
Constant-Time Arithmetic for Safer Cryptography

Lúcás Críostóir Meier1, Simone Colombo1, Marin Thiercelin2, and Bryan Ford1

1DEDIS, EPFL, Switzerland
{lucascriostoir.meier, simone.colombo, bryan.ford}@epfl.ch

2ProtonMail, Switzerland
marin.thiercelin@protonmail.com

Abstract

The humble integers, Z, are the backbone of many cryptosystems. When bridging the
gap from theoretical systems to real-world implementations, programmers often look towards
general purpose libraries to implement the arbitrary-precision arithmetic required. Alas, these
libraries are often conceived without cryptography in mind, leaving applications potentially
vulnerable to timing attacks. To address this, we present saferith, a library providing safer
arbitrary-precision arithmetic for cryptography, through constant-time operations. The main
challenge was in designing an API to provide this functionality alongside these stronger
constant-time guarantees. We benchmarked the performance of our library against Go’s
big.Int library, and found an acceptable slowdown of only 2.56× for modular exponentiation,
the most expensive operation. Our library was also used to implement a variety cryptosystems
and applications, in collaboration with industrial partners ProtonMail and Taurus. Porting
implementations to use our library is relatively easy: it took the first author under 8 hours to
port Go’s implementation of P-384.

1 Introduction
At CRYPTO ’96, Kocher [Koc96] warned the cryptographic community about the risks of timing
attacks against public-key cryptosystems. Twenty-five years later, cryptographic implementa-
tions are ubiquitous; the risks of these attacks as well. Timing attacks enable an adversary
to extract secrets, such as private keys or plaintexts, from a system, by measuring the time it
takes to perform sensitive operations, such as decryption. These attacks often arise from the
increasingly complex micro-architecture used to implement operations in hardware [GYCH18].
They can even be carried out over a network [BB05, BT11], and have lead to concrete attacks
against AES [Ber05, OST06], RSA [AKS06, AKS07, YGH17, CAPGATB19], and Diffie-Hellman
key exchange [MBA+19].

To avoid these attacks, it is possible to write constant-time programs, in which operations only
vary in time based on public values. This involves various techniques [Aum20], such as replacing
branches with bitwise operations, avoiding array accesses with secret indices, or making sure
that loops have a fixed number of iterations. Constant-time operations are easier to implement
with values that have a fixed size. This is the case for many modern cryptosystems, which
often use finite fields with fixed parameters. In this case, each set of parameters can have an
optimized—and constant-time—implementation.

1



Unfortunately, some cryptosystems, like RSA [RSA78], or Paillier [Pai99], do not have fixed pa-
rameters. Instead, these parameters are part of the public key. In this case, arbitrary-precision
arithmetic is necessary, which requires more care to design a constant-time implementation.
While most programming languages have popular libraries providing arbitrary-precision arith-
metic, they are, alas, not designed with cryptography in mind, leaving them vulnerable to timing
attacks.

Go [Aut], in particular, suffers from these issues. Go provides the big.Int type for working with
arbitrary-precision signed integers. Although the authors provide no guarantees of constant-
time operations, big.Int gets used for cryptography, even inside of Go’s standard library. This is
especially concerning, as an increasing amount of cryptographic software is written in Go.

To provide arbitrary-precision arithmetic with the constant-time properties needed for cryptog-
raphy, we created the saferith library [Mei21], implemented in Go. The main challenge of our
work was in designing an API providing all the functionality needed from big.Int, as well as
the additional constant-time guarantees needed for cryptography. This involved synthesizing
the variety of timing-attacks into a succinct threat model, as well as determining how to safely
manipulate arbitrary-precision integers, even though operations vary in execution time based
on the size of numbers. The crux of our solution is to pad numbers to different public sizes.
While operations may leak this public size, the underlying value is kept hidden.

To evaluate our library, we created a couple of experiments to compare the constant-time execu-
tion of our library with the variable-time execution of big.Int. We also ran micro-benchmarks
showing that these extra guarantees come only at a performance cost of 2.56× for exponentiation,
the most expensive arithmetic operation.

To test the practicality of our library, we modified Go’s implementations of RSA and NIST’s
P-384 curve [CMRR19] to use saferith. We also worked with industrial partners to port their
applications to use our library. ProtonMail ported their implementation of the Secure Remote
Password (SRP) protocol [Wu97] away from big.Int. With Taurus, we integrated our library
into their implementation [HMA21] of the CGG+ Threshold ECDSA protocol [CGG+20]. This
state-of-the-art protocol is used by Fireblocks, among others, to secure their implementation of
cryptocurrency wallets1.

In summary, our contributions are:

• A succinct threat-model for timing-attacks against arbitrary-precision arithmetic libraries.

• A language-agnostic API for constant-time execution of arbitrary-precision arithmetic
operations.

• An efficient Go library providing constant-time arbitrary-precision arithmetic.

• An evaluation of the library using micro-benchmarks and implementations of real-world
protocols with industrial partners.

2 Background
In this section, we review timing side-channel attacks. We focus in particular on attacks targeting
arbitrary-precision arithmetic libraries and the Go’s standard cryptography library.

1https://apnews.com/press-release/pr-newswire/26aab91e254bc254d331ceafc20b9859

2

https://apnews.com/press-release/pr-newswire/26aab91e254bc254d331ceafc20b9859


2.1 Timing Side-Channels
A timing side-channel [Koc96, KSWH98] arises when an implementation of some algorithm
leaks information about the values it processes through observable timing patterns.

When a program performs more operations based on the value of its inputs, it inevitably leaks
information about those inputs: their values can be inferred by observing how many operations
were performed. Additionally, programs performing a fixed number of operations may have
timing leaks because of how the underlying hardware implements these operations. These
micro-architectural attacks are covered in more detail in our threat model (Section 3.1), as well
as in the survey by Ge et al. [GYCH18].

2.2 Arbitrary-Precision Arithmetic in Practice
Many programming languages have a general-purpose type for arbitrary-precision arithmetic
in their standard library, or a prominent one in their ecosystem. For example, Python, Haskell,
and Go all have arbitrary-precision arithmetic types in their standard libraries, while Rust has
the num-bigint library, and C has GMP. These types provide no guarantees around constant-time
operations. Yet, for lack of better alternatives, they do get used for cryptography. From this
perspective, these types suffer from two major issues.

The first issue is that algorithms branch or access memory based on input values. For example,
exponentiation may branch on the bits of the exponent. Not using constant-time implemen-
tations of these algorithms is understandable: these libraries are not intended to be used in
cryptography. The second, more fundamental, issue is that these libraries store numbers with-
out any zero padding. Numbers are represented as a sequence of register sized limbs, analogous
to bit sized digits. Numbers are stored normalized, with leading zero limbs removed. Even if
an operation produces an output of a given length, the result is truncated based on its value.
Because operations inevitably vary in time based on the number of limbs a value is stored
with, removing this padding can make certain values produce considerably different timing
patterns.

While timing vulnerabilities like these are concerning in theory, they may not always lead to
practical attacks. Certain operations are particularly vulnerable, such as exponentiation. A
recent paper by De Feo et al. [FPS21] analyzed, among other things, Go’s implementation of
DSA with its own big.Int type, and found that it was practically exploitable. The problem
was that big.Int’s exponentiation method uses direct table lookups, making it vulnerable to a
cache-based timing attack.

More subtle vulnerabilities can come from the pervasive padding issues mentioned above: the
OpenSSL library was affected by a similar issue for over 20 years, as recently exposed by Merget
et al. [MBA+19].

2.3 Go: A Case Study
We have chosen Go [Aut] as a poignant example of how vulnerable arbitrary-precision arithmetic
libraries see widespread usage.

Go provides a type for arbitrary-precision arithmetic in its standard library: big.Int. Despite
suffering from the many shortcomings highlighted above, it is widely used in cryptography,
including inside of Go’s own standard cryptography package: go/crypto. Inside this package,
there are three cryptographic schemes which make use of big.Int.

3



In DSA, big.Int is used for signing and verification. While this implementation is marked as
deprecated by the Go authors, it is nonetheless imported by more than two thousand known
packages.

In RSA, Go embeds big.Int as part of the API for the package. Key-generation, encryption,
decryption, signing, and verification use big.Int. The authors are aware of the shortcomings
of big.Int, and implemented a common mitigation for RSA decryption (and thus signing):
blinding. Instead of calculating 𝑐𝑑 mod 𝑁 , a random nonce 𝑟 is generated, and (𝑟𝑐)𝑑 mod 𝑁
is calculated instead. This mitigation was first suggested in [Koc96], and is effective against the
simple attacks detailed in this early paper. Unfortunately, blinding can fail to protect against
attacks making use of more granular timing information [SI11].

For elliptic curve cryptography, go/crypto provides implementations of various NIST curves.
The library also provides a generic interface for curves in Weierstrass form. This interface
is specified in terms of the big.Int type. Internally, only one curve is implemented using
big.Int: P-384 [CMRR19]. Not only are the field operations performed using big.Int, but
the elliptic curve operations use variable-time branching pervasively. Most importantly, scalar
multiplication is not performed in constant-time, which is particularly concerning.

3 saferith

The saferith library provides an alternative to big.Int, suitable for cryptography. In this
section, we go over the threat model it uses, as well as the resulting API design choices. We also
present a practical experiments to test our library’s claims of constant-time operation. Finally,
we present the performance cost of these additional guarantees.

3.1 Threat Model
We have distilled the concerns outlined in Section 2.1 into a simple list of rules, which constitute
the threat model for our library:

1. Any loop leaks the number of iterations taken.

2. Any memory access leaks the address (or index) accessed.

3. Any conditional statement leaks which branch was taken.

We take a pessimistic position, assuming that each individual violation of these rules leaks
perfectly to the adversary.

Rule 1 is justified by a trivial observation: a longer loop uses more operations. In practice, it is
difficult to observe the duration of each loop in a larger program, making this a pessimistic rule.
Rule 2 is justified by various cache based side-channels and attacks [Ber05, YGH17, CAPGATB19].
Since caches only load information an entire line at a time, this rule may seem too pessimistic.
Perhaps only which cache line was accessed should be kept secret [Bri11]. Unfortunately, it is
possible to perform attacks based on accesses inside of a cache line [BS13, OST06, YGH17]. This
is why we take a pessimistic position, and assume that accesses leak their exact address. The
justification for Rule 3 is twofold. First, if different branches of a conditional statement execute
a different number of operations, we can observe which branch was taken. Second, even if
both branches execute identical operations, the CPU’s branch predictor can be exploited to leak
information about the selected branch [AKS06, AKS07, EPAG16].

4



In addition to these rules, we need a basic set of trusted operations to build our programs. We
assume that addition, multiplication, logical operations, and shifts, as implemented in hardware,
are constant-time in their inputs. This is the case on most processors, one notable exception
being microprocessors [Por]. This assumption is reasonable for the platforms targeted by our
library.

3.2 Challenges in API Design
The central challenge of our work was in designing an API for arbitrary-precision arithmetic
that provided all the functionality programmers needed from big.Int, alongside the safety
guarantees they were sorely lacking.

The first issue is how to deal with padding. Operations fundamentally vary in time based on the
number of bits used to represent values. big.Int determines this size based on the significant
bits of each value, leading to pervasive timing leaks. At first, it seems difficult to keep values
secret if large values inevitably need more storage. Fortunately, while the value of a number
needs to be kept secret, there is usually a publicly known bound for how large it can be. For
example, in RSA the public modulus 𝑁 bounds the size of ciphertexts, finite fields are ≈ 256 bits
in size, etc. Because of this, we can define this public bound to be the announced size. This size
determines the number of bits we use to store our values and can be larger than the true size,
which would be the minimal number of bits needed. By padding numbers to a publicly known
size, and only allowing operations to vary in time based on this public size, we can keep their
underlying real values secret.

Another issue comes from handling negative numbers. big.Int stores integers in Z as an
absolute value in N, along with a boolean sign bit. The problem is that handling this sign
involves branching, revealing which numbers are negative. With a few exceptions—notably,
the CGG+ protocol—most applications only need numbers in N. Indeed, most cryptographic
schemes involve only modular arithmetic, with a few intermediate operations involving standard
arithmetic in N. Most of our functionality is therefore provided through a saferith.Nat type,
providing modular arithmetic and other operations in N.

Since modular arithmetic is so important, one question is whether moduli need to be padded or
not. The size of a modulus has a direct impact on the performance of operations, so removing
padding is desirable. Fortunately, while the value of a modulus is sometimes secret, there is
always a public bound for its size, e.g. the RSA’s exponent modulus 𝜑(𝑁) has approximately the
same as 𝑁 . Because of this, we introduce a separate modulus type saferith.Modulus, which is
stored without any padding.

When implementing the P-384 curve [CMRR19] we needed to conditionally choose, in constant-
time, between different numbers, by comparing their values. This functionality was already used
internally to implement various operations, but this application required us to expose it. We do
this by providing a saferith.Choice type, representing a boolean value suitable for constant-
time choice. We also expose operations for comparing numbers, producing a saferith.Choice.
We have an additional operation using a saferith.Choice to conditionally assign a value to a
saferith.Nat.

When implementing the threshold ECDSA protocol by Canetti et al. [CGG+20], we realized that
we needed negative integers. The CGG+ protocol represents exponents over a symmetric range,
including negative numbers. To support them, we have a saferith.Int type, representing
arbitrary integers in Z with an absolute value, as a saferith.Nat, as well as a sign bit, as a
saferith.Choice. In addition to arithmetic operations, we also support acting as an exponent,

5



and converting between modular numbers in the positive [0, . . . , 𝑁 − 1] to the symmetric range
[−𝑁/2, . . . , 𝑁/2].

3.3 Constant-Time Properties
In order to test our claims of constant-time execution, we devised a two simple experiments to
observe a difference in the timing patterns of Go’s big.Int and saferith.

Figure 1: Execution time of exponentiation (Exp), averaged over 400 runs, with an increasing
number of set bits. For big.Int, execution time is clearly correlated with this value. For Nat,
we observe no such correlation.

In Figure 1, we measured the execution time of exponentiation with a 64 bit exponent, and a
2048 bit modulus. For small exponents, big.Int conditionally performs a multiplication for
each bit of the exponent. This is clear in the timing pattern: the execution grows linearly with
the number of bits set in the exponent. For Nat, on the other hand, there is no observable
correlation between the weight of the exponent and the execution time. For larger exponents,
big.Int does not branch based on bits, but looks up elements in a table using multiple bits at a
time. This is exploitable through a cache based timing attack [FPS21].

Figure 2: Execution time of modular addition (ModAdd) with a 2048 bit modulus, averaged over
400 runs. For big.Int, execution time is clearly correlated with size, but not for Nat.

6



We also tested modular addition with a 2048 bit modulus in Figure 2. The input varied in its
significant bit count, but was always padded to 4096 bits. When the size of the input surpasses
the size of the modulus, a modular reduction is performed. This operation varies greatly in time
based on the announced size of the input. Because big.Int always removes padding, we can
clearly see this variation as the true size of the input grows. With saferith all inputs behave as
slowly as a full 4096 bit input.

In both figures, a noticeable amount of noise can be observed. We posit that this noise stems
from cache access patterns, and note that the noise does not seem to be correlated with the value
of the inputs.

Both of these experiments are quite crude. While they can show the leakiness of big.Int, they
do not guarantee the opaqueness of saferith.

3.4 Performance
Implementing constant-time operations comes with a performance slowdown. To quantify this,
we compared the performance of saferith.Nat and big.Int for basic arithmetic operations, as
presented in Table 1.

Operation big.Int saferith.Nat slowdown

Modular Addition 141ns 455ns 3.23×
Modular Multiplication 1.01𝜇s 21.93𝜇s 21.66×
Modular Reduction 2.89𝜇s 18.03𝜇s 6.24×
Modular Inversion 0.97𝜇s 355.26𝜇s 366.25×
Exponentiation 5.47ms 14.01ms 2.56×
Modular Square Roots 30.9𝜇s 47.5𝜇s 1.54×

Table 1: Performance of arithmetic operations in big.Int and Nat, with 2048 bit numbers,
averaged over 5 runs. The slowdown imposed by constant-time operations ranges from 1.54×
to 366.25×.

These operations are benchmarked with moduli of 2048 bits, and inputs with that many sig-
nificant bits. We stress that exponentiation is by far the most expensive operation, which
makes it encouraging to see that the slowdown on this operation is only 2.56×. Modular inver-
sion has the largest slowdown. To implement this operation, we used Pornin’s optimized binary
GCD [Por20c], which differs substantially from Go’s variable-time algorithm based on Euclidean
division. This explains the significant slowdown for modular inversion as compared to other
operations. On the bright side, this method is still faster than inversion through exponentiation,
which is a popular alternative to avoid writing a separate operation.

3.5 Limitations and Further Work
The main limitation of our work is in the confidence we can provide around constant-time
execution. Our code has not undergone an audit, and we have only performed basic tests to get a
sense of constant-time execution. Further work could involve performing more robust statistical
tests with dudect [RBV17], instrumenting our code to detect timing leaks with ctgrind [Lan10],
or formally verifying our code with ctverify [ABB+16].

7



Our library is written in Go, but the techniques it uses are language-agnostic. We could port it
to other languages, enabling them to reap the benefits provided by our library.

The performance of our library could be improved further. While we do reuse some of the safe
assembly routines written for Go’s big.Int, not all of the functionality we needed was available.
Rewriting certain routines—like Montgomery multiplication—in assembly would shorten the
performance gap between saferith and big.Int.

4 Results
To evaluate the practicality of saferith for real-world applications, we ported a variety of cryp-
tographic systems to use our library instead of Go’s big.Int. In addition, we collaborated with
ProtonMail and Taurus as industrial partners to integrate saferith into their applications. We
helped patch ProtonMail’s implementation of the SRP protocol [Wu97], and Taurus’s imple-
mentation of the CGG+ Threshold ECDSA Protocol [CGG+20]. In this section, we present these
systems, along with benchmarks evaluating the performance cost of our changes.

4.1 RSA
We adapted Go’s implementation of RSA to use our library2. Go’s implementation uses big.Int
extensively, for both the public API, and for internal operations.

Operation big.Int saferith.Nat slowdown

Decrypt 1.71ms 3.73ms 2.18×
Sign 1.80ms 4.21ms 2.34×

Decrypt (3 prime Modulus) 0.98ms 1.96ms 2.00×

Table 2: Performance of 2048 bit RSA, averaged over 5 runs.

Table 2 shows the benchmarks of our version’s performance, with a 2048 bit public key. We
notice that the performance of our library is better in this realistic benchmark as compared to
the previous benchmarks for basic operations. This is because of the amortization of operations
when implementing the full system.

We also upstreamed a portion of this work, implementing the bare necessities needed for RSA
encryption and decryption, in the form of a patch 3 to Go’s standard library.

4.2 P-384
Go implements the NIST P-384 curve using big.Int, making it the perfect candidate for a
saferith-based replacement.

We benchmarked the performance of scalar multiplication, the principal operation for ECC
schemes, in Table 3. The performance of our implementation predictably incurs a 10× slowdown.
We implemented operations using the minimal adjustments necessary to make them constant-
time. This entails a performance overhead, because of the extra work in scalar multiplication, as
well as in each individual curve operation. We could improve this by implementing complete

2https://github.com/cronokirby/saferith-misc
3https://go-review.googlesource.com/c/go/+/326012

8

https://github.com/cronokirby/saferith-misc
https://go-review.googlesource.com/c/go/+/326012


Operation big.Int saferith.Nat slowdown

Scalar Base Multiplication 4.20ms 45.40ms 10.79×
Scalar Multiplication 4.37ms 46.05ms 10.53×

Table 3: Performance of P-384 Operations, averaged over 5 runs.

formulas for addition [RCB16], or better ladder formulas [Joy07, Ham20]. But, our goal with this
implementation was not to write a more performant implementation, but rather to evaluate the
ease of use and speed of porting an existing implementation using saferith. The first author
ported the implementation from go/crypto line-by-line, in under 8 hours.

4.3 CGG+ ECDSA
Recently, Canetti et al. proposed a new state of the art implementation of threshold ECDSA
signatures [CGG+20], in collaboration with Fireblocks4. This protocol makes heavy use of
Paillier encryption [Pai99], Pedersen commitments [Ped92], and a battery of Zero-Knowledge
Proofs [GMR89, DSMP88] around their usage. All of these make extensive use of arbitrary-
precision arithmetic.

Taurus released5 an implementation of this protocol [HMA21], initially using Go’s big.Int. We
patched the implementation to use saferith where necessary. The needs of this application
drove the creation of new functionality in saferith, namely, the saferith.Int type. This
example shows the ability of saferith to easily replace big.Int, even when used extensively
across a codebase of thousands of lines of code.

Paillier Encryption Part of the application uses Paillier encryption, which requires arbitrary-
precision arithmetic.

Operation big.Int saferith.Nat slowdown

Encryption 26.7ms 82.2ms 3.08×
Ciphertext Addition 10.6𝜇s 64.0𝜇s 5.02×
Ciphertext Scaling 7.34ms 26.72ms 3.63×

Table 4: Performance of 2048 bit Paillier operations, averaged over 5 runs.

Given a 2048 bit modulus 𝑁 , the operations benchmarked here involve multiplication and
exponentiation modulo 𝑁2. The results presented in Table 4 match our expectations, based on
our benchmarks for the underlying operations.

Zero-Knowledge Proofs The CGG+ protocol makes use of Pedersen commitments, as well as
Zero-Knowledge proofs related to Paillier encryption. Both of these are based on modular—and
thus arbitrary-precision—arithmetic.

We benchmarked these operations in Table 5. The ZK Prm operation creates a proof that a
number is a valid Pedersen commitment, and ZK Mod creates a proof that a number is a valid

4https://apnews.com/press-release/pr-newswire/26aab91e254bc254d331ceafc20b9859
5https://www.taurushq.com/en/insights/taurus-mpc-cmp

9

https://apnews.com/press-release/pr-newswire/26aab91e254bc254d331ceafc20b9859
https://www.taurushq.com/en/insights/taurus-mpc-cmp


Paillier-Blum modulus. For a more detailed description of these operations, we refer the reader
to the CGG+ paper [CGG+20].

Operation big.Int saferith.Nat slowdown

Pedersen Commit 1.51ms 7.26ms 4.81 ×
Pedersen Verify 2.34ms 2.25ms 0.96 ×

ZK Mod 929ms 3031ms 3.26 ×
ZK Prm 437ms 1066ms 2.43 ×

Table 5: Performance of Pedersen and ZK Proofs, averaged over 5 runs.

We note that once again, the performance slowdown is reasonable, and matches our expectations
based on the performance of basic arithmetic operations. Our implementation uses saferith
only for proof generation, and not verification, because the latter step only operates on public
values.

4.4 SRP at ProtonMail
ProtonMail’s security model requires that the servers never gain access to any private user data.
This means that a user’s password, which can unlock private keys, must never leave the client.
ProtonMail uses the SRP protocol [Wu97] to authenticate users while ensuring their passwords
are never revealed to the server. Mobile applications rely on go-srp6, a Go implementation
of this protocol. The SRP protocol requires computing a modular exponentiation of a fixed
base with the password. This operation was originally done using big.Int, making go-srp
potentially vulnerable to the timing attacks we have previously mentioned. To move away from
big.Int, saferith offered a drop-in solution. saferith.Nat is easily convertible from and to
big.Int, which allowed swapping the type only for operations involving the password.

Operation big.Int saferith.Nat Slowdown
Verifier generation 63.5ms 86.8ms 1.37×
Proof generation 3.70ms 11.65ms 3.14×

Table 6: Performance of go-srp, averaged over 5 runs.

As shown in Table 6, using saferith instead of big.Intdoes have a cost in terms of performance.
However, in the case of go-srp, it is used only during sign-up (verifier generation) and log-in
(proof generation), which are rare client operations. The added security for a relatively small
performance cost—particularly in absolute terms—constituted an acceptable trade-off in this
case.

5 Related Work
Other prominent libraries such as OpenSSL or BearSSL have their own implementations of
arbitrary-precision arithmetic. Pornin’s BearSSL also has extensive documentation on the de-
sign and algorithms behind their implementation [Por20b, Por20a, Por20c]. Other references

6https://github.com/opencoff/go-srp

10

https://github.com/opencoff/go-srp


on arbitrary-precision arithmetic [Doc06b, MVOV18, CP06, Coh13] as well as finite field arith-
metic [Doc06a, Jun93, LN97, Shp13] were invaluable to our own work.

A recent approach to render integrating finite-field arithmetic easier is FiatCrypto [EPG+19],
which can generate formally verified implementations for individual fields. This builds on work
using formal methods to verify constant-time properties [ABB+16, BPT19]. Dynamic analysis
is another approach to check for variable-time execution [Lan10, RQPA16]. Statistical tests, like
those done in dudect [RBV17], are an even simpler method to discover timing leaks. These build
on the leakage detection tests pioneered by Coron et al. [CKN00, CNK04].

Our work also builds upon the seminal papers on timing—and other side-channel—analysis [Koc95,
Koc96, KSWH98]. These have flourished into practical demonstrations [BB05, BT11], as well as
concrete attacks against AES [Ber05, OST06], RSA [AKS06, AKS07, YGH17, CAPGATB19], and
Diffie-Hellman key exchange [MBA+19], to only mention a few.

6 Conclusion
In this paper, we presented saferith, a library providing arbitrary-precision arithmetic with
constant-time operations. We benchmarked its performance, and found it to be 2.56× slower than
Go’s big.Int, for modular exponentiation, the most expensive operation. This is an acceptable
trade-off for the stronger security guarantees our library tries to provide. Furthermore, we
evaluated its practicality by implementing several real-world cryptosystems, including SRP
and a Threshold ECDSA library, in collaboration with ProtonMail and Taurus, respectively, as
industrial partners.

References
[ABB+16] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and Michael Emmi. Verifying

constant-time implementations. In USENIX Security, 2016.
[AKS06] Onur Aciçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. Predicting Secret Keys Via Branch Prediction.

In CT-RSA, 2006.
[AKS07] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. On the power of simple branch prediction

analysis. In ASIACCS, March 2007.
[Aum20] Jean-Philippe Aumasson. cryptocoding. https://github.com/veorq/cryptocoding, 2020.
[Aut] The Go Authors. The Go Programming Language Specification - The Go Programming Language.
[BB05] David Brumley and Dan Boneh. Remote timing attacks are practical. Computer Networks, 48(5):701–716,

August 2005.
[Ber05] Daniel J Bernstein. Cache-timing attacks on AES. 2005.
[BPT19] Sandrine Blazy, David Pichardie, and Alix Trieu. Verifying constant-time implementations by abstract

interpretation. Journal of Computer Security, 27(1):137–163, 2019.
[Bri11] Ernie Brickell. Technologies to improve platform security. In CHES, 2011.
[BS13] Daniel J Bernstein and Peter Schwabe. A word of warning. In CHES, 2013.
[BT11] Billy Bob Brumley and Nicola Tuveri. Remote Timing Attacks Are Still Practical. In ESORICS, 2011.
[CAPGATB19] Alejandro Cabrera Aldaya, Cesar Pereida García, Luis Manuel Alvarez Tapia, and Billy Bob Brumley.

Cache-Timing Attacks on RSA Key Generation. TCHES, August 2019.
[CGG+20] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi Peled. UC Non-

Interactive, Proactive, Threshold ECDSA with Identifiable Aborts. In ACM SIGSAC, October 2020.
[CKN00] Jean-Sébasticn Coron, Paul Kocher, and David Naccache. Statistics and secret leakage. In International

Conference on Financial Cryptography, pages 157–173. Springer, 2000.

11

https://github.com/veorq/cryptocoding


[CMRR19] Lily Chen, Dustin Moody, Andrew Regenscheid, and Karen Randall. Recommendations for Discrete
Logarithm-Based Cryptography: Elliptic Curve Domain Parameters. Technical Report NIST Special
Publication (SP) 800-186 (Draft), National Institute of Standards and Technology, October 2019.

[CNK04] Jean-Sébastien Coron, David Naccache, and Paul Kocher. Statistics and secret leakage. ACM Transactions
on Embedded Computing Systems (TECS), 3(3):492–508, 2004.

[Coh13] Henri Cohen. A course in computational algebraic number theory, volume 138. Springer Science & Business
Media, 2013.

[CP06] Richard Crandall and Carl B Pomerance. Prime numbers: a computational perspective, volume 182. Springer
Science & Business Media, 2006.

[Doc06a] Christophe Doche. Finite field arithmetic. In Handbook of elliptic and hyperelliptic curve cryptography, pages
201–237. CRC Press, Taylor & Francis Group, 2006.

[Doc06b] Christophe Doche. Integer arithmetic. In Handbook of elliptic and hyperelliptic curve cryptography, pages
169–199. CRC Press, Taylor & Francis Group, 2006.

[DSMP88] Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Non-Interactive Zero-Knowledge Proof Sys-
tems. In CRYPTO, 1988.

[EPAG16] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Jump over ASLR: Attacking branch
predictors to bypass ASLR. In MICRO, October 2016.

[EPG+19] Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam Chlipala. Simple High-Level
Code for Cryptographic Arithmetic - With Proofs, Without Compromises. In IEEE SP, May 2019.

[FPS21] Luca De Feo, Bertram Poettering, and Alessandro Sorniotti. On the (in)security of elgamal in openpgp.
Cryptology ePrint Archive, Report 2021/923, 2021.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Complexity of Interactive Proof
Systems. SIAM Journal on Computing, 18(1):186–208, February 1989. Publisher: Society for Industrial
and Applied Mathematics.

[GYCH18] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of microarchitectural timing attacks
and countermeasures on contemporary hardware. Journal of Cryptographic Engineering, 8(1):1–27, 2018.

[Ham20] Mike Hamburg. Faster Montgomery and double-add ladders for short Weierstrass curves. Technical
Report 437, 2020.

[HMA21] Adrian Hamelink, Lúcás Críostóir Meier, and J.-P. Aumasson. multi-party-sig, 6 2021.
[Joy07] Marc Joye. Highly Regular Right-to-Left Algorithms for Scalar Multiplication. In CHES. 2007.
[Jun93] Dieter Jungnickel. Finite fields: structure and arithmetics. 1993.
[Koc95] Paul C Kocher. Cryptanalysis of Diffie-Hellman, RSA, DSS, and Other Systems Using Timing Attacks.

page 6, 1995.
[Koc96] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems.

In CRYPTO, 1996.
[KSWH98] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Side channel cryptanalysis of product

ciphers. In ESORICS, 1998.
[Lan10] Adam Langley. Checking that functions are constant time with valgrind, 2010.
[LN97] Rudolf Lidl and Harald Niederreiter. Finite fields. Number 20. Cambridge university press, 1997.
[MBA+19] Robert Merget, Marcus Brinkmann, Nimrod Aviram, Juraj Somorovsky, and Johannes Mittmann. Rac-

coon Attack: Finding and Exploiting Most-Signicant-Bit-Oracles in. 2019.
[Mei21] Lúcás Críostóir Meier. cronokirby/saferith. https://github.com/cronokirby/saferith, May 2021.
[MVOV18] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook of applied cryptography. CRC

press, 2018.
[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and Countermeasures: The Case of AES.

In CT-RSA, 2006.
[Pai99] Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In EURO-

CRYPT, 1999.
[Ped92] Torben Pryds Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. In

CRYPTO. Springer, 1992.
[Por] Thomas Pornin. BearSSL - Constant-Time Mul.

12

https://github.com/cronokirby/saferith


[Por20a] Thomas Pornin. BearSSL - Big Integer Design, 2020.
[Por20b] Thomas Pornin. BearSSL - Constant-Time Crypto, 2020.
[Por20c] Thomas Pornin. Optimized Binary GCD for Modular Inversion. page 16, 2020.
[RBV17] Oscar Reparaz, Josep Balasch, and Ingrid Verbauwhede. Dude, is my code constant time? In Design, Au-

tomation & Test in Europe Conference & Exhibition (DATE), 2017, pages 1697–1702, Lausanne, Switzerland,
March 2017. IEEE.

[RCB16] Joost Renes, Craig Costello, and Lejla Batina. Complete Addition Formulas for Prime Order Elliptic
Curves. In EUROCRYPT. 2016.

[RQPA16] Bruno Rodrigues, Fernando Magno Quintão Pereira, and Diego F Aranha. Sparse representation of
implicit flows with applications to side-channel detection. In ICCC, 2016.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key
cryptosystems. Communications of the ACM, 21(2):120–126, February 1978.

[Shp13] Igor Shparlinski. Finite Fields: Theory and Computation: The meeting point of number theory, computer science,
coding theory and cryptography, volume 477. Springer Science & Business Media, 2013.

[SI11] Werner Schindler and Kouichi Itoh. Exponent Blinding Does Not Always Lift (Partial) Spa Resistance
to Higher-Level Security. In Javier Lopez and Gene Tsudik, editors, Applied Cryptography and Network
Security, volume 6715, pages 73–90. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. Series Title:
Lecture Notes in Computer Science.

[Wu97] Thomas Wu. The Secure Remote Password Protocol. 1997.
[YGH17] Yuval Yarom, Daniel Genkin, and Nadia Heninger. CacheBleed: A Timing Attack on OpenSSL Constant

Time RSA. page 21, 2017.

13


	Introduction
	Background
	Timing Side-Channels
	Arbitrary-Precision Arithmetic in Practice
	Go: A Case Study

	saferith
	Threat Model
	Challenges in API Design
	Constant-Time Properties
	Performance
	Limitations and Further Work

	Results
	RSA
	P-384
	CGG+ ECDSA
	SRP at ProtonMail

	Related Work
	Conclusion

