
Turn-Based Communication Channels

Carlo Brunetta1, Mario Larangeira2,3, Bei Liang4, Aikaterini Mitrokotsa1,5,
and Keisuke Tanaka2

1 Chalmers University of Technology, Gothenburg, Sweden,
brunetta@chalmers.se,aikaterini.mitrokotsa@chalmers.se

2 Department of Mathematical and Computing Science, School of Computing, Tokyo
Institute of Technology, keisuke@is.titech.ac.jp,mario@c.titech.ac.jp

3 IOHK, mario.larangeira@iohk.io
4 Yanqi Lake Beijing Institute of Mathematical Sciences and Applications, Beijing,

China, lbei@bimsa.cn
5 University of St. Gallen, School of Computer Science, St. Gallen, Switzerland,

aikaterini.mitrokotsa@unisg.ch

Abstract We introduce the concept of turn-based communication chan-
nel between two mutually distrustful parties with communication consis-
tency, i.e. both parties have the same message history, and happens in
sets of exchanged messages across a limited number of turns. Our con-
struction leverages on timed primitives. Namely, we consider a ∆-delay
hash function definition and use it to establish turns in the channel. Con-
cretely, we introduce the one-way turn-based communication scheme and
the two-way turn-based communication protocol and provide a concrete
instantiation that achieves communication consistency.

Keywords: Time Puzzle, Delay, Hash Function, Consistency

1 Introduction

Communication channels are the core mediums allowing different parties to build
dialogues. They can either be physical or abstract, e.g. electromagnetic wave
propagation or a key exchange protocol that allows to establish a secure com-
munication channel. Either the case, channels achieve different properties which
can be related to the medium, e.g. reliability, energy efficiency, bandwidth, or
based on the “content”, e.g. confidentiality, privacy or other.

A fundamental and highly desirable property of a channel is consistency, i.e.
different parties exchange messages which cannot be modified or repudiated in
the future once the communication is over. In other words, whenever a message
is shared, it is permanently fixed in the transcription. An example of a protocol

Acknowledgments. We are grateful to the anonymous reviewers for their insight-
ful comments. This work was partially supported by the Swedish Research Coun-
cil (Vetenskapsr̊adet) through the grant PRECIS (621-2014-4845), National Nature
Science Foundation of China (No. 61972124), Zhejiang Provincial Natural Science
Foundation of China (No. LY19F020019) and STINT grant (2017-7444).

that allows such a property is the public bulletin board which allows any party to
publish any information on the “board”, while receiving a “proof” that guaran-
tees the integrity that the information is indeed published. Recently, blockchains,
or public ledgers [4,15], have emerged as complex protocols that allow the in-
stantiation of a public bulletin board, without relying on a central authority.
Their security relies on a specially purposed consensus protocol, which often re-
quires assumptions of game-theoretic nature, e.g. the proof-of-work consensus
protocol implies that an adversary does not have more than 51% of the available
computing power at its disposal. Bulletin boards based on consensus protocols,
albeit practical, suffer from significant delays when persisting entries. Notably,
blockchain-based systems, typically suffer from scalability issues without a clear
solution yet. Consequently, for time critical systems, blockchain-based bulletin
boards may not be a useful alternative.

An emerging technology, autonomous driving, illustrates the challenge be-
tween time-critical systems and blockchains. Autonomous driving in a real-world
environment is a notoriously hard task because of the high number of variables
that must be taken into account. Moreover, in such systems, communication
between cars is a viable design approach. Different systems must communicate
and coherently agree on their action plans.

Let us consider a simplified example where a car is overtaking another one.
The one taking the action and surrounding cars must securely execute their al-
gorithms while communicating to each other. All the communication between
the cars should be timely available and guaranteed to be correct, i.e. could not
be changed a posteriori, for audit purposes. The transcript of the whole commu-
nication could be used later, or even in court, for legal issues. A straightforward
approach is to let vehicles be equipped with cryptographic primitives, such as
digital signatures. Despite its feasibility, the aid of public key cryptography may
not be an option for some devices, in particular, resource restricted ones. Be-
sides, it may require the use of Public Key Infrastructure (PKI) which may be,
again, prohibitive for some systems. One of the most basic building blocks in
cryptographic literature are hash functions. They are used to guarantee data in-
tegrity and are widely employed in the computer science discipline in numerous
applications. A natural question is whether such a building block would allow the
construction of a pair-wise communication channel, avoiding the somewhat heav-
ier cryptographic primitives earlier cited. An application relying only on hash
functions could be significantly “easier”, since it would not be aided by public
key cryptography schemes with PKI, typically more “complex” than their pri-
vate key cryptography counterpart. Furthermore, it could also sidestep the early
mentioned limitations of blockchain based protocols, yet providing a consistent
and timely communication channel between two users.

More succinctly, we investigate the question:

is it possible to design a consistent channel between two parties without using
blockchain’s assumptions nor public key infrastructure?

2

Concept’s Overview. All the communication is held over time which allows
to order events during communication, e.g. message exchange. Commonly, our
daily interaction is held over continuous communication channels in which
the communicating parties can communicate at any point in time. Our main
idea relies on providing a turn-based communication channel (TBCC) that
forces the two parties to communicate in a limited amount of distinct turns
separated by a ∆ time interval. The parties’ interaction is slowed down by the
necessity of waiting for the next turn, contrary to the almost-instantaneous reply
ability of continuous channels. To do so, we assume the existence of functions
that “computationally” create time delays and are used to extend the hash func-
tion definition and introduce the ∆-delay hash function, which paves the way to
the construction of time-lock puzzles in the spirit of Mahmoody et al. [17],
i.e. a primitive that allows Alice PA to generate a puzzle-solution pair (y, π),
send the puzzle y to Bob PB that spends a time ∆ to compute the solution π.
Concretely, ∆ is the turn interval in our TBCC construction. The novel feature
provided by TBCC is that PA knows the solution π in advance and can use it
to “commit” to a message m. By releasing m and the puzzle y, PB must invest
∆ amount of time in computing π before being able to verify the validity of m.
The early described timed-commitment is the stepping stone of our first con-
struction for a one-way turn-based scheme that allows the communication
of blocks of messages in turns in a single direction, e.g. from PA to PB . We show
that if the one-way turn-based scheme is correct and tamper resistant, i.e. the
adversary is unable to modify the past communication and/or the correctness
of the exchanged messages, intuitively this yields to communication consis-
tency, i.e. both parties have the same view of the exchanged messages even
if the adversary delays/tampers any message. We define the two-way TBCC
protocol as a “two one-way scheme” which allows a simpler extension of the
properties to the protocol, i.e. correctness, tamper resistance, sequentiality and
consistency. Additionally, we introduce the concept of turn synchronisation,
i.e. the two communicating parties must always agree in which shared turn they
are communicating. The protocol provides a recovery procedure that allows
the communicating parties to fix the last-turn messages in case of a communi-
cation error or an adversarial tamper.

We summarise our ideas and contributions in Fig. 1.

Related Work. Blockchains and Bulletin Boards. The blockchain is commonly
used in a distributed environment, where cryptographic primitives and game
theoretical assumptions create a distributed database, where consistency comes
for the orderly generation of blocks added to the structure. There are many
examples of either using blockchains as a building block with new primitives,
e.g. public verifiable proofs [20], or applying existing cryptographic primitives
into blockchains and achieve new functionalities [7,14], or the theoretical aspects
related to the consensus mechanism or the blockchains’ theoretical model [10].

Time and Cryptographic Primitives. Cryptography and timing are long time
distinct aspects that are commonly not considered together. Rivest et al. [19]
described the possibility of using time to create a cryptographic time-capsule, i.e.

3

Time
Assumption

One-way
Hash

∆-Delay
Hash

Mahmoody
TLP [17]

Time-Lock
Puzzle

Message

Solve
Puzzle

Correct
message?

Valid!

Puzzle

∆

One-Way SchemeTwo-Way Protocol

Figure 1. Roadmap of our contributions where we depict in gray the common assump-
tion and definitions, in green our assumptions and basic primitives, in purple our main
idea and construction and in blue our main contributions.

a ciphertext that will be possible to decrypt after a specified amount of time.
Their work defines the concept of time-lock puzzles, where timing is achieved by
cleverly tweaking the security parameters of some secure cryptographic primi-
tives, e.g. choose a specific parameter λ such that the computational complexity
of a specific problem is solvable by a real machine in reasonable time. Boneh et
al. [8] presented the concept of timed commitments, i.e. a commitment scheme
in which at any point, by investing an amount of effort, it is possible to cor-
rectly decommit into the original message. The main conceptual difference with
respect to previous works is that, in this work, timing properties are achieved by
forcing the algorithm to compute a naturally sequential mathematical problem.
From a different perspective, Mahmoody et al. [17] defined time-lock puzzles by
just assuming the existence of timed primitives. In the last years, many commu-
nity efforts have been devoted to introduce verifiable delay functions (VDFs),
i.e. to compute a timed function and be able to verify the correct computa-
tion of it. There are multiple instantiations of this primitive in the literature,
e.g. Lenstra et al.’s random zoo [16], a construction using randomized encoding
by Bitansky et al. [5] or Alwen-Tackmann’s theoretical consideration regarding
moderately hard functions [1]. The VDF’s formal definition is given by Boneh
et al. [6], subsequent papers provide additional properties for these time related
primitives such as Malavolta-Thyagarajan’s homomorphic time-puzzles [18] or
the down-to-earth VDF instantiation by Wesolowski [21].

Timing Model. Perhaps the closest set of works to our study deals with the Tim-
ing Model as introduced by Dwork et al. [9], and used by Kalai et al. [11]. While
they do present similarities to our work, e.g. the idea of “individual clock”, they
also present significant differences. For instance, while in [9,11] every party in
the real execution is equipped with a “clock tape”, extending the Interactive
Turing Machine (ITM) with clocks, in our model the parties are regular ITMs,
that perform computations in order to realize a “single clock” used by the ideal
functionality. Additionally, our work also shares similarities with Azar et al. [2]
work on ordered MPC, which studies delays and ordered messages in the context
of MPC. Our framework is positioned between both models as it focuses on turns
equipped with a message validating mechanism, which is a different approach.
Recently, a concurrent work by Baum et al. [3] formalizes the security of time-

4

lock puzzles in the UC framework. They introduce the UC with Relative Time
(RUC), which allows modelling relative delays in communication and sequential
computation without requiring parties to keep track of a clock, in contrast to
Katz et al.’s [13] approach which models a “central clock” that all parties have
access. The main contribution introduces a semi-synchronous message transmis-
sion functionality in which the adversary is aware of a delay ∆ used to schedule
the message exchanges, while the honest parties are not aware. In their work,
composable time-puzzle realizes such novel functionality, and yields UC secure
fair coin flips and two party computation achieving the notion of output inde-
pendent abort. They focused on composable primitives and therefore have to rely
on a constrained environment, i.e. it has to signal the adversary and activate
every party at least once. Another theoretical difference is the focus of the order
and turns but not in relative delays as in [3]. Baum et al. state as future work
a possible extension to their transmission model in which all the parties have a
local clock that would allow to always terminate any protocol. Our paper tackles
that extension and provides a tangible instantiation of the extended model.

2 Preliminaries

In this section, we present notations and assumptions used throughout the paper.
We denote vectors with bold font, e.g. v, and Pr [E] the probability of the

event E. Let {0, 1}∗ be the binary strings space of arbitrary length, N the natural
numbers, R the real numbers and R+ the positive ones. Let [a, b] ⊆ N denote
intervals between a and b and x←$X the random uniform sampling in the set
X. Let negl(λ) denote a negligible function in λ, i.e. negl(λ) = O(λ−c) for every
constant c > 0. We omit λ whenever obvious by the context.

Definition 1 (One-Way Hash Function [12]). Let n ∈ N. The function
H : {0, 1}∗ → {0, 1}n is a one-way hash function if it satisfies the properties:
– Preimage resistance: for any x←${0, 1}∗ and y := H(x), for any PPT

adversary A that, on input y, outputs x′, it holds that Pr [H(x′) = y] < negl;
– 2nd Preimage resistance: for any x←${0, 1}∗, y := H(x), for any PPT

adversary A that, on input x, outputs x′ 6= x, it holds Pr [H(x′) = y] < negl;

Complexity and Time. Let time be modelled as the positive real numbers R+.
At the core of our construction, we must assume the existence of a measure µ (·)
that plays the role of a “bridge” between complexity and timing. In a nutshell,
we want to provide an axioms model that allows to consider algorithms with
same computation time whenever executed by different devices. Formally,

Assumption 1 Given a model of computation M, there exists a measure µ (·)
that takes as input an M-computable function f with input x and outputs the
amount of time µ (f, x) ∈ R+ necessary to compute f(x) in the modelM. If f∗(x)
is a probabilistic function with input x and internal randomness r, then there
exists f(x; r) deterministic function that executes f∗(x) with fixed randomness r.

5

Informally, given a model of computation, e.g. Turing machines, quantum com-
puters, “pen-and-paper”, it is possible to measure “how much time does it take”
to compute f(x) both in the cases when f is deterministic or probabilistic6.

Another required assumption is the existence of a function family F whose
functions always output the results after the same amount of time. Formally,

Assumption 2 Given a model of computation M and associated µ (·), there
exists a function family F such that for any function f ∈ F , for any inputs x, x′,
f is input-independent with computing time µ (f), i.e. µ (f) = µ (f, x) = µ (f, x′).

Through the remaining of this work, we consider timing as the output of µ (·)
applied on input-independent functions. Whenever not specified, a hard problem
is a problem of which solution, computed via f, has large computation time µ (f).

The timed one-way hash function extends the hash’s properties of Def. 1.

Definition 2. Let n ∈ N. The function ∆H : {0, 1}∗ → {0, 1}n is a ∆-delay
one-way hash function if it is input-independent as described in Assumption 2
and, in addition to the properties of Def. 1, the following property also holds:
– ∆-Delay: for any PPT adversary A that takes an input x and outputs y

which runs in time µ (A, x)<∆=µ (∆H), it holds that Pr [y = ∆H(x)]<negl.

Observe that, in order for the ∆-delay’s property to make sense, the length of
x might be limited, e.g. the size of x must be polynomial. We omit such detail
and always consider delay hash functions with the appropriate input space size.

Define the time-lock puzzle (TLP) as a generate-solve algorithm pair in
which time plays a design/security aspect. Our definition is inspired by Azar et
al. [2] and, more specifically, we consider the construction presented by Mah-
moody et al.’s [17] in the random oracle (RO) model. The provided TLP gen-
erates m+1 sequential puzzles, i.e. a list of partial puzzle yi of which partial
solution πi is necessary in order to solve the next partial puzzle yi+1.

Definition 3. Let m ∈ N, security parameter λ and ∆ ∈ R+ be the desired time
delay. Let ∆H : {0, 1}∗ → {0, 1}n be a ∆-delay hash function for some n ∈ N. Let
the algorithms (GenPuz,SolPuz) define a (m∆) time-lock puzzle (m∆-TLP):
– GenPuz(λ, (m,∆))→ (y,π): the generation algorithm randomly samples m+

1 bit-strings xi ∈ {0, 1}n and it computes the hash ∆H(xi) for i ∈ [0,m]. The
algorithm outputs the list of partial puzzles and partial solutions:

(y,π) :=
((
x0,∆H(x0)⊕ x1, . . . ,∆H(xm−1)⊕ xm

)
, (x0, x1, . . . , xm)

)
;

– SolPuz(y, k, (π0, . . . , πk−1)) → πk: the algorithm parses the puzzle y into
(y0, y1, · · · , ym), k ∈ [1,m] and the known partial solutions (π0, . . . , πk−1).
It then outputs the partial solution πk := yk ⊕ ∆H(πk−1) where π0 := y0.

The following three properties must hold:

6 Observe that the same computational problem might have different timing, e.g. solv-
ing a classic-secure discrete logarithm instance is infeasible on a classical computer
while it is theoretically feasible on a quantum computer.

6

– Correctness: for every delay ∆, security parameter λ and m,n ∈ N, for
every puzzle (y,π) � GenPuz(λ, (m,∆)), for every k ∈ [1,m], it holds that
Pr [SolPuz(y, k, (π0, . . . , πk−1))=πk] = 1;

– Timing: for every delay ∆, security parameter λ and values m,n ∈ N,
for every puzzle (y,π) � GenPuz(λ, (m,∆)), for every k ∈ [1,m] it holds
that µ (SolPuz) = ∆ and generating the puzzle is faster than solving it, i.e.
µ (GenPuz) ≤ m · µ (SolPuz);

– Locking: for every delay ∆, security parameter λ and values m,n ∈ N, for
every puzzle (y,π) � GenPuz(λ, (m,∆)), for every k ∈ [1,m] and adversary
A that solves the k-th partial puzzle, i.e. A(y, k, (π0, . . . , πk−1)) = πk, it holds
that µ (A) < ∆ with only negligible probability.

The (m∆)-TLP describes a sequence of sequential puzzles that must be solved
one at a time. The timing property guarantees that the SolPuz algorithm requires
a specific ∆ amount of time to be executed and that generating the whole puzzle
takes less time than solving all the m puzzles. The locking property guarantees
that any adversary A is unable to solve the partial puzzle in less time than ∆
which implies, intuitively, that SolPuz is the most optimised algorithm for solving
the partial puzzle yi. If a better solving algorithm SolPuz′ exists with solving
time ∆′ < ∆, then (GenPuz,SolPuz′) is a (m∆′)-TLP while (GenPuz,SolPuz)
cannot satisfy the locking property.

3 Instantiating the Turn Based Communication Channel

In this section, we discuss the core concepts of timed disclosure, turns block
and communication consistency, later used to fully instantiate one and two-
way TBCC, from a time-lock puzzle based on a ∆-delay hash function.

Timed Disclosure and Message Block. Consider a ∆-delay hash function
and the related time-lock puzzle (y, π) as defined in Def. 3. Alice generates and
publishes the puzzle y. On receiving y, Bob starts solving it. Within the amount
of time ∆, only Alice knows the solution π, which allows her to produce an
efficient digest ξ = H(m, π) for any message m that she wants to communicate
with Bob. At this stage, Bob is unable to compute the same digest because
he does not know π. The “timed disclosure” is achieved whenever Bob finds the
solution π which enables him to accept or reject the previously received message
by verifying the correctness of the digest ξ. Timing is key for the security of the
disclosure: Alice must use the knowledge before it is disclosed and, on the other
hand, Bob should reject anything that uses such secret after the disclosure.
Differently, only after ∆ time, Bob can check which are the correct messages
that are binded to the specific solution π and can collect them into a turn block.
Whenever we consider that Alice can publish a sequential time-lock puzzle in
which one partial solution πi is the starting point for the next partial puzzle yi+1,
Bob must filter and accept the received messages into a block every ∆ amount of
time therefore creating the concept of turns and relative message blocks. This
turn point-of-view is possible because of the sequential timed disclosure that

7

can be seen as a “clock that ticks” every ∆ amount of time. This means that
the communication is one-way, from Alice to Bob. Alice does not see the turn
because all the partial solutions are known to her and therefore she is able to
generate any possible message-digest pair at any time, see Fig. 2.

Time

Alice

Bob

Bob’s Vision ∆ ∆

Figure 2. One-way channel scheme representation. Alice shares a time-lock puzzle with
Bob and then sends messages of which some are correctly binded with the next puzzle’s
partial solution. With that solution, Bob is able to filter out the correct messages. Since
this is done every ∆ time, in Bob’s eyes is as if he is receiving messages in turns.

Block of Messages and Communication Consistency. The next step is
to create a two-way communication between Alice and Bob by allowing them to
instantiate two independent one-way TBCC channels between each other, i.e. by
exchanging time-lock puzzles and communicating message-digest pairs that are
accepted and personally saved in blocks. These blocks are not stored in a trusted
third party service but Alice and Bob have their own local copy of the exchanged
message history and this means that it is required to provide a procedure to
guarantee consistency between the copies. Consider our communicating Alice
and Bob to be in the i-th turn, i.e. at the end of the turn they will create the i-th
block. Naively, to achieve consistency of all blocks, every message, of the current
block, should be bound to the previous and future block. For the previous block,
they include a digest hi−1 of the previous block in every message they share in
order to correctly verify that both have the same previous block vision. When
the i-th turn ends, they separately create their own block-vision which could
be different. When they enter the (i+1)-th turn, they will have to share the
previous block digest hi and they will see that the values are different. They will
therefore start a recovery phase by publishing the content of the i-th block.
At this point in time, the message’s digest ξi can be tampered by anyone since
the partial solution πi is publicly known. For this reason, for every message we
define a second digest σi that binds such message with the next turn/future block
solution πi+1. This procedure allows every party to understand “who is cheating”
or “where the errors are”. In this way it is possible to abort the communication at

8

any point in time, whenever a malicious party hijacks the channel. All the parties
are thus forced to honestly participate if they want to maintain the channel up.

Timing Simplification and Further Development. For the sake of sim-
plicity, we consider the underlying ∆-delay hash function ∆H to have an exact
computation timing, i.e. every device computing ∆H takes exactly µ (∆H) = ∆
time. A realistic assumption consider that devices (PA, PB) has similar/compa-
rable computation times

(
µ (∆H)PA

, µ (∆H)PB

)
which means that the difference∣∣µ (∆H)PA

− µ (∆H)PB

∣∣ must be less (or equal) a designed value ε. In this realis-
tic context, the turn-timing provided by the puzzle y is uncertain, i.e. the turn
length is a value contained in the interval ∆− ε < µ (∆H)PA

< ∆ + ε.
Our simplification allows to develop the general TBCC framework and we

leave as open questions the technique necessary for achieving a more realistic
timing assumption and a more profound security analysis that handles active
adversaries and protocol’s composition weaknesses.

3.1 One-Way TBCC Definition

In this section, we define the turn-based one-way channel from Alice to Bob.
A “channel” is any collection of parameters that allows to participate into the
communication, e.g. whenever a list of parameters is published, anyone can use
them to correctly parse future messages shared using them.

Definition 4. The one-way channel scheme is defined with the PPT algo-
rithms (setup, send, ext, turntoken, valid-ver, tamper-ver) as:
– setup(λ,∆, n) → (C, Cpriv): to setup the communication channel, PA parses

the security parameter λ, the delay ∆ and the number of turns n The setup
algorithm outputs the public and private channels (C, Cpriv);

– send(Cpriv,m, v, t)→ (ξ, aux): the send-message algorithm takes in input the
private channel information Cpriv, a message m with validity v ∈ {0,1} and
the turn t < n. The algorithm outputs the message correctness proof ξ and
the channel auxiliary information aux.

– turntoken(C, t, {x0, . . . , xt−1})→ xt: this algorithm is executed at the begin-
ning of turn t. The algorithm parses the channel C, the current turn t and
the set of previously computed turn tokens {x0, . . . , xt−1}, after ∆ amount
of time, the algorithm outputs the turn token xt.

– valid-ver(C, t,m, ξ, xt)→ {0, 1}: at the end of the t-th turn, the validity ver-
ification takes as input a message m and its proof ξ and the turn token xt.
The algorithm outputs the validity v for the sent message m with proof ξ;

– tamper-ver(C, t,Mt−1,m, aux, ξ) → {0, 1}: during the t-th turn, the tamper-
verification algorithm takes in input the public channel C, the current turn t,
the ordered block of messages Mt−1 which is the list of valid messages for the
turn t−1, a sent message m with proof ξ and auxiliary information aux. The
algorithm verifies if the sent message m correctly relates to the previously
sent messages contained in the block Mt−1, thus outputting 1 when this is
achieved, otherwise 0.

9

– ext(C, Cpriv, t)→ xt: the extraction algorithm takes as input the public chan-
nel C, the private channel Cpriv and a turn t ≤ n and outputs the turn token
xt, without investing any multiple of ∆ time;

– backward-ver(C, t,Mt−1, l) → {0, 1}: the recovery algorithm takes as input
the public channel C, the current turn t, the previous ordered block Mt−1 of
bt−1 = |Mt−1| valid messages mi and an index l ∈ [1, bt−1]. The algorithm
outputs if the l-th message m∗ in the block Mt−1 is a correct message for the
block Mt−1 at the end of turn t.

Let us explain how to generate a communication channel from Alice PA to
Bob PB , as depicted in Fig. 3. First, PA executes setup for an agreed delay
∆ and amount of turns n, and obtains the channels (C, Cpriv), e.g. the public
channel C can consist of PA’s public key and public parameters while the private
channel Cpriv contains PA’s private key. The knowledge of Cpriv allows PA to
quickly compute each turn token xt directly as ext(C, Cpriv, t) while PB must
sequentially compute them as turntoken(C, t, {x0, . . . , xt−1}) and obtain them
every ∆ amount of time, similarly to a periodic scheduling process. Whenever
PA sends the message m in a turn t, she executes send for a valid message in the t
turn and sends to PB the tuple (m, ξ, aux). PB can execute valid-ver(C, t,m, ξ, xt)
and verify the message validity only whenever PB obtains the turn token xt,
computable only after t·∆ amount of time. This allows PA to communicate
several messages of which PB cannot immediately verify the validity of m but it
has to wait for turntoken to output the specific turn token xt thus creating the
view of turns of the channel.

Time

setup

C Cpriv

C

tamper-ver tamper-ver

x1

x1

∆
x2

x2

∆
x3

x3

∆

turntoken

ext

Alice

Bob

send

in
va

lid

valid-ver

send

va
lid

valid-ver

Figure 3. One-Way TBCC scheme usage: Alice submits the public channel C to Bob,
and keeps the private information Cpriv. On each end of turn, Bob verifies the received
messages in order to prevent the addition of invalid messages in the channel.

Message Validity. The sender’s inputs are the validity value v, a bit which
indicates if the message is considered valid or not, along with the message m

10

itself and the choice of turn t. Only when the turn t ends, the receiver can verify
the validity of the message via the valid-ver algorithm and the turn token xt.

Definition 5 (Channel Correctness/Message Validity). Assume a turn
t ≤ n in a n-turn channel generated by the algorithms of Def. 4, then for all
message/validity pairs m and v, the channel is said to be correct if

Pr

valid-ver(C, t,m, ξ, xt) 6= v

∣∣∣∣∣∣
setup(λ,∆, n)→ (C, Cpriv);
send(Cpriv,m, v, t)→ (ξ, aux);
ext(C, Cpriv, t)→ xt;

 ≤ negl(λ) ,

with probability computed over the random coins of setup, send, ext and valid-ver.

Sequentiality and Turn Definition. The turns of the channel rely on the
time necessary to compute the token values xt via turntoken, defined in the
channel C during the general setup. Each computed turn-tokens xt, allows the
receiver to verify the validity and consistency of all received messages during the
turn t, crucially, only at the end of the turn after the expected delay time ∆.

Definition 6 (Sequentiality). The channel is ∆-sequential if for any turn t,
for any PPT adversary A running in time µ (A) < ∆, the adversary wins the
game GameA,∆

seq (λ, t, n) of Alg. 1, with negligible advantage, namely,∣∣∣∣Pr[GameA,∆
seq (λ, t, n) = 1]− 1

2

∣∣∣∣ ≤ negl(λ) .

Algorithm 1 Sequentiality Game GameA,∆
seq (λ, t, n) for the adversary A

1: Execute setup(λ,∆, n)→ (C, Cpriv);
2: Choose a random message m and validity v ← {0, 1}.
3: Execute ext(C, Cpriv, i)→ xi for i ∈ [1, t− 1] and send(Cpriv,m, v, t)→ (ξ, aux)
4: v∗ ← A

(
C, t,m, ξ, aux, {xi}t−1

i=1

)
5: Execute ext(C, Cpriv, t)→ xt

6: If valid-ver(C, t,m, ξ, xt) = v∗, output 1. Otherwise, 0

Last Turn Tamper Resistance. Given any t ≤ n of a TBCC with public
setup information C, define the block Mt−1 as the set of all jt−1 messages in the
turn t−1 with respective auxiliary information aux1, . . . , auxjt−1

and sent proof
ξ1, . . . , ξjt−1 . The algorithm tamper-ver(C, t,Mt−1,m, aux, ξ) checks, for any cor-
rectly computed message (m, aux, ξ) ∈ Mt, if it correctly relates to the previous
turn block Mt−1 by spotting whenever this connection is tampered.

Definition 7 (Last Turn Tamper Resistance). During the turn t ≤ n of
a channel C between two honest parties with correct message blocks Mi for each
turn 1 ≤ i < t, C is tamper resistant, if for any PPT adversary A, it holds

Pr

[
tamper-ver(C, t,M∗t−1,m

∗, aux∗, ξ∗) = 1|
(M∗t−1,m

∗, aux∗, ξ∗)← A(C, t,M1, . . . ,Mt−1)

]
≤ negl(λ)

such that M∗t−1 6= Mt−1 and tamper-ver(C, t,Mt−1,m
∗, aux∗, ξ∗) = 1. The prob-

ability is computed over the random coins of A and algorithm tamper-ver.

11

Communication Consistency. For any turn t ≤ n of a one-way channel C, the
channel is consistent until turn t−1 whenever the valid messages view between
the parties is the same during the turn t, i.e. an adversary must not be able to
force a wrong message history, regardless if it is the sender or the receiver.

Definition 8 (Consistency). During turn t ≤ n of a one-way TBCC channel
C between two parties with correct message blocks Mi for each turn 1 ≤ i < t, the
channel is consistent until turn t−1, if for any PPT adversary A, it holds

Pr [tamper-ver(C, t,M∗t−1,m
∗, aux∗, ξ∗) = 1|

(M∗t−1,m
∗, aux∗, ξ∗)← A(C, t,M1, . . . ,Mt−1)

]
≤ negl(λ)

such that M∗t−1 6= Mt−1, tamper-ver(C, t,Mt−1,m
∗, aux∗, ξ∗) = 1 and for all the

messages of the tampered block, along with auxiliary information and proof, i.e.
(m∗ji , aux∗ji , ξ

∗
ji) ∈ M∗t−1, it holds valid-ver(C, t − 1,m∗ji , ξ

∗
ji , xt−1) = 1 The

probability is computed over the random coins of A, tamper-ver and valid-ver.

One-Way Channel Instantiation. Let ∆ ∈ R+ be a time-delay and n ∈ N
a maximal turn number, both chosen by Alice, denoted with PA. Let H and ∆H
be respectively regular and ∆-delay hash functions. Let (GenPuz,SolPuz) be the
(n∆)-TLP of Def. 3 based on ∆H.

Construction 1. Let λ be the security parameter, n ∈ N number of turns, a
sender PA and a receiver PB. Instantiate the one-way channel scheme with the
PPT algorithms (setup, send, ext, turntoken, valid-ver, tamper-ver) defined as:
– setup(λ,∆, n) → (C, Cpriv): to setup the communication channel, PA parses

the security parameter λ, the delay ∆ and the number of turns n and executes
GenPuz(λ, (n,∆)) as defined in Def. 3 and obtains the n turn puzzle with
solution (y,π). Output (C, Cpriv) as (y,π);

– send(Cpriv,m, v, t)→ (ξ, aux): to send a message m with validity v in the turn
t < n, PA parses the private channel information Cpriv = π, and compute
ht−1 := H(Mt−1,m, πt−1), ξ := H(m, πt) and σ := H(m, ξ, πt+1) where Mt−1
is the ordered list of valid messages in the turn (t− 1), together with validity
proof and auxiliary information. The sending algorithm outputs, if v = 1,
the message correctness proof ξ and the channel auxiliary information aux =
(ht−1, σ), otherwise random values (ξ, aux) different from the correct ones.

– turntoken(C, t, {x0, . . . , xt−1})→ xt: this algorithm is executed by the receiver
PB at the beginning of turn t. It parses the channel C = y and continually ex-
ecutes SolPuz(y) by considering that every πi := xi for the t partial solution.
After ∆ amount of time, the output of the algorithm is xt := πt.

– valid-ver(C, t,m, ξ, xt)→ {0, 1}: at the end of the t-th turn, the validity verifi-
cation takes as input a message m and its proof ξ and the turn token xt = πt.

Output 1 if the equality H(m, πt)
?
= ξ holds. Otherwise, 0;

– tamper-ver(C, t,Mt−1,m, aux, ξ) → {0, 1}: during the t-th turn, the receiver
PB verify the correctness of the ordered (t− 1)-th block Mt−1 which contains

the previously valid ordered messages {mi}jt−1

i=1 for some jt−1 ∈ N, by parsing

12

the auxiliary information as aux = (ht−1, σ) and outputs the result of the

equality verification H(Mt−1,m, πt−1)
?
= ht−1.

– ext(C, Cpriv, t)→ xt: the extraction algorithm takes as input the public chan-
nel C, the private channel Cpriv = π and a turn t ≤ n and outputs xt = πt;

– backward-ver(C, t,Mt−1, l) → {0, 1}: the algorithm takes as input the pub-
lic channel C, the current turn t, the previous ordered block Mt−1, of ac-
cepted message mi for i ∈ [1, jt−1], and an index l such that m∗ is the
l-th message in the block m∗ = ml ∈ Mt−1 with auxiliary information
aux∗ = auxl = (ht−2

∗, σ∗). backward-ver computes ξ∗ = H(m∗, πt−1) and

outputs if H(m∗, ξ∗, πt)
?
= σ∗. The backward-ver algorithm verifies at the end

of turn t if the message m∗ is a correct message for the block Mt−1.

Proposition 1. The proposed one-way channel instantiation of Construction 1
achieves channel correctness as stated in Def. 5, sequentiality as stated in Def. 6
and last turn tamper resistance as stated in Def. 7. Furthermore, it holds that
consistency ⇔ last turn tamper resistant and correctness.

Two-Way TBCC Protocol Instantiation. We instantiate a two-way TBCC
and explain how to correctly realise the recovery procedure, i.e. a procedure exe-
cuted between the parties that allows them to force the communication’s correct-
ness and coherence. Consider the parties PA and PB and let both independently
setup the consistent one-way channel of Construction 1 which casts them both as
receiver and sender into two independent channels each. Both parties can send a
message to the other one in the channel they created. Concurrently, each party
tracks its local turn, receive and check messages by (1) continuously executing
turntoken and (2) keeping of the previously generated turn tokens xi for i ≤ t.

Protocol 1 (The Two-Way TBCC Protocol). Given two parties PA and
PB, an integer value n and real non-zero value ∆, define the (Two-Way) TBCC
across n turns with delay ∆ with the procedures:
– Setup: on input the security parameter λ, PA (respectively PB) executes

setup(λ,∆, n), obtains (CA, CA,priv), and sends CA to PB, which replies with
CB. PA outputs the two-way TBCC channel information (CA, CB), along with
its respective private information Cpriv and PA performs turntoken(CB , 1, xB,0);

– Local Turn (analogously for PB): on receiving a call to this procedure,
PA returns the current local turn t corresponding to the last computed xPB ,t;

– Send Message (analogously for PB): on a given local turn t, when PA

receives the input (m, v), it executes send(CA,priv,m, v, t) → (ξ, aux) where

the previous block digest is computed as ht−1 := H(Mt−1,m, π
PA
t−1, π

PB
t−1), and

sends (m, ξ, aux) to PB;
– Reveal Validity (analogously for PA): at the end of the local turn t,

i.e. when the algorithm turntoken(CA, t, {xA,0, . . . , xA,t−1}) outputs the to-
ken xA,t, PB executes valid-ver(CA, t,mi, ξi, xA,t) → vi, and outputs the
block of both the parties valid messages Mt={(mi, ξi, auxi)}i along with
the turn token t whenever vi=1. Furthermore, for all the messages mi,
tamper-ver(CA, t,Mt−1,mi, auxi, ξi) is executed and if any result is 0, abort

13

the communication. If t + 1 > n, then output close and stop. Otherwise,
execute turntoken(CA, t + 1, {xA,0, . . . , xA,t}).

Remark 1. The TBCC protocol naturally extends the one-way properties of cor-
rectness and tamper resistance to the two-way channel. For example, if the two-
way channel is tamperable, it means the adversary can tamper at least one
direction of the communication channel. In other words, tamper the one-way
channel. Mutatis mutandis the same is true for the correctness property.

Turn Synchronization and Consistency. When considering the two-way
protocol by instantiating two one-way turn based schemes, an additional problem
that naturally arises is turn synchronization between the parties. Consider the
parties PA and PB communicating using Proto. 1 which depends on the specific
one-way channels CA and CB . The specific channel turn is identified by the input
of the algorithm turntoken which are, almost surely, never synchronized, i.e.
the outputs are disclosed in different moments. This timing difference creates a
problem in which a message m might be seen in turn t by PA and in turn (t + 1)
by PB . We capture this idea by formalizing the turn synchronization property.

Definition 9 (Turn Synchronization). Let PA and PB be parties communi-
cating over the two-way TBCC. The TBCC channel (CA, CB) is turn-consistent
if both players have a unique and equal way to decide in which turn the mes-
sage m belongs even then the local turns of the two parties are different.

The TBCC without turn synchronization cannot achieve communication con-
sistency since the parties might disagree in which block M the message m be-
longs, making it unlikely to create an unique communication history. Intuitively,
achieving sequentiality means that the turntoken algorithm is defining a “clock”,
i.e. sequential “ticks” distanced by some amount of time, while being desyn-
chronized means that the parties have “different clocks” where one of the two is
always “late”. We prove that if we have a sequential one-way scheme, then there
exists a natural way to achieve turn-consistency by cleverly letting the parties
avoid communicating in between the “ticks” thus allowing the “late clock”
to sync.

Proposition 2. Let PA and PB be parties communicating via the two-way TBCC
protocol, constructed from a sequential one-way scheme as in Def. 6. The strategy
of (i) dropping communicated messages during de-synchronization, i.e. the local
turn between the parties is different; and (ii) globally advance the turn whenever
both parties have the same local turn; allows turn-consistency as in Def. 9.

Recovery Procedure. We consider the existence of a recovery procedure that
should be executed whenever a party spots a possible communication tamper
and, instead of directly aborting the protocol, the two parties try to find a
common correct message block. In other words, the algorithm tamper-ver from
Construction 1 takes as input the last block views MPA

and MPB
that the two

parties have and either outputs a commonly agreeable block M or aborts.

14

Definition 10 (Recovery). Define the recovery procedure for Proto. 1 as the
procedure executed during turn t ≤ n by PA (resp. PB) whenever the tamper
verification tamper-ver(C, t,Mt−1,m, aux, ξ) is equal 0 and defined as:

– Recovery: PA sends its view MA
t−1 to PB from whom it receives the view

MB
t−1 which is a ordered list of messages {mi}jt−1

i=1 and, additionally, for every
message the received auxiliary information σ. After identifying the set of
indexes I where the views differ, for each index l ∈ I, if the message ml is
a message from PB, then PA executes backward-ver(CB , t,MB

t−1, l), otherwise
PB will compute backward-ver(CA, t,MA

t−1, l). Either the case, if the result is
1, both parties are forced to use the message ml resolving the discrepancy
and saving the result into the same resolved block Mt−1. Otherwise, if there
exists an index for which the result is 0, the communication is aborted.

The spirit of the TBCC is “if anything seems wrong, abort!”. This forces the
parties to behave honestly otherwise nothing can be achieved, meaning there can
never exist two different correct views. During the recovery procedure, the com-
munication is paused and completely verified and fixed before continuing and, if
necessary, aborted because it is unrecoverable. The receiver must promptly alert
the sender if hi−1 is wrong and, if it is the case, only the receiver can force the
sender to adopt a specific message mi by exhibiting the received proof σi, only
computable by the sender.

Formally, suppose PA and PB are correctly communicating until the i-th
turn, i.e. all the blocks until Mi−1 are consistent. PA sends

(
hA
i−1,m

A
i , ξ

A
i , σ

A
i

)
and PB does the same with the message mB

i . Let us suppose that the values
{ξAi , ξBi } are correct otherwise the messages will be discarded by valid-ver. Thus
the correct next block is Mi = {mA

i ,m
B
i }. Whenever the turn (i+ 1) starts, PB

and PA must share the block digests hA
i and hB

i and suppose they are not equal.

The recovery procedure is executed and PB will publish the block-view
{mA

i ,m
B
i }, respectively PA must do the same, and there must be at least a

different message pair, w.l.o.g. suppose it is message mA
i and mA∗. Since this is

the message that Alice sent, in the recovery, we will just consider Bob’s view
mA∗ with received auxiliary information σA∗ which Bob cannot correctly forge
by assumption, i.e. he cannot produce a correct valid pair. Therefore PB can
only publish what PA sent or abort the communication. Regardless of PB ’s ma-
liciousness, he is unable to modify PA’s messages and therefore the procedure
continues only if σA∗ is correctly computed by PA. In the case that PB ’s message
mB

i is different, PA’s vision is considered. If PB is honest, the previous discussion
applies for Alice. Otherwise, PB might try to force the acceptance of a different
pair (mB∗, σB∗). Since his vision during recovery is not considered, he must have
sent the tampered values (mB∗, σB∗) before but if this is the case, either Alice
is presenting the tampered pair (mB∗, σB∗), which makes the pair not longer
a tamper, since it is correctly received by Alice and not later modified, or by
sending an incorrect pair that will lead to aborting the communication. Mutatis
mutandis, the same is true when switching PA and PB roles. If everything is

15

correct, the block vision is consolidated and communication resumes at the cost
of both PA and PB losing a single turn.

4 Collectively Flipping Coins over the TBCC

In this section, we sketch a protocol that allows two parties to collectively flip a
coin which allows them to commonly create a random string. Our TBCC protocol
is constructed from time-lock puzzles which are used in similar applications, as:
– a user can create encrypted time capsule, i.e. an encrypted message that is

meant to only be decryptable after a designed amount of time;
– a user can provide a signature that can only be verified in the future.

As discussed by Boneh et al. [8], these are founded on the concept of releasing
a timed commitment that can be decommitted after a specific amount of time.
The provided coin-flip solution is simplistic and it has the main goal of showing
the TBCC’s expressiveness/potentiality. To provide a formal security analysis,
TBCC must be proven secure against active adversaries and general protocol’s
composability which, as previously assumed, are left open for future research.

Flipping Coins over TBCC. The underlying idea is that two parties, com-
municating over a TBCC’s instance, are able to jointly flip a coin by both time-
committing to some randomness which is later revealed and used to compute
the coin result. By repeatedly flipping coins, the results produce a random string
which is guaranteed to be consistent since communicated over TBCC. Let us for-
malise of the protocol between Alice PA and Bob PB , defined by a set of choices
Σ and a set of rules that uniquely determine the result between any two choices,
denoted with the function φ(·, ·). The protocol is defined as:
1. PA and PB set up the two-way TBCC protocol of Proto. 1 and obtain the

public channel C = (CPA
, CPB

);
2. In the current turn, PA selects its choice a ∈ Σ and sends on C as a valid mes-

sage, i.e. PA execute the sending procedure with the message (a, 1). For each
other choice a∗ ∈ Σ, PA sends the non-valid message (a∗, 0). Respectively,
PB sends his valid and invalid messages;

3. At the end of the turn, PA computes the validity of PB ’s received messages
and obtains b. Respectively for PB ;

4. Both the parties compute φ(a, b) and, if necessary, repeat the game. If the
channel loses consistency, i.e. one of the party tries to tamper the results,
the communication is aborted;

5. The random string is obtained by concatenating several consecutive results
of the consistent channel.

The “commit-decommit” phase created by the turn token is key to allow a fair-
play since, for example, if PA knows PB ’s choice b in advance, she can select a
winning choice a∗. Furthermore, φ must be defined even in the case of one party
not participating in the round or it tries to cheat by proposing multiple choices.
We are now left to define the choice’s set Σ and the rule’s map φ(·, ·). Σ con-
tains the choices head and tail, respectively 1 and 0 and, additionally, a special

16

element x that represents any non-correct choice, i.e. a party does not correctly
participate in the game. Define the map φ as φ(a, b) = a⊕b, i.e. the xor between
the inputs where the special element is mapped as φ(x, a) = φ(a, x) = a for each
a ∈ Σ and we consider a special state X used to denote that both player wrongly
participated in the flipping, i.e. φ(x, x) = X. In a nutshell, φ(a, b) computes the
xor of both the parties inputs whenever they are correctly participating in the
coin-flip. Complementary, if both the parties wrongly flip the coin, φ(x, x) re-
turns that the coin is in a “draw position” with “no winner”. Whenever a party,
e.g. PA, wrongly participates in the protocol, φ(x, b) awards the other party PB

for correctly behaving and let PB ’s choice be the final result. This forces the
parties to correctly behave to avoid the other party highly influence the coin-
flip. For example, suppose that PA selects 1 as her first choice and sends to PB

the TBCC messages (1, 1) and (0, 0) during the current turn. By the sequen-
tiality property, PB is unable to discover “which message is the valid one” and
therefore has no advantage and must therefore provide his own choice, w.l.o.g.
let PB choose 0. At the end of the turn, the valid messages are maintained thus
the block will contain PA’s message 1 and PB ’s one 0. Both the parties can
now compute φ(1, 0) = 1 and acknowledge that the coin flip is 1. The TBCC
protocol guarantees communication coherence which implies that, whenever re-
peating the game, both the parties must accept the previous communication
transcription. In other words, while communicating over C, PA and PB cannot
modify the output of the different rounds played. This means that if the result
is 1, in the next round PB cannot pretend a different outcome and must accept
it if he wants to participate in the next round. The game output’s transcript
can be seen as a random string between PA and PB which cannot be tampered
with by a malicious adversary. Additionally, every time the adversary is caught
tampering or deny the communication, the whole protocol is terminated making
it impossible for the adversary to gain any relevant advantage.

Observe that our protocol does not approximate a public coin flip protocol
which can be used to generate the common reference string model. In the public
coin-flip protocol, the two parties obtain a random coin-flip without introducing
their own personally sampled randomness. For this reason, our protocol can be
used to approximate an empirical version of the common reference string model
in which the parties actively collaborate to sample a random string.

References

1. Alwen, J., Tackmann, B.: Moderately Hard Functions: Definition, Instantiations,
and Applications. In: TCC (2017). https://doi.org/10.1007/978-3-319-70500-2 17

2. Azar, P.D., Goldwasser, S., Park, S.: How to Incentivize Data-
Driven Collaboration Among Competing Parties. In: ITCS (2016).
https://doi.org/10.1145/2840728.2840758

3. Baum, C., David, B., Dowsley, R., Nielsen, J.B., Oechsner, S.: TARDIS: Time And
Relative Delays In Simulation. Tech. Rep. 537 (2020)

4. Bentov, I., Gabizon, A., Mizrahi, A.: Cryptocurrencies Without Proof of Work. In:
FC (2016). https://doi.org/10.1007/978-3-662-53357-4 10

17

https://doi.org/10.1007/978-3-319-70500-2_17
https://doi.org/10.1145/2840728.2840758
https://doi.org/10.1007/978-3-662-53357-4_10

5. Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Wa-
ters, B.: Time-Lock Puzzles from Randomized Encodings. In: ITCS (2016).
https://doi.org/10.1145/2840728.2840745

6. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable Delay Functions. In:
CRYPTO, vol. 10991 (2018). https://doi.org/10.1007/978-3-319-96884-1 25

7. Boneh, D., Bünz, B., Fisch, B.: Batching Techniques for Accumulators
with Applications to IOPs and Stateless Blockchains. In: CRYPTO (2019).
https://doi.org/10.1007/978-3-030-26948-7 20

8. Boneh, D., Naor, M.: Timed Commitments. In: CRYPTO (2000)
9. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. J. ACM 51(6) (Nov

2004). https://doi.org/10.1145/1039488.1039489
10. Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin Backbone Protocol: Analysis

and Applications. https://doi.org/10.1007/978-3-662-46803-6 10
11. Kalai, Y.T., Lindell, Y., Prabhakaran, M.: Concurrent Composition of

Secure Protocols in the Timing Model. J Crypto 20(4) (Oct 2007).
https://doi.org/10.1007/s00145-007-0567-1

12. Katz, J., Lindell, Y.: Introduction to Modern Cryptography (2014)
13. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally Composable Syn-

chronous Computation. In: TCC. https://doi.org/10.1007/978-3-642-36594-2 27
14. Katz, J., Miller, A., Shi, E.: Pseudonymous Broadcast and Secure Computation

from Cryptographic Puzzles. Cryptology ePrint Archive, Report 2014/857 (2014),
https://eprint.iacr.org/2014/857

15. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A Provably
Secure Proof-of-Stake Blockchain Protocol. In: CRYPTO. vol. 10401 (2017).
https://doi.org/10.1007/978-3-319-63688-7 12

16. Lenstra, A.K., Wesolowski, B.: A random zoo: sloth, unicorn, and trx. Cryptology
ePrint Archive, Report 2015/366 (2015), https://eprint.iacr.org/2015/366

17. Mahmoody, M., Moran, T., Vadhan, S.: Time-Lock Puzzles in the Random Oracle
Model. In: CRYPTO (2011). https://doi.org/10.1007/978-3-642-22792-9 3

18. Malavolta, G., Thyagarajan, S.A.K.: Homomorphic Time-Lock Puzzles and Appli-
cations. In: CRYPTO (2019). https://doi.org/10.1007/978-3-030-26948-7 22

19. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock Puzzles and Timed-release
Crypto. Tech. rep., Massachusetts Institute of Technology (1996)

20. Scafuro, A., Siniscalchi, L., Visconti, I.: Publicly Verifiable Proofs from
Blockchains. In: PKC (2019). https://doi.org/10.1007/978-3-030-17253-4 13

21. Wesolowski, B.: Efficient Verifiable Delay Functions. In: EUROCRYPT (2019).
https://doi.org/10.1007/978-3-030-17659-4 13

A Appendix

Proof (Proposition Prop. 1). Consider a turn t ≤ n for an n-turn one-way
channel defined by executing (C, Cpriv) ← setup(λ,∆, n). For any message m
with validity v, compute send(Cpriv,m, v, t) → (ξ, (ht−1, σ)) of which ξ is ei-
ther H(m, πt) if v=1 otherwise it is an incorrect value. Furthermore execute
ext(C, Cpriv, t) → πt. By definition, we have that valid-ver(C, t,m, ξ, πt) outputs

as validity the equality of H(m, πt)
?
= ξ which is 1, when correctly computed,

and 0 otherwise. Assume the existence of an adversary A able to break the cor-
rectness property with some non-negligible probability ν > 0, i.e. A is able to

18

https://doi.org/10.1145/2840728.2840745
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1145/1039488.1039489
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/s00145-007-0567-1
https://doi.org/10.1007/978-3-642-36594-2_27
https://eprint.iacr.org/2014/857
https://doi.org/10.1007/978-3-319-63688-7_12
https://eprint.iacr.org/2015/366
https://doi.org/10.1007/978-3-642-22792-9_3
https://doi.org/10.1007/978-3-030-26948-7_22
https://doi.org/10.1007/978-3-030-17253-4_13
https://doi.org/10.1007/978-3-030-17659-4_13

produce an invalid pair (m∗, πt
∗) such that valid-ver(C, t,m∗, ξ, πt

∗) = 1 for some
given digest ξ with probability ν. Let εH.pre be the assumed negligible proba-
bility of finding a digest pre-image for H of ξ. Construct an adversary B that
reduce the pre-image computation to the one-way correctness by querying A for
a pair (m∗, πt

∗) for the digest ξ. B outputs as pre-image the value (m∗, πt
∗). We

conclude that:

ν = Pr

valid-ver(C, t,m, ξ, xt) 6= v

∣∣∣∣∣∣
setup(λ,∆, n)→ (C, Cpriv);
send(Cpriv,m, v, t)→ (ξ, aux);
ext(C, Cpriv, t)→ xt;

 ≤ εH.pre

which is absurd. Thus proving the correctness property. ut

Proof. Consider the sequentiality game GameA,∆
seq (λ, t, n) in which the challenger

generates the communication channel (C, Cpriv) and let t ≤ n be an arbitrary
turn in which the adversary is challenged. The challenger chooses an arbitrary
message m and validity v ← {0, 1} and executes send(Cpriv,m, v, t) → (ξ, aux).
The adversary A wins the game if the output v∗ ← A

(
C, t,m, ξ, aux, {xi}t−1

i=1

)
is

the challenger’s chosen validity v and the execution time for the adversary is
bounded as µ (A) < ∆. A can therefore be used by an adversary B to reduce
the ∆-delay property for the ∆-delay hash function to the one-way sequentiality
game. Briefly, if we assume A to have a non-negligible probability to compute
v, B is able to break the ∆-delay property which is assumed to be hard. ut

Proof (Proposition Prop. 1). Consider a communication between two honest par-
ties to generate the blocks Mi for i ∈ {1, . . . , t − 1} where t ≤ n is the turn in
which the adversaryA will output the tuple (M∗,m∗, (h∗, σ∗), ξ∗), which contains
a tampered block for the turn t−1, a tampered message and the related auxiliary
information and the tampered validity proof. Observe that the tamper verifica-
tion algorithm will compute tamper-ver(C, t,Mt−1,m

∗, (h∗, σ∗), ξ∗) with the cor-

rect block, which will verify the equality of H(Mt−1,m
∗, πt−1)

?
= h∗. Obviously, A

can always generate, for any messages, correctly evaluated digests. However, in
order to correctly consider it a tamper, the adversarial tamper must verify the al-
gorithm with the tampered block. Then, to allow the existence of two correct but
different block visions, i.e. formally tamper-ver(C, t,M∗,m∗, (h∗, σ∗), ξ∗), which

is equivalent to H(M∗,m∗, πt−1)
?
= h∗. Assume by absurd that such A exists

and outputs correct tampers with non-negligible probability ν > 0. Intuitively,
construct an adversary B that reduce the second pre-image computation to the
one-way tampering by querying A. A must provide a second pre-image (M∗,m∗)
of the digest h∗ obtained from (Mt−1,m

∗). Thus, B outputs a second pre-image
of h∗ with probability ν ≤ εH.2pre which is assumed to be negligible. ut

Proof (Proposition Prop. 1). The proof of this proposition is trivial. Our defi-
nition of consistency is similar to the definition of tamper resistance where we
additionally require the tampered block to be formed only by correct messages.
Therefore, a consistent channel is trivially correct and tamper resistant. For the

19

opposite implication, assume that the channel is non-consistent, i.e. an adver-
sary can compute a wrong message view in a specific turn. This is true if and
only if the adversary can create a correct tamper block which contains at least
a wrong message-proof ξ and auxiliary information tuple aux. This implies that
a non-consistent channel allows to break the correctness and tamper resistance
property. ut

Proof (Proposition Prop. 2). To prove the turn-consistency, we show that the
each message m is deterministically decidable in any turn t ≤ n for both the
parties. Let us remind that the sequentiality property implies that turntoken
takes the same amount of time to be computed and that, w.l.o.g., the output
of turntoken(CB , · · ·) → xBt computed by PA at time ηBt precedes the output
turntoken(CA, · · ·)→ xAt computed by PB at time ηAt . Let m be a message sent
at time η and let it be saved into a specific turn following the function which
drops the messages sent whenever the local turn between the parties is different.
Formally,

mesg-turn(m, η) :=

{
t if local turn is equal between PA and PB

⊥ otherwise

Observe that the sequentiality allows PA to know its own unique turn-time
points ηAi for all the turns i ∈ {1, . . . , n} while PB ’s ones are known turn-by-turn
after sequentially computing turntoken, similarly for PB . Therefore mesg-turn is
uniquely defined for both parties because they are identified by the turn-time
points ηAi and ηBi . In conclusion, mesg-turn is deterministically decidable. ut

20

	Turn-Based Communication Channels

