
All the Polynomial Multiplication
You Need on RISC-V

Hwajeong Seo1[0000−0003−0069−9061], Hyeokdong Kwon1, Siwoo Eum1,
Kyungbae Jang1, Hyunjun Kim1, Hyunji Kim1,

Minjoo Sim1, Gyeongju Song1, and Wai-Kong Lee2

1IT Department, Hansung University, Seoul (02876), South Korea,
{ hwajeong84, korlethean, shuraatum, starj1023,

khj930704, khj1594012, minjoos9797, thdrudwn98}@gmail.com
2Department of Computer Engineering,

Gachon University, Seongnam, Incheon (13120), Korea,
waikonglee@gachon.ac.kr

Abstract. Polynomial multiplication is a core operation for public key
cryptography, such as pre-quantum cryptography (e.g. elliptic curve cryp-
tography) and post-quantum cryptography (e.g. code-based cryptogra-
phy and multivariate-based cryptography). For this reason, the efficient
and secure implementation of polynomial multiplication has been ac-
tively conducted for high availability and security level in application
services. In this paper, we present all polynomial multiplication methods
on modern 32-bit RISC-V processors. We re-designed expensive imple-
mentations of polynomial multiplication on legacy microcontrollers (e.g.
8-bit AVR, 16-bit MSP, and 32-bit ARM) for new instruction sets of 32-
bit RISC-V processors. Secondly, we suggest the optimal operand length
for each polynomial multiplication on 32-bit RISC-V processors. With
this implementation technique and Karatsuba algorithm, we achieved
scalable features, which ensures the polynomial multiplication in any
operand lengths with reasonably fast performance. Third, we propose
instruction set extensions for the optimal implementation of polynomial
multiplication on 32-bit RISC-V processors. This new feature introduces
significant performance enhancements. Lastly, the proposed implemen-
tation is a public domain and following researchers can easily re-produce
the result.

Keywords: Secure Polynomial Multiplication · Side Channel Attack ·
Cache Attack · Constant Timing · RISC-V Processors. · Instruction Set
Extensions

1 Introduction

Public key cryptography, such as pre-quantum cryptography (e.g. elliptic curve
cryptography) and post-quantum cryptography (e.g. code-based cryptography
and multivariate-based cryptography) are based on the polynomial multiplica-
tion [1,2]. In particular, the polynomial multiplication has a large computational



2 Seo et al.

load when it performs the operation on the large operand size. Therefore, the
efficient and secure polynomial multiplication implementation is very important
to improve the performance of pre-quantum cryptography and post-quantum
cryptography In this paper, we show all kinds of polynomial multiplication
methods on modern 32-bit RISC-V processors. We re-designed expensive imple-
mentations of polynomial multiplication on legacy microcontrollers (e.g. 8-bit
AVR, 16-bit MSP, and 32-bit ARM) for the state-of-art instruction sets of 32-
bit RISC-V processors. Furthermore, we suggested the optimal operand length
for each polynomial multiplication on 32-bit RISC-V processors and the scalable
design by taking advantages of Karatsuba algorithm. Third, we proposed addi-
tional instruction sets for optimized polynomial multiplication implementations
on 32-bit RISC-V processors. This new feature can accelerate the performance
of polynomial multiplication by reducing clock cycles. Detailed contributions are
as follows:

1.1 Contribution

– First Optimized Implementations of Polynomial Multiplication on
32-bit RISC-V Processors We optimized two methods for the polynomial
multiplication on 32-bit RISC-V processors. In order to achieve the high
performance, we exploited RISC-V instructions and carefully utilized general
purpose registers of 32-bit RISC-V processors.

– Optimal and Scalable Implementation We suggested the optimal operand
length for each polynomial multiplication on 32-bit RISC-V processors. With
proposed polynomial multiplication and Karatsuba algorithm, we provide
scalable features, which ensures any operand lengths with reasonably fast
performance.

– Instruction Set Extension for Polynomial Multiplication We sug-
gested additional instruction sets for optimal implementation of polynomial
multiplication on 32-bit RISC-V processors. We show that with small exten-
sion on current instruction sets, the performance can be improved further.

– Proposed Implementations in Public Domain We uploaded proposed
implementations as an open source. Research followers can utilize the source
code to re-produce the result without difficulties.

https://bit.ly/3Bv8Qf8

The remainder of the paper is structured as follows: We review the related
work on polynomial multiplication, Karatsuba algorithm, and 32-bit RISC-V
processors in Section 2. We present the optimized implementation of polynomial
multiplication on 32-bit RISC-V processors and instruction extensions for further
optimizations in Section 3. In Section 4, we present results on 32-bit RISC-V
platforms (i.e. HiFive1 Rev B). We end with conclusions in Section 5.



All the Polynomial Multiplication You Need on RISC-V 3

Table 1. Purpose of registers in 32-bit RISC-V processors.

Register Description Register Description

x0 zero register tp (x4) thread pointer

ra (x1) zero register a0-a7 function argument & return value

sp (x2) stack pointer s0-s11 saved registers

gp (x3) global pointer t0-t6 temporal registers

Table 2. Instruction set for 32-bit RISC-V processor used for polynomial multiplica-
tion.

Instruction Description Instruction Description

add add mv move

addi add immediate sw store word

sub subtract lw load word

xor exclusive-or bne branch not equal

or OR slli shift left

andi AND immediate srli shift right

mul multiply li load immediate

2 Related Works

2.1 RISC-V Processor

The RISC-V processor is a new computer CPU architecture. This has been
developed by UC Berkeley from 2010 [3]. The processor can be utilized for aca-
demic, research, and industrial commercialization purposes. The main feature of
the RISC-V processor is that the basic instruction set is provided by the consor-
tium, but there are no restrictions on instruction extensions (i.e. customization).
By customized instruction sets for certain application services, it is possible to
improve the performance, significantly. Recently, many works devoted to im-
prove the performance of cryptography on 32-bit RISC-V processors [4–6]. In
this paper we utilized 32-bit RISC-V processors based on RV32IMAC instruc-
tion set for high-speed polynomial multiplication operations. Available registers
of target RISC-V processors are given in Table 1. In Table 2, the instruction set
for 32-bit RISC-V processor used for polynomial multiplication is given.

2.2 Polynomial Multiplication

Block Comb (Conditional Branch) This method executes consecutive bit-
wise exclusive-or on intermediate results under the condition of bit setting by
block-wise [7]. If the target bit is set to 1, destination registers are updated with
operands. Afterward, the intermediate result is left-shifted by 1-bit to align the
location of result. Since, whole processes are conducted in a block-wise fash-
ion, the intermediate result and operand bit test are handled, efficiently. There



4 Seo et al.

Algorithm 1 Lopez et al. multiplication in F2m [13]

Input: A = A[0, ..., n− 1], B = B[0, ..., n− 1] where word size is 8-bit.
Output: C = C[0, ..., 2n− 1].

1: Compute T = U ·B for all polynomials U of degree lower than t = 4-bit.
2: C[0, ..., 2n− 1]← 0
3: for k from 0 by 1 to n− 1 do
4: u← A[k]� t
5: for j from 0 by 1 to n− 1 do
6: C[j + k]← C[j + k]⊕ T (u)[j]
7: end for
8: end for
9: C ← C · 2t

10: for k from 0 by 1 to n− 1 do
11: u← A[k] mod 2t

12: for j from 0 by 1 to n− 1 do
13: C[j + k]← C[j + k]⊕ T (u)[j]
14: end for
15: end for
16: return C

are several variant on the Block-Comb method. In [8], they fully utilized gen-
eral purpose registers by selecting unbalanced block shape for the computation.
In [9], Karatsuba algorithm is applied to the Block-Comb method. This reduces
the computation complexity, significantly. In [10], the bitslicing like Block-Comb
method is proposed. By re-ordering the operand in bitslicing order, the compu-
tation is performed with small number of registers, efficiently. In [11, 12], the
polynomial multiplication is implemented on ARMv8 processors by taking ad-
vantages of careless multiplication of ARMv8 processors.

Lopez et al.’s Method The look-up table based polynomial multiplication
replaces bit-wise operations into simple look-up table accesses [13]. To perform
the method, the look-up table by multiplying one operand with certain offsets
is calculated and placed into memory (i.e. pre-computed result). The range of
offset is usually chosen to 4-bit (0x0∼0xf) for 16 (24) cases. The look-up table
occupies memory size at least 16×m, where m is size of operands. Afterward, the
look-up table is accessed by 4-bit wise and then updated to intermediate results
with the pre-computed result. Detailed descriptions of polynomial multiplication
on operands (A and B with n words) are given in Algorithm 1.

Side Channel Resistant Implementation with Conditional Statements
The previous LUT based polynomial multiplication (i.e. Lopez et. al.’s method)
ensures the implementation with the constant timing. However, the horizontal
Correlation Power Analysis (CPA) on weights of LUT can be identified with
only a power trace of binary field multiplication. In order to prevent CPA, they



All the Polynomial Multiplication You Need on RISC-V 5

Table 3. Register allocation for look-up table based polynomial multiplication.

Registers Descriptions

s0 ∼ s7 intermediate result

a0 ∼ s2 memory pointer

a3, t0 ∼ t6 temporal storage

a4 ∼ a7 operand storage

ra offset value

suggested a mask based polynomial multiplication [14]. With proposed secure
polynomial multiplication, Galois/Counter Mode (GCM) is implemented in a
secure way [15]. In [16], they presented concepts of Dummy XOR with garbage
registers and instruction level atomicity (ILA), and also present secure binary
field (BF) multiplication method using them, which runs in a constant-time and
fixed pattern. The method is further improved in [17,18]

2.3 Asymptotically Faster Multiplication: Karatsuba Multiplication

The basic idea of Karatsuba multiplication is to split a multiplication of two n
words operands into three multiplications of size n/2, which is possible at the
expense of some addition operations [19]. Taking the multiplication of n words
operands A and B as an example, we represent operands as A = AH · 2n/2 +AL

and B = BH ·2n/2+BL. The multiplication P = A·B can be computed according
to the following equation

P = A·B = AH ·BH ·2n+[(AH+AL)(BH+BL)−AH ·BH−AL ·BL]·2n/2+AL ·BL

3 Proposed Method

3.1 Look-up Table based Polynomial Multiplication

This approach requires the pre-computation on the operand before the polyno-
mial multiplication (See Step 1 of Algorithm 1). For the optimal register utiliza-
tion, we selected 128-bit wise operands for the polynomial multiplication. This
requires 320 bytes (16 cases × 4 bytes × 5 words) for the LUT storage. For the
efficient look-up table construction, we follow the Algorithm 2. Detailed orders
of table construction are as follows:

0→ 1→ 2→ 4→ 3→ 7→ 6→ 5→ 8→ 9→ 11→ 15→ 14→ 12→ 13→ 10

By following above order, we can cache the intermediate result and re-use them
to construct other tables without memory accesses.



6 Seo et al.

Algorithm 2 Table generation for look-up table based polynomial multiplica-
tion.

Input: Operands for multiplication.
Output: Pre-computed tables for operands.

1: Storing zero values to 0− th table.

2: Loading operands to registers (s4 ∼ s0).
3: Storing operands (s4 ∼ s0) to first table.

4: s9 ∼ s5← s4 ∼ s0� 1.
5: Storing operands (s9 ∼ s5) to second table.

6: t4 ∼ t0← s9 ∼ s5� 1.
7: Storing operands (t4 ∼ t0) to 4− th table.

8: a7 ∼ a3← (s4 ∼ s0)⊕ (s9 ∼ s5).
9: Storing operands (a7 ∼ a3) to third table.

10: a7 ∼ a3← (a7 ∼ a3)⊕ (t4 ∼ t0).
11: Storing operands (a7 ∼ a3) to 7−th table.

12: a7 ∼ a3← (a7 ∼ a3)⊕ (s4 ∼ s0).
13: Storing operands (a7 ∼ a3) to 6−th table.

14: a7 ∼ a3← (s4 ∼ s0)⊕ (t4 ∼ t0).
15: Storing operands (a7 ∼ a3) to 5−th table.

16: a7 ∼ a3← t4 ∼ t0� 1.
17: Storing operands (a7 ∼ a3) to 8−th table.

18: a7 ∼ a3← (a7 ∼ a3)⊕ (s4 ∼ s0).
19: Storing operands (a7 ∼ a3) to 9−th table.

20: a7 ∼ a3← (a7 ∼ a3)⊕ (s9 ∼ s5).
21: Storing operands (a7 ∼ a3) to 11 −

th table.

22: a7 ∼ a3← (a7 ∼ a3)⊕ (t4 ∼ t0).
23: Storing operands (a7 ∼ a3) to 15 −

th table.

24: a7 ∼ a3← (a7 ∼ a3)⊕ (s4 ∼ s0).
25: Storing operands (a7 ∼ a3) to 14 −

th table.

26: a7 ∼ a3← (a7 ∼ a3)⊕ (s9 ∼ s5).
27: Storing operands (a7 ∼ a3) to 12 −

th table.

28: a7 ∼ a3← (a7 ∼ a3)⊕ (s4 ∼ s0).
29: Storing operands (a7 ∼ a3) to 13 −

th table.

30: a7 ∼ a3← t4 ∼ t0� 1.
31: a7 ∼ a3← (a7 ∼ a3)⊕ (s9 ∼ s5).
32: Storing operands (a7 ∼ a3) to 10 −

th table.

In Algorithm 3, polynomial multiplication by 4-bit in batch processing (i.e. 4
bytes) is given. In Step 1 ∼ 4, the location of index for look-up table is selected
through the right shift operation with immediate values. In Step 5 ∼ 8, lower
4-bit of source registers (t0 ∼ t3) are extracted with the masking value (15;
0xF). In Step 9, the index register (t0) is multiplied by the offset register (ra).
In the implementation, the offset register is set to 20 since each index has 5
words for the pre-computation. From Step 11 to 15, pre-computed values are
loaded to temporal registers (s8, s9, s10, s11, t4). From Step 16 to 20,
pre-computed values are added to intermediate results (s0, s1, s2, s3, s4).
Similar to the first computation, from Step 21 to Step 56, second, third, and
fourth computations are performed, subsequently. Lastly, the result is returned.

In Algorithm 4, the shift left operation by 4-bit in batch processing is given.
In Step 1 ∼ 7, source registers (s0 ∼ s6) are shifted to right by 28-bit and stored
them into destination registers (t0 ∼ t6). Afterward, intermediate results are
shifted to left by 4-bit in Step 8 ∼ 15. Both results are added together in Step
16 ∼ 22. Lastly, the result is returned.

3.2 Secure Branch based Polynomial Multiplication

Secure branch based polynomial multiplication utilizes the instruction level atom-
icity. In Algorithm 5, detailed descriptions are given. In Step 1, the operand



All the Polynomial Multiplication You Need on RISC-V 7

Algorithm 3 Polynomial multiplication by 4-bit in batch processing in source
code level.

Input: Eight 32-bit reg-
isters (s0∼s7), four
registers for operands
(a4∼a7), nine tempo-
ral registers (t0∼t4,
s8∼s11), offset regis-
ter (ra).

Output: Eight 32-bit reg-
isters (s0∼s7).

//Index extraction
1: srli t0, a4, offset

2: srli t1, a5, offset

3: srli t2, a6, offset

4: srli t3, a7, offset

5: andi t0, t0, 15

6: andi t1, t1, 15

7: andi t2, t2, 15

8: andi t3, t3, 15

//First computation
9: mul t0, t0, ra

10: add t0, a3, t0

11: lw s8, 4*0(t0)

12: lw s9, 4*1(t0)

13: lw s10, 4*2(t0)

14: lw s11, 4*3(t0)

15: lw t4, 4*4(t0)

16: xor s0, s0, s8

17: xor s1, s1, s9

18: xor s2, s2, s10

19: xor s3, s3, s11

20: xor s4, s4, t4

//Second computation
21: mul t1, t1, ra

22: add t1, a3, t1

23: lw s8, 4*0(t1)

24: lw s9, 4*1(t1)

25: lw s10, 4*2(t1)

26: lw s11, 4*3(t1)

27: lw t4, 4*4(t1)

28: xor s1, s1, s8

29: xor s2, s2, s9

30: xor s3, s3, s10

31: xor s4, s4, s11

32: xor s5, s5, t4

//Third computation
33: mul t2, t2, ra

34: add t2, a3, t2

35: lw s8, 4*0(t2)

36: lw s9, 4*1(t2)

37: lw s10, 4*2(t2)

38: lw s11, 4*3(t2)

39: lw t4, 4*4(t2)

40: xor s2, s2, s8

41: xor s3, s3, s9

42: xor s4, s4, s10

43: xor s5, s5, s11

44: xor s6, s6, t4

//Fourth computation
45: mul t3, t3, ra

46: add t3, a3, t3

47: lw s8, 4*0(t3)

48: lw s9, 4*1(t3)

49: lw s10, 4*2(t3)

50: lw s11, 4*3(t3)

51: lw t4, 4*4(t3)

52: xor s3, s3, s8

53: xor s4, s4, s9

54: xor s5, s5, s10

55: xor s6, s6, s11

56: xor s7, s7, t4

57: return s0∼s7

setting is tested with the logical-AND instruction on operand (a0) and masking
value (ra). When the bit is reset (i.e. 0), the program counter is added with
offset and moves to Step 9. Afterward, operands (a4 ∼ a7) are added to the
intermediate results (s0 ∼ s3). In Step 14, the program counter is moved to
label 2. If the bit is set, it moves to Step 3 and performs dummy addition op-
erations, which emulate addition operations on the program counter. In Step 4
∼ 7, it emulates dummy exclusive-or operations (i.e. Step 10 ∼ 13). Afterward,
the program counter is moved to label 2. As we explained above, both routines
perform same operations. There is no memory operation depending on certain
information. This ensures high side channel resistance features. From Step 16
to 60, similar operations on other operands are performed, subsequently. From
Step 61 to 82, intermediate results are shifted to left by 1-bit. In Step 83, the
offset register is also shifted to right by 1-bit. Finally, the intermediate result is
returned. The register utilization is given in Table 4.



8 Seo et al.

Algorithm 4 Shift left by 4-bit in batch processing in source code level.

Input: Eight 32-bit reg-
isters (s0∼s7), seven
temporal registers
(t0∼t6).

Output: Eight 32-bit reg-
isters (s0∼s7).

//Right shift
1: srli t0, s0, 28

2: srli t1, s1, 28

3: srli t2, s2, 28

4: srli t3, s3, 28

5: srli t4, s4, 28

6: srli t5, s5, 28

7: srli t6, s6, 28

//Left shift
8: slli s0, s0, 4

9: slli s1, s1, 4

10: slli s2, s2, 4

11: slli s3, s3, 4

12: slli s4, s4, 4

13: slli s5, s5, 4

14: slli s6, s6, 4

15: slli s7, s7, 4

//Combining both values
16: or s1, s1, t0

17: or s2, s2, t1

18: or s3, s3, t2

19: or s4, s4, t3

20: or s5, s5, t4

21: or s6, s6, t5

22: or s7, s7, t6

23: return s0∼s7

Table 4. Register allocation for secure branch based polynomial multiplication.

Registers Descriptions

s0 ∼ s7 intermediate result

a0 ∼ a7 operand storage

s8 ∼ s11, t0 ∼ t6 temporal storage

ra offset value

3.3 Instruction Set Extensions for Polynomial Multiplication

The RISC-V processor supports user defined instruction set to accelerate the
target applications. In this Section, we suggest several instruction sets in proof of
concept, which are useful for the polynomial multiplication. Proposed instruction
set extensions are as follows:

– srliandi (srli + andi; Step 1 ∼ 8 of Algorithm 3): extracting the 4-bit
out of certain location of source register.

– muladd (mul + add; Step 9 ∼ 10 of Algorithm 3): calculating the memory
address with base pointer and offset value.

– sllior (slli + or; Step 8 ∼ 22 of Algorithm 4): logical-oring with left
shifted value.

– andbnexadd (and + bnez + add; Step 1∼ 2 of Algorithm 5): masked branch-
ing with instruction level atomicity.

In Table 5, performance improvements with instruction set extension for
both polynomial multiplication methods are given. For the look-up table based
polynomial multiplication, the number of instruction is reduced by 12.7% (826→
721). This is achieved through new extensions such as srliandi, muladd, and
sllior. For the secure branch based polynomial multiplication, the number of
instruction is reduced by 19.4% (2, 437→ 1, 964). This is achieved through new
extensions such as sllior and andbnexadd.



All the Polynomial Multiplication You Need on RISC-V 9

Algorithm 5 Secure polynomial multiplication by 4-bit in batch processing in
source code level.

Input: Eight 32-bit reg-
isters (s0∼s7), four
registers for operands
(a4∼a7), seven tempo-
ral registers (t0∼t6),
offset register (ra).

Output: Eight 32-bit reg-
isters (s0∼s7).

//First computation
1: and t0, a0, ra

2: bnez t0, 1f

3: add s8, s8, s9

4: xor s8, s8, a4

5: xor s9, s9, a5

6: xor s10, s10, a6

7: xor s11, s11, a7

8: j 2f

9: 1:

10: xor s0, s0, a4

11: xor s1, s1, a5

12: xor s2, s2, a6

13: xor s3, s3, a7

14: j 2f

15: 2:

//Second computation
16: and t0, a1, ra

17: bnez t0, 1f

18: add s8, s8, s9

19: xor s8, s8, a4

20: xor s9, s9, a5

21: xor s10, s10, a6

22: xor s11, s11, a7

23: j 2f

24: 1:

25: xor s1, s1, a4

26: xor s2, s2, a5

27: xor s3, s3, a6

28: xor s4, s4, a7

29: j 2f

30: 2:

//Third computation
31: and t0, a2, ra

32: bnez t0, 1f

33: add s8, s8, s9

34: xor s8, s8, a4

35: xor s9, s9, a5

36: xor s10, s10, a6

37: xor s11, s11, a7

38: j 2f

39: 1:

40: xor s2, s2, a4

41: xor s3, s3, a5

42: xor s4, s4, a6

43: xor s5, s5, a7

44: j 2f

45: 2:

//Fourth computation
46: and t0, a3, ra

47: bnez t0, 1f

48: add s8, s8, s9

49: xor s8, s8, a4

50: xor s9, s9, a5

51: xor s10, s10, a6

52: xor s11, s11, a7

53: j 2f

54: 1:

55: xor s3, s3, a4

56: xor s4, s4, a5

57: xor s5, s5, a6

58: xor s6, s6, a7

59: j 2f

60: 2:

//Shift to left by 1-bit
61: srli t0, s0, 31

62: srli t1, s1, 31

63: srli t2, s2, 31

64: srli t3, s3, 31

65: srli t4, s4, 31

66: srli t5, s5, 31

67: srli t6, s6, 31

68: slli s0, s0, 1

69: slli s1, s1, 1

70: slli s2, s2, 1

71: slli s3, s3, 1

72: slli s4, s4, 1

73: slli s5, s5, 1

74: slli s6, s6, 1

75: slli s7, s7, 1

76: or s1, s1, t0

77: or s2, s2, t1

78: or s3, s3, t2

79: or s4, s4, t3

80: or s5, s5, t4

81: or s6, s6, t5

82: or s7, s7, t6

83: srli ra, ra, 1

84: return s0∼s7

4 Evaluation

We utilized a HiFive1 development board as a benchmarking platform. The
board contains the FE310-G000 SoC with an E31 core and support the RV32IMAC
instruction set. The E31 core is designed as a 5-stage single-issue in-order pipelined
CPU@320 MHz. The core has 16 KiB of DTIM memory that is used as RAM. To



10 Seo et al.

Table 5. Performance improvements with instruction set extensions for both poly-
nomial multiplication methods. Notations (LUT, Secure, and w) represent look-table
based polynomial multiplication, secure branch based polynomial multiplication, and
with RISC-V extension, respectively.

Instruction LUT LUTw Secure Securew

slli 69 20 249 32

srli 86 62 248 248

or 65 16 217 0

xor 215 215 1,024 1,024

mul 32 0 0 0

add 32 0 128 0

addi 4 4 4 4

lw 181 181 22 22

sw 101 101 22 22

and 0 0 128 0

andi 28 4 0 0

li 12 12 9 9

mv 1 1 2 2

bnez 0 0 128 0

j 0 0 256 256

srliandi 0 24 0 0

muladd 0 32 0 0

sllior 0 49 0 217

andbnexadd 0 0 0 128

Total 826 721 2,437 1,964

accelerate instruction fetches from the flash memory, the E31 comes with 16 KiB
of 2-way instruction cache. The evaluation process is performed on SiFive Eclipse
IDE for C/C++ Development (version 4.7.2.) with gcc-8.3.0 and optimization
level 2 (-O2).

In Table 6, the evaluation of polynomial multiplication on target 32-bit RISC-
V processors is given. Various operand lengths ranging from 128-bit to 512-bit are
evaluated. For implementations of 256-bit and 512-bit polynomial multiplication
operations, 1-level and 2-level Karatsuba algorithms are utilized, respectively.
Together with the efficiency, secure countermeasures against side channel attack
are also considered. Between look-up table based approach and secure branch
based approach, look-up table based approach shows higher performance by
replacing the expensive bit-wise operation into memory accesses than secure
branch based approach by 51%, 53%, and 54% for 128-bit, 256-bit, and 512-
bit, respectively. The implementation is constant timing but it is is known to
be vulnerable to cache-based timing attacks [20, 21] and CPA. A CPU cache
can leak information about which memory address has been accessed during a



All the Polynomial Multiplication You Need on RISC-V 11

Table 6. Evaluation of polynomial multiplication on 32-bit RISC-V processors depend-
ing on operand size in terms of timing (clock cycles). Notations (c1, c2, and c3) indicate
constant timing, cache-free, and correlation power analysis resistance, respectively.

Method Language 128-bit 256-bit 512-bit Side Channel Resistance

Look-up Table assembly 1,026 3,425 10,950 c1

Secure Branch assembly 1,989 6,412 20,056 c1, c2, c3

computation. When this memory address depends on a secret intermediate value
as is the case with the table approach, it can be used to extract secret information
Our benchmarking platform does not have a data cache. Therefore, it should
be safe to use a table-based polynomial multiplication implementation on this
device. For the CPA attack, it requires highly controlled experimental setting
to extract the information. For this reason, the look-up table based approach is
reasonably secure implementation in real world applications.

Alternative implementation technique (namely secure branch based imple-
mentation) shows slower performance than look-up table based approach. How-
ever, it achieved instruction level atomicity. For this reason, it ensures highest
security levels with constant timing, cache-free, and correlation power analysis
resistance among polynomial multiplication methods.

5 Conclusion

In this paper, we presented the polynomial multiplication on 32-bit RISC-V
processors. Main contributions of our works can be summarized in the following
four aspects.

First, we firstly implemented the polynomial multiplication on legacy micro-
controllers (e.g. 8-bit AVR, 16-bit MSP, and 32-bit ARM) for new instruction sets
of 32-bit RISC-V processors. Second, we suggested the optimal operand length
for each polynomial multiplication on 32-bit RISC-V processors. With this poly-
nomial multiplication implementation and Karatsuba algorithm, we achieved the
scalable implementation, which ensures any operand lengths for the polynomial
multiplication operation with reasonably fast performance. Third, we suggested
additional instruction sets for the optimal implementation of the polynomial
multiplication operation on 32-bit RISC-V processors. This new feature can im-
prove the performance further. Lastly, the proposed implementation is public
domain and following researchers can easily re-produce the result in this paper.

As a future work, we will further explore the optimization of binary field
multiplication and efficient instruction set extensions for fast computations of
modern cryptography.

References

1. H. Seo, J. Kim, J. Choi, T. Park, Z. Liu, and H. Kim, “Small private key MQPKS
on an embedded microprocessor,” Sensors, vol. 14, no. 3, pp. 5441–5458, 2014.



12 Seo et al.

2. K.-A. Shim, C.-M. Park, N. Koo, and H. Seo, “A high-speed public-key signature
scheme for 8-b IoT-constrained devices,” IEEE Internet of Things Journal, vol. 7,
no. 4, pp. 3663–3677, 2020.

3. K. Asanovic and A. Waterman, “The RISC-V instruction set manual,” in Privi-
leged Architecture, Document Version 20190608-Priv-MSU-Ratified, vol. 2, RISC-V
Foundation, 2019.

4. H. Kwon, H. Kim, S. Eum, M. Shim, H. Kim, W.-K. Lee, Z. Hu, and H. Seo,
“Optimized implementation of SM4 on AVR microcontrollers, RISC-V processors,
and ARM processors,”

5. H. Seo, H. Kwon, K. Jang, and H. Kim, “Optimized implementation of scalable
multi-precision multiplication method on RISC-V processor for high-speed com-
putation of post-quantum cryptography,” Journal of the Korea Institute of Infor-
mation Security & Cryptology, vol. 31, no. 3, pp. 473–480, 2021.

6. K. Stoffelen, “Efficient cryptography on the RISC-V architecture,” in International
Conference on Cryptology and Information Security in Latin America, pp. 323–340,
Springer, 2019.

7. M. Shirase, Y. Miyazaki, T. Takagi, D.-G. Han, and D. Choi, “Efficient implemen-
tation of pairing-based cryptography on a sensor node,” IEICE transactions on
information and systems, vol. 92, no. 5, pp. 909–917, 2009.

8. H. Seo, Y. Lee, H. Kim, T. Park, and H. Kim, “Binary and prime field multipli-
cation for public key cryptography on embedded microprocessors,” Security and
Communication Networks, vol. 7, no. 4, pp. 774–787, 2014.

9. H. Seo, Z. Liu, J. Choi, and H. Kim, “Karatsuba–Block-Comb technique for elliptic
curve cryptography over binary fields,” Security and Communication Networks,
vol. 8, no. 17, pp. 3121–3130, 2015.

10. S. C. Seo and H. Seo, “Highly efficient implementation of NIST-compliant Koblitz
curve for 8-bit AVR-based sensor nodes,” IEEE Access, vol. 6, pp. 67637–67652,
2018.

11. H. Seo, Z. Liu, Y. Nogami, J. Choi, and H. Kim, “Binary field multiplication on
ARMv8,” Security and Communication Networks, vol. 9, no. 13, pp. 2051–2058,
2016.

12. H. Seo, “Faster (feat. ECC pmull) over F 571
2 ,” in A Systems Approach to Cyber

Security: Proceedings of the 2nd Singapore Cyber-Security R&D Conference (SG-
CRC 2017), vol. 15, p. 97, IOS Press, 2017.

13. J. López and R. Dahab, “High-speed software multiplication in f(2m),” in Inter-
national Conference on Cryptology in India, pp. 203–212, Springer, 2000.

14. H. Seo, C.-N. Chen, Z. Liu, Y. Nogami, T. Park, J. Choi, and H. Kim, “Secure
binary field multiplication,” in International Workshop on Information Security
Applications, pp. 161–173, Springer, 2015.

15. Z. Liu, H. Seo, C.-N. Chen, Y. Nogami, T. Park, J. Choi, and H. Kim, “Secure
GCM implementation on AVR,” Discrete Applied Mathematics, vol. 241, pp. 58–66,
2018.

16. S. C. Seo and H. Kim, “SCA-resistant GCM implementation on 8-bit AVR micro-
controllers,” IEEE Access, vol. 7, pp. 103961–103978, 2019.

17. S. C. Seo and D. Kwon, “Highly efficient SCA-resistant binary field multiplication
on 8-bit AVR microcontrollers,” Applied Sciences, vol. 10, no. 8, p. 2821, 2020.

18. K. Kim, S. Choi, H. Kwon, H. Kim, Z. Liu, and H. Seo, “PAGE—practical AES-
GCM encryption for low-end microcontrollers,” Applied Sciences, vol. 10, no. 9,
p. 3131, 2020.



All the Polynomial Multiplication You Need on RISC-V 13

19. A. A. Karatsuba and Y. P. Ofman, “Multiplication of many-digital numbers by
automatic computers,” in Doklady Akademii Nauk, vol. 145, pp. 293–294, Russian
Academy of Sciences, 1962.

20. D. J. Bernstein, “Cache-timing attacks on AES,” 2005.
21. D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermeasures: the

case of AES,” in Cryptographers’ track at the RSA conference, pp. 1–20, Springer,
2006.


