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Abstract

We study non-malleable secret sharing against joint leakage and joint tampering attacks.
Our main result is the first threshold secret sharing scheme in the plain model achieving
resilience to noisy-leakage and continuous tampering. The above holds under (necessary)
minimal computational assumptions (i.e., the existence of one-to-one one-way functions),
and in a model where the adversary commits to a fixed partition of all the shares into non-
overlapping subsets of at most t − 1 shares (where t is the reconstruction threshold), and
subsequently jointly leaks from and tampers with the shares within each partition.

We also study the capacity (i.e., the maximum achievable asymptotic information rate)
of continuously non-malleable secret sharing against joint continuous tampering attacks. In
particular, we prove that whenever the attacker can tamper jointly with k > t/2 shares, the
capacity is at most t− k. The rate of our construction matches this upper bound.

An important corollary of our results is the first non-malleable secret sharing scheme
against independent tampering attacks breaking the rate-one barrier (under the same com-
putational assumptions as above).
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1 Introduction

A t-out-of-n secret sharing scheme [Bla79, Sha79] allows to distribute a message into n shares
in such a way that: (i) given t or more shares we can reconstruct the original message; and (ii)
any attacker corrupting strictly less than t share holders has no information about the message.
The parameter t is called the reconstruction threshold, and a scheme with the above properties
is called a threshold secret sharing. An important efficiency parameter of secret sharing is the
so-called information rate, which equals the ratio between the length of the message and the
maximum length of a share.

Goyal and Kumar [GK18a] introduced non-malleable secret sharing, which further satisfies
the following guarantee: (iii) no attacker tampering with possibly all of the shares can generate
a valid secret sharing of a message which is related to the original shared value. This notion was
inspired by the related concept of non-malleable codes defined by Dziembowski, Pietrzak and
Wichs [DPW10], and by similar notions in the setting of non-malleable cryptography [DDN91,
DDN00].

Clearly, we must put some restriction on how the attacker can tamper with the shares (as if
she can tamper with all of them in a joint manner she can reconstruct the message and compute
a valid secret sharing of a related value). The original paper by Goyal and Kumar constructed
threshold secret sharing schemes both against independent tampering attacks (i.e., each share
can be tampered arbitrarily yet independently) and joint tampering attacks (i.e., the attacker
can partition any set of t shares into two non-empty subsets and tamper jointly with the shares
contained in each subset). This initial result spurred further research on the subject, yielding
non-malleable secret sharing schemes with additional properties and with resilience to stronger
tampering attacks. We review the state of the art for joint tampering (which is the focus of
this paper) below, and in Tab. 1, and refer the reader to §1.4 for additional related work.

1.1 Non-Malleability Against Joint Tampering

In a follow-up paper, Goyal and Kumar [GK18b] constructed n-out-of-n non-malleable secret
sharing in a stronger tampering model where the attacker can partition the n shares into two
(possibly overlapping) subsets of its choice, and then jointly tamper with the shares in each of
the subsets independently. Similarly to the construction in [GK18a], the information rate of
this scheme asymptotically reaches zero (when the message length goes to infinity).

Brian, Faonio and Venturi [BFV19] showed how to compile any leakage-resilient secret shar-
ing into a continuously non-malleable one [FV19, FMNV14] using a trusted setup (and compu-
tational assumptions). Here, leakage resilience refers to the guarantee that the secret remains
hidden even given leakage from the shares. Continuous non-malleability refers to the ability of
the attacker to adaptively tamper poly-many1 times with the same target secret sharing.

When the initial secret sharing is resilient to joint-leakage attacks, the compiled scheme
tolerates continuous joint-tampering and joint-leakage attacks in a model where the adversary
commits to a partition B = (B1, . . . ,Bm) of [n] into m disjoint subsets of size at most k at
the beginning of the experiment, and subsequently can tamper with and leak from the shares
within each subset in an adaptive fashion. The reconstruction set T (with cardinality |T | ≥ t)
associated to each tampering query can be chosen adaptively, a feature sometimes known under
the name of adaptive concurrent reconstruction [ADN+19]. In this work, we dub secret sharing
schemes that are secure in the above setting as leakage-resilient continuously non-malleable
under selective k-joint leakage and tampering attacks. By plugging recent constructions of

1The only (necessary) restriction is that the experiment self-destructs after the first tampering query yielding
an invalid secret sharing.
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Reference Access Structure Non-Malleability Leakage Rate Assumptions Partitioning

[GK18a] Threshold (t ≥ 2) 1-Time (k < t) 7 Θ
(
|µ|−9

)
— Disjoint

[GK18b] Threshold (t = n) 1-Time (k < t) 7 Θ(|µ|−6) — Overlapping

[BFV19]
General Continuous (k ≤ O(log n)) Bounded poly(|µ|, n, `, λ)−1 TDPs, CRHs, CRS Selective, Disjoint

Threshold (t ≥ 2) Continuous (k < t) Bounded poly(|µ|, n, `, λ)−1 TDPs, CRHs, CRS Selective, Disjoint
Threshold (t = n) Continuous (k ≤ 0.99n) Bounded poly(|µ|, n, `, λ)−1 TDPs, CRHs, CRS Selective, Disjoint

[BFO+20]

Threshold (t ≥ 2) p-Time (k < t) 7 poly(|µ|, n, p, λ)−1 1-to-1 OWFs Selective, Disjoint
Threshold (t = n) p-Time (k < t) 7 poly(|µ|, n, p, λ)−1 1-to-1 OWFs Selective, Disjoint

General p-Time (k ≤ O(log n)) 7 poly(|µ|, n, p, λ)−1 1-to-1 OWFs Semi-Adaptive, Disjoint
Threshold (t ≥ 2) p-Time (k ≤ O(t/ log t)) 7 poly(|µ|, n, p, λ)−1 1-to-1 OWFs Semi-Adaptive, Disjoint
Threshold (t = n) p-Time (k ≤ 0.99n) 7 poly(|µ|, n, p, λ)−1 1-to-1 OWFs Semi-Adaptive, Disjoint

[GSZ20] Threshold (t ≥ 2) 1-Time (k < t) 7 poly(|µ|, n, `, λ)−1 — Overlapping

§A, §6.1 Threshold (t ≥ 2) 1-Time (k < t) Noisy poly(|µ|, n, `, λ)−1 — Disjoint
§6.2 Threshold (t ≥ 2n/3) Continuous (k < t) Noisy 1−poly(n, `, λ) · |µ|−1 1-to-1 OWFs Selective, Disjoint

§B, §6.2 Threshold (t ≥ 2n/3) Continuous (k < t) Noisy t−poly(n, `, λ) · |µ|−1 ROM/AGM Selective, Disjoint
§6.3 Threshold (t ≥ 2n/3) 1-Time (k = 1) Noisy t/2−poly(n, `, λ) · |µ|−1 1-to-1 OWFs —

Table 1: State-of-the-art non-malleable secret sharing schemes tolerating joint tampering and leakage attacks.
The value n denotes the number of parties, |µ| is the size of the message, ` denotes the leakage parameter, p
is the number of tampering queries, λ denotes the security parameter, t is the reconstruction threshold, and k
is the maximal number of shares that can be tampered jointly. Semi-adaptive partitioning refers to the ability
of the attacker to change the way the target shares are partitioned within each leakage/tampering query in a
somewhat restricted manner [BFO+20]. OWFs stands for “one-way functions”, TDPs for “(doubly-enhanced)
trapdoor permutations”, CRHs for “collision-resistant hash functions”, CRS for “common reference string”, ROM
for “random oracle model”, and AGM for “algebraic group model”. For readability, in the last two rows the
values for the rates are displayed as lower bounds.

leakage-resilient secret sharing under joint-leakage attacks [CGGL20, KMS19, KMZ20], we get
rate-zero schemes satisfying this notion either for arbitrary access structures with k = O(log n),
or for threshold access structures with k = t− 1 (which is optimal).

Brian et al. [BFO+20] showed how to compile any leakage-resilient one-time non-malleable
secret sharing scheme with statistical security under selective k-joint leakage and tampering
attacks into a p-time computationally non-malleable secret sharing under selective k-joint tam-
pering attacks in the plain model (assuming one-to-one one-way functions). Here, p-time
non-malleability means that the number of tolerated tampering queries is a-priori bounded
(and the length of the shares depends on it). Moreover, when the initial secret sharing is
secure under adaptive k-joint leakage and tampering attacks (i.e., the attacker can change
the partition adaptively within each leakage/tampering query), the compiled scheme satis-
fies p-time non-malleability under semi-adaptive2 k-joint tampering attacks too. Combined
with [CGGL20, GK18a, GK18b, KMS19, KMZ20], the results of [BFO+20] ultimately yield rate-
zero schemes satisfying the latter notion either for arbitrary access structures with k = O(log n),
or for threshold access structures with k = O(t/ log t) (and k = t− 1 in case of selective parti-
tioning).

Finally, Goyal, Srinivasan and Zhu [GSZ20] obtain rate-zero one-time non-malleable thresh-
old secret sharing with statistical security against t-cover free tampering, which intuitively
requires that every share is tampered together with at most t − 2 other shares (this model
includes disjoint tampering as a special case).

1.2 Our Results

A major drawback of [BFO+20] is that it only satisfies computational p-time non-malleability.
This is far from optimal, as the notion could in principle be obtained information theoretically.
On the other hand, [BFV19] achieves continuous non-malleability under selective partitioning

2In this setting, once a subset of shares has been tampered with jointly, that subset is always either tampered
jointly or not modified by future tampering queries.
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of the shares at the price of assuming a trusted setup (and minimal, inherent, computational
assumptions).

Our main contribution is a construction of leakage-resilient continuously non-malleable t-
out-of-n secret sharing under selective k-joint leakage and tampering attacks in the plain model
(assuming one-to-one one-way functions), for any k < t and t ≥ 2n/3. Furthermore, our scheme
achieves the following features:

• The information rate asymptotically reaches 1, which we show to be optimal.

• Leakage resilience holds in the stronger (and more practical) model where the length of
the leakage (from each subset in the fixed partition of the shares) is arbitrary, so long as
it does not decrease the min-entropy of the shares by more than ` bits (where ` ≥ 0 is
called the noisy-leakage parameter).

An interesting corollary of our results is the first non-malleable t-out-of-n secret sharing under
independent tampering attacks in the plain model (assuming one-to-one one-way functions)
breaking the rate-one barrier (for t ≥ 2n/3). In particular, we obtain asymptotic rate t/2.

All previous non-malleable secret sharing schemes against joint tampering had rate zero,
and the only scheme with rate one was secure in the much weaker setting of independent
tampering [FV19]. In this vein, our result shows that the lower bounds on the rate of leakage-
resilient and non-malleable secret sharing [BFO+20, NS20] can be circumvented in the com-
putational setting. We stress that cryptographic assumptions are inherent for continuous non-
malleability [FV19, FMNV14, SV19].

1.3 Overview of Techniques

The construction of our secret sharing schemes consists of two main steps. First, we show how
to obtain leakage-resilient continuously non-malleable t-out-of-n secret sharing under selective
(t − 1)-joint leakage and tampering attacks in the plain model, with asymptotic rate zero.
Second, we show how to boost the asymptotic rate to one generically.

1.3.1 Rate-Zero Construction

In order to explain our techniques, it will be useful to recall the construction of leakage-resilient
continuously non-malleable t-out-of-n secret sharing under independent3 tampering attacks in
the plain model, by Brian, Faonio and Venturi [BFV19] (which in turn builds on the construction
by Ostrovsky et al. [OPVV18]). For simplicity, let us focus on the case t = n = 2 (i.e., so-called
leakage-resilient non-malleable split-state codes).

Here, one takes the message µ and commits to it via a non-interactive (perfectly binding)
commitment scheme using random coins ρ, yielding a commitment γ. Hence, the string µ||ρ is
secret shared using a leakage-resilient one-time non-malleable 2-out-of-2 secret sharing scheme.
This yields shares (σ1, σ2), so that the final shares become σ∗1 = (γ, σ1) and σ∗2 = (γ, σ2). In the
following, we will refer to σ∗1 as the left share and to σ∗2 as the right share. The reconstruction
algorithm proceeds naturally by first checking that the left and right commitment are the same
value γ, and thus reconstructing the string µ||ρ from the shares (σ1, σ2) and outputting µ if and
only if (µ, ρ) is a valid opening for the commitment.

The security analysis crucially relies on the assumption that the underlying one-time non-
malleable secret sharing scheme has statistical security. In particular, the main hurdle in the
proof is to reduce continuous non-malleability to one-time non-malleability. Brian et al. over-
come this obstacle using the following strategy. First, they move to a mental4 experiment in

3i.e., one-joint leakage and tampering attacks.
4In the hybrid experiment, one also needs to adjust the reconstruction algorithm so that an attacker cannot
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which (σ1, σ2) is a secret sharing of µ||ρ′, where ρ′ is random and independent of the random
coins ρ used to compute the commitment γ. Second, they reduce a distinguisher between the
real and mental experiment to an (inefficient) attacker against statistical leakage-resilient one-
time non-malleability. The key idea of this reduction is to simulate multiple tampering queries
by leaking the commitments γ̃1 and γ̃2 contained in the tampered shares σ̃1 and σ̃2. If γ̃1 6= γ̃2

the reduction outputs ⊥ and self-destructs, and otherwise it brute forces the commitment and
outputs the corresponding message.

In order for the reduction to go through, one needs to argue that it does not ask too
much leakage. Here is where noisy-leakage resilience kicks in. Brian et al. assume that the
underlying secret sharing satisfies an additional property known as conditional independence:
For any message, the right (resp. left) share drops the conditional average min-entropy of the
left (resp. right) share by some (possibly small) parameter d ∈ N. This property is satisfied
by existing leakage-resilient one-time non-malleable t-out-of-n secret sharing schemes in the
independent leakage and tampering model [BFV19, OPVV18]. Now, the point is that, so long
as the commitments γ̃1 and γ̃2 are equal, the leakage on the left (resp. right) share can be
thought of as a function of the right (resp. left share), and thus the overall leakage does not
drop the min-entropy by more than d+ |γ|+O(log λ) where the additional loss |γ| corresponds
to the tampering query in which γ̃1 6= γ̃2 (and the term O(log λ) corresponds to the index of
such query). Luckily, the latter happens only once because after that a self-destruct is triggered,
which ultimately allows the reduction to go through.

1st Barrier: leakage-resilient one-time non-malleability. The first (obvious) difficulty
in order to generalize the above construction to the joint-tampering setting is that we need
a leakage-resilient one-time non-malleable t-out-of-n secret sharing under joint leakage and
tampering attacks, which was not known. We overcome this difficulty by suitably modifying a
recent construction by Goyal, Srinivasan and Zhu [GSZ20], which we briefly recall below.

The sharing procedure first shares the message µ using a t-out-of-n secret sharing scheme
Π. Then, given the resulting shares (σ1, . . . , σn), it encodes each σi into a codeword (σL,i, σR,i)
using a t-time non-malleable split-state code Π′. Finally, it uses again the t-out-of-n secret

sharing scheme Π to obtain shares (σ
(1)
R,i , . . . , σ

(n)
R,i ) of the right part of the codeword σR,i for each

i ∈ [n]. This yields shares (σL,i)i∈[n] and (σ
(j)
R,i)i,j∈[n], which are distributed to the players by

letting σ∗i = (σL,i, (σ
(i)
R,j)j∈[n]) for all i ∈ [n].

Goyal et al. proved that the construction is a t-out-of-n one-time non-malleable secret
sharing scheme with statistical security under k-joint tampering5 attacks for any k < t. The
original analysis did not consider leakage resilience. However, it is not too hard to lift the proof
to the setting in which the attacker is also allowed to perform noisy-leakage attacks, so long as
the secret sharing scheme Π′ is noisy-leakage-resilient t-time non-malleable. For completeness,
we work out the details in §A of the appendix.

2nd Barrier: conditional independence. The second barrier is more subtle. One may
think that after obtaining leakage-resilient one-time non-malleable t-out-of-n secret sharing
under joint leakage and tampering attacks we would be done by using this scheme instead of
the t-out-of-n one-time non-malleable secret sharing under independent leakage and tampering
attacks in the construction by Brian, Faonio and Venturi [BFV19].

distinguish between the hybrid and the original experiment by mauling σ1, σ2 without changing the underlying
shared value. In the description, we omit these details to simplify the exposition.

5Actually, Goyal et al. prove security in the more general setting of t-cover-free tampering, in which, intuitively,
the subsets of the partition of the shares may overlap.
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Unfortunately, generalizing their analysis based on conditional independence to the case
of joint leakage and tampering attacks is not straightforward. Recall that the reduction can-
not perform too much noisy leakage. In our case, the reduction needs to leak the tampered
commitments (γ̃i)i∈[m], i.e. one commitment for each set of tampered shares.6

For concreteness, let us focus on the leakage performed on the shares within a fixed subset
Bi of the partition. While it is still true that, before self-destruct, the tampered commitment
γ̃i corresponding to a tampering query (T , (f1, . . . , fm)) can be thought of as a function of the
shares within T \Bi, the fact that the reconstruction set T can change across different tampering
queries would require the following flavor of conditional independence: For any message and
any unauthorized subset U , the shares within [n] \ U drop the conditional average min-entropy
of the shares within U by some (possibly small) parameter d ∈ N.

However, the leakage-resilient one-time non-malleable t-out-of-n secret sharing under joint
leakage and tampering attacks we described in the previous paragraph does not satisfy such
a strong flavor of conditional independence. This is because, e.g., in Shamir’s secret sharing
with t < n, the conditional average min-entropy of the first share conditioned on all other
shares is zero (as given any t shares we can interpolate the polynomial used to determine the
shares). In §4, we show how to circumvent this problem by leaving off one level of abstraction.
Namely, we analyze the compiler from [BFV19] when instantiated with (our leakage-resilient
variant of) the secret sharing scheme from [GSZ20]. Intuitively, this allows us to perform an
hybrid argument where at each step we reduce to leakage-resilient t-time non-malleability of
the underlying 2-out-of-2 secret sharing schemes, and thus to only assume the standard flavor
of conditional independence for such kind of secret sharing schemes, which is much easier to
achieve.

1.3.2 Capacity of Continuously Non-Malleable Secret Sharing

The above construction still has shares of length polynomial in the number of parties, the
leakage parameter, the security parameter, and the message size, thus yielding information rate
asymptotically reaching 0. Motivated by this limitation, we study the capacity (i.e., the best
achievable rate) of continuously non-malleable threshold secret sharing against joint tampering.
As our main negative result, in §5.1, we establish that whenever the attacker can tamper jointly
with k > t/2 shares, the capacity is at most t− k.

The latter can be seen as follows. Let Π be any continuously non-malleable threshold secret
sharing scheme against joint tampering with at most k shares. Consider the non-interactive
commitment scheme whose commit procedure does a secret sharing of the message µ obtaining
(σ1, . . . , σn) using a continuous non-malleable secret sharing scheme, and finally outputs γ =
(σ1, . . . , σt−k). If we can show that this commitment is perfectly binding then |µ| ≤ |γ| = (t−k)·s
(where s is the size of a single share), and thus the rate of Π must be at most t − k. Assume
the commitment scheme is not perfectly binding, namely, there exist two distinct messages µ(0)

and µ(1), along with openings ρ0 and ρ1, such that γ = (σ1, . . . , σt−k) is consistent with both
(µ(0), ρ0) and (µ(1), ρ1).

We show how to construct an efficient adversary breaking continuous non-malleability of
Π. Let σ∗ = (σ∗1, . . . , σ

∗
n) be the target secret sharing. The adversary computes offline σ(0) =

(σ
(0)
1 , . . . , σ

(0)
n ) and σ(1) = (σ

(1)
1 , . . . , σ

(1)
n ) by secret sharing µ(0) with coins ρ0 and µ(1) with

coins ρ1. Note that, by construction, the first t− k shares of σ(0) and σ(1) are identical. Hence,
the attacker tampers repeatedly with σ∗ as described below:

6Note that in case the tampered commitments within one of the subsets Bi are not equal, the reduction can
immediately self-destruct.
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• It fixes the partition B of [n] to be B = (B1,B2,B3), such that B1 = [t − k] and B2 =
[t] \ [t− k], and B3 is any k-sized partition of [n] \ [t]. The fact that k > t/2 ensures that
B is a k-sized partition of [n].

• It defines the tampering query f that replaces the first t− k shares of σ∗ with the corre-
sponding shares of σ(0) (which are the same of σ(1)), and the shares of σ∗ within B2 with
the corresponding shares of either σ(0) or σ(1) depending on whether the i-th bit of σ∗B2

is
either zero or one. The shares within B3 are unchanged.

• It submits f = (f1, f2, f3) to the tampering oracle along with the reconstruction set
T = [t]. Note that it is irrelevant how the shares within B3 were modified, as those are
not included in [t].

Using the above tampering query, the attacker learns the i-th bit of σ∗B2
. After all the shares

σ∗B2
are obtained, it is trivial to break non-malleability by hard-wiring those shares in the

tampering function that is allowed to modify the shares within B1 (as B1 ∪ B2 = [t], which
allows to reconstruct the target message).

1.3.3 Rate-One Construction (and More)

The above upper bound shows that the best possible rate of continuously non-malleable secret
sharing against (t− 1)-joint tampering attacks is 1. As our last contribution, in §5.2, we show
that such a rate is achievable under the same computational assumptions needed for our rate-
zero construction. We do so by revisiting a paradigm originally due to Krawczyk [Kra94] for
boosting the rate of classical threshold secret sharing.

Let Π be a threshold secret sharing scheme with rate zero. The main idea is to use Π to
share the private key κ of a symmetric encryption scheme, obtaining shares (κ1, . . . , κn); hence,
we encrypt the message µ and use an information dispersal in order to distribute the ciphertext
γ (along with the shares of the key) to the parties. Namely, by denoting with γi the i-th share
of the information dispersal, the final share of party i is going to be σi = (κi, γi). Krawczyk
proved that computational privacy of this construction follows easily from the privacy property
of the underlying secret sharing scheme, along with semantic security of encryption. Moreover,
let t∗ be the reconstruction threshold of the information dispersal, by setting t∗ = t, the rate
of the scheme asymptotically reaches t (thus share size is smaller than the message size) the
reason is that the size of the shares of the key do not depend on the size of the message. Such
a rate is known to be optimal.

Unfortunately, our capacity upper bound immediately implies that the above construction
cannot yield a continuously non-malleable secret sharing scheme against (t − 1)-joint leakage
and tampering attacks when t∗ = t. In fact the best possible rate is one, which corresponds to
setting the reconstruction threshold of the information dispersal to t∗ = 1, essentially meaning
that the same ciphertext must be repeated in every share, i.e. σi = (κi, γ). The main step of the
proof is to transition to a mental experiment in which the shares (σ1, . . . , σn) are computed by
sharing an unrelated key κ̂, and reduce a distinguisher between this experiment and the original
game to an adversary attacking leakage-resilient continuous non-malleability of the underlying
secret sharing scheme. In particular, the reduction needs to obtain the tampered ciphertexts
(γ̃i)i∈[m], i.e. one ciphertext for each set of tampered shares,7 so that it can either decrypt the
ciphertext γ̃ := γ̃1 = · · · = γ̃m with the tampered key κ̃ obtained from the challenger, or self-
destruct in case the ciphertexts within the reconstruction set T specified by the distinguisher
are not all equal.

One possibility would be to obtain each ciphertext γ̃i via leakage queries, and then to argue

7Note that in case the tampered ciphertexts within one of the subsets Bi are not equal, the reduction can
immediately self-destruct.
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that this does not reduce the conditional average min-entropy by too much since, before self-
destruct, the ciphertext γ̃i can be thought of as a function of the other shares. However, the
possibility to change the reconstruction set T adaptively within each tampering query, would
require us to assume the strong flavor of conditional independence discussed in §1.3.1 (which we
do not know how to achieve). Instead, we use a different technique, and obtain the tampered
ciphertexts via multiple tampering queries (and thus with no leakage). In particular, given a
tampering query from the adversary, our reduction sends |γ|+1 different tampering queries. The
first |γ| queries extract the tampered ciphertext γ̃ one bit at a time, while the last tampering
query extracts the secret key used to encrypt the message. To perform the first |γ| queries we

fix two valid secret sharing (σ
(0)
1 , . . . , σ

(0)
n ) and (σ

(1)
1 , . . . , σ

(1)
n ) for two distinct messages µ(0)

and µ(1). The i-th tampering query coordinates its outputs using the i-th bits of the tampered
ciphertexts. If the tampered ciphertexts are all the same then the shares produced by the i-th

tampering function are either (σ
(0)
1 , . . . , σ

(0)
n ) or (σ

(1)
1 , . . . , σ

(1)
n ) (depending on the i-th bit of γ̃).

On the other hand, if the tampered ciphertexts are not all the same, let j, j′ be the indexes
such that the ciphertexts γ̃j and γ̃j′ differ on the i-th bit, then the tampering function outputs

(σ
(0)
k )k∈Bj and (σ

(1)
k )k∈Bj′ which triggers a self-destruct.

Finally, we show how to bypass the limitations imposed by our capacity upper bound by ex-
tending the ideas behind our rate compiler in two directions:

• First, we analyze the rate compiler assuming the reconstruction threshold of the infor-
mation dispersal is any value t∗ ≤ t − 1 and the adversary is limited to what we call
t∗-intersecting tampering: Each tampering query (T , f) output by the attacker is such
that, for all subsets Bi of the partition B, either Bi ∩ T = ∅ or |Bi ∩ T | ≥ t∗. Note that
this yields asymptotic rate t∗ for the final secret sharing scheme (without contradicting
our capacity upper bound which does not consider t∗-intersecting tampering). An im-
portant consequence of this generalization is that it yields the first non-malleable secret
sharing scheme against independent tampering attacks with positive rate t/2. We achieve
this by setting t∗ = t/2, and by reducing an attacker for independent tampering to a
t∗-intersecting-tampering attacker that partitions the shares into two blocks of t/2 shares
each.

• Second, in §B of the appendix, we show that optimal asymptotic rate t can be obtained
both in the random oracle model (ROM) and in the algebraic group model (AGM). More
in detail, we consider the same rate compiler but where the sharing procedure additionally
appends to each of the shares a cryptographic hash h of the ciphertext γ. The reconstruc-
tion procedure checks that the hash values are consistent (i.e., they are all the same and
equal to the hash of γ). In the ROM, we model the hash function as a random oracle,
while in the AGM we instantiate it using the so-called Pedersen’s hash function. In the re-
ductions, we show that one can extract the tampered ciphertext γ̃ from the tampered hash
h̃ corresponding to each tampering query, without the need to rely on leakage resilience
of the underlying t-out-of-n continuously non-malleable secret sharing scheme.

These results do not contradict our capacity upper bound which is for the plain model
only. Informally, this is true because both in the ROM and in the AGM we can obtain
extractable commitment schemes that are succinct (i.e., where the size of a commitment
is shorter than the size of the message).

1.3.4 Concrete Instantiations

Finally, in §6, we show how to instantiate the building blocks required for all of our constructions.
We construct a leakage-resilient t-time non-malleable split-state code by generalizing the black-
box transformation of Ball et al. [BGW19] to the setting of noisy-leakage and multiple-tampering
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attacks. This construction satisfies the conditional independence property that is needed for
the analysis of our secret sharing scheme from §4.

Putting everything together, for any t ≥ 2 (resp. t ≥ 2n/3) we obtain the first statistically-
secure (resp. computationally-secure) t-out-of-n noisy-leakage-resilient one-time (resp. continu-
ously) non-malleable secret sharing under selective (t− 1)-joint leakage and tampering attacks
with asymptotic rate zero (resp. one), as also highlighted in Table 1.

1.4 Related Work

Non-malleable secret sharing with security against one-time joint-tampering attacks further
exists for certain restricted tampering classes including polynomials of bounded degree (see
Ball et al. [BCL+20]) and affine tampering (see Lin et al. [LCG+19]), and for ramp secret
sharing (see Chattopadhyay and Li [CL18]).

A series of papers focuses on constructing non-malleable secret sharing in the weaker setting
of independent tampering attacks [ADN+19, BS19, BFV19, FV19, GK18a, GK18b, SV19]. In
particular, Faonio and Venturi [FV19], as well as Brian et al. [BFV19], previously analyzed a
simplified version of the rate compiler of Krawczyk [Kra94] and the non-malleable code con-
struction by Ostrovsky et al. [OPVV18] (generalized to threshold secret sharing) in the setting
of both independent and joint leakage and tampering attacks. However, their analysis requires
a non-standard8 flavor of noisy-leakage resilience for the underlying rate-zero secret sharing
scheme which we show to be not necessary in this work.

2 Standard Definitions

For a string x ∈ {0, 1}∗, we denote its length by |x|; if x, y ∈ {0, 1}∗ are two strings, we denote
by x||y the concatenation of x and y. If X is a set, |X | represents the number of elements
in X . We denote by [n] the set {1, . . . , n}. For a set of indices I = (i1, . . . , it) and a vector
x = (x1, . . . , xn), we write xI to denote the vector (xi1 , . . . , xit). When x is chosen randomly in
X , we write x←$ X . When A is a randomized algorithm, we write y←$ A(x) to denote a run
of A on input x (and implicit random coins ρ) and output y; the value y is a random variable
and A(x; ρ) denotes a run of A on input x and randomness ρ. An algorithm A is probabilistic
polynomial-time (PPT for short) if A is randomized and for any input x, ρ ∈ {0, 1}∗, the
computation of A(x; ρ) terminates in a polynomial number of steps (in the size of the input).

Negligible functions. We denote with λ ∈ N the security parameter. A function p is polyno-
mial (in the security parameter) if p(λ) ∈ Θ(λc) for some constant c > 0 ; we sometimes write
poly(λ) for an unspecified polynomial. A function ν : N → [0, 1] is negligible (in the security
parameter) if it vanishes faster than the inverse of any polynomial in λ, i.e. ν(λ) ∈ O(1/p(λ))
for all positive polynomials p(λ); we sometimes write negl(λ) to denote an unspecified negligible
function. We assume that the security parameter is given as input (in unary) to all algorithms.

Random variables. For a random variable X, we write Pr[X = x] for the probability that
X takes on a particular value x ∈ X , with X being the set where X is defined. The statistical

8They require that the leakage on the i-th share does not drop the conditional average min-entropy of the share
i conditioned on all other shares j 6= i by too much. This additional requirement makes their rate compiler incom-
patible with the non-malleable secret sharing scheme by Brian, Faonio, Obremski, Simkin and Venturi [BFO+20]
which does not satisfy this property.
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distance between two random variables X and Y over the same set X is defined as

∆(X,Y) =
1

2

∑
x∈X
|Pr[X = x]− Pr[Y = x]| .

Given two ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we write X ≡ Y to denote that they

are identically distributed, X
s
≈ Y to denote that they are statistically close, i.e. ∆(Xλ,Yλ) ≤

negl(λ), and X
c
≈ Y to denote that they are computationally indistinguishable, i.e. for every

PPT distinguisher D:

|Pr[D(Xλ) = 1]− Pr[D(Yλ) = 1]| ≤ negl(λ).

We extend the notion of computational indistinguishability to the case of interactive experi-
ments (a.k.a. games) featuring an adversary A. In particular, let GA(λ) be the random vari-
able corresponding to the output of A at the end of the experiment, where wlog. we may
assume that A outputs a decision bit. Given two experiments GA(λ, 0) and GA(λ, 1), we write

{GA(λ, 0)}λ∈N
c
≈ {GA(λ, 1)}λ∈N as a shorthand for

|Pr[GA(λ, 0) = 1]− Pr[GA(λ, 1) = 1]| ≤ negl(λ).

The above naturally generalizes to statistical distance, which we denote by ∆(GA(λ, 0),GA(λ, 1)),
in case of unbounded adversaries.

Average min-entropy. The min-entropy of a random variable X with domain X is H∞ (X) :=
− log maxx∈X Pr [X = x], and intuitively it measures the best chance to predict X (by a compu-
tationally unbounded algorithm). For conditional distributions, unpredictability is measured by
the conditional average min-entropy H̃∞ (X | Y) := − logEy

[
2−H∞(X | Y=y)

]
[DORS03]. The

lemma below is sometimes known as the “chain rule” for conditional average min-entropy.

Lemma 1 ([DORS03], Lemma 2.2). Let X,Y,Z be random variables. If Y has at most 2`

possible values, then H̃∞ (X | Y,Z) ≥ H̃∞ (X,Y | Z) − ` ≥ H̃∞ (X | Z) − `. In particular,
H̃∞ (X | Y) ≥ H̃∞ (X,Y)− ` ≥ H̃∞ (X)− `.

2.1 Non-Interactive Commitment Schemes

A non-interactive commitment scheme Com is a randomized algorithm taking as input a message
µ ∈M and random coins ρ ∈ R and outputting a value γ = Com(µ; ρ) called commitment. The
pair (µ, ρ) is called opening.

Intuitively, a secure commitment scheme satisfies two properties called binding and hiding.
The first property says that it is hard to open a commitment in two different ways. The second
property says that a commitment hides the underlying message. The formal definitions follows.

Definition 1 (Binding). We say that a non-interactive commitment scheme Com is computa-
tionally binding if for all PPT adversaries A the following is negligible:

Pr
[
µ′ 6= µ ∧ Com(µ′; ρ′) = Com(µ; ρ)

∣∣∣ (µ, ρ, µ′, ρ′)←$ A(1λ)
]
.

If the above holds even in the case of unbounded adversaries, we say that Com is statistically
binding. Finally, if the above probability is exactly 0 for all adversaries (i.e. each commitment
can be opened to at most a single message), we say that Com is perfectly binding.
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Game SKEind-cca
Σ,A (λ, b):

κ←$K
(µ0, µ1, α)←$ A

Oenc(κ,·),Odec(κ,·)
1 (1λ)

γ̂←$ Enc(κ, µb)

Return A
Oenc(κ,·),Odec(κ,·)
2 (α, γ̂)

Oracle Oenc(κ, µ):

Return Enc(κ, µ)

Oracle Odec(κ, γ):

If γ = γ̂
Return ⊥

Else
Return Dec(κ, γ)

Figure 1: Experiment defining security of SKE.

Definition 2 (Hiding). We say that a non-interactive commitment scheme Com is computa-
tionally hiding if for all messages µ0, µ1 ∈M it holds that{

Com(1λ, µ0)
}
λ∈N

c
≈
{
Com(1λ, µ1)

}
λ∈N

.

In case the above ensembles are statistically close (resp. identically distributed), we say that
Com is statistically (resp. perfectly) hiding.

2.2 Symmetric Encryption

A secret-key encryption (SKE) scheme is a tuple Σ = (Enc,Dec) of polynomial-time algorithms
specified as follows.

• Enc is a randomized algorithm that takes as input a key κ ∈ K and a message µ ∈ M
and outputs a ciphertext γ ∈ C, whereM and C are the message space and the ciphertext
space respectively.

• Dec is a deterministic algorithm that takes as input the key κ ∈ K and a ciphertext γ ∈ C
and outputs a message µ ∈M∪ {⊥}, where ⊥ denotes an invalid ciphertext.

We say that Σ satisfies correctness if, for all κ ∈ K and all messages µ ∈ M, we have
that Dec(κ,Enc(κ, µ)) = µ with probability 1 over the randomness of Enc. As for security, we
will need SKE schemes satisfying the standard notion of indistinguishability against chosen-
ciphertext attacks (IND-CCA). Informally, this property states that it is hard to distinguish
the encryption of any two messages even if the adversary has encryption/decryption capabilities
under the target key. Formally, we have the following definition.

Definition 3 (Security of SKE). We say that Σ = (Enc,Dec) is an IND-CCA secure SKE
scheme if the following holds for the experiment in Fig. 1: For all PPT adversaries A,{

SKEind-cca
Σ,A (λ, 0)

}
λ∈N

c
≈
{

SKEind-cca
Σ,A (λ, 1)

}
λ∈N

.

2.3 Information Dispersal

Information dispersals are similar to secret sharing schemes but they do not guarantee privacy.
Formally, let n, t ∈ N, with t ≤ n. A t-out-of-n information dispersal is a pair of (deterministic)
polynomial-time algorithms (IDisp, IRec) defined as follows:

• IDisp takes as input a message µ ∈ M and outputs n shares µ1, . . . , µn, where each
µi ∈Mi.

• IRec takes as input a certain subset of shares and outputs a value in M∪ {⊥}.
We require the following correctness property: For all µ ∈ M and all I with |I| ≥ t, it holds
that IRec((IDisp(µ))I) = µ.
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3 Secret Sharing Schemes

A n-party secret sharing scheme Π, with message space M and share space S = S1 × . . .× Sn,
consists of polynomial-time algorithms (Share,Rec) specified as follows:

• Share is a randomized algorithm that takes as input a message µ ∈ M and outputs n
shares σ1, . . . , σn, with σi ∈ Si.

• Rec is a deterministic algorithm that takes as input a certain subset of shares and outputs
a value in M∪ {⊥}.

The subset of parties allowed to reconstruct the secret by pulling their shares together form
the so-called access structure. We consider the t-out-of-n access structure where any subset
of shares of cardinality bigger or equal to t can reconstruct (we call such subsets authorized),
while any subset of shares of cardinality less than t cannot (we call such subsets unauthorized).
Subsets of cardinality exactly t are called minimal authorized sets.

Definition 4 (Threshold secret sharing scheme). Let n, t ∈ N and t ≤ n, we say that Π =
(Share,Rec) is a t-out-of-n secret sharing scheme if the following two properties are satisfied.

• Correctness: for all λ ∈ N, all µ ∈M and all I with |I| ≥ t, we have that Rec((Share(1λ,
µ))I) = µ with overwhelming probability over the randomness of the sharing algorithm.

• Perfect Privacy: for all pairs of messages µ0, µ1 ∈ M and for any U with |U| < t, we
have that

{(Share(1λ, µ0))U}λ∈N ≡ {(Share(1λ, µ1))U}λ∈N,

If the above ensembles are statistically (resp. computationally) close, we speak of statis-
tical (resp. computational) privacy.

Finally, when considering the length of the shares, we define the information rate of a secret
sharing scheme as the ratio between the length of the secret message and the maximal length
of a share.

Definition 5 (Asymptotic rate). Let Π be an n-party secret sharing scheme with message
space M = {0, 1}∗ and share space S1 × . . .× Sn. Let s(|µ|, λ) = maxi∈[n] log |Si(|µ|, λ)| where
S1(|µ|, λ)× . . .×Sn(|µ|, λ) is the share space for messages µ of length |µ| and security parameter
λ. The asymptotic information rate of Π is defined to be

% = inf
λ∈N

lim
|µ|→∞

|µ|
s(|µ|, λ)

.

3.1 Tampering and Leakage Model

In our model the attacker partitions all of the shares into m (non-overlapping) blocks with
size at most k, covering the entire set [n]. This is formalized through the notion of a k-sized
partition.

Definition 6 (k-sized partition). Let k,m ∈ N. We call B = (B1, . . . ,Bm) a k-sized partition
of [n] if:

(i)
⋃
i∈[m] Bi = [n];

(ii) ∀i1, i2 ∈ [m] such that i1 6= i2, Bi1 ∩ Bi2 = ∅;

(iii) ∀i ∈ [m], |Bi| ≤ k.

Fix µ ∈M and let B be a k-sized partition of [n]. To define our security model, we consider
an adversary A interacting with a target secret sharing σ = (σ1, . . . , σn) of µ as follows:
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LR-CNMSSµ0,µ1

Π,A,B(λ, b):

σ←$ Share(µb)
stop← false

Return AOleak(σ,·),O
µ0,µ1
tamp (σ,·,·)

Oracle Oleak(σ, (g1, . . . , gm)):

If stop = true

Return ⊥
Else
∀i ∈ [m], Λi = gi(σBi)
Return Λ = Λ1|| . . . ||Λm

Oracle Otamp(σ, T , (f1, . . . , fm)):

If stop = true

Return ⊥
Else
∀i ∈ [m], σ̃Bi = fi(σBi)
µ̃ = Rec(σ̃T )
If µ̃ ∈ {µ0, µ1}

Return �
If µ̃ = ⊥

Return ⊥, and stop← true

Else
Return µ̃

Figure 2: Experiment defining leakage-resilient continuously non-malleable secret sharing
against joint tampering. The tampering and leakage oracles are implicitly parameterized by
set B, messages µ0, µ1 and flag stop.

• Leakage queries. For each i ∈ [m], the attacker can leak jointly from the shares σBi .
This can be done repeatedly and in an adaptive fashion, so long as the leakage does not
decrease the min-entropy of the shares by too much. Formally, for any µ ∈ M, for each
i ∈ [m] and for ` ≥ 0, we require that

H̃∞((Σj)j∈Bi |Λi) ≥ H̃∞((Σj)j∈Bi)− `, (1)

where (Σ1, . . . ,Σn) is the r.v. corresponding to Share(µ), and Λi is the r.v. corresponding
to the total leakage performed within Bi (over all queries). An adversary obeying this
restriction is called `-leakage admissible.

• Tampering queries. For each i ∈ [m], the attacker can tamper jointly with the shares
σBi . Each such query yields tampered shares σ̃1, . . . , σ̃n, for which the adversary is allowed
to choose a different reconstruction set T ⊆ [n], with |T | ≥ t, and see the corresponding
reconstructed message. This can be done repeatedly and in an adaptive fashion, the
only restriction being that after the first tampering query yielding an invalid message,
the answer to all future tampering (and leakage) queries is automatically set to ⊥ (the
so-called self-destruct feature). This restriction is well-known to be necessary when an
arbitrary polynomial number of tampering queries is allowed [FV19, SV19].

Now we are ready to give the formal notion of security. Intuitively, leakage-resilient contin-
uous non-malleability states that, given two9 messages µ0, µ1 ∈M, no admissible adversary, as
defined above, can distinguish whether it is interacting with a secret sharing of µ0 or of µ1.

Definition 7 (Leakage-resilient continuous non-malleability [BFV19]). Let n, t, k ∈ N and ` ≥ 0
be parameters. A t-out-of-n secret sharing scheme Π is `-noisy-leakage-resilient continuously
non-malleable under selective k-joint leakage and tampering attacks ((k, `)-LR-CNMSS, for
short), if for all messages µ0, µ1 ∈ M, all k-sized partitions of [n], and all PPT `-leakage
admissible attackers A, the following holds for the experiment of Fig. 2:{

LR-CNMSSµ0,µ1

Π,A,B(λ, 0)
}
λ∈N

c
≈
{

LR-CNMSSµ0,µ1

Π,A,B(λ, 1)
}
λ∈N

. (2)

9Goyal and Kumar [GK18a] originally gave a simulation-based definition of non-malleability (for the case of
one-time tampering). It is folklore that this flavor of non-malleability can be shown to be equivalent to the
indistinguishability-based notion we define (even in the setting of continuous tampering), so long as the message
length is super-logarithmic in the security parameter.
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When no leakage is allowed (i.e. ` = 0), we simply say that Π is a k-CNMSS.

3.2 Related Notions

By adapting the above definition, we obtain several notions as special cases, as detailed below.

Leakage-resilient one-time non-malleability. Let LR-NMSSµ0,µ1

Π,A,B(λ, b) be the experi-

ment that is defined identically to LR-CNMSSµ0,µ1

Π,A,B(λ, b), except that the attacker is allowed
a single tampering query and all the leakage happens before such query. In this case, Definition 7
can be achieved information theoretically (i.e., for all unbounded adversaries). In particular,
Eq. (2) now becomes

∆
(
LR-NMSSµ0,µ1

Π,A,B(λ, 0); LR-NMSSµ0,µ1

Π,A,B(λ, 1)
)
≤ ε (3)

for some ε ∈ [0, 1), and we speak of `-noisy-leakage-resilient one-time statistically ε-non-malleable
secret sharing under selective k-joint leakage and tampering attacks ((k, `, ε)-LR-NMSS, for
short).

Asymmetric p-time non-malleable codes. When the number of parties is n = 2, i.e.
in case Π is a 2-out-of-2 secret sharing, we obtain the notion of leakage-resilient split-state
continuously non-malleable codes [FMNV14, OPVV18] as a special case. Here, it will be useful
to consider asymmetric shares and possibly to tolerate different amounts of leakage from each
side; towards this, when we explicitly need the size of the shares, we speak of (sL, sR)-asymmetric
codes, where sL = log |SL| is the size of the left share and sR = log |SR| is the size of the
right share. Moreover, it will suffice for us to consider an attack scenario where the adversary
performs all the leakage before tampering, and can only send p tampering queries (where p is
fixed a priori). Notice that, when the number of tampering queries is bounded, then we can
obtain security even without assuming self-destruct (i.e., the self-destruct flag stop is never set
to true in the experiment of Fig. 2).

An adversary A is called (`L, `R)-leakage and p-time tampering admissible, so long as it
makes at most p tampering queries and performs all leakage queries before the first tampering
query, with the restriction that:

H̃∞(ΣL |ΛL) ≥ H̃∞(ΣL)− `L,

H̃∞(ΣR |ΛR) ≥ H̃∞(ΣR)− `R,

where Σ = (ΣL,ΣR) is the r.v. corresponding ot the target secret sharing, and ΛL,ΛR are
the r.v. corresponding to the total leakage performed on ΣL,ΣR (over all queries). In this
case, we say that Π is an asymmetric (`L, `R)-leakage-resilient p-time ε-non-malleable split-state
code (asymmetric (`L, `R, p, ε)-LR-NMC, for short). We denote the corresponding experiment
as LR-NMCµ0,µ1

Π,A (λ, b).
When no leakage is allowed (i.e., `L, `R = 0), we simply speak of asymmetric p-time ε-non-

malleable split-state codes (asymmetric (p, ε)-NMC for short); similarly, when no tampering is
allowed (i.e. p = 0), we speak of asymmetric (`L, `R, ε)-leakage-resilient split-state code (asym-
metric (`L, `R)-LRC for short). Finally, in the latter case, we also need the existence of an
efficiently computable algorithm Share such that, for all σR ∈ SR and µ ∈ M, it holds that
Rec(Share(µ, σR), σR) = µ and moreover the distributions of the left shares sampled from Share
is equivalent to the distribution of the left shares of Share conditioned on the right share being
σR and the message being µ. In other words, given as input the message µ and a right share
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σR, the algorithm Share produces a left share σL such that (σL, σR) is a valid and properly
distributed encoding of µ. We refer the reader to §6 for concrete examples of leakage-resilient
split-state codes meeting the above property.

4 Rate-Zero Continuously Non-Malleable Secret Sharing

In this section, we give a construction of a leakage-resilient continuously non-malleable secret
sharing scheme against selective joint tampering. We refer the reader to §1.3 for an overview of
our scheme (and its security) and here directly provide a formal treatment.

Let Π = (Share,Rec) be the t-out-of-n Shamir’s secret sharing scheme. For simplicity we
assume that Π can support messages of variable length, namely the sharing procedure chooses a
field that is large enough to encode the input message µ for n parties (for simplicity, we assume
that |µ| ≥ log n), and we denote such field as F(|µ|), or simply F when the message is clear
from the context. A share σi of Π is a tuple (i, x) where i ∈ [n] and x ∈ F is a field element; in
particular, if p is the polynomial chosen by the Share algorithm, for all i ∈ [n], σi = (i, p(i)). Let
Si(|µ|) := {(i, x) : x ∈ F(|µ|)}, clearly a secret sharing of µ has support S1(|µ|)× · · · × Sn(|µ|).
Consider the function idx that, upon input a tuple σ = (i∗, x), outputs the first component
idx(σ) = i∗; in particular, for a share σi generated by the sharing function Share, it holds that
idx(σi) = i. Finally, let Π′ = (Share′,Rec′) be a split-state code with codeword space SL × SR
and Com be a non-interactive commitment scheme. Consider the following derived scheme
Π∗ = (Share∗,Rec∗).

• Algorithm Share∗: upon input µ, first sample randomness ρ←$R and compute γ ←
Com(µ; ρ) and (σ1, . . . , σn)←$ Share(µ||ρ). Then, for each i ∈ [n], compute (σL,i, σR,i)←$

Share′(σi) and (σ
(1)
R,i , . . . , σ

(n)
R,i )←$ Share(σR,i). Finally, set σ∗i = (γ, σL,i, (σ

(i)
R,j)j∈[n]) for all

i ∈ [n] and output (σ∗1, . . . , σ
∗
n).

• Algorithm Rec∗: upon input shares (σ∗i )i∈I , parse σi = (γi, σL,i, (σ
(i)
R,j)j∈[n]) for all i ∈ I.

Check that all the commitments (γi)i∈I are the same; if not output ⊥, and else let γ

be the commitment contained in each share. Compute σR,i = Rec((σ
(j)
R,i)j∈I) and σi =

Rec′(σL,i, σR,i); check that there exist no distinct i1, i2 ∈ I such that idx(σi1) = idx(σi2)
(and output ⊥ otherwise). Finally, reconstruct µ||ρ = Rec((σi)i∈I) and output µ if γ =
Com(µ; ρ) and ⊥ otherwise.

We are now ready to state the following theorem.

Theorem 1. Let n, t ∈ N, with t > 2n/3, and `L, `R ≥ 0. Assume that Com is a perfectly binding
and computationally hiding commitment and Π′ is an asymmetric (`L, `R, negl(λ), t)-LR-NMC
satisfying the following properties:

(i) There exists σ∗L ∈ SL such that, for any µ, there exists σR ∈ SR such that Rec′(σ∗L, σR) = µ.

(ii) There exists d ≥ 0 such that, for any µ, it holds that H̃∞(ΣL |ΣR) ≥ H∞(ΣL) − d and
H̃∞(ΣR |ΣL) ≥ H∞(ΣR)− d, where (ΣL,ΣR) is the r.v. corresponding to Share′(µ).

Then, the above secret sharing scheme Π∗ is a t-out-of-n (t− 1, `∗)-LR-CNMSS so long as:

`R ≥ (t− 1) · `∗ + |µ|+ |γ|+ d+ 1 + log(λ)

`L ≥ `∗ + n · (t− 1) · sR + |γ|+ d+ 1 + log(λ),

where |µ| ∈ N is the length of the message, |γ| is the length of a commitment and sR = log |SR|
is the size of a right share under Π′.

The privacy property of Π∗ follows readily by privacy of Π and the computational hiding
property of Com. In what follows, we focus on the proof of leakage-resilient continuous non-
malleability. Wlog., we are going to assume that each reconstruction set T queried by the
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LR-CNMSSµ0,µ1

Π∗,A,B(λ, b) Hybµ0,µ1
r (λ, b) :

ρ←$R
γ := Com(µb; ρ)
(σ1, . . . , σn)←$ Share(µb||ρ)

(σ′1, . . . , σ
′
n)←$ ×i∈[n] Si(|µb|+ |ρ|)

∀i > r, σ′i := σi

∀i ∈ [n] :
(σL,i, σR,i)←$ Share′(σi)

(σL,i, σR,i)←$ Share′(σ′i)

(σ
(1)
R,i , . . . , σ

(n)
R,i )←$ Share(σR,i)

σ∗i := (γ, σL,i, (σ
(i)
R,j)j∈[n])

σ∗ := (σ∗1, . . . , σ
∗
n)

stop← false

Return AOtamp(σ∗,·),Oleak(σ
∗,·)(1λ)

Algorithm Split((σ∗i )i∈T ):

σR,i = Rec((σ
(j)
R,i)j∈T )

σi = Rec′(σL,i, σR,i)
Output (σi)i∈T

Oracle Otamp(σ∗, T , (f1, . . . , fm)):

If stop = true, return ⊥
∀i ∈ [m] : σ̃∗Bi := fi(σ

∗
Bi)

σ̃∗ = (σ∗1, . . . , σ
∗
n)

∀i ∈ T , σ̃∗i = (γ̃i, σ̃L,i, (σ̃
(i)
R,j)j∈[n])

If ∃i1, i2 ∈ T : γ̃i1 6= γ̃i2
stop← true and return ⊥

Else, let γ̃ := γ̃i
(σ̃i)i∈T = Split((σ̃∗i )i∈T )
If ∃i1, i2 ∈ T : idx(σ̃i1) = idx(σ̃i2)

stop← true and return ⊥
∀i1, i2 ∈ T : σ̃i1 = σ′i2

Let σ̃i1 := σi2
µ̃||ρ̃ = Rec((σ̃i)i∈T )
If γ̃ 6= Com(µ̃; ρ̃),

stop← true and return ⊥
If µ̃ ∈ {µ0, µ1}, return �
Return µ̃

Oracle Oleak(σ
∗, (g1, . . . , gm)):

If stop = true, return ⊥
Else, return g1(σ∗B1

), . . . , gm(σ∗Bm)

Figure 3: Experiments in the proof of Theorem 1. The instructions boxed in red are the
modifications introduced by the hybrid experiment. For compactness, we denote by Split the

algorithm that reconstructs the shares σi from the shares (σL,i, (σ
(i)
R,j)j∈[n]).

adversary is minimal.10 Furthermore, we will make the simplifying assumption that the partition
B fixed by the attacker only contains two subsets, i.e. B1 and B2. Note that this restriction is
wlog. whenever t > 2n/3: in fact, for any partition B = (B1, . . . ,Bm), it is always possible to
find a set of indices I ⊆ [m] such that t/2 ≤ |

⋃
i∈I Bi| < t and then consider the two subsets to

be B̂1 =
⋃
i∈I Bi (which contains less than t elements by construction) and B̂2 =

⋃
i/∈I Bi (which

contains n− |
⋃
i∈I Bi| < 3t/2− t/2 = t elements).

Remark 1. Note that if we restrict the adversary to only choose partitions of two subsets, i.e.
B1,B2 ⊆ [n] s.t. B1∩B2 = ∅ and B1∪B2 = [n], then it only suffices to require t ≥ n/2 + 1. This
is because we can put B̂1 := B1 and B̂2 := B2, while the restriction on t comes from the fact that
both B1 and B2 must be unauthorized, i.e. |B1|, |B2| ≤ t−1, and therefore n = |B1|+|B2| ≤ 2t−2,
that is, t ≥ n/2 + 1.

For r ∈ [n], consider the auxiliary hybrid experiments Hybr(λ, b) described in Fig. 3
along with the original experiment in order to highlight the main differences. In particular,
in Hybr(λ, b), we replace the first r shares (σ1, . . . , σr) from the first application of Π with
random and independent values (σ′1, . . . , σ

′
r), letting the remaining shares σ′r+1, . . . , σ

′
n the same

10It is always possible to modify the reconstruction algorithm Rec so that, upon input more than t shares,
say σi1 , . . . , σit , . . ., with i1 < i2 < . . . < it < . . ., it only considers the first t shares σi1 , . . . , σit in order to
reconstruct the message.
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as the original experiment. Note that, when r = 0, we do not replace any share, hence, for
all b ∈ {0, 1}, Hyb0(λ, b) ≡ LR-CNMSSµ0,µ1

Π∗,A,B(λ, b). For all r ∈ [n], we will prove by induc-
tion over the number of tampering queries that the experiments Hybr−1(λ, b) and Hybr(λ, b)
are statistically close. Towards this, for all r ∈ [n] ∪ {0}, let us denote by Hybr(λ, b, p) the
experiment Hybr(λ, b) where the adversary A is limited to ask exactly p tampering queries.

4.1 Induction Basis

The lemma below constitutes the basis of the induction.

Lemma 2. For all b ∈ {0, 1}, and all r ∈ [n], it holds that{
Hybr−1(λ, b, 1)

}
λ∈N

s
≈ {Hybr(λ, b, 1)}λ∈N .

Proof. The difference between the two hybrids is that in Hybr(λ, b, 1) the share σ′r is uniformly
random, whereas in Hybr−1(λ, b, 1) the share σ′r is set to be σr (as defined in the original
experiment). For any j ∈ [n], let ξ(j) ∈ {1, 2} be the index such that j ∈ Bξ(j). The proof
proceeds by reduction to leakage-resilient t-time non-malleability of Π′. In more detail, for a
fixed choice of b ∈ {0, 1} and r ∈ [n], let A be an adversary telling apart the two hybrids
with probability at least 1/poly(λ). Consider the following (possibly inefficient) adversary A′

attacking Π′.

1. Setup. Set the challenge messages to be σr and σ′r sampled as in Hybr(λ, b, 1), and let
γ be the commitment corresponding to the message µb.

2. Shared randomness. For every i ∈ [n] \ {r}, sample σL,i, (σ
(j)
R,i)j∈[n] according to

Hybr(λ, b). Then, let iL = ξ(r) and iR = 3 − iL ∈ {1, 2}. Let J be any set such

that BiL ⊆ J ⊆ [n] and |J | = t − 1. For all j ∈ J , sample the shares σ
(j)
R,r uniformly at

random. Finally, sample the left share σ∗L given by property (i) of Π′.

After this step, the reduction A′ knows σ∗L and the following values:

∀i ∈ [n] \ J : γ, σL,i, (σ
(i)
R,j)j∈[n]\{r} (4)

∀i ∈ J \ {r} : γ, σL,i, (σ
(i)
R,j)j∈[n] (5)

For i = r : γ, (σ
(i)
R,j)j∈[n] (6)

3. Leakage queries. Upon receiving a leakage query g = (g1, g2) from A, construct the
following leakage functions.

(a) Let gL be the leakage function which takes as input the value σL,r, plugs it in Eq. (6)
and appends the values of Eq. (5) to obtain (σ∗i )i∈BiL (recall that BiL ⊆ J ), and
finally outputs ΛiL = giL((σ

∗
i )i∈BiL ).

(b) Let gR be the leakage function which takes as input the value σR,r, computes the

values (σ
(i)
R,r)i∈[n]\J using σR,r and the values (σ

(i)
R,r)i∈J and plugs them in Eq. (4) in

order to obtain (σ∗i )i∈[n]\J ; then, appends the values of Eq. (5) to obtain (σ∗i )i∈BiR ,
and finally outputs ΛiR = giR((σ∗i )i∈BiR ).

Send (gL, gR) to the leakage oracle and forward the answer Λ1||Λ2 to A.

4. Tampering query. Upon receiving the tampering query (T , f = (f1, f2)) from A, con-
struct the following leakage and tampering functions.

(a) Let ĝL be the leakage function which takes as input the value σL,r, plugs it in Eq. (6)
and appends the values of Eq. (5) to obtain (σ∗i )i∈BiL , computes the tampered shares
(σ̃∗i )i∈BiL = fiL((σ

∗
i )i∈BiL ), checks if all the tampered commitments within T ∩ BiL

agree on a single value γ̃L (and outputs ⊥ if not), and finally outputs the values

γ̃L, (σ̃
(i)
R,j)i∈BiL ,j∈T .
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(b) Let ĝR be the leakage function which takes as input the value σR,r, computes the

values (σ
(i)
R,r)i∈[n]\J using σR,r and the values (σ

(i)
R,r)i∈J and plugs them in Eq. (4) in

order to obtain (σ∗i )i∈[n]\J ; then, appends the values of Eq. (5) to obtain (σ∗i )i∈BiR ,
applies fiR to (σ∗i )i∈BiR , thus obtaining (σ̃∗i )i∈BiR , checks if all the tampered commit-
ments within T ∩ BiR agree on a single value γ̃R (and outputs ⊥ if not), and finally
outputs γ̃R.

(c) For all i ∈ T , let fL,i be the function which takes as input the value σL,r, obtains
(σ∗j )j∈BiL by appending the values of Eq. (5) and plugging σL,r into Eq. (6), and then
computes the tampered shares (σ̃∗j )j∈BiL = fiL((σ

∗
j )j∈BiL ) and outputs σ̃L,i if i ∈ BiL

and the special share σ∗L otherwise.

(d) For all i ∈ T , let fR,i be the function which takes as input the value σR,r, computes

the values (σ
(i)
R,r)i∈[n]\J using σR,r and the values (σ

(i)
R,r)i∈J and plugs them in Eq. (4)

in order to obtain (σ∗i )i∈[n]\J ; then, appends the values of Eq. (5) to obtain (σ∗i )i∈BiR ,
applies fiR to (σ∗i )i∈BiR , thus obtaining (σ̃∗i )i∈BiR , uses these values along with the

values (σ̃
(i)
R,j)i∈BiL ,j∈T obtained by ĝL in order to reconstruct σ̃R,i for all i ∈ T , and

finally outputs σ̃R,i if i ∈ BiL and a share σ∗R,i such that Rec′(σ∗L, σ
∗
R,i) = Rec′(σ̃L,i, σ̃R,i)

otherwise.

Send the leakage query (ĝL, ĝR), thus obtaining ((γ̃L, (σ̃
(i)
R,j)i∈Bi∗ ,j∈[n]), γ̃R), return ⊥ to A

if γ̃L 6= γ̃R and, otherwise, call γ̃ the tampered commitment obtained from such a query.
Next, for all i ∈ T , send the tampering query (fL,i, fR,i), thus obtaining the tampered
share σ̃i (or ⊥, in which case return ⊥ to A), and replace σ̃i with σr if σ̃i = � or replace
σ̃i with σj if there exists j ∈ [n] such that σ̃i = σ′j . Finally, check that there exist
no distinct i1, i2 ∈ T s.t. idx(σi1) = idx(σi2) (and output ⊥ otherwise), reconstruct
µ̃||ρ̃ = Rec((σ̃i)i∈T ), check that γ̃ = Com(µ̃; ρ̃) (and return ⊥ otherwise), replace µ̃ with �
if µ̃ ∈ {µ0, µ1} and return µ̃ to A.

5. Guess. Return the same distinguishing bit as that of A.

For the analysis, call Badi the event that one tampering query modifies the shares so that
the tampered value (σ̃L,i, σ̃R,i) is a valid encoding of σ′r (i.e., the adversary purposely replaces
(σL,i, σR,i) with a valid encoding of σ′r). Clearly, the probability of the event Badi in the hy-
brid experiment Hybr−1 is O(2−λ) as provoking the event corresponds to guessing the value σ′r
which is uniformly random over Sr(|µb| + |ρ|). Furthermore, the reduction perfectly simulates
Hybr−1(λ, b, 1) if the target codeword encodes σr and conditioning on Bad =

⋃
i Badi not

happening. On the other hand, if the target codeword encodes σ′r, the reduction perfectly sim-
ulates Hybr(λ, b, 1). In particular, the latter holds because: (i) By perfect privacy of Shamir’s
secret sharing the distribution of the shares (σ∗i )i∈BiL and (σ∗i )i∈BiR computed inside the leakage
and tampering oracles is identical to that of the target secret sharing of either Hybr−1(λ, b, 1)
or Hybr(λ, b, 1); (ii) The auxiliary information leaked by the functions (ĝL, ĝR), along with
the answer to the tampering queries (fL,i, fR,i)i∈[t], yield a perfect simulation of A’s tampering
query.

Hence, to conclude the proof, it only remains to show that the constraints on the leakage
hold. The amount of leakage performed by the reduction is exactly the one performed by A,
plus the leakage used to obtain the tampered commitments γ̃L, γ̃R and the tampered shares

(σ̃
(i)
R,j)i∈Bi∗ ,j∈[n], therefore we need:

`L ≥ `∗ + t · (t− 1) · sR + |γ| and `R ≥ `∗ + |γ|.

The lemma follows.
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4.2 Inductive Step

The lemma below constitutes the inductive step.

Lemma 3. Fix any p ∈ poly(λ) and assume that for all b ∈ {0, 1}, and all r ∈ [n], it holds:{
Hybr−1(λ, b, p)

}
λ∈N

s
≈ {Hybr(λ, b, p)}λ∈N .

Then, {
Hybr−1(λ, b, p+ 1)

}
λ∈N

s
≈ {Hybr(λ, b, p+ 1)}λ∈N .

Proof. Again, the difference between the two hybrids is that in Hybr(λ, b, 1) the share σ′r is
uniformly random, whereas in Hybr−1(λ, b, 1) the share σ′r is set to be σr. For any j ∈ [n],
let ξ(j) ∈ {1, 2} be the index such that j ∈ Bξ(j). The proof proceeds by reduction to leakage-
resilient t-time non-malleability of Π′. In more detail, for a fixed choice of b ∈ {0, 1} and r ∈ [n],
let A be a (possibly inefficient) adversary telling apart the two hybrids with probability at least
1/poly(λ). Consider the following (possibly inefficient) adversary A′ attacking Π′:

1. Setup. As in the proof of Lemma 2.

2. Shared randomness. As in the proof of Lemma 2. Recall that, after this step, the
reduction A′ knows σ∗L and the following values:

∀i ∈ [n] \ J : γ, σL,i, (σ
(i)
R,j)j∈[n]\{r} (7)

∀i ∈ J \ {r} : γ, σL,i, (σ
(i)
R,j)j∈[n] (8)

For i = r : γ, (σ
(i)
R,j)j∈[n] (9)

3. Leakage queries. As in the proof of Lemma 2. Call Λ the final transcript corresponding
to all leakage queries.

4. First p tampering queries. Upon receiving a tampering query (T (q), (f
(q)
1 , f

(q)
2 )) from

A, construct the following leakage functions.

(a) Let ĝ
(q)
L be the leakage function which takes as input the value σL,r, plugs it in Eq. (9)

and appends the values of Eq. (8) to obtain (σ∗i )i∈BiL , computes the tampered shares

(σ̃∗i )i∈BiL = fiL((σ
∗
i )i∈BiL ), checks if all the tampered commitments within T (q) ∩ BiL

agree on a single value γ̃L (and outputs ⊥ if not), and finally outputs the value γ̃L.

(b) Let ĝ
(q)
R be the leakage function which takes as input the value σR,r, computes the

values (σ
(i)
R,r)i∈[n]\J using σR,r and the values (σ

(i)
R,r)i∈J and plugs them in Eq. (7) in

order to obtain (σ∗i )i∈[n]\J ; then, appends the values of Eq. (8) to obtain (σ∗i )i∈BiR ,
applies fiR to (σ∗i )i∈BiR , thus obtaining (σ̃∗i )i∈BiR , checks if all the tampered commit-

ments within T (q)∩BiR agree on a single value γ̃R (and outputs ⊥ if not), and finally
outputs the value γ̃R.

Then, send (ĝ
(q)
L , ĝ

(q)
R ) to the leakage oracle, thus obtaining (γ̃L, γ̃R), return ⊥ and self-

destruct if either γ̃L 6= γ̃R or one of the commitments equals ⊥, and otherwise call γ̃(q) the
tampered commitment. Find, by brute force, an opening (µ̃(q), ρ̃(q)) for γ̃(q), replace µ̃(q)

with � if µ̃(q) ∈ {µ0, µ1}, and finally return µ̃(q) to A (or output ⊥ and self-destruct if no
opening is found).

5. Last tampering query. Upon receiving the last tampering query (T (p+1), (f
(p+1)
1 , f

(p+1)
2 ))

from A, construct the following leakage and tampering functions.

(a) Wlog., assume that the output of A is equal to 0 whenever it believes that the target
secret sharing is distributed as in Hybr−1(λ, b, p+ 1).
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(b) Check that the simulation up to the first p tampering queries did not cause any in-
consistency, due to the fact that the outcome of the q-th tampering query would have
been ⊥ because (σ̃∗i )i∈T (q) was not a valid secret sharing. Namely, let ĥ be the leak-
age function that hard-wires a description of A, the values (γ, σr, σ

′
r), a description

of the final tampering query (T (p+1), (f
(p+1)
1 , f

(p+1)
2 )), the answer to all the previous

tampering queries µ̃(1), . . . , µ̃(p) and the answer to all the previous leakage queries Λ
and proceeds as follows.

i. Upon input σL,r, construct a set ŜR containing all the possible right shares σ̂R
such that (σL,r, σ̂R) is either a secret sharing of σr or a secret sharing of σ′r and,
additionally, (σL,r, σ̂R) is also compatible with the transcript of all the previous
leakage queries being Λ and the answer to all the previous tampering queries
being µ̃(1), . . . , µ̃(p).

ii. For each σ̂R ∈ ŜR, let (σ̂
(j)
R,r)j∈[n] be the secret sharing of σ̂R such that (σ̂

(j)
R,r)j∈J =

(σ
(j)
R,r)j∈J and let (σ̂

(j)
R,i)j∈[n] = (σ

(j)
R,i)j∈[n] for all i 6= r, and σ̂∗i = (γ, σL,i, (σ̂

(i)
R,j)j∈[n])

for all i ∈ [n]. Finally, let σ∗ = (σ∗1, . . . , σ
∗
n).

iii. For each σ̂R ∈ ŜR, run A answering to all of its leakage and tampering queries
until the last tampering query arrives. Then, compute the result µ̃∗ of such
query using σ∗, forward µ̃∗ to A and obtain the distinguishing bit b′.

iv. Output a bit b̂ such that b̂ = 1 if and only if, in the previous step, A outputs
b′ = 0 more often when σ∗ is distributed as in Hybr−1(λ, b, p+ 1).

(c) Let ĝ
(p+1)
L , ĝ

(p+1)
R be the same as the leakage functions ĝL, ĝR in the proof of Lemma 2.

(d) For all i ∈ T , let f̂
(p+1)
L,i , f̂

(p+1)
R,i be the same as the tampering functions f̂L, f̂R in the

proof of Lemma 2.

Then, send (ĥ, ε) to the leakage oracle, obtaining a bit b̂. Also, send (ĝ
(p+1)
L , ĝ

(p+1)
R )

to the leakage oracle and, for all i ∈ T , send (f̂
(p+1)
L,i , f̂

(p+1)
R,i ) to the tampering oracle,

and compute the tampered message µ̃(p+1) ∈ M ∪ {�,⊥} as the value µ̃ in the proof of
Lemma 2.

6. Guess. If b̂ = 0 output a random guess, and otherwise return µ̃(p+1) to A and output the
same distinguishing bit as that of A.

The reduction runs in exponential time. We now show that its distinguishing advantage is
negligibly close to that of A. Indeed:∣∣∣Pr

[
LR-NMC

σr,σ′r
Π′,A′ (λ, 0) = 1

]
− Pr

[
LR-NMC

σr,σ′r
Π′,A′ (λ, 1) = 1

]∣∣∣
=
∣∣∣Pr

[
LR-NMC

σr,σ′r
Π′,A′ (λ, 0) = 1 ∧ b̂ = 1

]
− Pr

[
LR-NMC

σr,σ′r
Π′,A′ (λ, 1) = 1 ∧ b̂ = 1

] ∣∣∣ (10)

≥ 1

poly(λ)

∣∣∣Pr
[
LR-NMC

σr,σ′r
Π′,A′ (λ, 0) = 1

∣∣∣b̂ = 1
]

− Pr
[
LR-NMC

σr,σ′r
Π′,A′ (λ, 1) = 1

∣∣∣b̂ = 1
] ∣∣∣ (11)

≥ 1

poly(λ)

(
1

poly(λ)
− negl(λ)

)
. (12)

In the derivation above, Eq. (10) follows because when b̂ = 0, the reduction A′ returns a random
guess and thus its distinguishing advantage is zero, Eq. (11) holds as the induction hypothesis
implies that b̂ = 1 with non-negligible probability, otherwise A generates an invalid secret
sharing (σ̃∗i )i∈T within the first p tampering queries with overwhelming probability, which in
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turn means that A can distinguish using less than p + 1 tampering queries. Finally, Eq. (12)
holds thanks to an analysis similar to the proof of Lemma 2 shows that the view of A is perfectly
simulated (except with negligible probability) conditioned on b̂ = 1, and thus in this case A′

retains essentially the same advantage as that of A.
In order to conclude the proof, it remains to show that A′ is `∗-leakage admissible, for `∗ as in

the statement of the theorem. Note that the adversary A′ makes leakage queries by forwarding
the leakage queries of A (in step 3), for obtaining the tampered commitments (in step 4a and
step 4b) and the auxiliary information needed to answer the last tampering query (in step 5c),
and finally for running the consistency check (in step 5b). However, the leakage performed in
step 5b and step 5c is executed only once and for a total of at most t · (t − 1) · sR + 1 bits.
Let q∗ ∈ N be the index of the tampering query, if any, where the commitments retrieved with

the leakage functions ĝ
(q)
L , ĝ

(q)
R happen to be either different or ⊥, and set q∗ = p + 1 in case

that never happens; note that q∗ is a random variable, which we denote by q∗. Clearly, such
leakage queries are executed exactly min{q∗, p} times. For each i ∈ {L,R}, denote by Λ′i the
random variable corresponding to the leakage performed by the reduction Â on the share σi,r
of the target secret sharing (ΣL,r,ΣR,r). We can write:

H̃∞
(
ΣL,r

∣∣Λ′L)
≥ H̃∞

(
ΣL,r

∣∣ΣR,r,Λ
′
L

)
(13)

≥ H̃∞
(
ΣL,r

∣∣∣ΣR,r, ĝ
(1)
L (ΣL,r), . . . , ĝ

(q∗)
L (ΣL,r), ĝ

(p+1)
L (ΣL,r), ĥ(ΣL,r)

)
− `∗ (14)

≥ H̃∞
(
ΣL,r

∣∣∣ΣR,r, ĝ
(1)
L (ΣL,r), . . . , ĝ

(q∗)
L (ΣL,r), ĝ

(p+1)
L (ΣL,r)

)
− `∗ − 1 (15)

≥ H̃∞
(
ΣL,r

∣∣∣ΣR,r,q
∗, ĝ

(q∗)
L (ΣL,r), ĝ

(p+1)
L (ΣL,r)

)
− `∗ − 1 (16)

≥ H̃∞ (ΣL,r|ΣR,r)− |γ| −O(log(λ))− t · (t− 1) · sR − `∗ − 1 (17)

≥ H̃∞ (ΣL,r)− d− |γ| −O(log(λ))− t · (t− 1) · sR − `∗ − 1. (18)

In the above derivation, Eq. (13) follows by the fact that further conditioning can only reduce
the conditional average min-entropy and Eq. (14) follows by definition of the leakage Λ′L and by

the fact that A is `∗-leakage admissible. Eq. (15) follows by the Chain Rule as the function ĥ
outputs a single bit. Eq. (16) follows by the fact that, for each q < q∗, the commitments leaked
from the left part are identical to the ones leaked from the right part and thus can be computed
as a deterministic function of ΣR,r and q∗. Eq. (17) follows again by the Chain Rule, since
|q∗| = O(log λ) and either q∗ = p + 1 (in which case the min-entropy drop due to the leakage

ĝ
(q∗)
L (ΣL,r), ĝ

(p+1)
L (ΣL,r) is bounded by the size |γ| of a commitment plus t · (t− 1) · sR bits for

simulating the last tampering query) or q∗ ≤ p (in which case the reduction self-destructs and

only the value ĝ
(q∗)
L (ΣL,r) is leaked, causing a loss of at most |γ| bits in the min-entropy bound).

Finally, Eq. (18) follows by property (ii) of the secret sharing scheme Π′.
An almost identical analysis holds for the leakage from the right share, with the only dif-

ference that we do not leak any auxiliary information from ΣR,r and therefore the min-entropy
drop only amounts to d+ |γ|+O(log(λ)) + `∗ + 1. The lemma follows.

4.3 Putting it Together

By Lemma 2 and Lemma 3, we get that, for all b ∈ {0, 1} and all r ∈ [n],{
Hybr−1(λ, b)

}
λ∈N

s
≈ {Hybr(λ, b)}λ∈N .
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Hence, by repeatedly applying the triangular inequality, we have obtained

{Hyb0(λ, b)}λ∈N
s
≈ {Hybn(λ, b)}λ∈N .

The lemma below concludes the proof of the theorem.

Lemma 4. {Hybn(λ, 0)}λ∈N
c
≈ {Hybn(λ, 1)}λ∈N.

Proof. By reduction to the computational hiding property of the commitment. Suppose that
there exists a PPT adversary A able to distinguish between Hybn(λ, 0) and Hybn(λ, 1) with
probability at least 1/poly(λ). Consider the following reduction A′ trying to distinguish if γ is
a commitment to µ0 or to µ1.

• Sample n uniformly random shares σ1, . . . , σn and, for all i ∈ [n], compute (σL,i, σR,i)←$

Share′(σi) and (σ
(1)
R,i , . . . , σ

(n)
R,i )←$ Share(σR,i).

• Set (σ∗1, . . . , σ
∗
n), where σ∗i = (γ, σL,i, (σ

(i)
R,j)j∈[n]) for all i ∈ [n].

• Answer leakage and tampering queries from A as described in the last hybrid experiment.

• Output the same distinguishing bit as A does.

For the analysis, note that A′ is efficient and perfectly simulates Hybn(λ, 0) whenever γ is a
commitment to µ0, and perfectly simulates Hybn(λ, 1) whenever γ is a commitment to µ1.
Hence, A′ has non-negligible distinguishing advantage. This concludes the proof.

5 Rate Compilers and Capacity Upper Bounds

In this section, we first establish an upper bound on the capacity of continuously non-malleable
threshold secret sharing against joint tampering. We focus on secret sharing scheme that are
not leakage resilient. Indeed, an upper bound on the capacity of this weaker primitive implies
an upper bound on the capacity of leakage-resilient continuous non-malleable secret sharing
schemes. Additionally, we exhibit a compiler for boosting the rate of our construction from the
previous section so that it achieves the best possible rate in the plain model. For completeness,
in Appendix B, we show that our upper bound on the capacity can be overcome both in the
random oracle model (ROM) and in the algebraic generic group model (AGM).

5.1 Capacity Upper Bounds

We show the following upper bound on the maximal achievable rate of any continuously non-
malleable secret sharing scheme against k-joint tampering, for k > t/2. Recall that computa-
tional assumptions are inherent for continuous non-malleability, and thus our negative results
hold even in the computational setting.

Theorem 2. Let Π be a t-out-of-n k-CNMSS scheme. If k > t/2, then Π cannot achieve better
asymptotic rate than % ≤ t− k.

Proof. We prove the slightly stronger statement that the capacity upper bound holds even if the
attacker always uses the same reconstruction set T across all tampering queries. For simplicity,
we assume that the share space of Π is S = S1 × · · · × Sn with |Si| = |Sj | for all i, j ∈ [n]. (A
generalization is immediate.) Consider the following commitment scheme:

• The commitment procedure Com, upon input a message µ and random coins ρ, samples
shares (σ1, . . . , σn) := Share(µ; ρ) and outputs γ = (σ1, . . . , σt−k).

• The opening procedure, upon input an opening µ, ρ and a commitment γ, recomputes the
shares σ1, . . . , σn and checks that γ equals the first t− k shares.
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We now prove that the above defined commitment scheme is perfectly binding. Note that
the latter implies that |µ| ≤ |γ| because Com must be an injective function. Thus, by letting
s = log |S1|, the rate satisfies % = |µ|/s ≤ |γ|/s ≤ t− k (as desired).

Towards a contradiction, assume that Com is not perfectly binding. Namely, there exist a
commitment γ and two openings (µ(0), ρ0) and (µ(1), ρ1) such that both openings are valid for
γ and µ(0) 6= µ(1). Consider the following PPT attacker against continuous non-malleability,
with the values µ(0), ρ0, µ

(1), ρ1 hard-coded in:

1. Let µ∗0 and µ∗1 be any two distinct messages, and denote by (σ1, . . . , σn) the target secret
sharing of µ∗b in the experiment defining continuous non-malleability. For better readabil-
ity, set ` = |(σt−k+1|| · · · ||σt)|.

2. Compute the shares (σ
(0)
0 , . . . , σ

(0)
n ) := Share(µ(0); ρ0) and (σ

(1)
0 , . . . , σ

(1)
n ) := Share(µ(1);

ρ1). By validity of the openings, we have that σ
(0)
i = σ

(1)
i for all i ∈ [t− k].

3. Set T := [t], B1 := [t− k], and B2 := [t] \ [t− k].

4. For each j ∈ [`], the j-th tampering query is defined to be (T , (f1, f
(j)
2 )) where the

tampering functions are specified as follows:

• f1((σi)i∈B1) := (σ
(0)
i )i∈B1 .

• f
(j)
2 ((σi)i∈B2) is the function that outputs (σ

(0)
i )i∈B2 if and only if the j-th bit of the

string (σi)i∈B2 equals 0 (and outputs (σ
(1)
i )i∈B2 otherwise).

Let µ̃ be the output of the j-th tampering query. Set αj := 0 if and only if µ̃ = µ(0) (and
αj := 1 otherwise).

5. Parse the string α1, . . . , α` as σt−k+1, . . . , σt. Forward the query (T , (f ′1, f ′2)) to the tam-
pering oracle, where f ′1 takes as input (σi)i∈B1 , reconstructs the message µ∗b (using the
values σt−k+1, . . . , σt), and finally either does nothing (say, if the reconstructed message
is µ∗0) or outputs garbage.

6. Output b′ = 0 if and only if the output of the last tampering query is � (and otherwise
output b′ = 1).

Note that t − k < k as k > t/2, and thus B = (B1,B2) is a k-sized partition of T = [t]. More-
over, the above reduction clearly breaks continuous non-malleability of Π with overwhelming
probability. This concludes the proof.

5.2 Rate Compiler (Plain Model)

Let (IDisp, IRec) be an information dispersal, Π = (Share,Rec) be a secret sharing scheme and
Σ = (Enc,Dec) be a secret-key encryption scheme. Consider the following derived secret sharing
scheme Π∗ = (Share∗,Rec∗).

• Algorithm Share∗: upon input a message µ, sample a random key κ←$K and compute
γ←$ Enc(κ, µ), (γ1, . . . , γn) = IDisp(γ) and (κ1, . . . , κn)←$ Share(κ); finally, for all i ∈ [n],
let σi = (κi, γi) and output (σ1, . . . , σn).

• Algorithm Rec∗: upon input a set (σi)i∈I of at least t shares parse σi = (κi, γi) for all
i ∈ I, reconstruct κ = Rec((κi)i∈I) and γ = IRec((γi)i∈I), check that IDisp(γ)I = (γi)i∈I
(and return ⊥ if not), and finally output µ = Dec(κ, γ).

The construction above was first proposed and analyzed by Krawczyk [Kra94] in the set-
ting of plain threshold secret sharing. The theorem below states its security in the setting of
continuous joint tampering and leakage attacks.

Theorem 3. Let n, t, t∗, ` ∈ N be parameters such that t∗ ≤ t− 1. Assume that:

• (IDisp, IRec) is a t∗-out-of-n information dispersal;

• (Share,Rec) is a t-out-of-n (`, t− 1)-LR-CNMSS;
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LR-CNMSSµ0,µ1

Π∗,A,B(λ, b) Hybµ0,µ1

Π∗,A,B(λ, b) :

κ←$K
κ̂←$K
(κ1, . . . , κn)←$ Share(κ)

(κ1, . . . , κn)←$ Share(κ̂)

γ←$ Enc(κ, µb)
(γ1, . . . , γn) = IDisp(γ)
∀i ∈ [n] :

σi := (κi, γi)
σ := (σ1, . . . , σn)
stop← false

Return AOtamp(σ,·),Oleak(σ,·)(1λ)

Oracle Oleak(σ, (g1, . . . , gm)):

If stop = true, return ⊥
Else, return g1(σB1), . . . , gm(σBm)

Oracle Otamp(σ, T , (f1, . . . , fm)):

If stop = true, return ⊥
∀i ∈ [m] : σ̃Bi := fi(σBi)
σ̃ = (σ1, . . . , σn)
∀i ∈ T , σ̃i = (κ̃i, γ̃i)
γ̃ = IRec((γ̃i)i∈T )
If IDisp(γ̃)T 6= (γ̃i)i∈T

stop← true and return ⊥
κ̃ = Rec((κ̃i)i∈T )
If κ̃ = ⊥, stop← true and return ⊥
If κ̃ = κ̂, κ̃← κ

µ̃ = Dec(κ̃, γ̃)
If µ̃ = ⊥, stop← true and return ⊥
If µ̃ ∈ {µ0, µ1}, return �
Else return µ̃

Figure 4: Experiments in the proof of Theorem 3. The instructions boxed in red are the
modifications introduced by the hybrid experiment.

• (Enc,Dec) is an IND-CCA secure secret-key encryption scheme.

Then, Π∗ is a t-out-of-n (`, t− 1)-LR-CNMSS under the following restriction: Each tampering
query (T , f) output by the attacker is such that, for all subsets Bi of the partition B, either
Bi ∩ T = ∅ or |Bi ∩ T | ≥ t∗. Moreover, the asymptotic rate of Π∗ is % = t∗.

Proof. The proof proceeds by a hybrid argument. In particular, we argue that the original ex-
periment is computationally close to a mental experiment in which we replace the secret sharing
of the key κ with a secret sharing of an unrelated random key κ̂. The mental experiments is de-
picted in Figure 4 along with the original experiment in order to highlight the main differences.
The lemma below states that the two experiments are computationally indistinguishable.

Lemma 5. For all µ0, µ1 ∈ M, all (t− 1)-sized partitions B of [n], and all b ∈ {0, 1}, it holds
that: {

LR-CNMSSµ0,µ1

Π∗,A (λ, b)
}
λ∈N

c
≈
{

Hybµ0,µ1

Π∗,A,B(λ, b)
}
λ∈N

.

Proof. Before going through the proof, we introduce the following two procedures which are
parameterized by two messages µ0, µ1, secret sharing scheme Π, a partition B of [n] and a
reconstruction set T , and which involve an adversary A with black-box access to the tampering
oracle Otamp(σ, ·, ·).

• Procedure LeakTamperµ0,µ1

Π,B,T (g1, . . . , gm): fix any three pairwise distinct messages µ(0),

µ(1), µ(eof) ∈ M \ {µ0, µ1}, let (σ
(b)
1 , . . . , σ

(b)
n )←$ Share(µ(b)) for all b ∈ {0, 1, eof}, set

Λ∗ = ε and i∗ = 1 and perform the following loop.

– For all i ∈ [m], construct a tampering function f̂i that, upon input (σj)j∈Bi , computes

Λ = gi((σj)j∈Bi) and outputs either (σ
(b)
j )j∈Bi , where b is the i∗-th bit of Λ, or

(σ
(eof)
j )j∈Bi if i∗ > |Λ| (unless Λ = ⊥, in which case the output is set to ⊥).

– Send (T , (f̂1, . . . , f̂m)) to the tampering oracle, thus obtaining either of µ(0), µ(1),
µ(eof) or ⊥ (if the outputs of gi differ for some i1, i2 ∈ T ).
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– If the oracle replies with ⊥, output ⊥ and terminate. Else, if the output is µ(eof),
stop the loop and output Λ∗. Else, let Λ∗ ← Λ∗||b, where µ(b) is the received message,
set i∗ ← i∗ + 1 and continue the loop.

• Procedure CheckEqΠ,B,T (Λ̂, g1, . . . , gm): for all i ∈ [m], construct a tampering function

f̂i that, upon input (σj)j∈Bi , computes Λ = gi((σj)j∈Bi) and outputs (σj)j∈Bi if Λ = Λ̂ and

⊥ otherwise; then, send (T , (f̂1, . . . , f̂m)) to the tampering oracle and obtain a message
that is either � or ⊥.

When they are clear from the context, we will omit the values µ0, µ1, as well as Π,B, thus
writing only LeakTamperT (g1, . . . , gm) and CheckEqT (Λ̂, g1, . . . , gm).

To prove the lemma, we proceed by reduction to leakage-resilient continuous non-malleability
of the underlying secret sharing scheme. Fix any b ∈ {0, 1}, and suppose that there exist two
messages µ0, µ1 ∈M, a (t− 1)-sized partition B = (B1, . . . ,Bm) of [n], and a PPT adversary A
able to distinguish between the two experiments with non-negligible probability. Consider the
following reduction Â attacking leakage-resilient continuous non-malleability of Π.

1. Setup. Set the challenge messages to be κ and κ̂ sampled as in the hybrid experiment,
then compute γ←$ Enc(κ, µb) and (γ1, . . . , γn) = IDisp(γ). In what follows, all tampering
and leakage functions constructed by the reduction implicitly hard-wire the shares (γj)j∈Bi
and (a description of) the query they refer to.

2. Leakage queries. Upon input a leakage query (g1, . . . , gm), for all i ∈ [m], construct
the leakage function ĝi which takes as input the shares (κj)j∈Bi , runs Λi = gi((σj)j∈Bi)
for σj := (κj , γj), and outputs Λi; then, send the leakage query (ĝ1, . . . , ĝm) to the target
leakage oracle and forward the answer to A.

3. Tampering queries. Upon input a tampering query (T , (f1, . . . , fm)), execute the fol-
lowing steps.

(a) Obtain the tampered ciphertext. For all i ∈ [m], construct the function ĥi which takes
as input the shares (κj)j∈Bi , computes the tampering (κ̃j , γ̃j)j∈Bi = fi((κj , γj)j∈Bi)
and outputs either ε if Bi ∩ T = ∅, or γ̃ = IRec((γ̃j)j∈Bi∩T ) otherwise; note that
this function is well defined thanks to the additional restriction on tampering queries
stated in the theorem (in particular, in case Bi∩T 6= ∅, this set contains at least t∗ el-
ements, which is enough for running IRec). Run procedure LeakTamperT (ĥ1, . . . , ĥm)
to obtain either the tampered ciphertext γ̃ or ⊥.

(b) Check that the ciphertext is consistent. For all i ∈ [m], construct the function ĥ′i
which also hard-wires the value γ̃, takes as input the shares (κj)j∈Bi , computes
(γ̂1, . . . γ̂n) = IDisp(γ̃) and (κ̃j , γ̃j)j∈Bi = fi((κj , γj)j∈Bi) and, for all j ∈ Bi ∩ T ,
checks that γ̃j = γ̂j , outputting 0 if the check fails (and 1 otherwise). Run procedure

CheckEqT (1, ĥ′1, . . . , ĥ
′
m) to obtain either � (in case the tampered ciphertext γ̃ is

consistent with the tampered shares of the information dispersal) or ⊥.

(c) Obtain the tampered key. For all i ∈ [m], construct the tampering function f̂i which
takes as input all the shares (κj)j∈Bi , computes the tampered shares (κ̃j , γ̃j)j∈Bi =

fi((κj , γj)j∈Bi) and outputs (κ̃j)j∈Bi . Send (T , (f̂1, . . . , f̂m)) to the tampering oracle,
obtaining a tampered key κ̃ ∈ K ∪ {�,⊥}.

(d) Obtain the tampered message. If any of the previous steps resulted in a ⊥, output
⊥ and self-destruct; otherwise, compute µ̃ = Dec(κ̃, γ̃), replacing κ̃ with κ if κ̃ = �,
and return µ̃ to the adversary (and self-destruct if µ̃ = ⊥).

4. Guess. Output the same distinguishing bit as A does.

For the analysis, recall that A has the restriction on the tampering queries and, in particular, for
each tampering query (T , f) and each i ∈ [m] such that Bi ∩T 6= ∅, we have that |Bi ∩T | ≥ t∗,
hence the ciphertext can be reconstructed from all the shares in Bi ∩ T . In particular, this
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allows the reduction to obtain a candidate tampered ciphertext from each subset of tampered
shares; moreover, once obtained a possible tampered ciphertext, the reduction checks that all
the shares of the ciphertext are consistent and finally obtains the tampered key with which
obtains the tampered message.

Consider the following event Bad, defined over the probability space of the original experi-
ment: The event becomes true if the attacker ever submits a query to the tampering oracle that
triggers the condition κ̃ = κ̂, where the key κ̂ is sampled at the beginning of the experiment.
It is easy to see that, conditioning on Bad, the above reduction perfectly emulates the view of
the adversary in experiment LR-CNMSSµ0,µ1

Π∗,A (λ, b) when (κ1, . . . , κn) is a secret sharing of κ,

and perfectly emulates the view of the adversary in Hybµ0,µ1

Π∗,A (λ, b) when (κ1, . . . , κn) is a secret

sharing of κ̂. Since, using a union bound, Pr[Bad] ≤ poly(λ) · 2−λ = negl(λ), by a standard
argument the two experiments are computationally indistinguishable. The lemma follows.

The lemma below concludes the proof of continuous non-malleability in Theorem 3.

Lemma 6. For all µ0, µ1 ∈M, and all (t− 1)-sized partitions B of [n], it holds that:{
Hybµ0,µ1

Π∗,A,B(λ, 0)
}
λ∈N

c
≈
{

Hybµ0,µ1

Π∗,A,B(λ, 1)
}
λ∈N

.

Proof. By reduction to IND-CCA security of the symmetric encryption scheme. Suppose that
there exist two messages µ0, µ1 ∈M, a (t− 1)-sized partition B of [n], and a PPT adversary A
that is able to distinguish between the two experiments with non-negligible probability. Consider
the following reduction A′ attacking IND-CCA security of Σ.

1. Setup. Set the challenge messages to be µ0 and µ1, obtain the challenge ciphertext γ,
sample a key κ̂←$K and compute (γ1, . . . , γn) = IDisp(γ̂), and (κ1, . . . , κn)←$ Share(κ̂).
Finally, for all i ∈ [n], construct the share σ∗i := (κi, γi).

2. Leakage queries. Answer leakage queries as in the hybrid experiment.

3. Tampering queries. Upon input a tampering query (T , (f1, . . . , fm)), for all i ∈ [m],
compute (σ̃j)j∈Bi = fi((σj)j∈Bi), perform the consistency checks on the tampered cipher-
text γ̃ (and output ⊥ if any of these checks fails), and then reconstruct the tampered
key κ̃ ∈ K. If κ̃ = κ̂, obtain the tampered message µ̃ ∈ M ∪ {⊥} by sending γ̃ to the
decryption oracle; otherwise, compute µ̃ = Dec(κ̃, γ̃). If µ̃ ∈ {µ0, µ1}, set µ̃ = �. Finally,
return µ̃ to A (and self-destruct if µ̃ = ⊥).

4. Guess. Output the same distinguishing bit as A does.

For the analysis, note that the reduction is perfect and, in particular, for b ∈ {0, 1}, it perfectly
simulates Hybµ0,µ1

Π∗,A,B(λ, b) whenever the challenge ciphertext γ is an encryption of µb. This
concludes the proof.

It only remains to discuss the rate of the construction. Towards this, note that the length
of the key κ for the SKE scheme Σ, and thus the size of the shares of the secret sharing scheme
Π, only depends on the security parameter λ, the number of parties n and the tolerated leakage
` (but not on the length |µ| of the message); call s0(λ, n, `) the length of this portion of the
final shares (namely, κi). On the other hand, it is possible to achieve length of the ciphertext
|γ| = |µ| + O(λ), hence the length of each share γi of the information dispersal amounts to

|γi| = |γ|
t∗ = |µ|+O(λ)

t∗ . Putting it together, we have obtained:

s(λ, n, `, |µ|) = s0(λ, n, `) +
|µ|+O(λ)

t∗
,

that translates into

% = inf
λ∈N

lim
|µ|→∞

|µ|
s(λ, n, `, |µ|)
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= inf
λ∈N

lim
|µ|→∞

t∗ · |µ|
|µ|+ t∗ · poly(λ, n, `)

= t∗.

This completes the proof of Theorem 3.

Rate optimality. We stress that when k = t − 1, Theorem 2 says that the capacity of
continuously non-malleable secret sharing against joint tampering with at most t− 1 shares is
1. This is not in contrast with the fact that our rate compiler from Theorem 3 achieves rate
larger than 1, as the latter only holds under an additional restriction on the way the attacker
can manipulate the shares. Nevertheless, it is possible to adapt the proof of Theorem 2 in order
to show that our rate compiler achieves the best possible rate whenever t∗ < t/2.

Theorem 4. Let Π be a t-out-of-n (t − 1)-CNMSS scheme under the restriction that each
tampering query (T , f) output by the attacker must be such that, for all subsets Bi of the partition
B, either Bi∩T = ∅ or |Bi∩T | ≥ t∗. If t∗ ≤ t/2, then Π cannot achieve better rate than % ≤ t∗.

Proof. The proof is almost identical to that of Theorem 2, and thus we only highlight the main
differences. We change the definition of Com so that it now outputs the value γ = (σ1, . . . , σt∗),
and we adjust the opening procedure accordingly. Hence, the goal is to prove, again, that Com
is perfectly binding, so that the rate of Π must satisfy % ≤ t∗.

The reduction is identical to that in the proof of Theorem 2, except that now we define
` := |σt∗+1|| · · · ||σt| and moreover the adversary attacking continuous non-malleability sets
B1 := [t∗] and B2 := [t]\ [t∗] in step 3, and parses the string α1, . . . , α` as σt∗+1, . . . , σt in step 5.
Note that |B1| = t∗ and |B2| = t−t∗ ≥ 2t∗−t∗ = t∗. Since t∗ ≤ t−1, the adversary is admissible
which concludes the proof.

Remark 2. More generally, Theorem 4 holds for t-out-of-n k-CNMSS so long as k ≥ t− t∗.

6 Instantiations

In this section, we show how to instantiate the building blocks required by the abstract con-
structions of Theorem 1 and Theorem 3.

6.1 Leakage-Resilient p-time Non-Malleable Code

Here, we explain how to obtain noisy-leakage-resilient p-time non-malleable asymmetric split-
state codes with the additional properties stated in Theorem 1. Our construction exploits
leakage-resilient asymmetric split-state codes as defined in §3.2, as recently introduced by Ball,
Guo, and Wichs [BGW19] and generalized to the noisy-leakage setting by Brian, Faonio and
Venturi [BFV19].

Let Π = (Share,Rec), ΠL = (ShareL,RecL) and ΠR = (ShareR,RecR) be split-state codes.
Consider the following split-state code Π∗ = (Share∗,Rec∗).

• Algorithm Share∗: upon input a message µ, compute (σL, σR)←$ Share(µ), and (σL,L,
σL,R)←$ ShareL(σL) and (σR,L, σR,R)←$ ShareR(σR). Set σ∗L = (σL,L, σR,R) and σ∗R =
(σR,L, σL,R), and output σ∗L, σ

∗
R.

• Algorithm Rec∗: upon input two shares (σ∗L, σ
∗
R), parse σ∗L = (σL,L, σR,R) and σ∗R =

(σR,L, σL,R), compute the shares σL = RecL(σL,L, σL,R) and σR = RecR(σR,L, σR,R), and
output µ = Rec(σL, σR).
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Theorem 5. For all i, j ∈ {L,R}, let p, si, si,j ∈ N, `i, `i,j ≥ 0, and ε, εi ∈ [0, 1] be parameters
such that:

• sR < sL;

• sL,R < sL,L, `L,L ≥ `L + p · sR,R and `L,R ≥ `R;

• sR,R < sR,L, `R,L ≥ `R + p · sL,R and `R,R ≥ `L.

Assume that:

• Π is an (sL, sR)-asymmetric (p, ε)-NMC;

• ΠL is an (sL,L, sL,R)-asymmetric (`L,L, `L,R, εL)-LRC;

• ΠR is an (sR,L, sR,R)-asymmetric (`R,L, `R,R, εR)-LRC.

Then, Π∗ is an (s∗L, s
∗
R)-asymmetric (`L, `R, p, ε + 2(εL + εR))-LR-NMC, where s∗L = sL,L + sR,R

and s∗R = sL,R + sR,L.

The proof to the above theorem goes along the same lines of the proof of Theorem 7
in [BFV19] for the case of 2-out-of-2 secret sharing. The only difference is that Π is a p-
time NMC instead of a one-time NMC, and we use different parameters for ΠL and ΠR. In
particular, all the hybrid experiments are the same as in [BFV19] with the only difference that

we have to leak 2p tampered values (namely, σ̃
(j)
R,R, σ̃

(j)
L,R for j ∈ [p]) instead of only two; however,

our choice of the leakage parameters allows us to do so, since

`L,L ≥ `L + p · sR,R and `R,L ≥ `R + p · sL,R.

Proof. We consider the same hybrids as in the proof of [BFV19, Theorem 7] and focus here
only on the reduction to non-malleability, thus showing that the last hybrid experiment with
bit b = 0 is statistically close to the same experiment with bit b = 1. Following the proof in
[BFV19], we consider the hybrid experiments below:

• Hybrid 1. Same as the security experiment but before applying the tampering queries
we re-sample the share σ′L,L (resp. σ′R,L) in such a way that: (1) the reconstruction with
σ′L,L, σL,R (resp. σ′R,L, σR,R) leads to the value σL (resp. σR), (2) it is consistent with the
leakage performed, (3) for any j the j-th tampering query applied to (σ′L,L, σR,R) (resp.

(σ′R,L, σL,R)) produces the same tampered value σ̃
(j)
R,R (resp. σ̃

(j)
L,R). This hybrid is equivalent

to the security experiment because we re-sample the values from the same distributions
where the original values are defined.

• Hybrid 2. Apply all the leakage queries to the shares (σ̂L,R, σR,R) and (σ̂R,L, σL,R) where
σ̂L,L, σL,R and σ̂R,L, σL,R are valid shares of dummy messages of appropriate size. Here, we
can reduce by two consecutive steps to the noisy-leakage resilience of ΠL and ΠR.

Thus, in the last hybrid experiment, the leakage is computed using fake shares σ̂L,L and

σ̂R,L, and so are the tampered values σ̃
(j)
R,R, σ̃

(j)
L,R for j ∈ [p]. Consider the following reduction to

an adversary A distinguishing between the last hybrid experiment with b = 0 and b = 1.

1. Sample σL,R, and σR,R at random from their respective domains.

2. Sample σ̂L,L←$ ShareL(0sL , σL,R) and σ̂R,L←$ ShareR(0sR , σR,R) and redirect all the leakage
queries to the codeword (σ̂L,L, σR,R) and (σ̂R,L, σL,R).

3. Upon receiving tampering queries f (1), . . . , f (p), do the following.

(a) For all j ∈ [p], compute (σ̃
(j)
L,L, σ̃

(j)
R,R) = f

(j)
L ((σ̂L,L, σR,R)) and (σ̃

(j)
R,L, σ̃

(j)
L,R) = f

(j)
R ((σ̂R,L,

σL,R));

(b) Sample random strings ρL, ρR.

(c) For all j ∈ [p], send the tampering query f̄ (j) = (f̄
(j)
L , f̄

(j)
R ), where f̄

(j)
L (resp. f̄

(j)
R ),

upon input σL (resp. σR) proceeds as follows:

i. using randomness ρL (resp., ρR), sample the share σ′L,L (resp. σ′R,L) such that (1)
RecL(σ′L,L, σL,R) = σL (resp. RecR(σ′R,L, σR,R) = σR) and (2) σ′L,L (resp. σ′R,L) is
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consistent with all the leakage done by A and with the tampered values σ̃
(1)
R,R, . . . ,

σ̃
(p)
R,R (resp. σ̃

(1)
L,R, . . . , σ̃

(p)
L,R);

ii. apply the tampering query f
(j)
L (resp. f

(j)
R ) to (σ′L,L, σR,R) (resp. σ′R,L, σL,R) ob-

taining the tampered shares (σ̃′L,L, σ̃
(j)
R,R) (resp. (σ̃′R,L, σ̃

(j)
L,R));

iii. output σ̃L = RecL(σ̃′L,L, σ̃
(j)
R,R) (resp. σ̃R = RecR(σ̃′R,L, σ̃

(j)
L,R)).

For the analysis, note that the reduction is perfect and, in particular, samples a new valid
codeword that is consistent with the view of the adversary A and encodes the message µb as in
the real experiment. This finishes the proof.

Finally, we show that the scheme Π∗ of Theorem 5 is able to achieve the properties (i)-
(ii) needed to instantiate Theorem 1. The lemma below states that if the underlying NMC Π
satisfies the additional property (i), so does the scheme Π∗.

Lemma 7. Suppose that there exists σL such that, for all µ ∈ M, there exists σR such that
Rec(σL, σR) = µ. Then, there exists σ∗L such that, for all µ ∈ M, there exists σ∗R such that
Rec∗(σ∗L, σ

∗
R) = µ.

Proof. Let σL be such that, for all µ ∈ M, there exists σR such that Rec(σL, σR) = µ. Then,
we can fix σR,R and σL,R and compute σL,L←$ ShareL(σL, σL,R). The new left share will be
σ∗L = (σL,L, σR,R) and, once fixed σ∗L and µ ∈M, in order to obtain the right share it suffices to
compute σR,L←$ ShareR(σR, σR,R) and set σ∗R = (σR,L, σL,R).

The property (ii) is a bit more delicate because, even if ΠL,ΠR achieve it, the random vari-
ables (ΣL,L,ΣR,R) and (ΣR,L,ΣL,R) are defined by (ΣL,L,ΣL,R) = ShareL(ΣL) and (ΣR,L,ΣR,R) =
ShareR(ΣR), and ΣL and ΣR are related distributions. Instead, here we use a non-blackbox ap-
proach and prove that the asymmetric code given by Appendix A of [BFV19], which we describe
below, allows Π∗ to achieve property (ii).

Let Ext be a seeded extractor with d-bits source, r-bit seed and m-bit output and let 2Ext
be a two-source extractor with s2-bits sources and r-bit output. Consider the following secret
sharing scheme ΠLRC with message spaceM = {0, 1}m and shares space S = {0, 1}s1×{0, 1}s2 :

• Algorithm Share: upon input the message µ, randomly sample σ2←$ {0, 1}s2 , x←$

{0, 1}d, y←$ {0, 1}s2 , compute ρ := 2Ext(σ2, y) and z := Ext(x, ρ) ⊕ µ and finally output
(σ1, σ2), where σ1 = (x, y, z).

• Algorithm Rec: upon input the shares (σ1, σ2), parse σ1 = (x, y, z) and output µ :=
z ⊕ Ext(x, 2Ext(σ1, y)).

For all ε, `1, `2 ≥ 0 there exists an appropriate choice of the parameters d and r such that
the above is an (`1, `2, ε)-LRC (see [BGW19, BFV19] for the details) and, moreover, the above
admits the following alternative sharing algorithm Share :

• Algorithm Share: upon input the message µ and the value σ2, randomly sample x←$

{0, 1}d, y←$ {0, 1}s2 , compute ρ := 2Ext(σ2, y) and z := Ext(x, ρ) ⊕ µ and finally output
(σ1, σ2), where σ1 = (x, y, z).

The following lemma proves that the above scheme allows our construction Π∗ to achieve
property (ii) of Theorem 1.

Lemma 8. Instantiating ΠL and ΠR with the asymmetric LRC ΠLRC , for all µ ∈ M it holds
that

H̃∞(Σ∗L |Σ∗R) ≥ H∞(Σ∗L)− d H̃∞(Σ∗R |Σ∗L) ≥ H∞(Σ∗R)− d,

where d = sL + sR and (Σ∗L,Σ
∗
R) = Share∗(µ) is the distribution of the shares of µ using the

scheme Π∗.

28



Proof. For any message µ ∈ M, let (ΣL,ΣR) = Share(µ) be the random variable relative
to a NMC of µ and let (ΣL,L,ΣL,R) = ShareL(ΣL), (ΣR,L,ΣR,R) = ShareR(ΣR) the respective
random variables relative to the left and right leakage-resilient encodings; in particular, let
(XL,YL,ZL) = ΣL,L and (XR,YR,ZR) = ΣR,L the random variables relative to the values
x, y, z of the asymmetric LRC ΠLRC in the left and in the right instantiation respectively.
Moreover, let dL, dR the parameter d in ΠL and ΠR respectively. Then,

H̃∞(Σ∗L |Σ∗R) = H̃∞ ((XL,YL,ZL),ΣR,R | (XR,YR,ZR),ΣL,R)

≥ H̃∞ (XL,YL,ZL,ΣR,R |XR,YR,ΣL,R)− |ZR| (19)

≥ H̃∞ (XL,YL,ΣR,R |XR,YR,ΣL,R)− |ZR| (20)

≥ H∞ (XL,YL,ΣR,R)− |ZR| (21)

= sL,L − sL + sR,R − sR (22)

= H∞(Σ∗L)− sL − sR, (23)

where Eq. (19) follows from the application of Lemma 1, in Eq. (20) we simply removed the
random variable ZL, Eq. (21) holds because now the random variables XL,YL,ΣR,R are inde-
pendent of XR,YR,ΣL,R, Eq. (22) follows from the fact that xL, yL, σR,R are randomly sampled
and that |(xL, yL)| = σL,L − |zL|, where |zL| = σL and Eq. (23) follows from the fact that
Σ∗L = (ΣL,L,ΣR,R) is uniformly distributed over {0, 1}sL,L × {0, 1}sR,R . A similar analysis shows
that

H̃∞(Σ∗R |Σ∗L) = H̃∞ ((XR,YR,ZR),ΣL,R | (XL,YL,ZL),ΣR,R)

≥ H̃∞ (XR,YR,ZR,ΣL,R |XL,YL,ΣR,R)− |ZL|

≥ H̃∞ (XR,YR,ΣL,R |XL,YL,ΣR,R)− |ZL|
≥ H∞ (XR,YR,ΣL,R)− |ZL|
= sR,L − sR + sL,R − sL
= H∞(Σ∗R)− sR − sL.

Corollary 5.7 of [GSZ20] shows that, for all n1, n2 ∈ N and all polynomials p′, there exists
a two-source p-time ε-non-malleable extractor for sources of full-entropy of size n1, n2, where

p = n
Ω(1)
2 , n1 = 4n2 + p′(n2) and ε = 2−n

Ω(1)
2 . This scheme has efficient pre-image sampleability

and further satisfies the additional property described in the hypothesis of Lemma 7. By
the known connection between (leakage-resilient) non-malleable extractors with efficient pre-
image sampleability and (leakage-resilient) non-malleable codes, we obtain a (p, ε·2p|µ|+1)-NMC.
Additionally, we note that by our setting of the parameters in Theorem 5 we can have `L ≥ s∗R so
long as the underlying schemes ΠL and ΠR allow to arbitrarily set the parameters of leakage and
of the codeword size of the left shares and right shares, which is the case thanks to Theorem 6
of [BFV19].

Hence, together with Lemma 7 and Lemma 8, we have obtained the following corollary:

Corollary 1. For any sL, sR, `L, `R, p ∈ N, ε ∈ [0, 1], there is a construction of an (sL, sR)-
asymmetric (`L, `R)-noisy leakage-resilient p-time ε-non-malleable code satisfying the additional
properties stated in Theorem 1.

6.2 Leakage-Resilient Continuously Non-Malleable Secret Sharing

By instantiating Theorem 1, we obtain the following.
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Corollary 2. Assuming the existence of one-to-one one-way functions, for any n, t, ` ∈ N
with t > 2n/3, there is a construction of a t-out-of-n secret sharing scheme satisfying noisy-
leakage resilient continuous non-malleability under selective k-joint leakage and tampering at-
tacks, where k = t− 1.

Proof. The proof follows by instantiating the inner non-malleable code using Corollary 1 and
recalling that perfectly binding and computationally hiding commitment schemes can be in-
stantiated from one-to-one one-way functions [GMW87].

Furthermore, by instantiating Theorem 3 with t∗ = 1, we obtain the following.

Corollary 3. Assuming the existence of one-to-one one-way functions, for any n, t, ` ∈ N
with t > 2n/3, there is a construction of a t-out-of-n secret sharing scheme satisfying noisy
leakage-resilient continuous non-malleability under selective k-joint leakage and tampering at-
tacks; moreover, the scheme achieves asymptotic rate 1, which is optimal.

Proof. It is well known that IND-CCA secure SKE schemes can be constructed in a black-
box way from any OWF, whereas the information dispersal can be instantiated using linear
algebra over finite fields [Rab89]; as for the continuously non-malleable secret sharing scheme
we can take the one given by Corollary 2. Finally, when applying Theorem 3 with t∗ = 1, the
restriction on the tampering queries disappears (any subset either contains at least t∗ = 1 share
in T or does not contain any share in T ) and we obtain the standard definition of continuous
non-malleability against (t− 1)-joint tampering attacks; since t∗ = 1, the asymptotic rate11 of
the construction is one, which, by Theorem 2, is optimal.

6.3 Breaking the Rate-One Barrier

Finally, Theorem 3 also allows to obtain the first non-malleable secret sharing scheme against
independent tampering attacks with rate larger than one.

Corollary 4. Assuming the existence of one-to-one one-way functions, for any n, t ∈ N with
t > 2n/3, there is a construction of a t-out-of-n secret sharing scheme satisfying one-time non-
malleability under independent tampering attacks; moreover, the scheme achieves asymptotic
rate t/2.

Proof. The construction is the same of Theorem 3 with t∗ = t/2,12 therefore the concrete
instantiation follows by Corollary 3.

The proof of security follows by a simple reduction to non-malleability against joint tam-
pering. In particular, assume that there exists an adversary A which is able to break one-time
non-malleability by submitting an independent tampering query (T , f) to the tampering oracle.
Then, it is possible to construct a reduction Â which partitions T into two subsets B1,B2 of t/2
shares each, runs A, forwards the tampering query (T , f) to the tampering oracle (recall that
any independent tampering query is also a k-joint tampering query for all k ≥ 1), and finally
returns the tampered message µ̃ to A and outputs the same distinguishing bit of A. Clearly, the
attacker Â perfectly simulates the view of A, and moreover the condition |B1∪T | = |B2∪T | = t/2
is satisfied.

Remark 3. Corollary 4 can be trivially extended to include noisy-leakage resilience. Moreover,
it can also be extended to continuous non-malleability if we assume that the reconstruction set
T is the same across all tampering queries.

11For the information dispersal, it suffices to define IDisp(µ) := (µ, . . . , µ) (i.e., the same message repeated n
times) and IRec(µ) := µ.

12For the sake of simplicity, assume t even. When t is odd, we obtain t∗ = (t− 1)/2.
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A Leakage-Resilient One-Time Non-Malleability

The blueprint of our scheme is the same as in [GSZ20]. However, we additionally consider a
noisy-leakage resilience property from one of the building blocks.

Let Π = (Share,Rec) be the t-out-of-n Shamir’s secret sharing scheme. For simplicity we
assume that Π can support messages of variable length, namely the sharing procedure chooses a
field that is large enough to encode the input message µ, we denote such field as F(|µ|), or simply
F when the message is clear from the context. A share σi of Π is a tuple (i, x) where i ∈ [n]
and x ∈ F is a field element; in particular, if p is the polynomial chosen by the Share algorithm,
for all i ∈ [n], σi = (i, p(i)). Let Si(|µ|) := {(i, x) : x ∈ F(|µ|)}, clearly a secret sharing of µ has
support S1(|µ|)× · · · × Sn(|µ|). Consider the function idx that, upon input a tuple σ = (i∗, x),
outputs the first component idx(σ) = i∗; in particular, for a share σi generated by the sharing
function Share, it holds that idx(σi) = i. Finally, let Π′ = (Share′,Rec′) be a split-state code
with codeword space SL ×SR and Com be a non-interactive commitment scheme. Consider the
following derived scheme Π∗ = (Share∗,Rec∗).

• Algorithm Share∗: upon input µ, first compute(σ1, . . . , σn)←$ Share(µ). Then, for each

i ∈ [n], compute (σL,i, σR,i)←$ Share′(σi) and (σ
(1)
R,i , . . . , σ

(n)
R,i )←$ Share(σR,i). Finally, set

σ∗i = (σL,i, (σ
(i)
R,j)j∈[n]) for all i ∈ [n] and output (σ∗1, . . . , σ

∗
n).

• Algorithm Rec∗: upon input shares (σ∗i )i∈I , parse σi = (σL,i, (σ
(i)
R,j)j∈[n]) for all i ∈ I

and compute σR,i = Rec((σ
(j)
R,i)j∈I) and σi = Rec′(σL,i, σR,i); check that there exist no

distinct i1, i2 ∈ I such that idx(σi1) = idx(σi2) (and output ⊥ otherwise). Finally, output
µ = Rec((σi)i∈I).

We are now ready to state the following theorem.

Theorem 6. Let n, t ∈ N, `L, `R ≥ 0 and ε′ ∈ [0, 1]. Assume that Π′ is an asymmetric
(`L, `R, ε

′, t)-NLR-NMC satisfying the following property: There exists σ∗L ∈ SL such that, for
any µ, there exists σR ∈ SR such that Rec′(σ∗L, σR) = µ. Then, the above secret sharing scheme
Π∗ is a t-out-of-n (t− 1, `∗, ε)-NLR-NMSS so long as:

`R ≥ (t− 1) · `∗ + |µ| and `L ≥ `∗ + n · (t− 1) · sR,

where |µ| ∈ N is the length of the message, sR = log |SR| is the size of a right share under Π′

and ε = 2n2 · 2−|µ| + 2nε′.

The privacy property of Π∗ follows readily by privacy of Π; in what follows, we focus on the
proof of leakage-resilient continuous non-malleability.

For r ∈ [n], consider the auxiliary hybrid experiments Hybr(λ, b) described in Fig. 5
along with the original experiment in order to highlight the main differences. In particular,
in Hybr(λ, b), we replace the first r shares (σ1, . . . , σr) from the first application of Π with
random and independent values (σ′1, . . . , σ

′
r), letting the remaining shares σ′r+1, . . . , σ

′
n the same

as the original experiment. Note that, when r = 0, we do not replace any share, hence, for all
b ∈ {0, 1}, Hyb0(λ, b) ≡ LR-NMSSµ0,µ1

Π∗,A,B(λ, b).
The lemma below shows that the above hybrid experiments are all statistically close.

Lemma 9. For all b ∈ {0, 1}, and all r ∈ [n], it holds that{
Hybr−1(λ, b)

}
λ∈N

s
≈ {Hybr(λ, b)}λ∈N .

Proof. The difference between the two hybrids is that in Hybr(λ, b) the share σ′r is uniformly
random, whereas in Hybr−1(λ, b) the share σ′r is set to be σr (as defined in the original exper-
iment). For any j ∈ [n], let ξ(j) ∈ {1, 2} be the index such that j ∈ Bξ(j). The proof proceeds
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LR-NMSSµ0,µ1

Π∗,A,B(λ, b) Hybµ0,µ1
r (λ, b) :

(σ1, . . . , σn)←$ Share(µb)

(σ′1, . . . , σ
′
n)←$ ×i∈[n] Si(|µb|)

∀i > r, σ′i := σi

∀i ∈ [n] :
(σL,i, σR,i)←$ Share′(σi)

(σL,i, σR,i)←$ Share′(σ′i)

(σ
(1)
R,i , . . . , σ

(n)
R,i )←$ Share(σR,i)

σ∗i := (σL,i, (σ
(i)
R,j)j∈[n])

σ∗ := (σ∗1, . . . , σ
∗
n)

(T , f, α)←$ A
Oleak(σ

∗,·)
1 (1λ)

µ̃←$Otamp(σ∗, T , f)
Return A2(α1; µ̃)

Algorithm Split((σ∗i )i∈T ):

σR,i = Rec((σ
(j)
R,i)j∈T )

σi = Rec′(σL,i, σR,i)
Output (σi)i∈T

Oracle Otamp(σ∗, T , (f1, . . . , fm)):

∀i ∈ [m] : σ̃∗Bi := fi(σ
∗
Bi)

σ̃∗ = (σ∗1, . . . , σ
∗
n)

∀i ∈ T , σ̃∗i = (σ̃L,i, (σ̃
(i)
R,j)j∈[n])

(σ̃i)i∈T = Split((σ̃∗i )i∈T )
If ∃i1, i2 ∈ T : idx(σ̃i1) = idx(σ̃i2)

Return ⊥
∀i1, i2 ∈ T : σ̃i1 = σ′i2

Let σ̃i1 := σi2
µ̃ = Rec((σ̃i)i∈T )
If µ̃ ∈ {µ0, µ1}, return �
Return µ̃

Oracle Oleak(σ
∗, (g1, . . . , gm)):

Return g1(σ∗B1
), . . . , gm(σ∗Bm)

Figure 5: Experiments in the proof of Theorem 6. The instructions boxed in red are the
modifications introduced by the hybrid experiment. For compactness, we denote by Split the

algorithm that reconstructs the shares σi from the shares (σL,i, (σ
(i)
R,j)j∈[n]).

by reduction to leakage-resilient t-time non-malleability of Π′. In more detail, for a fixed choice
of b ∈ {0, 1} and r ∈ [n], let A be an adversary telling apart the two hybrids with probability
at least 1/poly(λ). Consider the following (possibly inefficient) adversary A′ attacking Π′.

1. Setup. Set the challenge messages to be σr and σ′r sampled as in Hybr(λ, b).

2. Shared randomness. For every i ∈ [n] \ {r}, sample σL,i, (σ
(j)
R,i)j∈[n] according to

Hybr(λ, b). Then, let iL = ξ(r) and iR = 3 − iL ∈ {1, 2}. Let J be any set such

that BiL ⊆ J ⊆ [n] and |J | = t − 1. For all j ∈ J , sample the shares σ
(j)
R,r uniformly at

random. Finally, sample the left share σ∗L given by property (i) of Π′.

After this step, the reduction A′ knows σ∗L and the following values:

∀i ∈ [n] \ J : σL,i, (σ
(i)
R,j)j∈[n]\{r} (24)

∀i ∈ J \ {r} : σL,i, (σ
(i)
R,j)j∈[n] (25)

For i = r : (σ
(i)
R,j)j∈[n] (26)

3. Leakage queries. Upon receiving a leakage query g = (g1, g2) from A, construct the
following leakage functions.

(a) Let gL be the leakage function which takes as input the value σL,r, plugs it in Eq. (6)
and appends the values of Eq. (5) to obtain (σ∗i )i∈BiL (recall that BiL ⊆ J ), and
finally outputs ΛiL = giL((σ

∗
i )i∈BiL ).

(b) Let gR be the leakage function which takes as input the value σR,r, computes the

values (σ
(i)
R,r)i∈[n]\J using σR,r and the values (σ

(i)
R,r)i∈J and plugs them in Eq. (4) in
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order to obtain (σ∗i )i∈[n]\J ; then, appends the values of Eq. (5) to obtain (σ∗i )i∈BiR ,
and finally outputs ΛiR = giR((σ∗i )i∈BiR ).

Send (gL, gR) to the leakage oracle and forward the answer Λ1||Λ2 to A.

4. Tampering query. Upon receiving the tampering query (T , f = (f1, f2)) from A, con-
struct the following leakage and tampering functions.

(a) Let ĝL be the leakage function which takes as input the value σL,r, plugs it in Eq. (6)
and appends the values of Eq. (5) to obtain (σ∗i )i∈BiL , computes the tampered shares

(σ̃∗i )i∈BiL = fiL((σ
∗
i )i∈BiL ), and finally outputs the values (σ̃

(i)
R,j)i∈BiL ,j∈T .

(b) For all i ∈ T , let fL,i be the function which takes as input the value σL,r, obtains
(σ∗j )j∈BiL by appending the values of Eq. (5) and plugging σL,r into Eq. (6), and then
computes the tampered shares (σ̃∗j )j∈BiL = fiL((σ

∗
j )j∈BiL ) and outputs σ̃L,i if i ∈ BiL

and the special share σ∗L otherwise.

(c) For all i ∈ T , let fR,i be the function which takes as input the value σR,r, computes

the values (σ
(i)
R,r)i∈[n]\J using σR,r and the values (σ

(i)
R,r)i∈J and plugs them in Eq. (4)

in order to obtain (σ∗i )i∈[n]\J ; then, appends the values of Eq. (5) to obtain (σ∗i )i∈BiR ,
applies fiR to (σ∗i )i∈BiR , thus obtaining (σ̃∗i )i∈BiR , uses these values along with the

values (σ̃
(i)
R,j)i∈BiL ,j∈T obtained by ĝL in order to reconstruct σ̃R,i for all i ∈ T , and

finally outputs σ̃R,i if i ∈ BiL and a share σ∗R,i such that Rec′(σ∗L, σ
∗
R,i) = Rec′(σ̃L,i, σ̃R,i)

otherwise.

Send the leakage query (ĝL, ε), thus obtaining (σ̃
(i)
R,j)i∈Bi∗ ,j∈[n]. Next, for all i ∈ T , send

the tampering query (fL,i, fR,i), thus obtaining the tampered share σ̃i (or ⊥, in which
case return ⊥ to A), and replace σ̃i with σr if σ̃i = � or replace σ̃i with σj if there exists
j ∈ [n] such that σ̃i = σ′j . Finally, check that there exist no distinct i1, i2 ∈ T s.t.
idx(σi1) = idx(σi2) (and output ⊥ otherwise), reconstruct µ̃ = Rec((σ̃i)i∈T ), replace µ̃
with � if µ̃ ∈ {µ0, µ1} and return µ̃ to A.

5. Guess. Return the same distinguishing bit as that of A.

For the analysis, call Badi the event that one tampering query modifies the shares so that
the tampered value (σ̃L,i, σ̃R,i) is a valid encoding of σ′r (i.e., the adversary purposely replaces
(σL,i, σR,i) with a valid encoding of σ′r). Clearly, the probability of the event Badi in the hybrid
experiment Hybr−1 is O(2−λ) as provoking the event corresponds to guessing the value σ′r which
is uniformly random over Sr(|µb|). Furthermore, the reduction perfectly simulates Hybr−1(λ, b)
if the target codeword encodes σr and conditioning on Bad =

⋃
i Badi not happening. On the

other hand, if the target codeword encodes σ′r, the reduction perfectly simulates Hybr(λ, b).
In particular, the latter holds because: (i) By perfect privacy of Shamir’s secret sharing the
distribution of the shares (σ∗i )i∈BiL and (σ∗i )i∈BiR computed inside the leakage and tampering
oracles is identical to that of the target secret sharing of either Hybr−1(λ, b) or Hybr(λ, b); (ii)
The auxiliary information leaked by the function ĝL, along with the answer to the tampering
queries (fL,i, fR,i)i∈[t], yield a perfect simulation of A’s tampering query. Hence, to conclude the
proof, it only remains to show that the constraints on the leakage hold. The amount of leakage
performed by the reduction is exactly the one performed by A, plus the leakage used to obtain

the tampered shares (σ̃
(i)
R,j)i∈Bi∗ ,j∈[n], therefore we need:

`L ≥ `∗ + t · (t− 1) · sR and `R ≥ `∗.

The lemma follows.

Hence, by repeatedly applying the triangular inequality along with Lemma 9, we get that,
for all b ∈ {0, 1},

{Hyb0(λ, b)}λ∈N
s
≈ {Hybn(λ, b)}λ∈N .
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The following lemma concludes the proof.

Lemma 10. {Hybn(λ, 0)}λ∈N ≡ {Hybn(λ, 1)}λ∈N.

Proof. First, note that all the leakage functions are computed using the fake shares σ′1, . . . , σ
′
n

and, therefore, the view of the adversary before the tampering query is independent of the
message being µ0 or µ1. When the tampering query (T , f) occurs, let {σ̃i}i∈T be the tampered
shares.

• If {σ̃i}i∈T ⊆ {σ′i}i∈[n], then the adversary receives � independently of the message being
µ0 or µ1.

• If {σ̃i}i∈T ∩ {σ′i}i∈[n] = ∅, then no share σ̃i is replaced with the real share σi inside the
tampering oracle, therefore the view of the adversary remains independent of the message
being µ0 or µ1.

• If none of the above holds, the adversary gets to see at most t − 1 shares, thus we can
reduce to the perfect privacy of Shamir Secret Sharing.

B Overcoming the Capacity Upper Bound

In this section, we show that the negative result on the best achievable rate for continuously non-
malleable secret sharing against joint tampering attacks can be overcome in idealized models.
We do so by describing a general template for a rate compiler based on a cryptographic hash
function H : {0, 1}∗ → {0, 1}λ.

Let (IDisp, IRec) be an information dispersal, Π = (Share,Rec) be a secret sharing scheme,
and Σ′ = (Enc,Dec) be a secret-key encryption scheme. Consider the following derived secret
sharing scheme Π∗ = (Share∗,Rec∗).

• Algorithm Share∗: upon input a message µ, sample a random key κ←$K, compute
γ←$ Enc(κ, µ), (γ1, . . . , γn)← IDisp(γ) and (κ1, . . . , κn)←$ Share(κ); finally, for all i ∈ [n],
let σi = (h, κi, γi) such that h = H(γ), and output (σ1, . . . , σn).

• Algorithm Rec∗: upon input a set (σi)i∈I of at least t shares parse σi = (hi, κi, γi) for
all i ∈ I, check that all the values hi agree on a single value h (and return ⊥ if not),
reconstruct κ = Rec((κi)i∈I) and γ = IRec((γi)i∈I), check that h = H(γ) (and return ⊥ if
not), and finally output µ = Dec(κ, γ).

We start by showing that the asymptotic rate of the above secret sharing scheme is equal
to the reconstruction threshold t, and thus it matches the best achievable rate for (malleable)
secret sharing scheme in the computational setting. Furthermore, in the following subsections
we will also show that the scheme is continuously non-malleable against joint tampering attacks
assuming that either (i) H is modeled as a non-programmable random oracle, or (ii) H is
instantiated using Pedersen’s hash function in the algebraic group model [FKL18].

Theorem 7. The asymptotic rate of Π∗ is % = t.

Proof. The length of the key κ for the SKE scheme Σ, and thus the size of the shares of the
secret sharing scheme Π, only depend on the security parameter λ, the number of parties n and
the tolerated leakage ` (but not on the length |µ| of the message); call s0(λ, n, `) the length of
this portion of the final shares (namely, κi). On the other side, it is possible to achieve length
of the ciphertext |γ| = |µ|+O(λ), hence the length of each share γi of the information dispersal

amounts to |γi| = |γ|
t = |µ|+O(λ)

t . Putting it together, we have obtained:

s(λ, n, `, |µ|) = s0(λ, n, `) +
|µ|+O(λ)

t
,
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LR-CNMSSµ0,µ1

Π∗,A,B(λ, b) Hybµ0,µ1

Π∗,A,B(λ, b) :

κ←$K
κ̂←$K
(κ1, . . . , κn)←$ Share(κ)

(κ1, . . . , κn)←$ Share(κ̂)

γ←$ Enc(κ, µb)
(γ1, . . . , γn) = IDisp(γ)
h = H(γ)
∀i ∈ [n] :

σi := (h, κi, γi)
σ := (σ1, . . . , σn)
stop← false

Return AOtamp(σ,·),Oleak(σ,·),H(·)(1λ)

Oracle Oleak(σ, (g
H
1 , . . . , g

H
m)):

If stop = true, return ⊥
Else, return gH1 (σB1), . . . , gHm(σBm)

Oracle Otamp(σ, T , (fH1 , . . . , fHm)):

If stop = true, return ⊥
∀i ∈ [m] : σ̃Bi := fHi (σBi)
σ̃ = (σ1, . . . , σn)

∀i ∈ T , σ̃i = (h̃i, κ̃i, γ̃i)

If ∃i1, i2 ∈ T : h̃i1 6= h̃i2
stop← true and return ⊥

Else, let h̃ := h̃i
γ̃ = IRec((γ̃i)i∈T )

If H(γ̃) 6= h̃
stop← true and return ⊥

If IDisp(γ̃)T 6= (γ̃i)i∈T
stop← true and return ⊥

κ̃ = Rec((κ̃i)i∈T )
If κ̃ = ⊥, stop← true and return ⊥
If κ̃ = κ̂, κ̃← κ

µ̃ = Dec(κ̃, γ̃)
If µ̃ = ⊥, stop← true and return ⊥
If µ̃ ∈ {µ0, µ1}, return �
Else return µ̃

Figure 6: Experiments in the proof of Theorem 8. The instructions boxed in red are the
modifications introduced by the hybrid experiment.

that translates into

% = inf
λ∈N

lim
|µ|→∞

|µ|
s(λ, n, `, |µ|)

= inf
λ∈N

lim
|µ|→∞

t · |µ|
|µ|+ t · poly(λ, n, `)

= t.

B.1 Analysis in the Random Oracle Model

In the random oracle model (ROM), a secret sharing scheme ΠH = (ShareH,RecH) may rely on
an ideal hash function H sampled uniformly among all possible functions mapping {0, 1}∗ into
{0, 1}λ. In this setting, the adversary A = AH is allowed to make random-oracle queries and
to specify tampering (resp. leakage) functions fH (resp. gH) that can additionally query the
random oracle.

Theorem 8. Let n, t, ` ∈ N be parameters. Assume that:

• (IDisp, IRec) is a t-out-of-n information dispersal scheme;

• (Share,Rec) is a t-out-of-n (`, t− 1)-LR-CNMSS;

• (Enc,Dec) is an IND-CCA secure secret-key encryption scheme.

Then, Π∗ is a t-out-of-n (`, t− 1)-LR-CNMSS in the non-programmable random oracle model.
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Similarly to the proof of Theorem 3, we consider a hybrid experiment in which we replace the
secret sharing of the key κ with a secret sharing of an unrelated random key κ̂ (see Figure 6).
The lemma below states that this experiment is computationally indistinguishable from the
original security game.

Lemma 11. For all µ0, µ1 ∈M, all (t− 1)-sized partitions B of [n], and all b ∈ {0, 1}, it holds
that:

{LR-CNMSSµ0,µ1

Π∗,A,B(λ, b)}λ∈N
c
≈ {Hybµ0,µ1

Π∗,A,B(λ, b)}λ∈N.

Proof. By reduction to leakage-resilient continuous non-malleability of the underlying secret
sharing scheme. Fix any b ∈ {0, 1}, and suppose that there exist two messages µ0, µ1 ∈ M,
a (t − 1)-sized partition B = (B1, . . . ,Bm) of [n], and a PPT adversary A able to distinguish
between the two experiments with non-negligible probability. Consider the following reduction
Â against leakage-resilient continuous non-malleability of Π.

1. Setup. Sample a random key κprf ∈ {0, 1}λ for a pseudorandom function F(κprf , ·) map-
ping ciphertexts into λ-bit strings, and let QRO be an initially empty set. Set the challenge
messages to be κ and κ̂ sampled as in the hybrid experiment, then compute γ←$ Enc(κ, µ),
(γ1, . . . , γn) ← IDisp(γ) and h = F(κprf , γ). In what follows, all tampering and leakage
functions constructed by the reduction implicitly hard-wire the value h, the shares (γj)j∈Bi ,
the list QRO and (a description of) the query they refer to.

2. Random oracle queries. Upon input any value x, run h = F(κprf , x), add (x, h) to QRO

and return h.

3. Leakage queries. Upon input a leakage query (g1, . . . , gm), for all i ∈ [m], construct the
leakage function ĝi which takes as input the shares (κj)j∈Bi , runs Λi = gi((σj)j∈Bi) for
σj := (h, κj , γj), and outputs Λi; then, send the leakage query (ĝ1, . . . , ĝm) to the target
leakage oracle and forward the answer to A.

4. Tampering queries. Upon input a tampering query (T , (f1, . . . , fm)), execute the fol-
lowing steps.

(a) Obtain the tampered hash. For all i ∈ [m], construct the function ĥi which takes as in-
put the shares (κj)j∈Bi , computes the tampering (h̃j , κ̃j , γ̃j)j∈Bi = fi((h, κj , γj)j∈Bi)
and outputs h̃j for some j ∈ Bi ∩ T if h̃j1 = h̃j2 for all j1, j2 ∈ Bi ∩ T (and ⊥
otherwise). Run procedure LeakTamperT (ĥ1, . . . , ĥm) to obtain either the tampered
hash h̃ or ⊥.

(b) Obtain the tampered ciphertext. For all i ∈ [m], construct the function ĥ′i which also
hard-wires the value h̃ and all the previous leakage and tampering queries, takes as
input the shares (κj)j∈Bi , runs all the hard-wired leakage and tampering functions,

creates a list Q(i)
RO of all the random-oracle queries performed by such functions and

finally searches for an item (γ̃, h̃) in QRO ∪Q
(i)
RO and outputs γ̃ if such item is found

(and otherwise outputs ⊥). Run procedure LeakTamperT (ĥ′1, . . . , ĥ
′
m) to obtain either

the tampered ciphertext or ⊥.

(c) Check that everything is correct. For all i ∈ [m], construct the function ĥ′′i which
also hard-wires the values h̃ and γ̃, takes as input the shares (κj)j∈Bi , computes
(γ̂1, . . . γ̂n) = IDisp(γ̃) and (h̃j , κ̃j , γ̃j)j∈Bi = fi((h, κj , γj)j∈Bi) and, for all j ∈ Bi ∩T ,
checks that h̃j = h̃ and γ̃j = γ̂j , replacing the shares (κj)j∈Bi with ⊥ if not. Run

procedure CheckEqT (ĥ′′1, . . . , ĥ
′′
m) to obtain either �, if the check confirms h̃ and γ̃,

or ⊥.

(d) Obtain the tampered key. For all i ∈ [m], construct the tampering function f̂i which
takes as input all the shares (κj)j∈Bi , computes the tampering (h̃j , κ̃j , γ̃j)j∈Bi =
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fi((h, κj , γj)j∈Bi) and outputs (κ̃j)j∈Bi . Send (T , (f̂1, . . . , f̂m)) to the tampering or-
acle, obtaining a tampered key κ̃ ∈ K ∪ {�,⊥}.

(e) Obtain the tampered message. If any of the previous steps resulted in a ⊥, output
⊥ and self-destruct; otherwise, compute µ̃ = Dec(κ̃, γ̃), replacing κ̃ with κ if κ̃ = �,
and return µ̃ to the adversary (and self-destruct if µ̃ = ⊥).

5. Guess. Output the same distinguishing bit as A does.

Note that the reduction Â answers random oracle queries consistently by replacing H with a
PRF F(κprf , ·).13 The latter only requires the random oracle to be non-adaptively programmable,
which is known to be equivalent to a non-programmable random oracle [BM15]. By security
of the PRF, this change is unnoticed by the attacker. (The reduction is straightforward, and
therefore omitted.)

Consider the following event Bad, defined over the probability space of the original experi-
ment: The event becomes true if the attacker ever submits a query to the tampering oracle that
triggers the condition κ̃ = κ̂, where the key κ̂ is sampled at the beginning of the experiment.
It is easy to see that, conditioning on Bad, the above reduction perfectly emulates the view of
the adversary in experiment LR-CNMSSµ0,µ1

Π∗,A (λ, b) when (κ1, . . . , κn) is a secret sharing of κ,

and perfectly emulates the view of the adversary in Hybµ0,µ1

Π∗,A (λ, b) when (κ1, . . . , κn) is a secret

sharing of κ̂. Since, using a union bound, Pr[Bad] ≤ poly(λ) · 2−λ = negl(λ), by a standard
argument the two experiments are computationally indistinguishable. The lemma follows.

The lemma below concludes the proof of Theorem 8.

Lemma 12. For all µ0, µ1 ∈M, and all (t− 1)-sized partitions B of [n], it holds that:

{Hybµ0,µ1

Π∗,A (λ, 0)}λ∈N
c
≈ {Hybµ0,µ1

Π∗,A (λ, 1)}λ∈N.

Proof. By reduction to IND-CCA security of the symmetric encryption scheme. Suppose that
there exist two messages µ0, µ1, a (t−1)-sized partition B of [n], and a PPT adversary A that is
able to distinguish between Hyb(λ, 0) and Hyb(λ, 1) with non-negligible probability. Consider
the following reduction A′ attacking IND-CCA security of Σ.

1. Setup. Sample a random key κprf ∈ {0, 1}λ for a pseudorandom function F(κprf , ·) map-
ping ciphertexts into λ-bit strings, and let QRO be an initially empty set. Set the challenge
messages to be µ0 and µ1, obtain the challenge ciphertext γ̂, sample a key κ̂←$K and
compute (γ1, . . . , γn) = IDisp(γ̂), (κ1, . . . , κn)←$ Share(κ̂) and h = F(κprf , γ̂). Finally, for
all i ∈ [n], construct the share σ∗i := (h, κi, γi).

2. Random oracle queries. Upon input any value x, run h = F(κprf , x), add (x, h) to QRO

and return h.

3. Leakage queries. Answer leakage queries as in the original experiment.

4. Tampering queries. Upon input a tampering query (T , (f1, . . . , fm)), for all i ∈ [m],
compute (σ̃j)j∈Bi = fi((σj)j∈Bi), perform the consistency checks on the tampered hash h̃
and the tampered ciphertext γ̃ (and output ⊥ if any test fails) and then reconstruct the
tampered key κ̃ ∈ K. If κ̃ = κ̂, obtain the tampered message µ̃ ∈ M∪ {⊥} by sending γ̃
to the decryption oracle; otherwise, compute µ̃ = Dec(κ̃, γ̃). Finally, return µ̃ to A (and
self-destruct if µ̃ = ⊥).

5. Guess. Output the same distinguishing bit as A.

For the analysis, note that the reduction is perfect and, in particular, for b ∈ {0, 1}, it perfectly
simulates Hybµ0,µ1

Π∗,A,B(λ, b) whenever the challenge ciphertext γ is an encryption of µb. The only
difference is that random-oracle queries are answered using a PRF, but as before this change

13Such a PRF exists assuming one-way functions, which are anyway necessary for continuous non-malleability.
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cannot affect the advantage of A by more than a negligible amount (by security of the PRF).
This concludes the proof of the lemma.

The proof of Theorem 8 now follows by combining the above lemmas.

B.2 Analysis in the Algebraic Group Model

Let GroupGen a polynomial-time algorithm that upon input the security parameter 1λ outputs
the description (G, g) of a cyclic group of prime order q ≥ 2λ where the discrete logarithm
(DLOG) assumption holds. We use the implicit notation of Escala et al. [EHK+13] for groups.
In particular, we use the additive notation for G and let [x] := x · g where g is a generator of G
and x ∈ Zq. Let H = (H.KGen,H.Eval) be a keyed hash function, where algorithm KGen takes
as input a description of the group G and outputs a public key crs ∈ {0, 1}∗, whereas algorithm
Eval takes as input crs and a string x and outputs a value h.
Consider the following keyed hash function with domain Zkq , for some k ∈ N:

• H.KGen(G) samples [g]←$ Gk uniformly at random and output crs = (G, [g])

• H.Eval(crs,x) outputs [g]T · x.

It is easy to see that the above hash function is collision resistant assuming hardness of DLOG.
We say that a tampering function is algebraic [FKL18], if given as input the description of a
group G and group elements [x] ∈ Gn for n ∈ N and a string x′ ∈ {0, 1}∗ it outputs: (i) [y] ∈ Gm

for m ∈ N, (ii) a string y′ ∈ {0, 1}∗, and (iii) an auxiliary matrix M such that yT = xT ·M.
The theorem below states that the secret sharing Π∗ instantiated with the above keyed hash

function is leakage-resilient continuously non-malleable under the DLOG assumption, so long
as the tampering queries are restricted to be algebraic. We refer to the latter restriction as
“security in the algebraic group model”. Wlog., we will assume that the symmetric encryption
scheme has message and ciphertext space equal to Zkq . Note that since we now rely on a keyed
hash function, Π∗ is a secret sharing scheme in the CRS model (as defined in [BFV19]). For
simplicity, in the proof we will stick to the case where the partition B is chosen independently
of the CRS. However, it is not hard to see that security still holds even if we let the adversary
choose B as function of the CRS.

Theorem 9. Let n, t, ` ∈ N be parameters. Assume that:

• (IDisp, IRec) is a t-out-of-n information dispersal;

• (Share,Rec) is a t-out-of-n (`, t− 1)-LR-CNMSS;

• (Enc,Dec) is an IND-CCA secure secret-key encryption scheme.

Then, Π∗ instantiated with the above keyed hash function is a t-out-of-n (`, t− 1)-LR-CNMSS
in the algebraic group model under the DLOG assumption.

Proof. Let (T , f1, . . . , fm) be a generic tampering query issued by the adversary A playing the
security experiment defining leakage-resilient continuous non-malleability. Being the functions
f1, . . . , fm algebraic, we assume that each function fi for i ∈ [m] additionally outputs a matrix

M(i) ∈ Z(k+1)×|Bi|
q (ignored by the tampering oracle) which is such that (h̃j)j∈Bi = ([g]T, h)·M(i).

For any j ∈ [m], let M(i) = (mj)j∈Bi and consider the matrix M = (mi)i∈[n]; then, (h̃j)j∈[n] =

([g]T, h) ·M.
Similarly to the proof of Theorem 3, we consider a hybrid experiment in which we replace the

secret sharing of the key κ with a secret sharing of an unrelated random key κ̂ (see Figure 7).
The lemma below states that this experiment is computationally indistinguishable from the
original security game.
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LR-CNMSSµ0,µ1

Π∗,A,B(λ, b) Hybµ0,µ1

Π∗,A,B(λ, b) :

κ←$K
κ̂←$K
(κ1, . . . , κn)←$ Share(κ)

(κ1, . . . , κn)←$ Share(κ̂)

γ←$ Enc(κ, µb)
(γ1, . . . , γn) = IDisp(γ)
(G, q)←$ GroupGen(1λ)
crs = (G,g)←$ H.KGen(G)
h = H.Eval(crs,γ)
∀i ∈ [n] :

σi := (h, κi, γi)
σ := (σ1, . . . , σn)
stop← false

Return AOtamp(σ,·),Oleak(σ,·)(1λ, crs)

Oracle Oleak(σ, (g1, . . . , gm)):

If stop = true, return ⊥
Else, return g1(σB1), . . . , gm(σBm)

Oracle Otamp(σ, T , (f1, . . . , fm)):

If stop = true, return ⊥
∀i ∈ [m] : (σ̃Bi ,M

(i)) := fi(σBi)

For i ∈ [m], parse M(i) := (mj)j∈Bi
M = (mj)j∈[n]

σ̃ = (σ1, . . . , σn)
(δ1, . . . , δn) = (I‖γ) ·M
∀i ∈ T , σ̃i = (h̃i, κ̃i, γ̃i)

If ∃i1, i2 ∈ T : h̃i1 6= h̃i2
stop← true and return ⊥

If ∃i1, i2 ∈ T : δi1 6= δi2
stop← true and return ⊥

Else, let h̃ := h̃i
γ̃ = IRec((γ̃i)i∈T )

γ̃ := δi
If IDisp(γ̃)T 6= (γ̃i)i∈T

stop← true and return ⊥
κ̃ = Rec((κ̃i)i∈T )
If κ̃ = ⊥, stop← true and return ⊥
If H.Eval(crs, γ̃) 6= h̃

stop← true and return ⊥
If κ̃ = κ̂, κ̃← κ

µ̃ = Dec(κ̃, γ̃)
If µ̃ = ⊥, stop← true and return ⊥
If µ̃ ∈ {µ0, µ1}, return �
Else return µ̃

Figure 7: Experiments in the proof of Theorem 9. The instructions boxed in red are the
modifications introduced by the hybrid experiment.

Lemma 13. For all µ0, µ1 ∈ M, all (t − 1)-sized partitions of [n], and all b ∈ {0, 1} it holds
that:

{LR-CNMSSµ0,µ1

Π∗,A,B(λ, b)}λ∈N
c
≈ {Hybµ0,µ1

Π∗,A,B(λ, b)}λ∈N.

Proof. We claim that the two experiments are indistinguishable unless the adversary can find a
collision in the hash function or can break leakage-resilient continuous non-malleability of the
underlying secret sharing scheme.

More precisely, consider the event that the adversary submits a tampering query such that
∃i1, i2 ∈ T : h̃i1 = h̃i2 ∧ δi1 6= δi2 . Note that this bad event is indeed a distinguishing event
between the two experiments. In fact, in the hybrid experiment the event triggers a self-destruct
while the latter does not happen in the original experiment. However, it is immediate to see that
if such an event happens then we have an algebraic adversary that breaks the collision resistance
of H (thus contradicting DLOG). In particular, the latter follows by the homomorphic property
of the hash function: Recall that M = (mj)j∈[n], then for any i ∈ [m] we have:

H.Eval(crs, δi) = [gT] · ((I‖γ) ·mi) = ([gT], h) ·mi = h̃i.
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Hence, in what follows, we can assume that whenever a tampering query is such that the
hash values (h̃i)i∈T are all the same, then also the pre-images (δi)i∈T are the same. We now
present an adversary Â attacking leakage-resilient continuous non-malleability of the underlying
secret sharing scheme. The adversary is almost identical to the corresponding one in the proof of
Lemma 11, the only difference being in how it handles the tampering queries from the adversary
A:

• Tampering queries. Upon input a tampering query (T , (f1, . . . , fm)), execute the fol-
lowing steps.

– Obtain the tampered hash. Identical to the corresponding step in the proof of
Lemma 11.

– Obtain the tampered ciphertext. For all i ∈ [m], construct the function ĥ′i which
also hard-wires the value h̃ and all the previous leakage and tampering queries,
takes as input the shares (κj)j∈Bi , runs all the hard-wired leakage and tampering
functions, and it computes (δj)j∈Bi = (I‖γ) ·M(i). If ∃i1, i2 ∈ Bi ∩ T : δi1 6= δi2 the
function outputs ⊥, else let γ̃ be this unique value and output γ̃. Run procedure
LeakTamperT (ĥ′1, . . . , ĥ

′
m) to obtain either the tampered ciphertext γ̃ or ⊥.

– Check that everything is correct. Identical to the corresponding step in the proof of
Lemma 11.

– Obtain the tampered key. Identical to the corresponding step in the proof of Lemma 11.

– Obtain the tampered message. Identical to the corresponding step in the proof of
Lemma 11.

The next lemma concludes the proof of Theorem 9. We omit the proof, as it is almost
identical to the proof of Lemma 12.

Lemma 14. For all µ0, µ1 ∈M, and all (t− 1)-sized partitions of [n], it holds that:

{Hybµ0,µ1

Π∗,A,B(λ, 0)}λ∈N
c
≈ {Hybµ0,µ1

Π∗,A,B(λ, 1)}λ∈N.
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