
Bigdata-facilitated Two-party Authenticated
Key Exchange for IoT

(full paper)

Bowen Liu1, Qiang Tang1 and Jianying Zhou2

1Luxembourg Institute of Science and Technology (LIST)
5 Avenue des Hauts-Fourneaux, Esch-sur-Alzette, L-4362, Luxembourg

{bowen.liu, qiang.tang}@list.lu
2Singapore University of Technology and Design

8 Somapah Rd, Singapore 487372
jianying zhou@sutd.edu.sg

Abstract. Authenticated Key Exchange (AKE) protocols, by defini-
tion, guarantee both session key secrecy and entity authentication. In-
formally, session key secrecy means that only the legitimate parties learn
the established key and mutual authentication means that one party can
assure itself the session key is actually established with the other party.
Today, an important application area for AKE is Internet of Things
(IoT) systems, where an IoT device runs the protocol to establish a ses-
sion key with a remote server. In this paper, we identify two additional
security requirements for IoT-oriented AKE, namely Key Compromise
Impersonation (KCI) resilience and Server Compromise Impersonation
(SCI) resilience. These properties provide an additional layer of security
when the IoT device and the server get compromised respectively. In-
spired by Chan et al.’s bigdata-based unilateral authentication protocol,
we propose a novel AKE protocol which achieves mutual authentication,
session key secrecy (including perfect forward secrecy), and the above
two resilience properties. To demonstrate its practicality, we implement
our protocol and show that one execution costs about 15.19 ms (or, 84.73
ms) for the IoT device and 2.44 ms (or, 12.51 ms) for the server for se-
curity parameter λ = 128 (or, λ = 256). We finally propose an enhanced
protocol to reduce the computational complexity on the end of IoT by
outsourcing an exponentiation computation to the server. By instantiat-
ing the signature scheme with NIST’s round three alternate candidate
Picnic, we show that one protocol execution costs about 14.44 ms (or,
58.45 ms) for the IoT device and 12.78 ms (or, 46.34 ms) for the server
for security parameter λ = 128 (or, λ = 256).

Keywords: Internet of Things · Authenticated Key Exchange · Perfect
Forward Secrecy · Key Compromise Impersonation Resilience · Server
Compromise Impersonation Resilience

2 Bowen Liu, Qiang Tang and Jianying Zhou

1 Introduction

Two-party key exchange is a fundamental cryptographic primitive that enables
two parties to establish secure communication channels over an open network.
Furthermore, an authenticated key exchange protocol not only allows two parties
to negotiate a session key but also ensures the authenticity of the involved parties
[5]. The basic security property of an AKE protocol is that only the legitimate
parties can gain access to the established secret key in every protocol execution
(i.e. a session). In addition, some AKE protocols guarantee perfect forward se-
crecy which preserves the session key secrecy even if the long-term credentials of
both parties are compromised. Regarding their construction, most existing AKE
protocols employ only a single type of authentication factor (e.g. long-term se-
cret keys or digital certificates). Consequently, if the single authentication factor
gets compromised, then the AKE protocol’s security will be broken.

In this paper, we are interested in two-party AKE protocols for IoT systems,
where an IoT device and a server run the protocol to authenticate each other and
establish a session key. We generally assume that the IoT device is standalone
and no human user is necessarily present when it is engaged in the protocol
execution. Note that we do recognize some exceptional scenarios, e.g. when the
IoT device is a smart phone, where a human user is able to involve in the
AKE protocol. It is well known that IoT devices are constrained with respect
to computation capability, network bandwidth, and battery life. This advocates
lightweight AKE designs. Regarding security, we would like to emphasize two
observations.

– An IoT device is very likely to be compromised and has the stored credentials
leaked, e.g. via side-channel attacks. This motivates us to consider key com-
promise impersonation resilience (see the definition below) to be a valuable
property for IoT-oriented AKE protocols.

– Even less likely, the server could also be compromised. Taking into account
the fact that the IoT device can be deployed in a critical infrastructure, it
is ideal that an attacker should not be able to impersonate the server to the
IoT device even if it has compromised the server.

It is worth noting that we assume the attacker only learns some credentials by
compromising an entity. Other types of damage (e.g. installing a trapdoor or
disabling the entity) are not directly related to AKE and are beyond the scope
of our paper.

As a result, our objective is to construct AKE protocols with the following
properties in addition to the standard session key security property.

1. (Prefect) Forward Secrecy. Forward secrecy means that if one party’s long-
term key is compromised, the secrecy of its previous session keys should not
be affected. Perfect forward secrecy (PFS) requires that previous session keys
remain secure even if both parties’ long-term keys have been compromised.

2. Key Compromise Impersonation (KCI) resilience. Even if an attacker has
obtained one party’s long-term private key, then it still cannot impersonate
the other party to this party.

IoT Friendly Data-Based Two-Factor AKE 3

3. Server Compromise Impersonation (SCI) resilience. Even if an attacker has
compromised the server, then it still cannot impersonate the server to the
IoT device.

Our analysis shows that it is very challenging for single-factor-based AKE
protocols to achieve all these properties. Hence, in this paper, we will focus on
AKE protocols, where the entity authentication is based on two or more factors.

1.1 Related Work

We emphasize that two-party authenticated key exchange is a fruitful research
area, with many existing protocols, implementations and standards. For the
sake of space, we refer the readers to survey papers/books like [6] for a detailed
overview. Regarding Two-Factor Authenticated Key Exchange (2FAKE), Lee et
al. [26] proposed a protocol which combines a smart card and a password as
authentication factors. Byun [10] proposed a 2FAKE protocol by using a shared
common secret and Physical Unclonable Functions (PUFs) as authentication
factors. Guo and Chang [21] proposed a chaotic maps-based AKE protocol with
password and smart cards as additional authentication factors. Later, Liu and
Xue [28] proposed a chaos-based AKE protocol using password as the other
authentication factor. Challa et al. [13] proposed an AKE protocol using pass-
word, biometric information and a smart card as authentication factors. In 2008,
Pointcheval and Zimmer [31] proposed the first Multi-Facor Authenticated Key
Exchange (MFAKE) protocol which combines a password, a secret key, and bio-
metric information as the authentication factors. Later, Hao and Clarke [22]
pointed out that an adversary can break the protocol by only compromising a
single password factor based on the deficiency of its security model (i.e. server im-
personation has not been considered). Byun [8, 9, 11] proposed MFAKE protocols
by using PUF, biometric template and long-term secret keys as authentication
factors. Li et al. [27] proposed a MFAKE protocol by using password, biometric
fingerprint and personal identification number (PIN) as authentication factors.
Stebila [34] proposed an MFAKE scheme, where multiple short secrets (e.g. one-
time response) are used in addition to a password. Besides, Fleischhacker et al.
[20] proposed a modular MFAKE framework by combining any subset of mul-
tiple low-entropy (one-time) passwords/PINs, high-entropy private/public keys,
and biometric factors.

Since we assume there is no human involvement, PIN, password and bio-
metric factors do not fit into our setting. In addition, PUF-based AKE proto-
cols require special type of IoT devices, e.g. it should have PUF embedded. In
order to design general purpose two-factor or multi-factor AKE protocols, we
need to find other authentication factors. Regarding entity authentication, au-
thentication factors can be classified into three categories: something you know,
something you have, and something you are [17]. In addition, Brainard et al.
proposed a fourth category: some one you know which is the social networking
information-based authentication factor [7]. Among all, the something you have
category fits into our IoT setting, and bigdata could be a candidate of good

4 Bowen Liu, Qiang Tang and Jianying Zhou

authentication factor. To this end, Chan et al. [14] proposed a bigdata-based
unilateral two-factor authentication protocol. In more detail, their protocol uses
all available historical data and relevant tags as an authentication factor, where
the tags are generated injectively based on the historical data, in addition to the
conventional first authentication factor of the shared long-term key. It is shown
that, in a bounded storage model [3, 19], the protocol remains secure since the
adversary can only capture limited records of the large amount of full historical
data.

1.2 Our Contribution

In this paper, our contribution is multifold. Firstly, inspired by Chan et al.’s
work [14], we introduce a new IoT-oriented AKE setting, where bigdata is used
as an additional factor in addition to a shared long-term private key for facil-
itating mutual authentication. We propose a security model to capture all the
desired security properties listed in the previous subsection. To our knowledge,
no existing AKE protocol achieves all these properties, as shown in Table 1.

Table 1. Comparison among different AKE Protocols

Protocol Authentication Factor
Security Property Comm.

P1 P2 P3 P4 P5 P6 Pass
[31] Biometic, Password and Secret Key 7 3 3 - - - 4
[27] Biometic, Password and PIN 7 3 3 3 - - 4
[26] Password and Secret Key 3 3 3 7 - - 2
[34] Password and Customized Elements 3 3 3 - - - 3
[13] Biometic, Password and Smart Card 3 3 3 - - - 3

[8–11, 28] PUF/Chaos and Others 3 3 3 3 - - 3
[20] Multiple Customized Elements 3 3 3 - - - 2*No. of Factors
Ours Bigdata and Secret Key 3 3 3 3 3 3 3

‘P1’: Mutual authentication, ‘P2’: Session key security, ‘P3’: Forward secrecy, ‘P4’: Prefect for-
ward secrecy, ‘P5’: Key compromise impersonation resilience, ‘P6’: Server compromise impersonation
resilience, ‘3’: Provides the security property, ‘7’: Does not prevent the attack, ‘-’: The security prop-
erty has not been considered.

Secondly, we propose a novel AKE protocol, which uses both long-term pri-
vate keys and bigdata as its authentication factors. Regarding the processing of
bigdata, we distribute the relevant credentials to both the IoT and the server.
As a result, we avoid one vulnerability of Chan et al.’s scheme, described in Ap-
pendix A.2. Under the general assumption that the Pseudo-Random Functions
(PRFs) are secure and the attacker can only retrieve a limited amount of data
from a compromised server, we further prove that, our AKE protocol achieves
all the desired properties based on the computational Diffie-Hellman (CDH) as-
sumption and the strong Diffie-Hellman (SDH) assumption in the random oracle
model with an appropriate parameter setup.

Thirdly, by using Raspberry Pi 3 Model B+ as the IoT device and a PC as
the server, we investigate the parameter configurations for the big dataset held
by the server and identify the optimal parameters. We run the experiment and
show that one protocol execution takes 15.19 ms (or, 84.73 ms) for the IoT device

IoT Friendly Data-Based Two-Factor AKE 5

and 2.44 ms (or, 12.51 ms) for the server for security parameter λ = 128 (or,
λ = 256). Lastly, we propose an enhanced protocol to reduce IoT’s computational
complexity by outsourcing an exponentiation computation to the server. The
enhanced protocol does not increase round complexity (i.e. it still needs three
message passes) and only slightly increases the communication complexity. By
instantiating the signature scheme with NIST’s round three alternate candidate
Picnic, we show that one protocol execution costs about 14.44 ms (or, 58.45
ms) for the IoT device and 12.78 ms (or, 46.34 ms) for the server for security
parameter λ = 128 (or, λ = 256). The running time for the IoT device has
become 1.05 and 1.45 times faster for λ = 128 and λ = 256, respectively. We
notice that the improvement can be further enhanced with techniques from [15].

Table 1 shows that our protocol achieves more security properties than the
existing ones in the literature. Nevertheless, we compare its complexity with
the protocol from [9] which falls into a similar setting to ours. Moreover, we
also resolve the scalability question concerning the server needs to serve a large
number of IoT devices and store a huge amount of bigdata.

1.3 Paper Organisation

The rest of the paper is organised as follows. In Section 2, we describe the security
model. In Section 3 and Section 4, we describe our novel AKE protocol and
provide security analyses respectively. In Section 5, we detail our implementation
procedure and present the evaluation results, and then present the enhanced
protocol and corresponding experimental results. In addition, we make a simple
comparison and resolve the scalability question. In Section 6, we conclude the
paper.

2 IoT-oriented AKE Security Model

In this section, we first describe our IoT-oriented AKE setting, and then present
a security model based on the existing ones, e.g. Bellare-Rogaway [4], Shoup
model [32], Canetti-Krawczyk model [12], and particularly that of Pointcheval
and Zimmer [31].

2.1 IoT-oriented AKE Setting

For simplicity, we only consider one IoT device and one server, and denote them
as c and s respectively. For entity authentication, we assume two factors.

– One is a long-term shared private key mk between the two parties.
– The other is based on a dataset, which contains a large number of data items

denoted as di (1 ≤ i ≤ L) for some L. In the initialisation phase, the server
processes the dataset with a set of secret keys, which map each data item
to a tag. The server sends a subset of the secret keys (denoted as Sc) to the
IoT device, and keeps some secret keys (denoted as Ss) together with the
data item and tag tuples (di, ti) (1 ≤ i ≤ L) locally.

6 Bowen Liu, Qiang Tang and Jianying Zhou

In contrast to Chan et al. [14], the dataset is considered as private information
in our design. Furthermore, we assume a bounded retrieval model [2, 18], which
implies that an attacker can only obtain a small portion of the the data item
and tag tuples (di, ti) (1 ≤ i ≤ L) when it compromises the server. To sum up,
the long-term private credentials for the IoT device and the server are (mk,Sc)
and (mk,Ss, (di, ti) (1 ≤ i ≤ L)), respectively.

2.2 Preliminary Notions

For our security model, we will adopt the standard game-based definitions. Be-
low, we briefly introduce the preliminary notions.

For generality, we assume the parties can have concurrent runs of the proto-
col. Each execution of the protocol is called a session. If the attacker is passive,
then a session will be happening between two instances, one from the IoT device
c and the other from the server s. For a party p ∈ {c, s}, we use πip to denote
its i-th instance. Each instance can possess the following essential variables:

– pid: the partner identifier, where the server’s identifier is denoted as s and
c represents the identifier of IoT device.

– sid: the session identifier, and each sid should be unique.
– sk: the session key derived by πip at the end of the protocol execution. It is

initialized as ⊥.
– acc: the state of acceptance acc ∈ {⊥, accepted, rejected}, which represents

the state of πip at the end of the protocol execution. It is initialized as ⊥,
will be set as accepted if the instance successfully completes the protocol
execution, and will be set as rejected otherwise.

– rev: the status rev ∈ {revealed, unrevealed} of the session key sk of πip. It
is initialized as unrevealed.

We assume the party p maintains a status variable cpt ∈ {corrupted, uncorrupted}
which denotes whether or not it has been compromised or corrupted.

The notion of partnering, also called matching conversation, happens between
two instances: one is the instance of an IoT device πic and the other instance of
a server πjs, for some i and j. It requires the following conditions to be satisfied:

– πic.acc = πjs.acc = accepted
– πic.sid = πjs.sid
– πic.sk = πjs.sk
– πic.pid = s and πjs.pid = c

An instance πip (p ∈ {c, s}) is said to be fresh, if the following conditions are

satisfied: πip.acc = accepted; πip.rev = unrevealed, p.cpt = uncorrupted; if it has

any partner instance πjp′ , then p′.cpt = uncorrupted and πjp′ .rev = unrevealed.

Definition 1. An AKE protocol is sound if, in the presence of any passive at-
tacker, a protocol execution always successfully ends and results in a matching
conversation between the IoT device c and the server s.

IoT Friendly Data-Based Two-Factor AKE 7

2.3 Game-based Security Definitions

For game-based security definitions, an attacker A’s advantage over a security
property is evaluated by a game played between the attacker and a challenger
C who simulates the activities of the legitimate players, namely the IoT device
c and the server s in our setting. In our security model, we assume that A is a
probabilistic polynomial time (P.P.T.). We further assume that A fully controls
the communication network so that it can intercept, delay, modify and delete
the messages sent between any two instances.

Formally, the attacker A’s intervention in a security game is modeled via the
following oracle queries submitted to the challenger C.

– Send(msg, πip): A can send any message msg to an instance πip via this

query. πip responds according to the protocol specification. For simplicity,
we assume the attacker can send a null message for the initiator to start a
protocol execution.

– Corruptc(): After receiving this query, the challenger C returns the long-
term key of c, namely mk and Sc. Simultaneously, the challenger C sets c’s
status variable as c.cpt = corrupted.

– Corrupts(IA): After receiving this query, the challenger C returns the long-
term key of s, namely mk and Ss, and the (di, ti) whose index i falls inside
IA. In the bounded retrieval model, IA has a limited size. Simultaneously,
the challenger C sets s’s status variable as s.cpt = corrupted.

– Reveal(πip): This query can only be issued to an accepted instance πip. After
receiving this query, the challenger C returns the contents of the session key
πip.sk. Simultaneously, the session key status of πip and its partner πj

p′ are

set to πip.rev = πj
p′ .rev = revealed.

– Test(πip): The instance πip should be fresh. After receiving this query, the
challenger C flips a coin b ∈ {0, 1} uniformly at random, and returns the
session key if b = 0, otherwise, it outputs a random string from the session
key space.

Definition 2. In our security model, an AKE protocol is said to be secure
if it is sound and the advantages AdvPFS(A), AdvKCIs (A), AdvKCIc (A) and
AdvSCI(A) are negligible for any P.P.T. attacker A. These advantages are de-
fined in the security games in following-up subsections.

2.3.1 Session Key Security and Forward Secrecy

This game is designed for modeling session key security, including the known key
security property (i.e., the knowledge of session keys generated in other sessions
should not help the attacker to learn anything more about the session key in a
target session.). In more detail, it is defined as follows:

1. C generates parameters and gives the public parameters to A.
2. Once A has all public parameters, it can issue a polynomial number of Send

and Reveal queries in any order.

8 Bowen Liu, Qiang Tang and Jianying Zhou

3. At some point, A chooses a fresh instance πic for some i or πjs for some j,
and issues a Test query.

4. A can continue issuing queries as in step 2, but not any Reveal query to the
tested instance and its partner.

5. Eventually, A terminates the game and outputs a guess bit b′ for b.

A wins the game if b′ = b. Formally, A’s advantage is defined as AdvSK(A) =∣∣Pr[b = b′]− 1
2

∣∣.
In order to model (perfect) forward secrecy, we only need to slightly modify

the above game.

– If A is allowed to issue one of Corruptc and Corrupts queries in Step 4 of
the above game, then we obtain the security game for forward secrecy. The
attacker A’s advantage is defined as AdvFS(A) =

∣∣Pr[b = b′]− 1
2

∣∣.
– If A is allowed to issue both Corruptc and Corrupts queries in Step 4 of the

above game, then we obtain the security game for perfect forward secrecy.
The attacker A’s advantage is defined as AdvPFS(A) =

∣∣Pr[b = b′]− 1
2

∣∣.
It is clear that AdvPFS(A) ≥ AdvFS(A) ≥ AdvSK(A). In other words, if

AdvPFS(A) is negligible then the others will also be negligible.

2.3.2 Key Compromise Impersonation Resilience

For the KCI property, we consider two scenarios and propose two security games
accordingly. In the first scenario, A impersonates the IoT device c to the cor-
rupted server s. In the second scenario, A impersonates the server s to the
corrupted IoT device c. Next, we describe the security game for the first sce-
nario.

1. C generates the parameters and gives the public ones to A.
2. A sends Corrupts to C for the secret information of s.
3. A can issue a polynomial number of Send and Reveal queries in any order.
4. A terminates the game and outputs a session identifier sidA for a selected

instance πjs.

Let Succs denote an event, defined by the following two conditions. Formally,
A’s advantage is defined as AdvKCIs (A) = Pr[Succs].

– πjs successfully accepts;
– Not all messages πjs receives are identical to what have been sent by some

instance πic which also possesses sidA as its session identifier. This condition
excludes the trivial “attack” that A simply relays the message exchanges
between πic and πjs.

For the second scenario, we only need to make two changes in the above
game. In step 2, A is allowed to issue Corruptc query instead of Corrupts
query. In step 4, A outputs a session identifier sidA for a selected instance πic.
Let Succc denote an event, defined by the following two conditions. Formally,
A’s advantage is defined as AdvKCIc (A) = Pr[Succc].

IoT Friendly Data-Based Two-Factor AKE 9

– πic successfully accepts;
– Not all messages πic receives are identical to what has been sent by some

instance πjs which also possesses sidA as its session identifier.

2.3.3 Server Compromise Impersonation Resilience

For the SCI resilience property, we require that any attacker A cannot imper-
sonate the server s to the IoT device c even if it can compromise the server, i.e.
issuing a Corrupts query in the game. The following security game captures this
property.

1. C generates the parameters and gives the public ones to A.
2. A can send Corrupts to C for the secret information of s.
3. A can issue a polynomial number of Send and Reveal queries in any order.
4. A terminates the game and outputs a session identifier sidA for a selected

instance πic.

Let Succ denote an event defined by the following two conditions. Formally,
A’s advantage is defined as AdvSCI(A) = Pr[Succ].

– πic successfully accepts;
– Not all messages πic receives are identical to what have been sent by some
πjs which also possesses sidA as its session identifier.

3 The Proposed AKE Protocol

To bootstrap the AKE protocol, an initialisation phase is required for the IoT
device and the server to configure their credentials. In practice, these entities
can be configured in a secure lab, and then the IoT device is deployed in the
remote environment, say in a factory site. In this section, we first introduce this
phase, and then describe the proposed AKE protocol in detail.

3.1 Initialisation Phase

In this phase, the server s chooses a security parameter λ (e.g. λ = 128 or
λ = 256) and initializes the following public parameters: a group G of prime
order q, a generator g of G, a cryptographic hash function H : {0, 1}∗ → Zq
and two Pseudo-Random Functions (PRFs) F : {0, 1}λ × {0, 1}∗ → Zq, E :
{0, 1}λ×{0, 1}λ → {0, 1}λ. Furthermore, the server s generates a public/private
key pair (pk = gsk, sk), where sk ∈ Zq, and also generates sk1 = {mk} where
mk ∈ {0, 1}λ as the long-term shared key and sk2 = {K,K ′} for tag generation
and data processing where K ∈ Zq and K ′ ∈ {0, 1}λ. Suppose the server s
possesses a dataset D which contains L data items di (1 ≤ i ≤ L). For every
data item di ∈ D, the server generates its tag as ti = K ·H(di) +FK′(i), which is
computed in the finite field Zq. We define a dataset D∗ which contains all data
item and tag tuples (di, ti) (1 ≤ i ≤ L). In addition, the server also chooses an

10 Bowen Liu, Qiang Tang and Jianying Zhou

IoT Device c Server s

Ω = {g, q, pk,G, L,H, E, F, z},
sk, sk1 = {mk}, sk2 = {K,K′}
for each di in D do
ti = K · H(di) + FK′ (i)
store (di, ti) into D∗

store (Ω,mk,K′) Ω, sk1, K
′

store (Ω,mk, sk,K,D∗)

Fig. 1. Initialisation Phase

index parameter z which is an integer. For clarity, we summarize the initialisation
phase in Figure 1.

As a quick remark, referring to our problem setting described in Section 2.1
and the security model, the IoT device’s long-term credentials Sc = {mk,K ′}
and the server’s long-term credentials Ss = {mk, sk,K,D∗}.

Even though our work is inspired by [14], our initialisation is significantly
different in two aspects. Firstly, we assume the dataset D is pre-configured or
randomly generated by the server. This dataset is also treated as secret informa-
tion for the server. Secondly, the keys for tag generation (namely, sk2) are split
and separately stored in the IoT device c (namely, K) and the server s (namely,
K ′). Overall, these differences make it impossible for an attacker to forge tags
even if it has compromised one party. One specific benefit is that it helps us
avoid the vulnerability of Chan et al.’s scheme [14], described in Appendix A.2.

3.2 Description of the Proposed AKE Protocol

Intuitively, the proposed AKE protocol is in the Diffie-Hellman style while the
mutual authentication is achieved by (1) asking the IoT device and the server
to mutually prove the data-tag relationship via the distributed credentials in
the Initialisation Phase, and (2) asking the server to prove its knowledge about
sk via computing a∗. The protocol is summarized in Figure 2, and its detailed

execution is as follows. We use the notation a
$← B to denote selecting a from

the set B uniformly at random.

1. The IoT device c first selects r1
$← Z∗q to compute a = pkr1 and g′ = gr1 .

Then, it selects r2
$← {0, 1}λ and a random subset Ic of z distinct indices

for the tuples in D∗, and then sends g′, r2, Ic and M1 = H(mk||a||g′||r2||Ic)
to the server s.

2. After receiving the message, the server s first computes a∗ = g′
sk

and verifies
whether or not M1 = H(mk||a∗||g′||r2||Ic) holds. If the verification passes,
it randomly selects a subset Is of z distinct indices which should be disjoint
from Ic. Next, it computes r′2 = Emk(r2), X = K ·

∑i
i∈I(H(di) · Fr′2(i)) and

Y =
∑i
i∈I(ti · Fr′2(i)), where I = Ic ∪ Is. Note that we assume X,Y are

computed in the finite field Zq. Besides, the server s randomly selects r3

IoT Friendly Data-Based Two-Factor AKE 11

IoT Device c Server s

(Ω,mk,K′) (Ω,mk, sk,K,D∗)

r1
$← Z∗q

a = pkr1

g′ = gr1

r2
$← {0, 1}λ
Select Ic

M1 = H(mk||a||g′||r2||Ic)

1

g′, r2, Ic,M1

a∗ = g′sk

M1
?
= H(mk||a∗||g′||r2||Ic)

I = Ic ∪ Is, where Is ∩ Ic = ∅
r′2 = Emk(r2)
X = K ·

∑i
i∈I(H(di) · Fr′2 (i))

Y =
∑i
i∈I(ti · Fr′2 (i))

r3
$← Zq

b = pkr3

dh = a∗r3

M2 = H(a∗||b||dh||Is||X||Y || 1)

2

b, Is, X,M2

I = Ic ∪ Is
r′2 = Emk(r2)

KI =
∑i
i∈I(FK′ (i) · Fr′2 (i))

Y = X +KI
dh∗ = br1

M2
?
= H(a||b||dh∗||Is||X||Y || 1)

M3 = H(a||b||dh∗||I||Y || 1 || 2)
skc = H(mk||a||b||dh∗||Y)

3

M3

M3
?
= H(a∗||b||dh||I||Y || 1 || 2)

sks = H(mk||a∗||b||dh||Y)

Fig. 2. Proposed AKE Protocol

to compute b = pkr3 and dh = a∗r3 . Finally, the server s sends b, Is, X and
M2 = H(a∗||b||dh||Is||X||Y || 1) to the IoT device c. For the sake of space, we
use 1 to denote the messages sent in the first round, namely g′, r2, Ic,M1.

3. After receiving the message, the IoT device c computes r′2 = Emk(r2) and

KI =
∑i
i∈I(FK′(i) ·Fr′2(i)), where I = Ic∪ Is. Next, it computes Y = X+KI

and dh∗ = br1 , and verifies whether M2 = H(a||b||dh∗||Is||X||Y || 1) holds.
If the verification passes, it computes M3 = H(a||b||dh∗||I||Y || 1 || 2) and
sends it to the server s. Finally, the IoT device c computes its session key
and session identifier as skc = H(mk||a||b||dh∗||Y) and sidc = H(1 || 2)
respectively.

4. After receiving the message, the server s verifies whether or not the equality
M3 = H(a∗||b||dh||I||Y || 1 || 2) holds. If the verification passes, it computes

12 Bowen Liu, Qiang Tang and Jianying Zhou

its session key and session identifier as sks = H(mk||a∗||b||dh||Y) and sids =
H(1 || 2) respectively.

It is straightforward to verify that the above AKE protocol is sound under
Definition 1.

4 Security Analysis

In this section, we first review the Computational Diffie–Hellman (CDH) and
Strong Diffie-Hellman (SDH) assumptions and then prove the security of the
proposed AKE protocol in our security model.

4.1 CDH and SDH Assumptions

CDH assumption is widely used in the literature. Given a security parameter λ,
there exists a polynomial time algorithm which takes λ as input and outputs a
cyclic group G of prime order q. On the input of (G, q, g) and a CDH challenge
(ga, gb), where g is a generator of G and a, b are randomly chosen from Z∗q , a

P.P.T. attacker can only compute gab with a negligible probability.
Related to the CDH assumption, the SDH assumption has been defined in

[1]. The setup is identical to the CDH assumption, except that the attacker has
access to an oracle Ob. After receiving a tuple (g1, g2), Ob replies 1 if g2 = gb1
and replies 0 otherwise. In this paper, we will use a hashed variant of the SDH
assumption where the only difference lies in Ob. Given a hash function H, in this
variant, the oracle O′b is defined as: after receiving a (g1, d1, d2, h), O′b replies 1
if h = H(d1||gb1||d2) and replies 0 otherwise.

Suppose the hash function H is modeled as a random oracle, we can prove
that the SDH and the hashed variant are equivalent. The equivalence is briefly
demonstrated below.

– Given an oracle Ob, we can construct an oracle O′b as follows. After receiving
a (g1, d1, d2, h), O′b replies 1 if (1) there is a query to H such that h =
H(d1||x||d2) and (2) when being queried with (g1, x), Ob replies 1. Otherwise,
O′b replies 0.

– Given an oracle O′b, we can construct an oracle Ob as follows. After receiving
a tuple (g1, g2), Ob replies 1 if the oracle O′b replies 1 when being queried with
(g1, d1, d2,H(d1||g2||d2)) where d1 and d2 are randomly generated. Otherwise,
Ob replies 0.

4.2 Security Proofs

We prove the proposed AKE protocol is secure under Definition 2, by show-
ing the advantages AdvPFS(A), AdvKCIs (A), AdvKCIc (A) and AdvSCI(A) are
negligible in the following Lemmas. Note that we generally assume that the
Pseudo-Random Functions (PRFs) are secure and the attacker can only retrieve
a limited amount of data from a compromised server (i.e. bounded retrieval
model). For the sake of simplicity, we avoid repeating them in each Lemma.

IoT Friendly Data-Based Two-Factor AKE 13

Lemma 1. The proposed protocol achieves KCI resilience in the first scenario
defined in Section 2.3.2 (i.e. A cannot impersonate c to s even after it has
compromised s). The security property holds based on the CDH assumption in

the random oracle as long as
(n−zz)
(L−zz)

is negligible.

Proof. Referring to the security game defined in Section 2.3.2, we assume A has
eavesdropped on m sessions in the game. Hence, A has all messages transmitted
in those sessions (messages in communication 1 j , 2 j , 3 j , where j ∈ [1,m]).
Since A can issue Corrupts query, it has some private information of the server
s: (mk, sk,K) and n tuples of D∗ denoted as IA = {iA1, iA2, . . . , iAn}.

Let us assume, in step 4 of the attack game, A has chosen an instance πjs
which has the session identifier sidA. Next, we analyse the messages received by
this instance. Regarding the first message 1 , namely (g′, r2, Ic,M1), there are
two scenarios.

– Scenario 1: the message 1 is generated by some instance πic, and A just
forwards it directly to πjs without any modification.

– Scenario 2: the message 1 has been modified by A on the basis of some
intercepted message, particularly, A can generate 1 by itself.

In Scenario 1, there are two cases with respect to the action of A when it
receives the message 2 , namely (b, Is, X,M2), from πjs.

1. A forwards 2 to πic without any modification, then πic will generates a
session identifier sidc and skc, then sends a reply 3 . In this case, the only
possibility to make πjs accept is to forward 3 directly to πjs. According to
our definition, A does not win the game in this case.

2. A forwards 2 to πic with some changes, denoted as 2 ′. If πic does not reject,
then it will send 3 ′, which is a hash value based on 2 ′ and some other data.
In this case, A needs to compute a legitimate 3 , namely M3, on its own. In
order to compute M3, A needs to either (1) recover (a, dh∗, Y) from 3 ′ or 2 ,
or (2) compute these values from scratch. To this end, the success possibility
is negligible based on the CDH assumption given that H is a random oracle.

In Scenario 2, without loss of generality, we assume A has generated 1 by
itself. A knows the ephemeral data (r1, a) as well as 1 and 2 . Without the
knowledge of K ′, A needs to compute a legitimate Y in order to compute M3

to make πjs accept. Next, we distinguish two cases.

1. The first case is when (Ic ∪ Is) ⊆ IA. Because Ic could be chosen by A, then
the best strategy to maximize the probability (Ic ∪ Is) ⊆ IA is to choose

Ic ⊂ IA, and then we have Pr[Is ⊆ (IA \ Ic)] =
(n−zz)
(L−zz)

. In this case, A wins

the game as it can compute M3 successfully.
2. When Is * (IA \ Ic), A needs to possess FK′(i) for all i ∈ (Ic ∪ Is) \ IA in

order to compute Y and then M3. Due to the fact that FK′(j) for any j is
always hashed in any transmission, the probability that A can obtain FK′(i)
for all i ∈ (Ic ∪ Is) \ IA is a negligible value.

14 Bowen Liu, Qiang Tang and Jianying Zhou

Summarizing the two scenarios, AdvKCIs (A) is negligible given that CDH

assumption holds and H is a random oracle, as long as we can make
(n−zz)
(L−zz)

negligible by setting appropriate values for z and L. ut

Lemma 2. The proposed protocol achieves KCI resilience in the second scenario
defined in Section 2.3.2 (i.e. A cannot impersonate s to c even after it has
compromised c). The security holds based on the SDH assumption in the random
oracle.

Proof. Similar to the proof of Lemma 1, we assume A knows all messages of m
sessions 1 j , 2 j , 3 j , where j ∈ [1,m] and the private information (mk,K ′) of the
IoT device c via Corruptc query.

Let us assume, in step 4 of the attack game, A has selected an instance πic
which has the session identifier sidA. During the game, πic sends the first message
1 , namely (g′, r2, Ic,M1) where M1 = H(mk||a||g′||r2||Ic), and it receives the
second message 2 . There are two scenarios with respect to this message.

– Scenario 1: Some instance πjs generates 2 , denoted as (b, Is, X,M2), and A
just forwards it directly to πic without any modification.

– Scenario 2: Some instance πjs generates 2 , and A generates a different mes-
sage 2 ′ based on it.

In Scenario 1, since the only message πic receives is exactly the message sent
by some πjs. Note that πjs should have received 1 in order to have its 2 to be
accepted. According to our definition, the attack fails in this scenario, where A’s
advantage is 0.

In Scenario 2, A possesses 1 , 2 and other credentials, and aims at generating
a message 2 ′, which contains a hash value M ′2 which should be computed based
on a and other data. To this end, A has two choices.

– One is to compute the pre-images for M1 and M2 in 1 , 2 respectively. To
this end, the probability is clearly negligible.

– The other is to compute a from scratch. To this end, A has pk = gsk and
g′ = gr1 , while a should equal to gsk·r1 . In addition, A can send message in
the form of 1 to a server’s instance to check whether the M1 value in the
message is correctly computed. This is equivalent to an oracle Osk, which
takes (g′, d1, d2, a) as input and outputs 1 if a = H(d1||g′sk||d2). Referring
to Section 4.1, A’s advantage is negligible based on the SDH assumption.

Summarizing both scenarios, A’s advantage AdvKCIc (A) is negligible based
on the SDH assumption in the random oracle model. ut

Lemma 3. The proposed protocol achieves SCI resilience property defined in
Section 2.3.3 (i.e. A cannot impersonate s to c even after it has compromised

s). The security property holds in the random oracle as long as
(nz)
(Lz)

is negligible.

IoT Friendly Data-Based Two-Factor AKE 15

Proof. As in the proof of Lemma 1 and Lemma 2, we assume A knows all
messages of m sessions 1 j , 2 j , 3 j , where j ∈ [1,m]. By issuing Corrupts(IA =
{iA1, iA2, . . . , iAn}) query,A has also obtained the private information (mk, sk,K)
and n tuples from D∗ of the server s.

Let us assume, in step 4 of the attack game, A has selected an instance πic
which has the session identifier sidA. From this point, the proof is similar to
that of Lemma 2, the only difference is the Scenario 2, we analyze it as follows.

In this scenario, A possesses 1 , 2 and other credentials, and aims at gen-
erating a message 2 ′ that contains a hash value M ′2 which should be computed
based on (X,Y) and other data. Overall, A’s probability of successfully comput-
ing (X,Y) differs in two cases.

1. When Ic * IA. In order to derive a legitimate pair of (X,Y), A needs to
possess FK′(i) for all i ∈ (Ic ∪ Is) \ IA. As we mentioned in the proof of
Lemma 1, the probability that A can obtain all required FK′(i) is negligible.

2. When Ic ⊆ IA. In this case, then the best strategy for A is to choose Is ⊂
(IA \ Ic). In this case, A can compute a legitimate M2 and its probability is

Pr[Ic ⊆ IA] =
(nz)
(Lz)

.

Summarizing the two scenarios, AdvSCI(A) is negligible given that H is a

random oracle, as long as we can make
(nz)
(Lz)

negligible by setting proper values

for z and L. ut

It is clear that
(nz)
(Lz)

>
(n−zz)
(L−zz)

. To make Lemma 1 and Lemma 3 hold, we (at

least) need to make
(nz)
(Lz)

negligible.

Lemma 4. The proposed protocol achieves the perfect forward secrecy (PFS)

property based on the SDH assumption in the random oracle as long as
(n−zz)
(L−zz)

is

negligible.

Proof. We first assume that A issues the Test query to an instance πic in step 3
of the game. We carry out the proof via the standard game hopping technique.

Game 0 is the original session key security game described in Section 2.3.1.
Let E0 be the event that b = b′ at the end of the game. By definition, we have
AdvPFS(A) =

∣∣Pr[E0]− 1
2

∣∣.
Game 1. In this game, we rewrite Game 0 with the following definitions.

We define the event Evn+ as: there is an instance πjs which receives πic’s message
1 and has its reply 2 received by πic. While, we define Evn∗ as the event that
Evn+ does not occur. Clearly, Pr[Evn∗] + Pr[Evn+] = 1. Next, we define the
event E∗1 as b = b′ when Evn∗ happens and E+

1 as b = b′ when Evn+ happens.
Hence, we have

Pr[E0] = Pr[E1] = Pr[E
∗
1] · Pr[Evn

∗
] + Pr[E

+
1] · Pr[Evn

+
].

16 Bowen Liu, Qiang Tang and Jianying Zhou

Based on Lemma 2, we know that Pr[Evn∗] is negligible based on the SDH
assumption in the random oracle.

Game 2. In this game, we add an abort rule. C aborts if the event Evn∗

happens. Otherwise, the game continues as following. Define the event E2 as
b = b′ when the game does not abort. Now we analyse Pr[E2], which equals to
Pr[E+

1] in Game 1. Suppose there are qh queries to H, and define the following
events: Evn′ as the event that a query of the form ∗||dh||∗ has been queried,
Evn′′ as Evn′ does not happen, E′2 as b = b′ when Evn′ happens, and E′′2 as
b = b′ when Evn′′ happens. Therefore, we have the following result,

Pr[E2] = Pr[E
′
2] · Pr[Evn

′
] + Pr[E

′′
2] · Pr[Evn

′′
]

= Pr[E
′
2] · Pr[Evn

′
] +

1

2
·
(
1− Pr[Evn

′
]
)
.

= Pr[Evn
′
] · (Pr[E

′
2]−

1

2
) +

1

2

If Evn′ happens, then we can solve the CDH problem with probability 1
qh

, then(
1
qh

)
· Pr[Evn′] ≤ εCDH , where εCDH is the upper bound of solving CDH

problem by a P.P.T. adversary.
Summarizing the results from the above three games, we have the following:

Pr[E0] = Pr[E
∗
1] · Pr[Evn

∗
] + Pr[E

+
1] · Pr[Evn

+
]

= Pr[E
∗
1] · Pr[Evn

∗
] + Pr[E

+
1] · (1− Pr[Evn

∗
])

= Pr[Evn
∗
] · (Pr[E

∗
1]− Pr[E

+
1]) + Pr[E

+
1]

Adv
SK

(A) =

∣∣∣∣Pr[E0]−
1

2

∣∣∣∣
=

∣∣∣∣Pr[Evn
∗
] · (Pr[E

∗
1]− Pr[E

+
1]) + Pr[E

+
1]−

1

2

∣∣∣∣
≤
∣∣∣Pr[Evn

∗
] · (Pr[E

∗
1]− Pr[E

+
1])
∣∣∣+

∣∣∣∣Pr[E
+
1]−

1

2

∣∣∣∣
=
∣∣∣Pr[Evn

∗
] · (Pr[E

∗
1]− Pr[E

+
1])
∣∣∣+

∣∣∣∣Pr[Evn
′
] · (Pr[E

′
2]−

1

2
) +

1

2
−

1

2

∣∣∣∣
=
∣∣∣Pr[Evn

∗
] · (Pr[E

∗
1]− Pr[E

+
1])
∣∣∣+ Pr[Evn

′
] ·
∣∣∣∣(Pr[E

′
2]−

1

2
)

∣∣∣∣
≤
∣∣∣Pr[Evn

∗
] · (Pr[E

∗
1]− Pr[E

+
1])
∣∣∣+ qh · εCDH ·

∣∣∣∣(Pr[E
′
2]−

1

2
)

∣∣∣∣
Since Pr[Evn∗] is negligible based on the SDH assumption in the random

oracle, then AdvPFS(A) is negligible based on the same assumption.
If we assume that A issues the Test query to an instance πjs in step 3 of

the game. The proof procedure is similar, except that Pr[Evn∗] is negligible in

Game 1 based on the CDH assumption in the random oracle as long as
(n−zz)
(L−zz)

is

negligible (namely, it is based on Lemma 1). As a result, AdvSK(A) is negligible
based on the same assumption.

To sum up both cases, AdvSK(A) is negligible based on the SDH assumption

(which is clearly stronger than CDH) in the random oracle as long as
(n−zz)
(L−zz)

is

negligible.
ut

IoT Friendly Data-Based Two-Factor AKE 17

5 Performance Evaluation and Enhancements

In Table 2, we summarize the asymptotic complexity (i.e. the number of different
types of computations) of the proposed protocol.

Table 2. Complexity of the Proposed Protocol

Modular
Multiplication Addition

PRF PRF Hash
Exponentiation E F H

Tag Generation - L L - L L
IoT Device 3 2z 2z 1 4z 5

Server 3 4z + 1 4z - 2 1 2z 2z + 5

In the rest of this section, we implement our protocol and provide the detailed
running time. Furthermore, we show how to reduce the running time for the IoT
device. At last, we make a comparison to the protocol from [9] and resolve the
scalability question.

5.1 Parameter Selection and Implementation Results

We consider two security levels, namely λ = 128 and λ = 256. Next, we first
describe how to set up the parameters and then present the implementation
results.

5.1.1 Parameter Setup

With respect to the instantiation of group G, we use the Koblitz curve secp256k1
and secp521r1, respectively. These curves are recommended parameters defined
in Standards for Efficient Cryptography [33], and the parameters can be found
in Appendix B. When λ = 256, we use SHA-256 to implement the function H
and use HMAC-SHA256 to instantiate the PRF E. For the PRF F, we can also
use HMAC-SHA256 by truncating its output size to q. When λ = 128, we can
further truncate the outputs of these functions to fit into the required domain.
We skip the detail here.

Given a security parameter, we take the following approach to determine the
parameters L, n, z.

1. Since we rely on the bounded retrieval model, we need to first set a threshold
τ , which limits how much data an attacker can retrieve if it has compromised
the server. For our implementation, we suppose the attacker can only retrieve
τ = 100 MB data. It will be straightforward to adapt our discussions to other
τ values.

2. With τ , we enumerate some potential sizes for a single data item in D. Let
the sizes be denoted as xi (1 ≤ i ≤ T) for some integer T . For every xi, we
do the following.
(a) Compute ni = τ

xi
, which represents the number of tuples an attacker

can retrieve if it has compromised the server.

18 Bowen Liu, Qiang Tang and Jianying Zhou

(b) With ni, we need to try different (z, L) pairs so that
(nz)
(Lz)

is negligible

w.r.t the security parameter. Note that a smaller z requires a larger L.

(c) Evaluate the the obtained (z, L) pairs, and try to find the one which
results in a good balance between the size of D (i.e. L × xi) and the
complexity of 2z hash computations. In another word, both z and L
should not be too large. It is also worth noting that if z is very large,
there is also the cost of multiplications in the computation of X and Y
for the server (this makes a difference in our case of λ = 256, see below).

3. Further evaluate the (z, L) pairs for all xi (1 ≤ i ≤ T) obtained at the end
of last step, and select the most suitable one.

In the following table, we enumerate five options for the size of a single data
item in D and present the hashing time and the value for n correspondingly. All
the computations are done with a PC, with its configurations described in the
next subsection.

Table 3. Data Item Sizes

Data item size (MB) 0.0005 0.001 0.01 0.1 1
Hash one data item (ms) 0.004 0.007 0.068 0.689 6.698

Value of n 106 105 104 103 102

For the security parameter λ = 128, we compute the (z, L) pairs shown in
Table 4, where the top row lists different data item size and n value tuples.

Each pair guarantees that
(nz)
(Lz)
≤ 1

2128 . In the table, we have also presented the

computation time for 2z hashes and the storage for the server. From the table,
it seems the most appropriate pair is (z = 50, L = 5896957), which achieves a
better balance for hashing time and storage for the server. If storage is more
important for the server, then (z = 50, L = 589588) can be the alternative.

Table 4. Determine (z, L) when λ = 128

(0.0005, 106) (0.001, 105) (0.01, 104) (0.1, 103) (1, 102)
Value of L when z = 10 7131518127 713122933 71283411 7099433 680759
Size of D (GB) 3565.76 713.12 712.83 709.94 680.76
Hash 2z data items (ms) 0.075 0.14 1.38 13.91 134.02

Value of L when z = 20 84447713 8444058 843693 83655 7637
Size of D (GB) 42.22 8.44 8.43 8.37 7.64
Hash 2z data items (ms) 0.15 0.27 2.73 26.89 267.91

Value of L when z = 50 5896957 589588 58851 5777 462
Size of D (GB) 2.95 0.59 0.59 5.78 0.46
Hash 2z data items (ms) 0.36 0.72 6.77 67.49 669.29

Value of L when z = 100 2428319 242769 24214 2357 147
Size of D (GB) 1.21 0.24 0.24 0.24 0.15
Hash 2z data items (ms) 0.73 1.45 13.73 135.31 1342.25

IoT Friendly Data-Based Two-Factor AKE 19

For the security parameter λ = 256, we compute the (z, L) pairs shown in

Table 5. Each pair guarantees that
(nz)
(Lz)
≤ 1

2256 . It may seem that (z = 100, L =

5896835) is a good choice. However, considering also the costs in multiplications
(see our explanation in Step 2.(c)) from the aforementioned approach descrip-
tion, the most appropriate pair is (z = 50, L = 3476724) in this case. In addition,
we do not choose (z = 50, L = 34774689) because the storage is too high.

Table 5. Determine (z, L) when λ = 256

(0.0005, 106) (0.001, 105) (0.01, 104) (0.1, 103) (1, 102)
Value of L when z = 10 50858779596503 5085671978593 508361198100 50629932185 4854873253
Dataset size (GB) 25429389.80 5085671.98 5083611.98 5062993.22 4854873.25
Hash 2z data items (ms) 0.081 0.14 1.37 14.11 142.14

Value of L when z = 20 7131482474 713087280 71247750 7063691 644102
Size of D (GB) 3565.74 713.09 712.48 706.37 644.10
Hash 2z data items (ms) 0.16 0.29 2.76 25.47 265.13

Value of L when z = 50 34774689 3476724 346928 33945 2601
Size of D (GB) 17.39 3.48 3.47 3.39 2.60
Hash 2z data items (ms) 0.36 0.89 6.67 64.22 673.19

Value of L when z = 100 5896835 589466 58729 5653 276
Size of D (GB) 2.95 0.59 0.06 0.57 0.28
Hash 2z data items (ms) 0.71 1.44 14.21 139.64 1324.91

5.1.2 Implementation Results

With the selected parameters from the previous subsection, we implement the
proposed AKE protocol in C with the MIRACL cryptographic library [30]1. In
the experiment, we use a PC as the server. It has an Intel® Core™ i7-4770 CPU
@ 3.4 GHz processor with 16 GB RAM. In the literature, most benchmarks are
implemented by using a single-board computer to simulate an IoT device, like
Arduino, BeagleBone Black, Raspberry Pi, etc. [14, 24, 25]. Therefore, we use
a Raspberry Pi 3 Model B+ with ARM Cortex-A53 @ 1.4 GHz processor and
1 GB RAM as the IoT device. To obtain fair execution results, we execute the
codes ten times and take the average. Table 6 depicts the results. From the table,
we observe that the running time of the server is much smaller than that of the
IoT device. This may look strange, but it could be preferable in practice given
that the server may need to support a large number of IoT devices. For the IoT
device, the running time 15.19 ms (when λ = 128) and 84.73 ms (when λ = 256)
could be acceptable in many application scenarios. But, it will be interesting to
reduce this complexity, particularly for IoT devices which have less computing
power than the Raspberry Pi.

1 Source code is available at https://github.com/n00d1e5/Demo Bigdata-
facilitated Two-party AKE for IoT

20 Bowen Liu, Qiang Tang and Jianying Zhou

Table 6. Running Time (ms)

Modular
Multiplication Addition

PRF PRF Hash
Total

Exponentiation E F H

λ = 128, Elliptic Curve: secp256k1, L = 5896957, n = 106, z = 50
IoT Device 13.61 0.16 0.03 0.04 0.66 0.06 15.19

Server 1.69 0.04 0.01 0.04 0.06 0.37 2.44

λ = 256, Elliptic Curve: secp521r1, L = 3476724, n = 105, z = 50
IoT Device 81.96 0.34 0.05 0.04 0.96 0.12 84.73

Server 11.08 0.09 0.02 0.02 0.07 0.73 12.51

5.2 Efficiency Enhancement for the IoT

Referring to the AKE protocol in Figure 2 from Section 3.2, the values of a and
g′ can be computed in advance. By doing so, the IoT device can avoid about
two-thirds of the computations required in the protocol execution.

Besides the “trivial” pre-computation strategy, we can try to offload one
exponentiation from IoT to the server. For the enhanced AKE protocol, the
initialisation phase stays the same except the following.

– IoT device is configured with a set S which contains tuples in the form of

(gu, u) where u
$← Z∗q . This allows us to outsource the computation of gr1 to

the server without revealing r1.
– The original (pk, sk) is discarded and a new key pair (spk, ssk) is generated

for a signature scheme (Sign,Verify) which achieves existential unforgeability
under chosen-message attacks (EUF-CMA). This is necessary to achieve KCI
resilience when the attacker compromises the IoT device.

The Enhanced AKE protocol is summarized in Figure 3.
Regarding the security of the enhanced protocol, we sketch below how the

Lemmas from Section 4 still hold. First of all, the results of Lemma 1 and
Lemma 3 will not be affected because compromising the server does not give the
attacker any more privileges. Intuitively, our modification against the original
AKE protocol from Section 3 does not give any more power to the attacker
when it compromises the server, i.e. in the original case, it obtains sk while in
the enhanced protocol it obtains ssk. In addition, the security results mainly
come from the inability for the attacker to forge bigdata-related information.
The new security proofs can be carried out in a very similar manner, we skip the
details here. Regarding Lemma 2, the original proof methodology does not work
anymore. In fact, this is why we have introduced the digital signature scheme.
Since the server is required to send σ which is a signature for the exchanged
messages, i.e. 1 and M2 which embeds (b, Is, X) inside. Based on the EUF-CMA
property, the attacker cannot impersonate the server to the IoT device even if
it has compromised the latter. Give that the results of Lemma 1, Lemma 2, and
Lemma 3 still hold, then Lemma 4 also holds and the proof stays very similar.
We skip the details here as well. It worth pointing out that, in comparison to the
original protocol, one potential drawback for this enhanced protocol is the lack
of backward secrecy, which means that an attacker can obtain the session keys

IoT Friendly Data-Based Two-Factor AKE 21

IoT Device c Server s

(Ω,mk,K′, S, spk) (Ω,mk,K,D∗, ssk)

r1
$← Z∗q

(gu, u) ∈ S
r2

$← {0, 1}λ
Select Ic

M1 = H(mk||gu|| r1u ||r2||Ic)

1

gu,
r1
u , r2, Ic,M1

M1
?
= H(mk||gu|| r1u ||r2||Ic)

I = Ic ∪ Is, where Is ∩ Ic = ∅
r′2 = Emk(r2)
X = K ·

∑i
i∈I(H(di) · Fr′2 (i))

Y =
∑i
i∈I(ti · Fr′2 (i))

α = (gu)
r1
u

r3
$← Zq

b = gr3

dh = αr3

M2 = H(b||dh||Is||X||Y || 1)
σ = Signssk(1 ||M2)

2

b, Is, X,M2, σ

True
?
= Verifyspk(1 ||M2)

I = Ic ∪ Is
r′2 = Emk(r2)

KI =
∑i
i∈I(FK′ (i) · Fr′2 (i))

Y = X +KI
dh∗ = br1

M2
?
= H(b||dh∗||Is||X||Y || 1)

M3 = H(b||dh∗||I||Y || 1 || 2)
sidc = H(1 || 2)

skc = H(sidc||mk||dh∗||Y)
Delete (gu, u) from S

3

M3

M3
?
= H(b||dh||I||Y || 1 || 2)

sids = H(1 || 2)
sks = H(sids||mk||dh||Y)

Fig. 3. Enhanced AKE Protocol

established after it compromised the IoT (due to the fact that it can obtains r1

through u). How to address this issue is an interesting future work.

Table 7 shows the complexity of the enhanced protocol. Comparing to Ta-
ble 2, we can conclude that the signature verification operation should be very
efficient in order to make the outsourcing meaningful.

To implement the enhanced AKE protocol, all parameters can stay the same
except that we need to choose an appropriate digital signature scheme. According
to NIST’s benchmarking [16], we choose Picnic[29]. We benchmark the schemes

22 Bowen Liu, Qiang Tang and Jianying Zhou

Table 7. Complexity of the Enhanced Protocol

Sign Verify
Modular

Multiplication Addition
PRF PRF Hash

Exponentiation E F H
IoT Device - 1 1 2z 2z 1 4z 5

Server 1 - 3 4z + 1 4z - 2 1 2z 2z + 5

both for 128 and 256-bit security2 on our Raspberry Pi and get the results in
Table 8. For 128-bit security, the running time remains almost the same for the
IoT device as the original solution, while the running time for the server has
increased significantly. But, for 256-bit security, the execution time is 1.45 times
faster for the IoT device while the running time for the server has increased
moderately.

Table 8. Running Time (ms)

Sign Verify
Modular

Multiplication Addition
PRF PRF Hash

Total
Exp. E F H

λ = 128, Elliptic Curve: secp256k1, L = 5896957, n = 106, z = 50
IoT Device - 8.32 4.54 0.16 0.03 0.04 0.66 0.06 14.44

Server 10.34 - 1.69 0.04 0.01 0.04 0.06 0.37 12.78

λ = 256, Elliptic Curve: secp521r1, L = 3476724, n = 105, z = 50
IoT Device - 28.36 27.32 0.34 0.05 0.04 0.96 0.12 58.45

Server 33.83 - 11.08 0.09 0.02 0.02 0.07 0.73 46.34

Furthermore, it is clear that if there is a more efficient signature scheme,
then the efficiency gain will be more for the enhanced AKE protocol. To further
improve its efficiency, we can also try to outsource the computation of dh∗ = br1

to the server. To this end, Protocol 5 from [15] can be employed. A detailed
investigation of this direction is an interesting future work.

5.3 Comparison with Existing Protocol(s)

Regarding the setting mentioned in the beginning of Section 1, the protocol
from [9] is similar to ours, even though it does not achieve the KCI and SCI
properties. We choose 128-bit AES to instantiate the encryption algorithm and
use the same group to implement this protocol for the security level λ = 128,
and summarize the results in Table 9. In comparison to the results from Table
6, it is clear that the complexities for the IoT device are very close while the
complexity for the server is slightly higher in our protocol. Note also the fact
that we have not taken into account the PUF operations, which may increase
the complexity for the IoT device for the protocol from [9].

In this paper, we have assumed a setting with one IoT device and the server.
In practice, the server may serve a large number of IoT devices, e.g. thousands

2 Source code of both schemes picnic-L1-full for 128-bit security and picnic-L5-full for
256-bit security is available at https://github.com/IAIK/Picnic

IoT Friendly Data-Based Two-Factor AKE 23

Table 9. Complexity and Running Time (ms) of [9]

Modular
Encryption Decryption

Hash
Total

Exponentiation H
IoT Device 13.61 0.00006 - 0.06 ≈ 13.67

Server 1.69 0.000006 0.000006 0.02 ≈ 1.71

of them. In this case, the security properties will not be affected in any manner,
but there are potential scalability concerns. From our implementation results, the
running time of the server can scale to a considerable number of IoT devices, and
the main concern is the storage. Below, we propose a simple solution to resolve
this question.

Instead of storing an individual dataset D for every IoT device, the server can
store a global dataset D̃ which contains L data items d̃i (1 ≤ i ≤ L). In addition,
the server can generate a global secret key gk for dataset configuration. Consider
an IoT device, which has the identifier id. For both the Initialisation Phase and
the AKE protocol, the server can construct a dataset D for this IoT device
on-the-fly, where every element di is derived from d̃i as follows:

di = H̃(id||gk||d̃i)

where H̃ is a hash function. By doing so, the server only needs to store the global
dataset D̃ and ephemerally generate D when necessary. When the cryptographic
hash function H̃ is modeled as a random oracle, it is straightforward to verify
that the security properties of the proposed protocols will not be affected. Due
to the space limitation, we skip the details here.

6 Conclusion

Motivated by Chan et al.’s unilateral authentication scheme [14], we have pro-
posed a bigdata-facilitated two-party AKE protocol for IoT systems. The pro-
posed protocol achieves a wide range of security properties including PFS, KCI
resilience and SCI resilience. In particular, the KCI and SCI resilience properties
are well demanded by the IoT environment, and cannot be satisfied by existing
AKE protocols. Furthermore, we have presented an enhanced protocol, which
can significantly reduce the computation load for the IoT with an appropriate
signature scheme. Our work has left a number of future research directions. As
mentioned in Section 5.2, it is an immediate future work to give a formal proof
of the enhanced AKE protocol even if it is almost straightforward. Furthermore,
it is worth investigating to further improve the efficiency of the protocol by in-
tegrating the Protocol 5 from [15] and evaluate its efficiency gain vs the added
communication complexity. Along this direction, it is also worth exploring other
signature schemes which have better verification efficiency.

24 Bowen Liu, Qiang Tang and Jianying Zhou

Acknowledgement

This paper is supported in the context of the project CATALYST funded by
Fonds National de la Recherche Luxembourg (FNR, reference 12186579).

References

1. Abdalla, M., Bellare, M., Rogaway, P.: The Oracle Diffie-Hellman Assumptions
and an Analysis of DHIES. In: Naccache, D. (ed.) Topics in Cryptology - CT-RSA
2001. LNCS, vol. 2020, pp. 143–158. Springer (2001)

2. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Annual International Cryptology Conference. pp. 36–
54. Springer (2009)

3. Aumann, Y., Ding, Y.Z., Rabin, M.O.: Everlasting security in the bounded storage
model. IEEE Transactions on Information Theory 48(6), 1668–1680 (2002)

4. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Annual
international cryptology conference. pp. 232–249. Springer (1993)

5. Blake-Wilson, S., Menezes, A.: Authenticated Diffe-Hellman key agreement proto-
cols. In: International Workshop on Selected Areas in Cryptography. pp. 339–361.
Springer (1998)

6. Boyd, C., Mathuria, A., Stebila, D.: Protocols for Authentication and Key Estab-
lishment. Springer Berlin, Heidelberg (2020)

7. Brainard, J., Juels, A., Rivest, R.L., Szydlo, M., Yung, M.: Fourth-factor authen-
tication: somebody you know. In: Proceedings of the 13th ACM conference on
Computer and communications security. pp. 168–178 (2006)

8. Byun, J.W.: A generic multifactor authenticated key exchange with physical un-
clonable function. Security and Communication Networks 2019 (2019)

9. Byun, J.W.: An efficient multi-factor authenticated key exchange with physically
unclonable function. In: 2019 International Conference on Electronics, Information,
and Communication (ICEIC). pp. 1–4. IEEE (2019)

10. Byun, J.W.: End-to-end authenticated key exchange based on different physical
unclonable functions. IEEE Access 7, 102951–102965 (2019)

11. Byun, J.W.: PDAKE: a provably secure PUF-based device authenticated key ex-
change in cloud setting. IEEE Access 7, 181165–181177 (2019)

12. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: International Conference on the Theory and Appli-
cations of Cryptographic Techniques. pp. 453–474. Springer (2001)

13. Challa, S., Wazid, M., Das, A.K., Kumar, N., Reddy, A.G., Yoon, E.J., Yoo, K.Y.:
Secure signature-based authenticated key establishment scheme for future IoT ap-
plications. IEEE Access 5, 3028–3043 (2017)

14. Chan, A.C.F., Wong, J.W., Zhou, J., Teo, J.: Scalable two-factor authentication
using historical data. In: European Symposium on Research in Computer Security.
pp. 91–110. Springer (2016)

15. Chevalier, C., Laguillaumie, F., Vergnaud, D.: Privately Outsourcing Exponenti-
ation to a Single Server: Cryptanalysis and Optimal Constructions. Algorithmica
83(1), 72–115 (2021)

16. Dang, V.B., Farahmand, F., Andrzejczak, M., Mohajerani, K., Nguyen, D.T.,
Gaj, K.: Implementation and benchmarking of round 2 candidates in the nist

IoT Friendly Data-Based Two-Factor AKE 25

post-quantum cryptography standardization process using hardware and soft-
ware/hardware co-design approaches. Cryptology ePrint Archive: Report 2020/795
(2020)

17. Davies, S.G.: Touching Big Brother: How biometric technology will fuse flesh and
machine. Information Technology & People 7(4), 38–47 (1994)

18. Di Crescenzo, G., Lipton, R., Walfish, S.: Perfectly secure password protocols in
the bounded retrieval model. In: Theory of Cryptography Conference. pp. 225–244.
Springer (2006)

19. Dziembowski, S.: Intrusion-resilience via the bounded-storage model. In: Theory
of Cryptography Conference. pp. 207–224. Springer (2006)

20. Fleischhacker, N., Manulis, M., Azodi, A.: A modular framework for multi-factor
authentication and key exchange. In: International Conference on Research in Se-
curity Standardisation. pp. 190–214. Springer (2014)

21. Guo, C., Chang, C.C.: Chaotic maps-based password-authenticated key agreement
using smart cards. Communications in Nonlinear Science and Numerical Simulation
18(6), 1433–1440 (2013)

22. Hao, F., Clarke, D.: Security analysis of a multi-factor authenticated key exchange
protocol. In: International Conference on Applied Cryptography and Network Se-
curity. pp. 1–11. Springer (2012)

23. Jin, C., Yang, Z., Adepu, S., Zhou, J.: HMAKE: Legacy-Compliant Multi-factor
Authenticated Key Exchange from Historical Data. IACR Cryptology ePrint
Archive 2019, 450 (2019)

24. Kruger, C.P., Hancke, G.P.: Benchmarking Internet of things devices. In: 2014 12th
IEEE International Conference on Industrial Informatics (INDIN). pp. 611–616.
IEEE (2014)

25. Krylovskiy, A.: Internet of things gateways meet linux containers: Performance
evaluation and discussion. In: 2015 IEEE 2nd World Forum on Internet of Things
(WF-IoT). pp. 222–227. IEEE (2015)

26. Lee, Y., Kim, S., Won, D.: Enhancement of two-factor authenticated key exchange
protocols in public wireless LANs. Computers & electrical engineering 36(1), 213–
223 (2010)

27. Li, Z., Yang, Z., Szalachowski, P., Zhou, J.: Building Low-Interactivity Multi-Factor
Authenticated Key Exchange for Industrial Internet-of-Things. IEEE Internet of
Things Journal (2020)

28. Liu, Y., Xue, K.: An improved secure and efficient password and chaos-based two-
party key agreement protocol. Nonlinear Dynamics 84(2), 549–557 (2016)

29. Microsoft: The Picnic Signature Algorithm, https://github.com/microsoft/Picnic/

30. MIRACL Ltd.: Multiprecision Integer and Rational Arithmetic Cryptographic Li-
brary – the MIRACL Crypto SDK (2019), https://github.com/miracl/MIRACL

31. Pointcheval, D., Zimmer, S.: Multi-factor authenticated key exchange. In: Interna-
tional Conference on Applied Cryptography and Network Security. pp. 277–295.
Springer (2008)

32. Shoup, V.: On Formal Models for Secure Key Exchange . Cryptology ePrint
Archive, Report 1999/012 (1999), https://eprint.iacr.org/1999/012

33. Standards for Efficient Cryptography (SEC): SEC 2: Recommended elliptic curve
domain parameters (2000)

34. Stebila, D., Udupi, P., Chang Shantz, S.: Multi-factor password-authenticated key
exchange. Information Security 2010 pp. 56–66 (2010)

26 Bowen Liu, Qiang Tang and Jianying Zhou

A Review of Chan et al. [14]

A.1 The Authentication Scheme of Chan et al.

The following arithmetic is done in a certain finite field F. Their protocol has a
cryptographic hash function H : {0, 1}∗ → F and two Pseudorandom Functions
(PRFs) F : {0, 1}λ × {0, 1}∗ → F, E : {0, 1}λ × {0, 1}λ → {0, 1}λ where λ is a
security parameter. In the initialization phase, a secret key sk1 = mk ∈ {0, 1}λ
is randomly generated and shared between a verifier v and a prover p. In our
setting, v can be an IoT device and p can be a server. In addition, v also
holds the the other secret keys sk2 = (K,K ′), where K ∈ F∗ and K ′ ∈ {0, 1}λ
(K ′ ∈ {0, 1}∗ in [14]). Assume there is a big dataset D, we briefly summarize the
tag generation in Figure 4 and the authentication protocol execution in Figure
5. Note that the cardinality L of the big dataset could be generated by some
random number generator with a seed s chosen by v or just indices spaced
equally.

Verifier v (IoT Device) Prover p (Server)

(sk1 = mk, sk2 = (K,K′)) (sk1 = mk)

L← 0 L← 0
foreach di in D do
ki ← FK′ (i)
ti ← K · H(di) + ki
L← L+ 1

i,di,ti

L← L+ 1
store (di, ti) into D∗

Fig. 4. Tag Generation of Chan et al.’s Authentication Protocol [14]

A.2 Tag Stealing Attack

In [23], a vulnerability is shown that all tags can be leaked to adversaries. Once
an adversary A has corrupted the first authentication factor mk and knows
one tuple (di, ti) (or (H(di), ti)) of D∗, then A can launch the stealing attack
according to the following steps:

1. A generates a set I1 with t random indices, then let I2 denote the other set
by replacing one chosen index (e.g., j) with i.

2. A sends (r, I1) to p and receives (X1, Y1).
3. A sends (r, I2) to p in another session and receives (X2, Y2).

4. A can now gain the knowledge of the tag tj = Y2−Y1+Fr′ (i)·ti
Fr′ (j)

and H(dj) =
X2−X1+Fr′ (i)·H(di)

Fr′ (j)
, where r′ = Emk(r).

5. By repeating the steps above, A is able to steal all tags and hash values of
all original data items.

IoT Friendly Data-Based Two-Factor AKE 27

Verifier v (IoT Device) Prover p (Server)

(sk1 = mk, sk2 = (K,K′), L) (sk1 = mk,L,D∗)

a set with t random indices I
$← L

r
$← {0, 1}λ

I,r

r′ ← Emk(r)

X ←
∑i
i∈I(Fr′ (i) · H(di))

Y ←
∑i
i∈I(Fr′ (i) · ti)

X,Y

r′′ ← Emk(r)

KI ←
∑i
i∈I(FK′ (i) · Fr′′ (i))
Y

?
= K ·X +KI

Fig. 5. Execution of Chan et al.’s Authentication Protocol [14]

B Implementation Parameters

The Koblitz curve secp256k1 is given by E/Fq : y2 = x3 + ax + b with prime
group order q, while the corresponding parameters are stated as
p := FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F,
a := 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000,
b := 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000007,
G := (79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798,

483ADA77 26A3C465 5DA4FBFC 0E1108A8 FD17B448 A6855419 9C47D08F FB10D4B8),
q := FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C D0364141,
h := 01.

And the curve secp521r1 is defined by changing the following parameters
p := 01FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF,
a := 01FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFC,
b := 0051 953EB961 8E1C9A1F 929A21A0 B68540EE A2DA725B 99B315F3 B8B48991 8EF109E1

56193951 EC7E937B 1652C0BD 3BB1BF07 3573DF88 3D2C34F1 EF451FD4 6B503F00,
G := (00C6 858E06B7 0404E9CD 9E3ECB66 2395B442 9C648139 053FB521 F828AF60 6B4D3DBA

A14B5E77 EFE75928 FE1DC127 A2FFA8DE 3348B3C1 856A429B F97E7E31 C2E5BD66,
0118 39296A78 9A3BC004 5C8A5FB4 2C7D1BD9 98F54449 579B4468 17AFBD17 273E662C

97EE7299 5EF42640 C550B901 3FAD0761 353C7086 A272C240 88BE9476 9FD16650),
q := 01FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFA

51868783 BF2F966B 7FCC0148 F709A5D0 3BB5C9B8 899C47AE BB6FB71E 91386409.

