspiring discussions. Philipp Muth was
funded by the Deutsche Forschungsgemeinschaft
(DFG) – SFB 1119 – 236615297.

REFERENCES

[1] G. R. Blakley, “Safeguarding cryptographic keys,” Pro-
ceedings of AFIPS 1979 National Computer Conference,
vol. 48, pp. 313–317, 1979.

[2] A. Shamir, “How to share a secret,” Communications of the
Association for Computing Machinery, vol. 22, no. 11, pp.
612–613, Nov. 1979.

[3] Y. Lindell and A. Nof, “Fast secure multiparty ECDSA
with practical distributed key generation and applications to
cryptocurrency custody,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications
Security, CCS 2018, Toronto, ON, Canada, October 15-19,
2018, D. Lie, M. Mannan, M. Backes, and X. Wang,
Eds. ACM, 2018, pp. 1837–1854. [Online]. Available:
https://doi.org/10.1145/3243734.3243788

[4] J. Doerner, Y. Kondi, E. Lee, and a. shelat, “Thresh-
old ECDSA from ECDSA assumptions: The multiparty
case,” in 2019 IEEE Symposium on Security and Privacy.
San Francisco, CA, USA: IEEE Computer Society Press,
May 19–23, 2019, pp. 1051–1066.

[5] J. Doerner, Y. Kondi, E. Lee, and A. Shelat, “Secure two-
party threshold ECDSA from ECDSA assumptions,” in
2018 IEEE Symposium on Security and Privacy, SP 2018,
Proceedings, 21-23 May 2018, San Francisco, California,
USA. IEEE Computer Society, 2018, pp. 980–997.
[Online]. Available: https://doi.org/10.1109/SP.2018.00036

[6] L. T. A. N. Brandao, M. Davidson, and A. Vassilev,
“NIST roadmap toward criteria for threshold schemes for
cryptographic primitives,” Jul 2020. [Online]. Available:
http://dx.doi.org/10.6028/NIST.IR.8214A

[7] L. De Feo and M. Meyer, “Threshold schemes from isogeny
assumptions,” in PKC 2020: 23rd International Confer-
ence on Theory and Practice of Public Key Cryptography,
Part II, ser. Lecture Notes in Computer Science, A. Kiayias,
M. Kohlweiss, P. Wallden, and V. Zikas, Eds., vol. 12111.
Edinburgh, UK: Springer, Heidelberg, Germany, May 4–7,
2020, pp. 187–212.

[8] W. Beullens, L. Disson, R. Pedersen, and F. Vercauteren,
“CSI-RAShi: Distributed key generation for CSIDH,”
Cryptology ePrint Archive, Report 2020/1323, 2020, https:
//eprint.iacr.org/2020/1323.

[9] D. Cozzo and N. P. Smart, “Sharing the LUOV: Threshold
post-quantum signatures,” in 17th IMA International Con-
ference on Cryptography and Coding, ser. Lecture Notes in
Computer Science, M. Albrecht, Ed., vol. 11929. Oxford,
UK: Springer, Heidelberg, Germany, Dec. 16–18, 2019, pp.
128–153.

[10] W. Beullens, T. Kleinjung, and F. Vercauteren, “CSI-FiSh:
Efficient isogeny based signatures through class group com-
putations,” in Advances in Cryptology – ASIACRYPT 2019,
Part I, ser. Lecture Notes in Computer Science, S. D.
Galbraith and S. Moriai, Eds., vol. 11921. Kobe, Japan:
Springer, Heidelberg, Germany, Dec. 8–12, 2019, pp. 227–
247.

[11] D. Cozzo and N. P. Smart, “Sashimi: Cutting up CSI-
FiSh secret keys to produce an actively secure distributed
signing protocol,” in Post-Quantum Cryptography - 11th
International Conference, PQCrypto 2020, J. Ding and J.-P.
Tillich, Eds. Paris, France: Springer, Heidelberg, Germany,
Apr. 15–17 2020, pp. 169–186.

[12] J.-M. Couveignes, “Hard homogeneous spaces,” Cryptol-
ogy ePrint Archive, Report 2006/291, 2006, https://eprint.
iacr.org/2006/291.

[13] T. Tassa, “Hierarchical threshold secret sharing,” in
TCC 2004: 1st Theory of Cryptography Conference, ser.
Lecture Notes in Computer Science, M. Naor, Ed., vol.
2951. Cambridge, MA, USA: Springer, Heidelberg,
Germany, Feb. 19–21, 2004, pp. 473–490.

[14] I. Damgård and R. Thorbek, “Linear integer secret sharing
and distributed exponentiation,” in PKC 2006: 9th Interna-
tional Conference on Theory and Practice of Public Key
Cryptography, ser. Lecture Notes in Computer Science,
M. Yung, Y. Dodis, A. Kiayias, and T. Malkin, Eds.,
vol. 3958. New York, NY, USA: Springer, Heidelberg,
Germany, Apr. 24–26, 2006, pp. 75–90.

13

https://doi.org/10.1145/3243734.3243788
https://doi.org/10.1109/SP.2018.00036
http://dx.doi.org/10.6028/NIST.IR.8214A
https://eprint.iacr.org/2020/1323
https://eprint.iacr.org/2020/1323
https://eprint.iacr.org/2006/291
https://eprint.iacr.org/2006/291

	Introduction
	Preliminaries
	Secret Sharing Schemes
	Hard Homogeneous Spaces
	Threshold Group Action
	Piecewise Verifiable Proofs
	Zero-Knowledge Proofs for the GAIP
	The Adversary
	Communication channels

	Key Exchange Mechanism
	Public Parameters
	Key Generation
	Encapsulation
	Decapsulation
	Amending the PVP

	Security
	Active security
	Simulatability

	Efficiency

	Actively Secure Secret Shared Signature Protocols
	Generalising the secret sharing schemes
	Compatibility requirements
	Examples of secret sharing schemes

	Conclusion and future work
	Acknowledgements
	References

