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Abstract—Differential privacy is a concept to quantify the
disclosure of private information that is controlled by the
privacy parameter ε. However, an intuitive interpretation of
ε is needed to explain the privacy loss to data engineers and
data subjects. In this paper, we conduct a worst-case study
of differential privacy risks. We generalize an existing model
and reduce complexity to provide more understandable
statements on the privacy loss. To this end, we analyze the
impact of parameters and introduce the notion of a global
privacy risk and global privacy leak.

Index Terms—differential privacy, ε, privacy risk

1. Introduction

Differential privacy [1] is a concept that quantifies
the risk for data subjects to be identified in a data set.
More specifically, a mechanism is ε-differentially private
if for two neighboring statistical databases, the ratio of the
probabilities of every result is at most eε. The parameter ε
controls the degree of privacy, i.e., the privacy loss.

However, there is often a lack of understanding of the
privacy guarantees that an ε provides [2]. The privacy risk
depends on the statistical function, the number of data
subjects, and the contributed data itself. It is therefore
difficult to determine and/or to communicate the privacy
loss adequately in advance. Accordingly, one of the main
barriers to differential privacy is related to communication
issues between data engineers and data subjects [2].

In this paper, we provide an explanation of ε that
quantifies the risk of identification and is independent of
any other variables. To this end, we adopt the model of
Lee and Clifton [3], which rephrases ε as a probability de-
pending on the number of data subjects and the sensitivity.
By considering the worst-case privacy risk, we get rid of
this dependency. Therefore, we generalize the model and
introduce the notion of a global privacy risk and a global
privacy leak, which are global upper bounds.

With our work, we intend to contribute to a more
comprehensible explanation of an ε-differentially private
mechanism by reducing complexity. To this end, we
discuss how our approach can be used to communicate
privacy risks to data subjects and at the same time sup-
port data engineers to determine reasonable values for ε
in advance. Furthermore, we apply the privacy risk to
the randomized response technique [4]. In this way, we
provide an intuitive narrative to communicate the privacy
risk to data subjects.

2. Preliminaries

Differential privacy [1] is a mathematical notion that
bounds the risk of being identified in a database.
Definition 1 (Differential Privacy). A mechanism M gives

ε-differential privacy if for all data sets X and X ′

differing in one entry, all outputs S ⊆ Range(M)
satisfy P [M(X) ∈ S] ≤ eε · P [M(X ′) ∈ S].

The definition for ε-differential privacy states that the
probabilities of any possible output of an ε-differentially
private mechanism do not differ by more than a factor
of eε. The parameter ε thus captures the privacy loss.
If ε is small enough, an adversary will not have certainty
about whether an output was computed over database X
or database X ′. As a consequence, the adversary cannot
be certain about the presence or absence of any particular
data subject. This guarantee holds even for strong adver-
saries, who know the data of all possible data subjects.

An important notion when dealing with differential
privacy is the sensitivity of a function [1]. The sensitivity
of a function f quantifies the maximum change a single
entry could cause on the function’s result.
Definition 2 (Sensitivity). For f : Dn −→ Rn, the L1-

sensitivity of f is ∆f = max(X,X′)|f(X) − f(X ′)|1
for all X, X’ differing in one entry.

The most commonly used method to achieve differ-
ential privacy is to add random noise Y to the function’s
result, drawn from a Laplace distribution Lap(λ) [5].
Definition 3 (Laplace mechanism). For all f: D → R,

the following mechanism is ε-differentially private:
M(X) = t+ Y where Y is drawn from Lap (∆f/ε).

The guarantees differential privacy provides are of
probabilistic nature. Thus, an inevitable privacy risk re-
mains that boils down to the re-identification of data
subjects in the database.

Lee and Clifton [3] estimate the success probability
of an adversary guessing the correct combination of data
subjects in a data set based on the output of a differentially
private mechanism. They assume that the mechanism adds
Laplace noise as introduced before. Lee and Clifton refer
to the privacy risk ρ, i.e., the probability of being identified
as present/absent in a database, as

ρ ≤ 1

1 + (n− 1)e−ε∆v/∆f
(1)

where n is the number of data subjects, ∆f the sensitivity
of the function, and ∆v the maximum change one of the
data entries could cause on the function’s result, i.e., the
local sensitivity.



Running Example. Consider a school survey on drug
abuse. To raise awareness, parents have access to the ε-
differentially private results. Statistics such as the average
age or the number of drug-using students per class can be
obtained.

Bob’s mother, Eve, finds out that there is high drug
use in her son’s class. She wants to know who is using
drugs. Eve queries the database for the average age of
drug-addicted students of Bob’s class, which returns an ε-
differentially private answer. Let us assume that the age of
the students is between 0 and 25 years and that each class
has at least one student who is recorded in the database.
Hence, the sensitivity is given by ∆f = (25−0)/1 = 25,
i.e., if Bob is 25 years old, he would increase or decrease
the average by 25. However, students of the same class
are typically the same age. For example, Eve knows that
there are a total of 21 students (n = 21) in Bob’s class,
aged between 14 and 18. Additionally, with respect to the
privacy risk ρ defined by Lee and Clifton, we assume
that only one student is not present in the database.
Note that this corresponds to the worst case, since the
number of combinations of possible students present is
reduced to n− 1. Accordingly, the local sensitivity yields
∆v = (18− 14)/20 = 0.2. Finally, assume the mecha-
nism uses ε = ln 3. Hence, Eve’s probability of finding
out which of Bob’s classmates use drugs yields ρ ≈ 5 %.

3. Worst-Case Privacy Risks

The privacy risk of Lee and Clifton depends on
the number of data subjects n, the ratio of sensitivities
r = ∆v/∆f , and the privacy loss parameter ε. Often n
and r are not known in advance, which makes it difficult
to assess the risks. In the following, we analyze the impact
of the parameters to provide generalized statements on the
privacy risk. Therefore, we consider the worst case, i.e.,
we determine the global values for r and n.

3.1. Global Sensitivity Ratio

The global sensitivity ratio, i.e., the worst-case value
for r, holds the highest impact of a data subject’s value.
That is, due to the underlying data one data subject has
a higher impact on the result and thus increases the
probability to identify someone’s presence. In this case,
the maximum change caused by one of the present data
subjects corresponds to the sensitivity of the function, i.e.,
∆v = ∆f . The worst-case ratio therefore yields r ≤ 1 for
all query functions. Consequently, the maximum privacy
risk ρ depends on n and ε, given by

ρ ≤ 1

1 + (n− 1)e−ε
. (2)

For our running example, this means that Bob’s age
has the maximum possible impact on the mean, i.e., he is
25 years old and the database contains only one person
of his class. In this case, Eve would choose the correct
present students and thus finding out who is using drugs
with 11 % chance for ε = ln 3 and n = 21.

3.2. Global Number of Data Subjects

In our running example we assume that only one
student of Bob’s class is missing in the database. From
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Figure 1. Privacy risk in dependence of the number of n and ε.

this information alone, Eve can randomly guess which
students are in the database. We denote to this probability
as Pguess. If the probability of being in the database is the
same for all students, then Pguess = 1/n. This probability
is independent of the released result.

In order to illustrate the impact of the number of data
subjects n, when releasing the result, we plot the privacy
risk ρ from Equation (2) in Figure 1 for varying ε. For
larger n, the privacy risk decreases with decreasing impact
of larger n (cf. gradient). Hence, a small n has a higher
impact on ρ and ε than a large n.

For n = 1, the maximum privacy risk yields 1,
independent of ε. This makes sense as an adversary will
always choose the correct combination of data subjects if
there is only one possible combination to choose from.
In other words, Pguess = 1 and the release of the result
has no further impact. As a consequence, the worst case,
where differential privacy still has an impact but success
probabilities are maximized, is given for n = 2.

Considering our example under this background, as-
sume that Eve is certain about the presence of all the stu-
dents in Bob’s class except for 2. As there is one student
of the class missing from the database, the probability
of Eve identifying the correct combination of students
in the database is 0.5 before obtaining the average age.
With the differentially private (ε = ln 3) average age the
probability, i.e., Eve’s chance of inferring the students
using drugs, increases to 75 %. This privacy risk is the
worst-case privacy risk and depends on ε only. In the
following, we generalize this observation as the global
privacy risk.

3.3. Global Privacy Risk

We introduce the global privacy risk P as a global
upper bound on the maximum privacy risk ρ with r = 1
and n = 2. The global privacy risk is then given by

P =
1

1 + e−ε
. (3)

In Figure 2, we illustrate the dependency of P and ε.
The baseline of Pguess = 1/2 indicates that with n = 2
the adversary has a 50-50 chance of guessing the correct
data subjects in a database. With increasing ε, the global
privacy risk rises steadily and approaches 100 % without
reaching it. Yet, a large ε helps Eve to infer who is using
drugs with higher probability.
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Figure 2. The worst-case privacy risk dependent on ε.

3.4. Global Privacy Leak

The privacy risk indicates the success probability.
However, the privacy risk should be considered in relation
to Pguess to determine the impact of a differentially pri-
vate outcome on an adversary’s success probability. That
is, the privacy leak is the increment of the privacy risk
caused by the release of an ε-differentially private result,
i.e., ∆ρ = ρ− Pguess.

Since the privacy leak is an increment to the guessing
probability, it is not very intuitive. We therefore suggest to
consider the privacy leak as a relative increase by scaling it
to a range from 0 to 1. Analogously to the global privacy
risk, the maximum relative increase is given for r = 1
and n = 2. We therefore introduce the global privacy
leak Γ as

Γ =
∆P

1− Pguess
(4)

where ∆P = P − 1/2. Additionally, we introduce local
privacy leak γ, which is defined analogously with ρ in-
stead of P .

In Figure 2, we visualize the global privacy leak. For
n = 2, an adversary’s probability of guessing correctly
is Pguess = 0.5 but increases due to the answer to a
query. The increment ∆P is accordingly given by the
difference between P and Pguess. Large ε reveal more
about someone’s presence with the release than small ε
values. Generally speaking, the privacy leak can be con-
trolled by ε. For instance, for ε = 3 the global privacy
leak Γ = 0.91 compared to ε = ln 3 where Γ = 0.5.

In our running example, Eve finds out who is using
drugs with a chance of 75 %. The global privacy leak
yields Γ = 0.5 and captures Eve’s information gain by
taking the result of the differentially private query result
into consideration. Accordingly, she became 50 % more
certain about the students who are using drugs.

Of course, with each additional query, Eve would gain
more certainty. Since differential privacy is composable,
this situation is well captured, i.e., ε is additive for mul-
tiple queries. In consequence, the global privacy risk and
global leak increase for additional queries accordingly.

Finally, note that while we describe the global privacy
risk and privacy leak for a specific example and adversary,
it has a universal meaning beyond. The crucial assumption
is that the adversary has almost global knowledge about
the database except for one data point, which holds one of
two possible values. To decide on a value, the adversary

TABLE 1. TABLE FOR A SIMPLE EVALUATION OF ε

worst case n = 2 n = 10 n = 100

ε P Γ ρ γ ρ γ

ln 2 66.7 % 33.3 % 18.2 % 9.1 % 2.0 % 1.0 %
ln 3 75.0 % 50.0 % 25.0 % 16.7 % 2.9 % 2.0 %
ln 7 87.5 % 75.0 % 43.8 % 37.5 % 6.6 % 5.7 %

compares probabilities of an ε-differentially private out-
come for each option. The global privacy risk represents
the worst-case probability of the adversary choosing the
correct value with the global privacy leak representing the
corresponding relative information gain. Assuming global
knowledge of the adversary is reasonable as the defini-
tion of differential privacy is designed to provide privacy
protection for adversaries with arbitrary knowledge.

4. Discussion

To convey the implications of ε or to chose an ε in the
first place, two perspectives have to be considered: data
engineers and data subjects. In the following, we discuss
the privacy risks from both perspectives.

4.1. Data Engineer’s Perspective

Data engineers face the challenge to choose the
“right” ε. In general, they are interested in accurate results
and therefore prefer higher values of ε. Yet, it is difficult
to estimate the privacy risk, particularly since the expected
number of participants n is not known or cannot be
guaranteed in advance.

In this case, our study of the global privacy risk and
global privacy leak can serve as a framework. The global
privacy risk can provide a basic understanding of the
maximum privacy risks for varying ε independent of other
parameters. Moreover, the global privacy leak captures the
information an adversary can gain in the worst case. If
a data engineer can make an assumption on n, she can
also calculate the local privacy risk ρ and local privacy
leak γ. Under this assumption, ρ and γ yield a less
conservative assessment of the privacy loss than the global
counterparts. In general, we believe that this framework
can support finding acceptable values for ε. In Table 1,
we summarize the influence for specific values of ε.

In our running example, a data engineer designing
the school database could take the privacy risks for the
students as well as the privacy leak into account when
deciding on the value for ε.

4.2. Data Subject’s Perspective

Data subjects often cannot asses the privacy risks of
sharing their data. While they prefer lower values of ε,
the value is typically fixed in advance. Other values to
calculate their privacy risk are unknown. However, the
consequences of the privacy parameters remain subject to
a personal assessment.

In order to make a qualified decision, our approach
makes an effort to make the implications of ε compre-
hensible for a general audience. The intentions can be
understood similar to a weather forecast predicting the



chance of rain, i.e., an adversaries possibility to infer
someone’s presence or absence. Individuals get an idea
of what may happen if they go outside, i.e., contribute
their data. Thus, individuals are able to make an informed
decision about their actions.

The probability of an adversary inferring someone’s
presence or absence can be explained illustratively using
the randomized response technique [4], as it provides an
intuitive mechanism to realize differential privacy [2], [6].
The truthful answer is perturbed by flipping a biased coin,
which comes up head and tail with a probability p and
1 − p, respectively. If the coin comes up head, the true
answer is released, otherwise the opposite answer. Due to
the probabilistic nature of the answers, the data subjects
gain plausible deniability, i.e. an adversary is unable to
distinguish between true and forced answers.

We can apply the narrative of randomized response to
our findings and particularly use it even to explain Laplace
mechanisms. The ratio of the probabilities p and 1− p is
accordingly at most eε. Solving this ratio for p yields
Equation (3), which corresponds to the global privacy
risk P . The randomized response can also be extended to a
larger domain of d possible answers. Rearranging the ratio
of probabilities gives the privacy risk ρ in Equation (2),
where the parameter d corresponds to the number of data
subjects n. In this case, the privacy risk of a Laplace
mechanism is equal to a randomized response technique.
We therefore envisage to explain the privacy risks of
differential privacy using randomized responses.

Unfortunately, the global privacy risk alone provides a
distorted picture of the actual success of identification. For
instance, ε = ln 2 yields P ≈ 66.6 %, which is by con-
struction highly pessimistic. In contrast, the global privacy
leak yields Γ ≈ 33.3 %, which provides an understanding
of the relative privacy loss (in the worst case) caused
by sharing personal data. Since personal risk aversion
may differ greatly, we believe that the global privacy leak
should be used as a basis for an individual assessment.
Overall, such an approach would contribute to a more
transparent communication of privacy risks.

In our example, the school could communicate the
privacy risks and privacy leak beforehand. In this way,
students can make an informed decision about participa-
tion or even help in selecting an appropriate value for ε.

5. Related Work

According to Dwork [7], the value of ε is a “social
question”. Since then, research has been concerned with
the explainability of ε in order to communicate its impact.

Naldi et al. [8] propose a method for analyzing the
level of differential privacy achieved with the Laplace
mechanism for count queries. They chose ε depending
on a probability of inferring the true result within a given
range. However, the true value is needed. In contrast, we
communicate a generic risk for an associated ε.

The approach by He et al. [9] entails representing ε as
an identification risk. The risk is given by the adversary’s
probability of guessing the range of introduced noise and
thus the true value. However, the specification of the risk
for other functions than count queries remains open.

The economic implications of ε-differential privacy
have been explored by Hsu et al. [10]. The value of ε

is set based on a given accuracy and the number of
contributors. An analyst pays the contributors according to
their privacy cost of participating. The method facilitates
obtaining appropriate values for ε. However, the accuracy
function has to be recalculated for each scenario and the
privacy loss parameter ε is not understandable generically.

The groundwork for our approach on the explainability
of the privacy loss parameter ε is the work of Lee and
Clifton [3]. The authors assume that an adversary chooses
a combination of present contributors according to the
released result. The probability of the combination being
the correct one represents the disclosure risk. In our paper,
we modified the risk and connect it to the randomized
response technique in order to improve the explainability.

6. Conclusion and Future Work

In this paper, we introduced the notion of a global
privacy risk and global privacy leak that can serve as
the basis to explain the impact of ε and make qualified
choices. In future work, we intend to explore narratives
and communication strategies. In particular, it is known
that communicating risks as probabilities without context
is usually difficult to understand and should instead be
communicated as natural frequencies [11]. Moreover, we
intend to verify the explainability of ε using the random-
ized response and our proposed metrics in user studies.
This includes considerations of how the randomized re-
sponse should be explained for clarity and trust [12].
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