
Improvement of Secure Multi-Party Multiplication of (𝒌, 𝒏)

Threshold Secret Sharing Using Only 𝑵 = 𝒌 Servers

(Revised Version)

Ahmad Akmal Aminuddin Mohd Kamal1 and Keiichi Iwamura2
1Graduate School of Engineering, Department of Electrical Engineering, Tokyo University of Science, Tokyo, Japan.

2Faculty of Engineering, Department of Electrical Engineering, Tokyo University of Science, Tokyo, Japan.

ahmad@sec.ee.kagu.tus.ac.jp, iwamura@ee.kagu.tus.ac.jp

Keywords: Secure Multi-Party Computation, MPC, Secure Multiplication, (𝑘, 𝑛) Threshold Secret Sharing, Information

Theoretic Secure.

Abstract: Secure multi-party computation (MPC) allows a set of 𝑛 servers to jointly compute an arbitrary function of

their inputs, without revealing these inputs to each other. A (𝑘, 𝑛) threshold secret sharing is a protocol in

which a single secret is divided into 𝑛 shares and the secret can be recovered from a threshold 𝑘 shares.

Typically, multiplication of (𝑘, 𝑛) secret sharing will result in increase of polynomial degree from 𝑘 − 1 to

2𝑘 − 2, thus increasing the number of shares required from 𝑘 to 2𝑘 − 1. Since each server typically hold only

one share, the number of servers required in MPC will also increase from 𝑘 to 2𝑘 − 1. Therefore, a set of 𝑛

servers can compute multiplication securely if the adversary corrupts at most 𝑘 − 1 < 𝑛/2 of the servers. In

this paper, we differentiate the number of servers 𝑁 required and parameter 𝑛 of (𝑘, 𝑛) secret sharing scheme,

and propose a method of computing (𝑘 − 1) sharing of multiplication 𝑎𝑏 by using only 𝑁 = 𝑘 servers. By

allowing each server to hold two shares, we realize MPC of multiplication with the setting of 𝑁 = 𝑘, 𝑛 ≥
2𝑘 − 1. We also show that our proposed method is information theoretic secure against a semi-honest

adversary.

1 INTRODUCTION

1.1 Background

In recent years, advancement of IoT ecosystem and
big data had attracted considerable anticipation that it
will be possible to utilize big data to obtain valuable
statistical data. Here, big data refer to large quantities
of unstructured and semi structured data. Analyzation
of these data allows researchers and businesses to
extract important and useful information. However,
since big data also includes individuals’ privacy
information, there is a risk that their privacy
information can be leaked if it is not used correctly.
Therefore, a method that allows for the utilization of
big data while protecting sensitive information such
as individuals’ privacy information is required. One
of the methods that can realize this is known as secure
multi-party computation (Yao, 1982). Secure multi-
party computation allows for a set of servers to jointly
compute an arbitrary function of their inputs, without
revealing these inputs to each other. Typically, there

are two main techniques that had been proposed to
realize secure multi-party computation:
homomorphic encryption (Bendlin et al. 2011;
Brakerski et al., 2011; Damgard et al., 2012;
Damgard et al., 2013; Gentry, 2009) and secret
sharing schemes (Ben-Or et al., 1988; Chaum et al.,
1988; Cramer et al., 2000; Gennaro et al., 1998;
Shingu et al., 2016; Watanabe et al., 2015). However,
homomorphic encryption is known to be typically
computationally very expensive in term of
computation cost. Therefore, secret sharing schemes
that have a relatively low computational cost are
preferable to homomorphic encryption when
considering utilization in a cloud system.

A secret sharing scheme is a protocol in which a
single secret is divided into shares, which are then
distributed. An example of a secret sharing scheme is
Shamir’s (𝑘, 𝑛) threshold secret sharing scheme
(Shamir, 1979). It divides a secret 𝑠 into an 𝑛 number
of shares, distributes the shares, and restores the
original secret 𝑠 from a threshold 𝑘 number of shares.
Any 𝑘 − 1 or smaller number of shares reveals
nothing about the secret.

The classical result of secure multi-party
computation using secret sharing scheme state that 𝑛
servers can compute any function in such a way that
any subset of up to 𝑘 − 1 < 𝑛/2 servers obtains no
information about the other servers’ inputs, except for
what can be derived from the public information
(Ben-Or et al., 1988; Hirt, 2001). Conventional
methods of secure multi-party computation using
Shamir’s (𝑘, 𝑛) secret sharing scheme perform
addition by locally adding the shares together.
However, this is not so in the case of multiplication.
For example, let secrets 𝑎 and 𝑏 be encoded by
polynomials 𝑓(𝑥) and 𝑔(𝑥) of (𝑘 − 1) degree. Note
that the free coefficient of the polynomial ℎ(𝑥) =
𝑓(𝑥)𝑔(𝑥) is 𝑎𝑏 . However, the problems of using
ℎ(𝑥) to encode the product of 𝑎 times 𝑏 is that the
degree of ℎ(𝑥) increase from 𝑘 − 1 to 2𝑘 − 2 . In
most conventional methods, this poses no problem of
interpolating ℎ(𝑥) from its 𝑛 shares since it is
assumed that parameter 𝑛 ≥ 2𝑘 − 1 . Since each
server holds only one share for each secret, this means
that, for each multiplication performed, the number of
servers required will increase from 𝑘 to 2𝑘 − 1.

Shingu et al. proposed a solution for
multiplication method called the TUS method
(Shingu et al, 2016). In this method, the secret is first
encrypted with a random number; when performing
multiplication, the encrypted secret is momentarily
restored as a scalar value and multiplication is
realized using the (𝑠𝑐𝑎𝑙𝑎𝑟 𝑣𝑎𝑙𝑢𝑒 × 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙)
approach to prevent an increase in the polynomial
degree. However, in the TUS method, there is a
limitation where input with a value of 0 is not allowed
in the protocol.

On the other hand, Watanabe et al. proposed a
solution by taking an approach of differentiating the
relationship between the number of servers required
𝑁 and parameter 𝑛 of Shamir’s (𝑘, 𝑛) secret sharing
(Watanabe et al., 2015). In other word, Watanabe et
al. had proposed a method using 𝑁 ≤ 𝑘 servers to
realize 𝑛 ≥ 2𝑘 − 1 multiplication. However, this
method still did not solve the problem of increase in
the polynomial degree. Therefore, although the
multiplication was performed using only 𝑁 = 𝑘
servers, shares required to restore the multiplication
result are 2𝑘 − 1 and not 𝑘.

1.2 Our Results

In this study, we focus on solving the problem of
increase in polynomial degree during multiplication.
We propose a new method of multiplication that
could compute 𝑘 − 1 sharing of multiplication 𝑎𝑏
using only 𝑁 = 𝑘 servers. The contributions of this
paper can be summarized as follows:

Our Contributions

─ We propose a new protocol that allows for

multiplication with the setting of 𝑛 ≥ 2𝑘 − 1 to be

performed using only 𝑁 = 𝑘 servers, and show

that 𝑘 − 1 sharing of 𝑎𝑏 can be computed by using

only 𝑁 = 𝑘 servers. (we also include protocols for

addition and scalar multiplication in Appendices 1

and 2)

─ We present a clear security evaluation and show

that our proposed method is secure against semi-

honest adversaries.

─ Finally, we present a clear evaluation of efficiency

of our method. In addition, we also present a

comparison between the methods in (Watanabe et

al., 2015; Shingu et al., 2016).

System Model
In this paper, we assume a client/server model,

where the clients (e.g. the owner of the secret
information 𝑎, 𝑏) send shares of their inputs to 𝑛
number of servers. The servers then carry out the
computation and return the results to them without
learning anything about secret information 𝑎 and 𝑏.
This model is widely used nowadays and in fact is the
business model used in Cybernetica (Sharemind). In
addition, we assume a semi-honest adversary, where
the adversary follows the protocol specification but
may try to learn more than is allowed by the protocol,
with at most 𝑘 − 1 corrupted servers. We also
assume that secure communication exists between the
client and the servers.

The organization of this paper is as follows. In

Section 2, we present preliminaries. In Section 3, we
explain the related works. In Section 4, we present our
new protocol for multiplication. In Section 5, we
discuss the security of our proposed method of
multiplication. In addition, in Chapter 6, we evaluate
our proposed method. Finally, in Chapter 7, we show
the comparison between our proposed method and
conventional methods.

2 PRELIMINARIES

In this section, we introduce some notations and
known techniques.

2.1 (𝒌, 𝒏) Threshold Secret Sharing

Scheme

A secret sharing scheme that satisfies both conditions

stated below is known as (𝑘, 𝑛) threshold secret-

sharing scheme.

─ Any 𝑘 − 1 or fewer number of shares will reveal

nothing about the original secret information 𝑠.

─ Any 𝑘 or greater number of shares will allow for

the reconstruction of the original secret

information 𝑠.

The classic methods for the (𝑘, 𝑛) threshold secret

sharing scheme is Shamir’s (𝑘, 𝑛) threshold secret

sharing scheme, proposed by Shamir (Shamir, 1979)

(Shamir’s (𝑘, 𝑛) method). In our protocol, all

computations are performed in finite field 𝐺𝐹(𝑝) and

shares of secret information 𝑠 is represented by [𝑠]̅̅̅̅
𝑖.

The protocol for the distribution and
reconstruction of Shamir’s (𝑘, 𝑛) method is as
follows.

Distribution Protocol

1. The dealer selects 𝑛 number of 𝑥𝑖 (𝑖 =
 0, 1, … , 𝑛 − 1) and assigns them as the server

𝐼𝐷.

2. The dealer selects 𝑘 − 1 random numbers

𝛼𝑙 (𝑙 = 1, 2, … , 𝑘 − 1) and generates a random

polynomial 𝑊(𝑥𝑖).

[𝑠]̅̅̅̅
𝑖 = 𝑊(𝑥𝑖) = 𝑠 + 𝛼1𝑥𝑖 + 𝛼2𝑥𝑖

2 + …
+ 𝛼𝑘−1𝑥𝑖

𝑘−1

3. The dealer then inserts the server 𝐼𝐷 into 𝑥𝑖 ,

calculates the shares [𝑠]̅̅̅̅
𝑖 corresponding to

each 𝐼𝐷, and distributes them.

Restoration Protocol

1. The player who wishes to restore the original

secret collects 𝑘 shares [𝑠]̅̅̅̅
𝑗 (𝑗 = 0, … , 𝑘 − 1).

2. The player restores the original secret 𝑠 by using

Lagrange’s Interpolation.

𝑠 = ∑ ∏
𝛼𝑗

𝛼𝑗 − 𝛼𝑖

𝑛

𝑗=1, 𝑗≠𝑖

𝑠𝑖

𝑛

𝑖=1

2.2 Multiplication Based on

Shamir’s (𝒌, 𝒏) Method

Let 𝑎 and 𝑏 be two secrets. Shares of each secret are

produced by Shamir’s (𝑘, 𝑛) method as shown below

and are distributed to 𝑛 servers. Note that 𝑖 =
0, 1, … , 𝑛 − 1.

[𝑎]̅̅ ̅̅
𝑖 = 𝑎 + 𝛼1𝑥𝑖 + 𝛼2𝑥𝑖

2 + … + 𝛼𝑘−1𝑥𝑖
𝑘−1

[𝑏]̅̅ ̅̅
𝑖 = 𝑏 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑖

2 + … + 𝛽𝑘−1𝑥𝑖
𝑘−1

Each server then computes the multiplication

between shares of 𝑎 and 𝑏 , and produces [𝑎𝑏]̅̅ ̅̅ ̅̅
𝑖 as

shown below.

[𝑎𝑏]̅̅ ̅̅ ̅̅
𝑖 = 𝑎𝑏 + … + (𝛼𝑘−1𝛽𝑘−1)𝑥𝑖

2𝑘−2

Although secrets 𝑎 and 𝑏 are shared using
polynomials of (𝑘 − 1) degree, the result of
multiplication 𝑎𝑏 is a polynomial of (2𝑘 − 2) degree.
Therefore, the problem with conventional method of
multiplication of Shamir’s (𝑘, 𝑛) method is that the
number of shares required to reconstruct 𝑎𝑏 increase
from 𝑘 to 2𝑘 − 1 . Thus, the following Theorem 1
was proposed for the passive model (Ben-Or et al.,
1988).

Theorem 1 In the passive mode, a set 𝒫 =
{𝑃1, … , 𝑃𝑛} of 𝑛 servers can compute every
specification securely if and only if the adversary
corrupts at most 𝑘 − 1 < 𝑛/2 of the servers.

2.3 Multiplication of Shares Using

Recombination Vector

As mentioned in Section 2.2, the result of

multiplication of two polynomials of degree (𝑘 − 1)

will be a polynomial of degree (2𝑘 − 2). Note that

𝑛 ≥ 2𝑘 − 1 implies that the 𝑛 product shares are

sufficient for recovering 𝑎𝑏 . However, any further

multiplication will raise the degree, and once the

degree passes 𝑛, there will be not have enough points

for the interpolation. Hence, a (𝑘 − 1) sharing of 𝑎𝑏

can be achieved by using recombination vector as

shown in (Cramer et al. 2015).

To better understand this, let us assume that the

parameter 𝑘 = 2, 𝑛 = 2𝑘 − 1 = 3 , the resulting

multiplication will be a quadratic polynomials

𝑦(𝑥𝑖) = 𝛼0 + 𝛼1𝑥𝑖 + 𝛼2𝑥𝑖
2, where 𝛼0 is the result

of the multiplication. Since 𝑛 = 3, the shares for each

server 𝐼𝐷 are as follows.

𝑦(1) = 𝛼0 + 𝛼1 + 𝛼2

𝑦(2) = 𝛼0 + 2𝛼1 + 4𝛼2

𝑦(3) = 𝛼0 + 3𝛼1 + 9𝛼2

By solving the equations above, we can state that
multiplication result 𝛼0 can always be computed
from the shares 𝑦(1), 𝑦(2) and 𝑦(3) as 𝛼0 =
 3𝑦(1) − 3𝑦(2) + 𝑦(3) . This formula was found
using simple Gaussian elimination, but is also given
by the Lagrange interpolation formula, where 𝑟 =
 (3, −3, 1) is known as the recombination vector.

More precisely, each party first shares its value of
multiplication result [𝑎𝑏]̅̅ ̅̅ ̅̅

𝑖 using polynomials of (𝑘 −
1) degree to all parties. The parties then locally
combine their shares by an inner product with the
recombination vector. By this, each party will hold
(𝑘 − 1) sharing of 𝑎𝑏 . However, the problem with
this method is that it still requires 𝑛 > 2𝑘 − 1
number of servers, therefore increasing the total
operation cost of the system.

3 RELATED WORKS

3.1 Watanabe Method

Typically, in a (𝑘, 𝑛) threshold secret sharing

scheme, a server possesses only one share. When

multiplication of shares is performed, the number of

servers required will also increase from 𝑘 to 2𝑘 − 1.
Watanabe et al. solved this problem by allowing

a server to hold two shares (Watanabe et al., 2015).
However, this method does not solve the problem of
increase in degree of polynomial from 𝑘 − 1 to 2𝑘 −
2. This means that the number of shares required to
reconstruct the result remain at 2𝑘 − 1 instead of 𝑘.
Therefore, the communication cost between the client
and the servers remain the same as all conventional
methods. Our method solves this by proposing
method of computing (𝑘 − 1) sharing of 𝑎𝑏 using
only 𝑁 = 𝑘 servers.

Due to the page limit, we only included the
distribution and multiplication protocols below. Note
that variables 𝑎, 𝑏 and all random numbers generated
are derived from finite field 𝐺𝐹(𝑝) and all
computations are performed under finite field 𝐺𝐹(𝑝).

Distribution Protocol

1. Players 𝐴 and 𝐵 each generates 2𝑛 shares from

secrets 𝑎 and 𝑏 and distributes [𝑎]̅̅ ̅̅
𝑖 , [𝑏]̅̅ ̅̅

𝑖 (𝑖 =
0, … , 𝑛 − 1) to 𝑛 servers 𝑆𝑖.

2. Player 𝐴 generates a random number 𝑟𝐴 and

distributes [𝑟𝐴𝑎]̅̅ ̅̅ ̅̅ ̅
𝑛, … . , [𝑟𝐴𝑎]̅̅ ̅̅ ̅̅ ̅

2𝑛−1 to 𝑛 servers 𝑆𝑖 .

Then, distributes shares [𝑟𝐴]̅̅ ̅̅ ̅
𝑖 of 𝑟𝐴 to 𝑛 servers 𝑆𝑖.

3. Player 𝐵 generates a random number 𝑟𝐵 and

distributes [𝑟𝐵𝑏]̅̅ ̅̅ ̅̅ ̅
𝑛, … , [𝑟𝐵𝑏]̅̅ ̅̅ ̅̅ ̅

2𝑛−1 to 𝑛 servers 𝑆𝑖 .

Then, distributes shares [𝑟𝐵]̅̅ ̅̅ ̅
𝑖 of 𝑟𝐵 to 𝑛 servers 𝑆𝑖.

Multiplication Protocol

1. Each server calculates the following:

[𝑎𝑏]̅̅ ̅̅ ̅̅
𝑖 = [𝑎]̅̅ ̅̅

𝑖 × [𝑏]̅̅ ̅̅
𝑖 (𝑖 = 0, 1, … , 𝑛 − 1)

[𝑟𝐴𝑟𝐵𝑎𝑏]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖+𝑘 = [𝑟𝐴𝑎]̅̅ ̅̅ ̅̅ ̅

𝑖+𝑘 × [𝑟𝐵𝑏]̅̅ ̅̅ ̅̅ ̅
𝑖+𝑘

3.2 The TUS Method

Shingu et al. proposed a 2-inputs-1-output multi-

party computation named the TUS method (Shingu et

al., 2016), where the secret (e.g. 𝑎) is first encrypted

with a random number (e.g. 𝛼). When performing

multiplication, the encrypted secret is momentarily

restored as a scalar value (e.g. 𝛼𝑎) and multiplication

is realized using the (𝑠𝑐𝑎𝑙𝑎𝑟 𝑣𝑎𝑙𝑢𝑒 × 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙)

approach to prevent an increase in the polynomial

degree. However, the TUS method introduced

another problem: when the reconstructed scalar value

𝛼𝑎 = 0, the adversary will learn that secret 𝑎 = 0.

Therefore, condition where the secret does not

include the value 0 is required.
Due to the page limit, we only included the

distribution and multiplication protocols below. Note
that variables 𝑎, 𝑏 and all random numbers generated
are derived from finite field 𝐺𝐹(𝑝), provided that the
secret inputs 𝑎, 𝑏 and all random numbers do not
include 0.

Distribution Protocol

1. Players 𝐴 and 𝐵 each selects 𝑘 random numbers

𝛼𝑗, 𝛽𝑗 (𝑗 = 0, 1, … , 𝑘 − 1) and computes the value

of 𝛼 = ∏ 𝛼𝑗
𝑘−1
𝑗=0 and 𝛽 = ∏ 𝛽𝑗

𝑘−1
𝑗=0 , respectively.

2. Player 𝐴 computes 𝛼𝑎 = 𝛼 × 𝑎 and distributes

𝛼𝑎, 𝛼𝑗 to 𝑛 servers using Shamir’s (𝑘, 𝑛) method.

3. Player 𝐵 computes 𝛽𝑏 = 𝛽 × 𝑏 and distributes

𝛽𝑏, 𝛽𝑗 to 𝑛 servers using Shamir’s (𝑘, 𝑛) method.

4. Each server 𝑆𝑖 (𝑖 = 0, 1, … , 𝑛 − 1) holds the

following as set of shares about secrets 𝑎, 𝑏:

[𝑎]𝑖 = [𝛼𝑎]̅̅ ̅̅ ̅̅
𝑖 , [𝛼0]̅̅ ̅̅ ̅

𝑖, … , [𝛼𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑖 ,

 [𝑏]𝑖 = [𝛽𝑏]̅̅ ̅̅ ̅̅
𝑖 , [𝛽0]̅̅ ̅̅ ̅

𝑖 , … , [𝛽𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑖

Multiplication Protocol

1. One of the servers (here, we assume server 𝑆0)

collects [𝛼𝑎]̅̅ ̅̅ ̅̅
𝑗 from 𝑘 servers. Server 𝑆0 then

restores 𝛼𝑎 and sends it to all servers 𝑆𝑖.

2. Servers 𝑆𝑖 compute [𝛼𝛽𝑎𝑏]̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 = 𝛼𝑎 × [𝛽𝑏]̅̅ ̅̅ ̅̅

𝑖.

3. 𝑘 number of servers 𝑆𝑗 each collect

shares [𝛼0]̅̅ ̅̅ ̅
ℓ, … , [𝛼𝑘−1]̅̅ ̅̅ ̅̅ ̅̅

ℓ, [𝛽0]̅̅ ̅̅ ̅
ℓ, … , [𝛽𝑘−1]̅̅ ̅̅ ̅̅ ̅̅

ℓ (ℓ =
0, 1, … , 𝑘 − 1) and restore 𝛼𝑗 , 𝛽𝑗 . Servers 𝑆𝑗 then

calculate 𝛼𝑗𝛽𝑗 = 𝛼𝑗 × 𝛽𝑗.

4. Servers 𝑆𝑗 distribute 𝛼𝑗𝛽𝑗 to all servers 𝑆𝑖 by using

Shamir’s (𝑘, 𝑛) method.

5. Each server 𝑆𝑖 now holds the following as a set of

shares for the result of 𝑎𝑏.

[𝑎𝑏]𝑖 = [𝛼𝛽𝑎𝑏]̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 , [𝛼0𝛽0]̅̅ ̅̅ ̅̅ ̅̅

𝑖 , … , [𝛼𝑘−1𝛽𝑘−1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑖

4 PROPOSED METHOD OF

MULTIPLICATION

Our protocol focus on an approach that differentiate

between parameter 𝑁, which is the number of servers

that is actually needed, and parameter 𝑛 of the (𝑘, 𝑛)

threshold secret sharing scheme, and realizes

multiplication under a setting of 𝑁 = 𝑘, 𝑛 ≥ 2𝑘 − 1.

In addition, to solve the problem of Watanabe

method, where the result of multiplication can only be

reconstructed by collecting 2𝑘 shares from 𝑘 servers,

we propose a new method of reducing the polynomial

degree of 𝑎𝑏 from 2𝑘 − 2 to 𝑘 − 1 by using

recombination vector with only 𝑁 = 𝑘 servers.
Below, for ease of understanding, we demonstrate

multiplication under the setting of 𝑁 = 𝑘, 𝑛 ≥ 2𝑘 −
1 . In the protocol below, secrets 𝑎, 𝑏 , all random
numbers and all computations are performed in finite
field 𝐺𝐹(𝑝)．

Notation:

─ [𝑎]𝑖: Share of 𝑎 for server 𝑆𝑖 where the number of

shares required for reconstructing 𝑎 is 𝑘

─ [𝛼1𝛽1𝑎𝑏]𝑖
∗: Share of 𝛼1𝛽1𝑎𝑏 for server 𝑆𝑖 where

the number of shares required for reconstructing

𝛼1𝛽1𝑎𝑏 is 2𝑘 − 1.

Distribution Protocol

1. Player 𝐴 generates 2𝑘 random numbers

𝛼1,0, … , 𝛼1,𝑘−1, 𝛼2,0, … , 𝛼2,𝑘−1 and computes the

following.

𝛼1 = ∏ 𝛼1,𝑗

𝑘−1

𝑗=0

 𝛼2 = ∏ 𝛼2,𝑗

𝑘−1

𝑗=0

2. Player 𝐴 generates 2𝑘 shares of secret 𝑎 using

Shamir’s (𝑘, 2𝑘) method and computes the

following.

[𝛼1𝑎]0 = 𝛼1 × [𝑎]0, … , [𝛼1𝑎]𝑘−1 = 𝛼1 × [𝑎]𝑘−1

[𝛼2𝑎]𝑘 = 𝛼2 × [𝑎]𝑘 , … , [𝛼2𝑎]2𝑛−1 = 𝛼2 × [𝑎]2𝑛−1

3. Player 𝐴 sends [𝛼1𝑎]𝑖 , [𝛼2𝑎]𝑖+𝑘 , 𝛼1,𝑖, 𝛼2,𝑖 to server

𝑆𝑖 (𝑖 = 0, 1, … , 𝑘 − 1).

4. Player 𝐵 generates 2𝑘 random numbers

𝛽1,0, … , 𝛽1,𝑘−1, 𝛽2,0, … , 𝛽2,𝑘−1 and computes the

following.

𝛽1 = ∏ 𝛽1,𝑗

𝑘−1

𝑗=0

 𝛽2 = ∏ 𝛽2,𝑗

𝑘−1

𝑗=0

5. Player 𝐵 generates 2𝑘 shares of secret 𝑏 using

Shamir’s (𝑘, 2𝑘) method and computes the

following.

[𝛽1𝑏]0 = 𝛽1 × [𝑏]0, … , [𝛽1𝑏]𝑘−1 = 𝛽1 × [𝑏]𝑘−1

[𝛽2𝑏]𝑘 = 𝛽2 × [𝑏]𝑘 , … , [𝛽2𝑏]2𝑛−1 = 𝛽2 × [𝑏]2𝑛−1

6. Player 𝐵 sends [𝛽1𝑏]𝑖 , [𝛽2𝑏]𝑖+𝑘, 𝛽1,𝑖 , 𝛽2,𝑖 to server

𝑆𝑖 (𝑖 = 0, 1, … , 𝑘 − 1).

Multiplication Protocol

1. Each server 𝑆𝑖 (𝑖 = 0, 1, … , 𝑘 − 1) computes the

following.

[𝛼1𝛽1𝑎𝑏]𝑖
∗ = [𝛼1𝑎]𝑖 × [𝛽1𝑏]𝑖

[𝛼2𝛽2𝑎𝑏]𝑖+𝑘
∗ = [𝛼2𝑎]𝑖+𝑘 × [𝛽2𝑏]𝑖+𝑘

𝛼1,𝑖𝛽1,𝑖 = 𝛼1,𝑖 × 𝛽1,𝑖

𝛼2,𝑖𝛽2,𝑖 = 𝛼2,𝑖 × 𝛽2,𝑖

2. Each server 𝑆𝑖 generates random number 𝛾𝑖 ,

computes the following and sends to one of the

servers (here, we assume server 𝑆0).

𝛾𝑖

𝛼1,𝑖𝛽1,𝑖

,
𝛾𝑖

𝛼2,𝑖𝛽2,𝑖

3. Server 𝑆0 computes the following and sends to all

servers.

𝛾

𝛼1𝛽1

= ∏
𝛾𝑖

𝛼1,𝑖𝛽1,𝑖

𝑘−1

𝑖=0

𝛾

𝛼2𝛽2

= ∏
𝛾𝑖

𝛼2,𝑖𝛽2,𝑖

𝑘−1

𝑖=0

4. Each server 𝑆𝑖 computes [𝛾𝑎𝑏]𝑖
∗, [𝛾𝑎𝑏]𝑖+𝑘

∗ as

follows, and distribute [𝛾𝑎𝑏]𝑖
∗, [𝛾𝑎𝑏]𝑖+𝑘

∗ using

Shamir’s (𝑘, 𝑘) method to all servers 𝑆𝑖.

[𝛾𝑎𝑏]𝑖
∗ =

𝛾

𝛼1𝛽1

× [𝛼1𝛽1𝑎𝑏]𝑖
∗

[𝛾𝑎𝑏]𝑖+𝑘
∗ =

𝛾

𝛼2𝛽2

× [𝛼2𝛽2𝑎𝑏]𝑖+𝑘
∗

[𝛾𝑎𝑏]𝑖
∗ ⟹ {

[𝛾𝑎𝑏]𝑖,0 ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆0

⋮
[𝛾𝑎𝑏]𝑖,𝑘−1 ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆𝑘−1

[𝛾𝑎𝑏]𝑖+𝑘
∗ ⟹ {

[𝛾𝑎𝑏]𝑖+𝑘,0 ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆0

⋮
[𝛾𝑎𝑏]𝑖+𝑘,𝑘−1 ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆𝑘−1

5. Each server 𝑆𝑖 computes the following (𝜆𝑖 are the

recombination vector).

[𝛾𝑎𝑏]𝑖 = 𝜆0 × [𝛾𝑎𝑏]0,𝑖 + ⋯ + 𝜆2𝑘−1 × [𝛾𝑎𝑏]2𝑘−1,𝑖

Reconstruction Protocol

1. The player collects [𝛾𝑎𝑏]𝑖 , 𝛾𝑖 from 𝑘 servers 𝑆𝑖 ,

reconstructs 𝛾𝑎𝑏 and computes 𝛾 as follows.

𝛾 = ∏ 𝛾𝑖

𝑘−1

𝑖=0

2. Finally, the player reconstructs multiplication

result 𝑎𝑏 as follows.

𝑎𝑏 =
𝛾𝑎𝑏

𝛾

5 SECURITY OF THE

PROPOSED METHOD

In a 2-input-1-output multiplication process, when the

adversary has information of one of the inputs (e.g.

input 𝑎) and output (e.g. output 𝑎𝑏), the second input

(e.g. input 𝑏) will be leaked. Therefore, we only

consider the following adversaries. The attack is

considered a success if the adversary can achieve the

aim of learning the information that he/she wants to

know. Therefore, we can state that our proposed

method is secure if it is secure against the following

adversaries.

Adversary 1: The adversary has information from
𝑘 − 1 servers. According to this information, the
adversary attempts to know inputs 𝑎, 𝑏 and output
𝑎𝑏.

Adversary 2: One of the players who inputted a
secret is the adversary. In addition, the adversary also
has information from 𝑘 − 1 servers. According to this
information, the adversary attempts to know the
remaining one input 𝑎 or 𝑏, and output 𝑎𝑏.

Adversary 3: The player who reconstructed the
output is the adversary. In addition, the adversary has
information from 𝑘 − 1 servers. According to this
information, the adversary attempts to know two
inputs 𝑎 and 𝑏.

In the following, we evaluate the security of our
proposed method.

Evaluation of security against Adversary 1
Here, Adversary 1 has information from 𝑘 − 1

number of servers. In the distribution protocol,
Adversary 1 has the following information 𝐷𝐴 from
Player 𝐴 and 𝐷𝐵 from Player 𝐵.

𝐷𝐴 = [𝛼1𝑎]𝑙 , [𝛼2𝑎]𝑙+𝑘 , 𝛼1,𝑙, 𝛼2,𝑙 (𝑙 = 0, … , 𝑘 − 2)

𝐷𝐵 = [𝛽1𝑏]𝑙 , [𝛽2𝑏]𝑙+𝑘 , 𝛽1,𝑙 , 𝛽2,𝑙 (𝑙 = 0, … , 𝑘 − 2)

However, encrypted secrets 𝛼1𝑎, 𝛼2𝑎, 𝛽1𝑏, 𝛽2𝑏 are
not leaked from 𝑘 − 1 shares. Moreover, Adversary 1
is not able to learn about random numbers
𝛼1, 𝛼2, 𝛽1, 𝛽2 from 𝑘 − 1 servers. Therefore, even
with this information, secrets 𝑎 and 𝑏 are not leaked.
Thus, the following are true.

𝐻(𝑎) = 𝐻(𝑎|𝐷𝐴)

𝐻(𝑏) = 𝐻(𝑏|𝐷𝐵)

In Step 1 of the multiplication protocol, Adversary 1

learns about 𝛼1,𝑙𝛽1,𝑙 , 𝛼2,𝑙𝛽2,𝑙 (𝑙 = 0, … , 𝑘 − 2) , in

Step 2 about 𝛾𝑙 , 𝛾𝑙 𝛼1,𝑙𝛽1,𝑙⁄ , 𝛾𝑙 𝛼2,𝑙𝛽2,𝑙⁄ , in Step 3

about 𝛾 𝛼1𝛽1⁄ , 𝛾 𝛼2𝛽2⁄ , in Step 4 about

[𝛾𝑎𝑏]0
∗ , … , [𝛾𝑎𝑏]𝑘−2

∗ , [𝛾𝑎𝑏]𝑘
∗ , … , [𝛾𝑎𝑏]2𝑘−2

∗ and in

Step 5 about [𝛾𝑎𝑏]0, … , [𝛾𝑎𝑏]𝑘−2. As a result, we can

transform the problem into determining whether the

adversary can learn about inputs 𝑎, 𝑏 or output 𝑎𝑏

from the following information.

𝛼1,𝑙 , 𝛼2,𝑙 , 𝛽1,𝑙 , 𝛽2,𝑙 , 𝛾𝑙 ,
𝛾

𝛼1𝛽1

,
𝛾

𝛼2𝛽2

,

[𝛾𝑎𝑏]𝑙
∗, [𝛾𝑎𝑏]𝑙+𝑘

∗ , [𝛾𝑎𝑏]𝑙 (𝑙 = 0, … , 𝑘 − 2)

Since [𝛾𝑎𝑏]𝑖
∗ is represented by polynomial of (2𝑘 −

2) degree, 2𝑘 − 1 number of shares are required to

reconstruct 𝛾𝑎𝑏 . However, Adversary 1 only has

information of 2𝑘 − 2 number of shares, therefore,

𝛾𝑎𝑏 is not leaked. The same is true when Adversary

1 only has information of 𝑘 − 2 number of shares

[𝛾𝑎𝑏]𝑙 , 𝛾𝑎𝑏 is not leaked. Moreover, because

Adversary 1 has no information 𝛼1, 𝛼2, 𝛽1, 𝛽2 ,

random number 𝛾 used to encrypt the output 𝑎𝑏 is not

leaked. Therefore, our proposed method is secure

against Adversary 1 and the following are true:

𝐻(𝛾) = 𝐻 (𝛾|𝛼1,𝑙 , 𝛼2,𝑙 , 𝛽1,𝑙 , 𝛽2,𝑙 , 𝛾𝑙 ,
𝛾

𝛼1𝛽1

,
𝛾

𝛼2𝛽2

)

𝐻(𝛾𝑎𝑏) = 𝐻(𝛾𝑎𝑏|[𝛾𝑎𝑏]𝑙
∗, [𝛾𝑎𝑏]𝑙+𝑘

∗ , [𝛾𝑎𝑏]𝑙 (𝑙

= 0, … , 𝑘 − 2))

Evaluation of security against Adversary 2
Assume that the player who inputted input 𝑎 is

Adversary 2. Adversary 2 also has information from
𝑘 − 1 servers. Therefore, in the distribution protocol,
Adversary 2 has information about
𝑎, 𝛼1,𝑖 , 𝛼2,𝑖 , 𝛼1, 𝛼2 (𝑖 = 0, … , 𝑘 − 1) in addition to
information from 𝑘 − 1 servers (Adversary 1).

Therefore, the evaluation of security against
Adversary 2 can be translated to the problem of
determining whether the adversary can learn about
the remaining input 𝑏 and output 𝑎𝑏 from the
following information:

𝑎, 𝛼1,𝑖 , 𝛼2,𝑖 , 𝛼1, 𝛼2, 𝛽1,𝑙 , 𝛽2,𝑙 , 𝛾𝑙 ,
𝛾

𝛽1

,
𝛾

𝛽2

,

[𝛽1𝑏]𝑙 , [𝛽2𝑏]𝑙+𝑘 , [𝛾𝑎𝑏]𝑙
∗, [𝛾𝑎𝑏]𝑙+𝑘

∗ , [𝛾𝑎𝑏]𝑙 (𝑙
= 0, … , 𝑘 − 2)

From the above information, the adversary will be
able to learn 𝛽1 𝛽2⁄ from 𝛾 𝛽1⁄ , 𝛾 𝛽2⁄ . Furthermore,
the adversary will be able to learn the following from
𝛽1 𝛽2⁄ , [𝛽1𝑏]𝑙 , [𝛽2𝑏]𝑙+𝑘.

[𝛽1𝑏]𝑙 , [𝛽1𝑏]𝑙+𝑘, [𝛽2𝑏]𝑙 , [𝛽2𝑏]𝑙+𝑘

Since 𝛽1𝑏, 𝛽2𝑏 are distributed using Shamir’s (𝑘, 2𝑘)
method, the adversary will be able to learn the value
of 𝛽1𝑏, 𝛽2𝑏 from [𝛽1𝑏]𝑙 , [𝛽1𝑏]𝑙+𝑘, [𝛽2𝑏]𝑙 , [𝛽2𝑏]𝑙+𝑘 .
Here, if the reconstructed value of 𝛽1𝑏 = 0 or 𝛽2𝑏 =
0, the adversary will be able to learn that secret 𝑏 =
0 . Therefore, the following condition is required
when considering Adversary 2.

Condition 1 (for Adversary 2): the input does not
include the value 0.

However, to obtain information about secret 𝑏 from
𝛽1𝑏, 𝛽2𝑏, the adversary must first obtain information
of random numbers 𝛽1, 𝛽2 . The information that is
related to random numbers 𝛽1, 𝛽2 are
𝛽1,𝑙 , 𝛽2,𝑙 , 𝛾𝑙 , 𝛾 𝛽1⁄ , 𝛾 𝛽2⁄ . However, even from this
information, random numbers 𝛽1, 𝛽2 are not leaked.
Therefore,

𝐻(𝑏) = 𝐻 (𝑏|𝛽1𝑏, 𝛽2𝑏, 𝛽1,𝑙 , 𝛽2,𝑙 , 𝛾𝑙 ,
𝛾

𝛽1

,
𝛾

𝛽2

)

Finally, to obtain multiplication result 𝑎𝑏 , the
adversary must first obtain information 𝛾𝑎𝑏 and
random number 𝛾. The adversary will be able to learn
𝛾𝑎𝑏 from the following information.

𝑎, 𝛼1, 𝛽1𝑏,
𝛾

𝛼1𝛽1

However, since random number 𝛾 are not leaked
from 𝛾𝑙 , 𝛾 𝛽1⁄ , 𝛾 𝛽2⁄ . Therefore,

𝐻(𝑎𝑏) = 𝐻 (𝑎𝑏|𝛾𝑎𝑏, 𝛾𝑙 ,
𝛾

𝛽1

,
𝛾

𝛽2

)

In addition, the evaluation above remains valid even
if the adversary is the player who inputted input 𝑏.
Therefore, our proposed method is secure against
Adversary 2 as long as the input of the computation
does not include the value 0.

Evaluation of security against Adversary 3
Assume that the player who reconstructed output

𝑎𝑏 is Adversary 3. Adversary 3 also has information
from 𝑘 − 1 servers. Therefore, in the reconstruction
protocol, Adversary 3 has information about
[𝛾𝑎𝑏]𝑖 , 𝛾𝑖 , 𝛾𝑎𝑏, 𝛾 (𝑖 = 0, … , 𝑘 − 1) in addition to
information from 𝑘 − 1 servers (Adversary 1).

Therefore, the evaluation of security against
Adversary 3 can be translated to the problem of
determining whether the adversary can learn about
the inputs 𝑎, 𝑏 from the following information:

𝐴 = {𝑎𝑏, 𝛾𝑖 , 𝛾, 𝛼1,𝑙 , 𝛼2,𝑙 , 𝛽1,𝑙 , 𝛽2,𝑙 , 𝛼1𝛽1, 𝛼2𝛽2,

[𝛼1𝑎]𝑙 , [𝛼2𝑎]𝑙 , [𝛽1𝑏]𝑙 , [𝛽2𝑏]𝑙 (𝑙 = 0, … , 𝑘 − 2) }

To obtain information about secret 𝑎, 𝑏, the adversary
must first obtain information of 𝛼1𝑎, 𝛼2𝑎, 𝛽1𝑏, 𝛽2𝑏
and random numbers 𝛼1, 𝛼2, 𝛽1, 𝛽2. The information
that is related to random numbers 𝛼1, 𝛼2, 𝛽1, 𝛽2 are
𝛼1,𝑙 , 𝛼2,𝑙 , 𝛽1,𝑙 , 𝛽2,𝑙 , 𝛼1𝛽1, 𝛼2𝛽2 . However, even from
these information, random numbers 𝛼1, 𝛼2, 𝛽1, 𝛽2 are
not leaked. Moreover, encrypted secret
𝛼1𝑎, 𝛼2𝑎, 𝛽1𝑏, 𝛽2𝑏 will not be leaked from 𝑘 − 1
number of shares. Finally, even with the
multiplication result 𝑎𝑏, Adversary 3 will not be able
to learn about each secret 𝑎, 𝑏. Therefore,

𝐻(𝑎) = 𝐻(𝑎|𝐴)

𝐻(𝑏) = 𝐻(𝑏|𝐴)

Therefore, we can state that our proposed method is

also secure against Adversary 3.

6 EVALUATION OF OUR

PROPOSED METHOD

In this section, we perform evaluation of our proposed

method in term of computation and communication

costs. Below is the definition of parameters used

throughout our analysis. Note that in secret sharing

scheme, size of share 𝑑1 is usually almost the same

size as the original secret. Moreover, in a secret

sharing scheme, the computational cost of the

distribution and the reconstruction process differs, but

for ease of understanding, we consider that the

computation cost of both the distribution and

reconstruction process of a secret sharing scheme to

be the same. Table 1 shows the communication cost

and number of rounds of our proposed method. Table

2 shows the computational cost of our method.

Definition of Parameters:

─ 𝑑1: Size of share from secret sharing scheme

─ 𝐶1: Computational cost of Shamir’s (𝑘, 2𝑘) secret

sharing scheme

─ 𝐶2: Computational cost of Shamir’s (𝑘, 𝑘) secret

sharing scheme

─ 𝑀: Computational cost of multiplication

─ 𝐷: Computational cost of division

─ 𝐴: Computational cost of addition

Table 1. Communication and number of rounds of

the proposed method

Process Communication Rounds

Distribution of 𝑎 4𝑘𝑑1
1

Distribution of 𝑏 4𝑘𝑑1

Multiplication of

𝑎 and 𝑏

Step 2 2𝑘𝑑1

3 Step 3 2𝑁𝑑1

Step 4 2𝑁𝑘𝑑1

Reconstruction of

𝑎𝑏
2𝑘𝑑1 1

Table 2. Computational cost of the proposed method

Process Computation Cost

Distribution of

𝑎, 𝑏

Step 1 2(𝑘 − 1)𝑀

Step 2 𝐶1 + (2𝑛 − 1)𝑀

Step 4 2(𝑘 − 1)𝑀

Step 5 𝐶1 + (2𝑛 − 1)𝑀

Multiplication

of 𝑎 and 𝑏

Step 1 4𝑘𝑀

Step 2 2𝑘(𝑀 + 𝐷)

Step 3 2(𝑘 − 1)𝑀

Step 4 2𝑘(𝑀 + 𝐶2)

Step 5 2𝑁𝑘(𝑀 + 𝐴)

Reconstruction

of 𝑎𝑏
𝐶2 + (𝑘 − 1)𝑀 + 𝐷

7 COMPARISON WITH

CONVENTIONAL METHODS

In this section, we perform comparison with
conventional methods (Watanabe method (Watanabe
et al., 2015) proposed by Watanabe et al. and the TUS
method (Shingu et al., 2016) proposed by Shingu et
al.) that also realize multiplication of secret sharing
schemes using only 𝑁 = 𝑘 servers.

First, the TUS method allows for multiplication in
the setting of 𝑁 = 𝑛 ≥ 𝑘 since multiplication is
performed by multiplying scalar value with a share,
therefore, allowing the result of multiplication to be
restored by only 𝑘 shares instead of the conventional
2𝑘 − 1 shares. On the other hand, our method allows
for multiplication in the setting of 𝑁 = 𝑘 by reducing
the degree of the resulting polynomial. However, the
TUS method requires one precondition where the
input does not include the value 0 to securely perform
multiplication. In contrast, our method only requires
this condition when one of the players who inputted a
secret is the adversary (Adversary 2).

Next, Watanabe method also allows for
multiplication in the setting of 𝑁 ≥ 𝑘 and 𝑛 ≥ 2𝑘 −
1 ; however, the number of shares required to
reconstruct the result remain at 2𝑘 − 1 instead of 𝑘.
On the other hand, our method allows for
multiplication in the setting of 𝑛 ≥ 2𝑘 − 1 and
number of servers 𝑁 to remain at 𝑘. Moreover, our
protocol produces 𝑘 − 1 sharing of 𝑎𝑏, therefore, we
only need to collect 𝑘 instead of 2𝑘 − 1 shares for
reconstruction. All the comparisons discussed above
are summarized in Table 3.

Next, in Table 4, we show comparison with
conventional methods. However, since the
computation cost of secret sharing scheme 𝐶1, 𝐶2 are
typically larger than local computation cost of 𝑀, 𝐷
and 𝐴, we omit the cost of 𝑀, 𝐷 and 𝐴 when either 𝐶1
or 𝐶2 is present in the computation cost.

Table 4 shows that the computation cost for
distribution of 𝑎, 𝑏 and reconstruction of 𝑎𝑏 of our
method are lower than both Watanabe and TUS
methods. Next, since our proposed method includes
the process of redistributing of local shares to all
servers, we learnt that the computation cost of
multiplication of our proposed method is larger than
Watanabe method. However, we were able to reduce
the computation cost for the reconstruction, and
therefore, reducing the computation cost needed by
the client.

Table 3. Comparison with conventional methods (for multiplication)

 Proposed method Watanabe method TUS method

Approach used

for multiplication

𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙
× 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙

𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙
× 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙

𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙
× 𝑆𝑐𝑎𝑙𝑎𝑟 𝑉𝑎𝑙𝑢𝑒

Parameter of 𝑛, 𝑘 𝑛 ≥ 2𝑘 − 1 𝑛 ≥ 2𝑘 − 1 𝑛 ≥ 𝑘

Number of

servers 𝑁
𝑁 = 𝑘 𝑁 ≥ 𝑘 𝑁 ≥ 𝑘

Number of shares

for reconstruction
𝑘 2𝑘 − 1 𝑘

Number of

Precondition
0 (1*) 0 1

(*A condition where the secret does not include 0 is required when Adversary 2 is considered)

Table 4. Comparison with conventional methods

 Process Proposed method Watanabe method TUS method

C
o

m
p

u
ta

ti
o

n

Distribution
of 𝑎, 𝑏

2𝐶1 2(𝐶1 + 𝐶2) 2(𝑘 + 1)𝐶2

Multiplication
of 𝑎𝑏

2𝑘𝐶2 2𝑛𝑀 (3𝑘 + 1)𝐶2

Reconstruction
of 𝑎𝑏

𝐶2 𝐶1 + 2𝐶2 (𝑘 + 1)𝐶2

C
o

m
m

u
n

ic
at

io
n

Distribution
of 𝑎, 𝑏

8𝑘𝑑1 8𝑛𝑑1 2𝑛𝑑1(𝑘 + 1)

Multiplication
of 𝑎𝑏

(2𝑘 + 2𝑁 + 2𝑁𝑘)𝑑1 0 (𝑘 + 𝑛 + 2𝑘2 + 𝑛𝑘)𝑑1

Reconstruction
of 𝑎𝑏

2𝑘𝑑1 4𝑘𝑑1 (𝑘2 + 𝑘)𝑑1

R
o

u
n

d
s

Distribution
of 𝑎, 𝑏

1 1 1

Multiplication
of 𝑎𝑏

3 0 4

Reconstruction
of 𝑎𝑏

1 1 1

In terms of communication cost, the merits and
demerits of each method depend on 𝑑1, 𝑛, 𝑘.However,
when comparing with Watanabe method, since our
proposed method produce a polynomial of (𝑘 − 1)
degree instead of polynomial of (2𝑘 − 2) degree, we
were able to reduce the communication cost for
reconstruction of 𝑎𝑏 by half.

8 CONCLUSIONS

In this paper, we proposed an improved method
of multiplication of shares by using only 𝑁 = 𝑘
number of servers. Furthermore, by implementing the
use of recombination vector, we proposed a method
of computing 𝑘 − 1 sharing of multiplication 𝑎𝑏 by
using only 𝑘 servers instead of the previous 2𝑘 − 1
servers. Through this proposed method, we realized
secure multi-party computation of multiplication

using Shamir’s (𝑘, 𝑛) method in the setting of 𝑛 ≥
2𝑘 − 1, 𝑁 = 𝑘.

In a future study, we will focus on including the
function for verification of shares in addition to
allowing for different combination of computation
(such as product-sum operation) to be performed
simultaneously.

REFERENCES

Ben-Or M., Goldwasser S., Wigderson A., 1988.

Completeness theorems for non-cryptographic fault-

tolerant distributed computation. In Proceedings of the

20th Annual ACM Symposium on Theory of

Computing, pp. 1-10. ACM, New York, NY, USA.

Bendlin R., Damgård I., Orlandi C., Zakarias S., 2011.

Semi-homomorphic encryption and multiparty

computation. In Paterson K. G. (eds) Advances in

Cryptology-EUROCRYPT 2011. LNCS, vol. 6632, pp.

169-188. Springer, Berlin, Heidelberg.

Brakerski Z., Vaikuntanathan V., 2011. Fully

homomorphic encryption from ring-LWE and security

for key dependent messages. In Rogaway P. (eds)

Advances in Cryptology – CRYPTO 2011. LNCS, vol

6841, pp. 505-524. Springer, Berlin, Heidelberg.

Chaum D., Crépeau C., Damgård I., 1988. Multiparty

unconditionally secure protocols. In Proceedings of the

20th Annual ACM Symposium on Theory of

Computing. pp. 11-19. ACM, New York, NY, USA.

Cramer R., Damgård I., Maurer U., 2000. General secure

multiparty computation from any linear secret sharing

scheme. In Preneel B. (eds) Advances in Cryptology-

EUROCRYPT 2000. LNCS, vol. 1807, pp. 316-334.

Springer, Berlin, Heidelberg.

Cramer R., Damgård I., Nielsen J., 2015. Secure multiparty

computation and secret sharing. Cambridge University

Press, 1st edition.

Damgård I., Pastro V., Smart N., Zakarias S., 2012.

Multiparty computation from somewhat homomorphic

encryption. In Safavi-Naini R., Canetti R., (eds)

Advances in Cryptology-CRYPTO 2012. LNCS, vol

7417, pp. 643-662. Springer, Berlin, Heidelberg.

Damgård I., Keller M., Larraia E., Pastro V., Scholl P.,

Smart N.P., 2013. Practical covertly secure MPC for

dishonest majority or: breaking the SPDZ limits. In

Crampton J., Jajodia S., Mayes K. (eds) Computer

Security – ESORICS 2013. LNCS, vol. 8134, pp. 1-18.

Springer, Berlin, Heidelberg.

Gennaro R., Rabin M. O., Rabin T., 1998. Simplified VSS

and fast-track multiparty computations with

applications to threshold cryptography.” In Proceedings

of the 17th Annual ACM Symposium on Principles of

Distributed Computing. pp. 101-111. ACM, New York,

NY, USA.

Gentry C., 2009. A fully homomorphic encryption scheme,

Ph.D Thesis, Stanford University, Stanford, CA, USA.

Hirt M., 2001. Multiparty computation: efficient protocols,

general adversaries, and voting. PhD Thesis, ETH

Zurich. Reprint as ETH Series in Information Security

and Cryptography vol. 3.

Shamir A., 1979. How to share a secret. Communications

of the ACM, 22, (11), pp. 612-613.

Sharemind, Cybernetica. https://sharemind.cyber.ee

Shingu T., Iwamura K., Kaneda K., 2016. Secrecy

computation without changing polynomial degree in

Shamir’s (𝑘, 𝑛) secret sharing scheme. In Proceedings

of the 13th International Joint Conference on e-

Business and Telecommunications, vol.1, pp. 89-94.

SCITEPRESS.

Watanabe T., Iwamura K., Kaneda K., 2015. Secrecy

multiplication based on a (𝑘, 𝑛) -threshold secret-

sharing scheme using only 𝑘 servers. In Park J.,

Stojmenovic I., Jeong H., Yi G. (eds) Computer Science

and Its Applications. LNEE, vol. 330, pp. 107-112.

Springer, Berlin, Heidelberg.

Yao A. C., 1982. Protocols for Secure Computations. In

23rd Annual Symposium on Foundations of Computer

Science. pp. 160-164. Chicago, IL, USA.

APPENDIX 1: ADDITION (𝒂 + 𝒃)

Protocol for computing addition of 𝑎 + 𝑏 using our
proposed method of distribution is as follows:

1. Each server 𝑆𝑖 (𝑖 = 0, 1, … , 𝑛 − 1) generates

random number 𝛾𝑖 , computes the following and

sends to one of the servers (here, we assume server

𝑆0).

𝛾𝑖

𝛼1,𝑖

,
𝛾𝑖

𝛽1,𝑖

2. Server 𝑆0 computes the following and sends to all

servers.

𝛾

𝛼1

= ∏
𝛾𝑖

𝛼1,𝑖

𝑘−1

𝑖=0

,
𝛾

𝛽1

= ∏
𝛾𝑖

𝛽1,𝑖

𝑘−1

𝑖=0

3. Each server 𝑆𝑖 computes [𝛾(𝑎 + 𝑏)]𝑖as follows.

[𝛾(𝑎 + 𝑏)]𝑖 =
𝛾

𝛼1

× [𝛼1𝑎]𝑖 +
𝛾

𝛽1

× [𝛽1𝑏]𝑖

Security.
Here, due to the page limit, we had omitted the

security proof against Adversaries 2 and 3. Below, we
show the security against Adversary 1, where the
adversary has information from 𝑘 − 1 servers. In the
distribution protocol, Adversary 1 has the following
information 𝐷𝐴 from Player 𝐴 and 𝐷𝐵 from Player 𝐵.

𝐷𝐴 = [𝛼1𝑎]𝑙 , [𝛼2𝑎]𝑙+𝑘 , 𝛼1,𝑙, 𝛼2,𝑙 (𝑙 = 0, … , 𝑘 − 2)

𝐷𝐵 = [𝛽1𝑏]𝑙 , [𝛽2𝑏]𝑙+𝑘 , 𝛽1,𝑙 , 𝛽2,𝑙 (𝑙 = 0, … , 𝑘 − 2)

As shown in Section 5, Adversary 1 will not able
to learns neither 𝑎 nor 𝑏 from the information above.
Moreover, in the protocol for addition, the adversary
learns about the following.

𝛾

𝛼1

,
𝛾

𝛽1

, 𝛾𝑙 , 𝛼1,𝑙 , 𝛽1,𝑙 , [𝛾(𝑎 + 𝑏)]𝑙 (𝑙 = 0, … , 𝑘 − 2)

 To learn the output 𝑎 + 𝑏 , Adversary 1 has to
obtain information 𝛾(𝑎 + 𝑏) and random number 𝛾.
However, from 𝑘 − 1 shares [𝛾(𝑎 + 𝑏)]𝑙 and
random numbers 𝛾𝑙 , information of 𝛾(𝑎 + 𝑏) and 𝛾
are not leaked. Therefore, we can state that the
addition protocol is secure against Adversary 1.

https://sharemind.cyber.ee/

APPENDIX 2: SCALAR

MULTIPLICATION (𝒄𝒂)

Protocol for computing scalar multiplication between
constant 𝑐 and secret 𝑎 is as follows:

1. Let 𝑐 ∈ 𝐺𝐹(𝑝), 𝑐 ≠ 0 be some constant. Each

server 𝑆𝑖 (𝑖 = 0, 1, … , 𝑛 − 1) computes the

following locally.

[𝛼1(𝑐𝑎)]𝑖 = 𝑐 × [𝛼1𝑎]𝑖

Security.
In the protocol for scalar multiplication between

constant 𝑐 and secret 𝑎 , all computations are
performed locally without any communication
between players. Therefore, the security will depend
on the distribution of secret 𝑎 (which was proven to
be secure in Section 5). Moreover, the adversary will
not be able to learn the result of 𝑐𝑎 if no more than
𝑘 − 1 shares of [𝛼1(𝑐𝑎)]𝑖 are leaked. Therefore, we
can state that our protocol for scalar multiplication of
𝑐𝑎 is also secure against semi-honest adversary (we
omitted the detailed proof due to the page limit).

APPENDIX 3: EXAMPLE OF

COMPUTATION

Below, for ease of understanding, we demonstrate the

computation of multiplication between secrets 𝑎 = 3

and 𝑏 = 2 of Players 𝐴 and 𝐵, respectively, under the

setting of 𝑁 = 𝑘 = 2, 𝑛 ≥ 3 . Since 𝑘 = 2 ,

multiplication of shares of 𝑎 and 𝑏 will produce a

(2𝑘 − 2) = 2 degree polynomial. As shown in

Section 2.3, the process of reducing the degree of

polynomial from (2𝑘 − 2) = 2 to (𝑘 − 1) = 1 can

be achieved by using the recombination vector 𝑟 =
 (3, −3, 1). In the example shown below, secrets 𝑎, 𝑏,

all random numbers and all computations are

performed with 𝑝 = 97.

Distribution Protocol

1. Player 𝐴 generates 2𝑘 = 4 random numbers

𝛼1,0, 𝛼1,1, 𝛼2,0, 𝛼2,1 and computes the following.

𝛼1,0 = 2, 𝛼1,1 = 4

𝛼2,0 = 3, 𝛼2,1 = 6

𝛼1 = 𝛼1,0 × 𝛼1,1 = 2 × 4 = 8 (𝑚𝑜𝑑 97)

𝛼2 = 𝛼2,0 × 𝛼2,1 = 3 × 6 = 18 (𝑚𝑜𝑑 97)

2. Player 𝐴 generates 2𝑘 = 4 shares of secret 𝑎 = 3

using Shamir’s (2, 4) method and computes the

following. Here, let [𝑎]𝑖 = 3 + 𝑥.

[𝛼1𝑎]0 = 8 × 4 = 32 (𝑚𝑜𝑑 97)

[𝛼1𝑎]1 = 8 × 5 = 40 (𝑚𝑜𝑑 97)

[𝛼2𝑎]2 = 18 × 6 = 11 (𝑚𝑜𝑑 97)

[𝛼2𝑎]3 = 18 × 7 = 29 (𝑚𝑜𝑑 97)

3. Player 𝐴 sends [𝛼1𝑎]0, [𝛼2𝑎]2, 𝛼1,0, 𝛼2,0 to server

𝑆0 and [𝛼1𝑎]1, [𝛼2𝑎]3, 𝛼1,1, 𝛼2,1 to server 𝑆1 .

4. Player 𝐵 generates 2𝑘 = 4 random numbers

𝛽1,0, 𝛽1,1, 𝛽2,0, 𝛽2,1 and computes the following.

𝛽1,0 = 1, 𝛽1,1 = 6

 𝛽2,0 = 8, 𝛽2,1 = 2

𝛽1 = 𝛽1,0 × 𝛽1,1 = 1 × 6 = 6 (𝑚𝑜𝑑 97)

𝛽2 = 𝛽2,0 × 𝛽2,1 = 8 × 2 = 16 (𝑚𝑜𝑑 97)

5. Player 𝐵 generates 2𝑘 = 4 shares of secret 𝑏 = 2

using Shamir’s (2, 4) method and computes the

following. Here, let [𝑏]𝑖 = 2 + 3𝑥.

[𝛽1𝑏]0 = 6 × 5 = 30 (𝑚𝑜𝑑 97)

[𝛽1𝑏]1 = 6 × 8 = 48 (𝑚𝑜𝑑 97)

[𝛽2𝑏]2 = 16 × 11 = 79 (𝑚𝑜𝑑 97)

[𝛽2𝑏]3 = 16 × 14 = 30 (𝑚𝑜𝑑 97)

6. Player 𝐵 sends [𝛽1𝑏]0, [𝛽2𝑏]2, 𝛽1,0, 𝛽2,0 to server

𝑆0 and [𝛽1𝑏]1, [𝛽2𝑏]3, 𝛽1,1, 𝛽2,1 to server 𝑆1.

7. Finally, each server 𝑆𝑖 (𝑖 = 0, 1) holds the

following.

─ Server 𝑆0 holds the following:

[𝛼1𝑎]0 = 32, [𝛼2𝑎]2 = 11, 𝛼1,0 = 2, 𝛼2,0 = 3

[𝛽1𝑏]0 = 30, [𝛽2𝑏]2 = 79, 𝛽1,0 = 1, 𝛽2,0 = 8

─ Server 𝑆1 holds the following:

[𝛼1𝑎]1 = 40, [𝛼2𝑎]3 = 29, 𝛼1,1 = 4, 𝛼2,1 = 6

[𝛽1𝑏]1 = 48, [𝛽2𝑏]3 = 30, 𝛽1,1 = 6, 𝛽2,1 = 2

Multiplication Protocol

1. Each server 𝑆𝑖 (𝑖 = 0, 1) computes the following.

─ Server 𝑆0 computes the following:

[𝛼1𝛽1𝑎𝑏]0
∗ = [𝛼1𝑎]0 × [𝛽1𝑏]0 = 32 × 30

= 87 (𝑚𝑜𝑑 97)

[𝛼2𝛽2𝑎𝑏]2
∗ = [𝛼2𝑎]2 × [𝛽2𝑏]2 = 11 × 79

= 93 (𝑚𝑜𝑑 97)

𝛼1,0𝛽1,0 = 𝛼1,0 × 𝛽1,0 = 2 × 1 = 2 (𝑚𝑜𝑑 97)

𝛼2,0𝛽2,0 = 𝛼2,0 × 𝛽2,0 = 3 × 8 = 24 (𝑚𝑜𝑑 97)

─ Server 𝑆1 computes the following:

[𝛼1𝛽1𝑎𝑏]1
∗ = [𝛼1𝑎]1 × [𝛽1𝑏]1 = 40 × 48

= 77 (𝑚𝑜𝑑 97)

[𝛼2𝛽2𝑎𝑏]3
∗ = [𝛼2𝑎]3 × [𝛽2𝑏]3 = 29 × 30

= 94 (𝑚𝑜𝑑 97)

𝛼1,1𝛽1,1 = 𝛼1,1 × 𝛽1,1 = 4 × 6 = 24 (𝑚𝑜𝑑 97)

𝛼2,1𝛽2,1 = 𝛼2,1 × 𝛽2,1 = 6 × 2 = 12 (𝑚𝑜𝑑 97)

2. Each server 𝑆𝑖 (𝑖 = 0, 1) generates random

number 𝛾𝑖 , computes the following and sends to

one of the servers (here, we assume server 𝑆0).

─ Server 𝑆0 generates 𝛾0 = 4 , computes the

following and sends to server 𝑆0.

𝛾0

𝛼1,0𝛽1,0

=
4

2
= 2 (𝑚𝑜𝑑 97)

𝛾0

𝛼2,0𝛽2,0

=
4

24
= 81 (𝑚𝑜𝑑 97)

─ Server 𝑆1 generates 𝛾1 = 2 , computes the

following and sends to server 𝑆0.

𝛾1

𝛼1,1𝛽1,1

=
2

24
= 89 (𝑚𝑜𝑑 97),

𝛾1

𝛼2,1𝛽2,1

=
2

12
= 81 (𝑚𝑜𝑑 97)

3. Server 𝑆0 computes the following and sends to all

servers.

𝛾

𝛼1𝛽1

=
𝛾0

𝛼1,0𝛽1,0

×
𝛾1

𝛼1,1𝛽1,1

= 2 × 89

= 81 (𝑚𝑜𝑑 97)

𝛾

𝛼2𝛽2

=
𝛾0

𝛼2,0𝛽2,0

×
𝛾1

𝛼2,1𝛽2,1

= 81 × 81

= 62 (𝑚𝑜𝑑 97)

4. Each server 𝑆𝑖 (𝑖 = 0, 1) computes

[𝛾𝑎𝑏]𝑖
∗, [𝛾𝑎𝑏]𝑖+𝑘

∗ as follows, and distribute

[𝛾𝑎𝑏]𝑖
∗, [𝛾𝑎𝑏]𝑖+𝑘

∗ using Shamir’s (2, 2) method to

all servers 𝑆𝑖.

─ Server 𝑆0 computes the following:

[𝛾𝑎𝑏]0
∗ =

𝛾

𝛼1𝛽1

× [𝛼1𝛽1𝑎𝑏]0
∗ = 81 × 87

= 63 (𝑚𝑜𝑑 97)

[𝛾𝑎𝑏]2
∗ =

𝛾

𝛼2𝛽2

× [𝛼2𝛽2𝑎𝑏]2
∗ = 62 × 93

= 43 (𝑚𝑜𝑑 97)

𝑙𝑒𝑡 𝑡ℎ𝑒 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑏𝑒 [𝛾𝑎𝑏]0
∗ = 63 + 𝑥

{
[𝛾𝑎𝑏]0,0 = 64 ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆0

[𝛾𝑎𝑏]0,1 = 65 ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆1

𝑙𝑒𝑡 𝑡ℎ𝑒 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑏𝑒 [𝛾𝑎𝑏]2
∗ = 43 + 2𝑥

{
[𝛾𝑎𝑏]2,0 = 45 ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆0

[𝛾𝑎𝑏]2,1 = 47 ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆1

─ Server 𝑆1 computes the following:

[𝛾𝑎𝑏]1
∗ =

𝛾

𝛼1𝛽1

× [𝛼1𝛽1𝑎𝑏]1
∗ = 81 × 77

= 29 (𝑚𝑜𝑑 97)

[𝛾𝑎𝑏]3
∗ =

𝛾

𝛼2𝛽2

× [𝛼2𝛽2𝑎𝑏]3
∗ = 62 × 94

= 8 (𝑚𝑜𝑑 97)

𝑙𝑒𝑡 𝑡ℎ𝑒 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑏𝑒 [𝛾𝑎𝑏]1
∗ = 29 + 𝑥

{
[𝛾𝑎𝑏]1,0 = 30 ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆0

[𝛾𝑎𝑏]1,1 = 31 ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆1

𝑙𝑒𝑡 𝑡ℎ𝑒 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑏𝑒 [𝛾𝑎𝑏]3
∗ = 8 + 3𝑥

{
[𝛾𝑎𝑏]3,0 = 11 ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆0

[𝛾𝑎𝑏]3,1 = 14 ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆1

5. Each server 𝑆𝑖 (𝑖 = 0, 1) computes the following

using the recombination vector 𝑟 = (3, −3, 1, 0).

─ Server 𝑆0 computes the following:

[𝛾𝑎𝑏]0 = 3 × [𝛾𝑎𝑏]0,0 + (−3) × [𝛾𝑎𝑏]1,0

+ 1 × [𝛾𝑎𝑏]2,0 + 0 × [𝛾𝑎𝑏]3,0

= 3 × 64 − 3 × 30 + 1 × 45 + 0 × 11
= 50 (𝑚𝑜𝑑 97)

─ Server 𝑆1 computes the following:

[𝛾𝑎𝑏]1 = 3 × [𝛾𝑎𝑏]0,1 + (−3) × [𝛾𝑎𝑏]1,1

+ 1 × [𝛾𝑎𝑏]2,1 + 0 × [𝛾𝑎𝑏]3,1

= 3 × 65 − 3 × 31 + 1 × 47 + 0 × 14
= 52 (𝑚𝑜𝑑 97)

Reconstruction Protocol

1. The player collects [𝛾𝑎𝑏]0 = 50, [𝛾𝑎𝑏]1 =
52, 𝛾0 = 4, 𝛾1 = 2 from 𝑁 = 𝑘 = 2 servers

𝑆𝑖 (𝑖 = 0, 1), reconstructs 𝛾𝑎𝑏 using Shamir’s (2,

2) method and computes 𝛾 as follows.

𝛾𝑎𝑏 = 48

𝛾 = 𝛾0 × 𝛾1 = 4 × 2 = 8 (𝑚𝑜𝑑 97)

2. Finally, the player reconstructs multiplication

result 𝑎𝑏 as follows.

𝑎𝑏 =
𝛾𝑎𝑏

𝛾
=

48

8
= 6 (𝑚𝑜𝑑 97)

