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Abstract

Recently, several cryptosystems have been proposed based semidirect products of
various algebraic structures [5, 6, 4, 9]. Efficient attacks against several of them have
already been given [7, 8, 11, 3, 2|, along with a very general attack in [10]. The purpose
of this note is to provide an observation that can be used as a point-of-attack for similar
systems, and show how it can be used to efficiently cryptanalyze the MOBS system.

1 General semidirect product cryptosystems

In this section, we describe the general framework encompassing several recently proposed
algebraic cryptosystems, including [5, 6, 4, 9], and give a general observation which applies
to them all. That observation will be used in the next section to give a polynomial-time
attack on the proposed MOBS system [9)].

Suppose that G is a semigroup and S is a sub-semigroup of endomorphisms of G. One
can define the semidirect product G x S as the set G x S together with the operation

(91, 01) (g2, 2) = (b2(91)g2, b1 0 ¢2).

One can then build a Diffie-Hellman-like key exchange protocol as follows.

(i) Alice and Bob agree on an element (g,¢) € G x S.

(ii) Alice chooses a private integer a, computes (g, 9)* = (A, ¢*), and sends A to Bob.

)
)
(iii) Bob chooses a private integer b, computes (g, )’ = (B, #°), and sends B to Alice.
(iv) Alice computes K4 = ¢*(B)A.

)

(v) Bob computes Kp = ¢’(A)B.



Since
(Ka, ¢"*") = (B, ¢")(4, ") = (9,0)"*" = (A, 9")(B, ¢") = (K, "),
it follows that K4 = Kp, so this is Alice and Bob’s shared secret key, K. One also has that

A = 0" N9 2(9)- - 0(9)y,
B = ¢" 99" *(g)-- od(g)g, and
K = ¢""9)¢" " 2(9) - 0(9)g.

In general, it is not necessary for an attacker Eve to determine a or b to recover the shared
key K. It would be sufficient for her to find an endomorphism v of G which commutes with
¢ and satisfies

U(g)A = ¢(A)g. (1.1)

If she can find such an endomorphism, it follows that
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; #'(A)B = K.

2 MOBS

In [9], the authors propose the following. Let k be a positive integer and let By denote
the semiring of bitstrings of length k (i.e., By = Z%, as a set), together with the operations
of bitwise OR and bitwise AND. It’s easy to see that AND distributes over OR and both
operations are associative, so By with these operations is indeed a semiring. Then G will be
the multiplicative semigroup of n x n matrices over Bj.

A permutation o € Sy naturally acts on By by permuting the bits, and this extends to
an action on GG. The semigroup of endomorphisms S is taken as the symmetric group Sg; in
fact, this is a group of automorphisms of G.

Suppose that g, ¢, A, and B are as in the previous section with this choice of G and S.
We will now show how to produce an endomorphism ¢ which commutes with ¢ and satisfies
(1.1). In fact, we will determine an integer a for which

¢*(9)A = ¢(A)g.
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First note that such an « necessarily exists, since Alice’s integer a satisfies this.

Since ¢ is a permutation on {1,2,... k}, we can determine its disjoint cycle decom-
position ¢ = oy ---0, with O(k) operations. Since the cycles o1, ...,0; are disjoint, they
commute, and so ¢*(g)A = ¢(A)g if and only if

(07 -+ 07) (9)A = d(A)g.

For each j, one can find an integer «; for which U?j (9)A agrees with ¢(A)g in the bit positions
corresponding to that cycle (i.e., the orbit of o; which has length greater than 1). This can
be done with brute force by computing gA,o;(g)A, 07 (g)A, ... until such an a; is found.
This requires that we compute at most |o;| permutation products and matrix products.

Then use the Chinese Remainder Theorem to find an integer « for which a = «; (mod |oj|)
for all 5. It follows that ¢*(g)A = ¢(A)g.

Since |oq|+- - - +]o¢| < k, we have to compute no more than k permutation products and
matrix products. Since these operations are polynomial-time in the key size, and k is less than
the key size, it follows that this is polynomial-time. The final Chinese Remainder Theorem
calculation solves a system of congruences with moduli |o4], ..., |o¢|. If N = []|o;|, then the
size of N is about log N = > log|o;| < k, and this can be done using O(log® N) = O(k?)
operations [1], so it is also polynomial-time.

We extended the Python code generously made available by the authors of [9] to im-
plement this attack, and ran experiments for various values of k (of the same form they
suggested, being a sum of the first several primes). For each indicated value of k, we used
n = 3 (3 x 3 matrices) and generated 20 shared keys. We report the average wall-clock time
to recover each shared key on a single core of an i7 processor at 3.10GHz.

k| Avg. time (seconds)
100 0.0878
197 0.2374
381 0.5325
791 1.7000
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