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Abstract: Secure multi-party computation (MPC) allows a set of 𝑛 servers to jointly compute an arbitrary function of 

their inputs, without revealing these inputs to each other. A (𝑘, 𝑛) threshold secret sharing is a protocol in 

which a single secret is divided into 𝑛 shares and the secret can be recovered from a threshold 𝑘 shares. 

Typically, multiplication of (𝑘, 𝑛) secret sharing will result in increase of polynomial degree from 𝑘 − 1 to 

2𝑘 − 2, thus increasing the number of shares required from 𝑘 to 2𝑘 − 1. Since each server typically hold only 

one share, the number of servers required in MPC will also increase from 𝑘 to 2𝑘 − 1. Therefore, a set of 𝑛 

servers can compute multiplication securely if the adversary corrupts at most 𝑘 − 1 < 𝑛/2 of the servers. In 

this paper, we differentiate the number of servers 𝑁 required and parameter 𝑛 of (𝑘, 𝑛) secret sharing scheme, 

and propose a method of computing (𝑘 − 1) sharing of multiplication 𝑎𝑏 by using only 𝑁 = 𝑘 servers. By 

allowing each server to hold two shares, we realize MPC of multiplication with the setting of 𝑁 = 𝑘, 𝑛 ≥
2𝑘 − 1. We also show that our proposed method is information theoretic secure against a semi-honest 

adversary. 

1 INTRODUCTION 

1.1 Background 

In recent years, advancement of IoT ecosystem and 
big data had attracted considerable anticipation that it 
will be possible to utilize big data to obtain valuable 
statistical data. Here, big data refer to large quantities 
of unstructured and semi structured data. Analyzation 
of these data allows researchers and businesses to 
extract important and useful information. However, 
since big data also includes individuals’ privacy 
information, there is a risk that their privacy 
information can be leaked if it is not used correctly. 
Therefore, a method that allows for the utilization of 
big data while protecting sensitive information such 
as individuals’ privacy information is required. One 
of the methods that can realize this is known as secure 
multi-party computation (Yao, 1982). Secure multi-
party computation allows for a set of servers to jointly 
compute an arbitrary function of their inputs, without 
revealing these inputs to each other. Typically, there 

are two main techniques that had been proposed to 
realize secure multi-party computation: 
homomorphic encryption (Bendlin et al. 2011; 
Brakerski et al., 2011; Damgard et al., 2012; 
Damgard et al., 2013; Gentry, 2009) and secret 
sharing schemes (Ben-Or et al., 1988; Chaum et al., 
1988; Cramer et al., 2000; Gennaro et al., 1998; 
Shingu et al., 2016; Watanabe et al., 2015). However, 
homomorphic encryption is known to be typically 
computationally very expensive in term of 
computation cost. Therefore, secret sharing schemes 
that have a relatively low computational cost are 
preferable to homomorphic encryption when 
considering utilization in a cloud system. 

A secret sharing scheme is a protocol in which a 
single secret is divided into shares, which are then 
distributed. An example of a secret sharing scheme is 
Shamir’s (𝑘, 𝑛)  threshold secret sharing scheme 
(Shamir, 1979). It divides a secret 𝑠 into an 𝑛 number 
of shares, distributes the shares, and restores the 
original secret 𝑠 from a threshold 𝑘 number of shares. 
Any 𝑘 − 1  or smaller number of shares reveals 
nothing about the secret.  



The classical result of secure multi-party 
computation using secret sharing scheme state that  𝑛 
servers can compute any function in such a way that 
any subset of up to 𝑘 − 1 < 𝑛/2 servers obtains no 
information about the other servers’ inputs, except for 
what can be derived from the public information 
(Ben-Or et al., 1988; Hirt, 2001). Conventional 
methods of secure multi-party computation using 
Shamir’s (𝑘, 𝑛)  secret sharing scheme perform 
addition by locally adding the shares together. 
However, this is not so in the case of multiplication. 
For example, let secrets 𝑎  and 𝑏  be encoded by 
polynomials 𝑓(𝑥) and 𝑔(𝑥) of (𝑘 − 1) degree. Note 
that the free coefficient of the polynomial ℎ(𝑥) =
𝑓(𝑥)𝑔(𝑥)  is 𝑎𝑏 . However, the problems of using 
ℎ(𝑥) to encode the product of 𝑎 times 𝑏 is that the 
degree of ℎ(𝑥)  increase from 𝑘 − 1  to 2𝑘 − 2 . In 
most conventional methods, this poses no problem of 
interpolating ℎ(𝑥)  from its 𝑛  shares since it is 
assumed that parameter 𝑛 ≥ 2𝑘 − 1 . Since each 
server holds only one share for each secret, this means 
that, for each multiplication performed, the number of 
servers required will increase from 𝑘 to 2𝑘 − 1.   

Shingu et al. proposed a solution for 
multiplication method called the TUS method 
(Shingu et al, 2016). In this method, the secret is first 
encrypted with a random number; when performing 
multiplication, the encrypted secret is momentarily 
restored as a scalar value and multiplication is 
realized using the (𝑠𝑐𝑎𝑙𝑎𝑟 𝑣𝑎𝑙𝑢𝑒 × 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙) 
approach to prevent an increase in the polynomial 
degree. However, in the TUS method, there is a 
limitation where input with a value of 0 is not allowed 
in the protocol.  

On the other hand, Watanabe et al. proposed a 
solution by taking an approach of differentiating the 
relationship between the number of servers required 
𝑁 and parameter 𝑛 of Shamir’s (𝑘, 𝑛) secret sharing 
(Watanabe et al., 2015). In other word, Watanabe et 
al. had proposed a method using 𝑁 ≤ 𝑘  servers to 
realize 𝑛 ≥ 2𝑘 − 1  multiplication. However, this 
method still did not solve the problem of increase in 
the polynomial degree. Therefore, although the 
multiplication was performed using only 𝑁 = 𝑘 
servers, shares required to restore the multiplication 
result are 2𝑘 − 1 and not 𝑘. 

1.2 Our Results 

In this study, we focus on solving the problem of 
increase in polynomial degree during multiplication. 
We propose a new method of multiplication that 
could compute 𝑘 − 1  sharing of multiplication 𝑎𝑏 
using only 𝑁 = 𝑘 servers. The contributions of this 
paper can be summarized as follows: 

Our Contributions 

─ We propose a new protocol that allows for 

multiplication with the setting of 𝑛 ≥ 2𝑘 − 1 to be 

performed using only 𝑁 = 𝑘  servers, and show 

that 𝑘 − 1 sharing of 𝑎𝑏 can be computed by using 

only 𝑁 = 𝑘 servers. (we also include protocols for 

addition and scalar multiplication in Appendices 1 

and 2) 

─ We present a clear security evaluation and show 

that our proposed method is secure against semi-

honest adversaries. 

─ Finally, we present a clear evaluation of efficiency 

of our method. In addition, we also present a 

comparison between the methods in (Watanabe et 

al., 2015; Shingu et al., 2016).  

System Model 
In this paper, we assume a client/server model, 

where the clients (e.g. the owner of the secret 
information 𝑎, 𝑏 ) send shares of their inputs to 𝑛 
number of servers. The servers then carry out the 
computation and return the results to them without 
learning anything about secret information 𝑎 and 𝑏. 
This model is widely used nowadays and in fact is the 
business model used in Cybernetica (Sharemind). In 
addition, we assume a semi-honest adversary, where 
the adversary follows the protocol specification but 
may try to learn more than is allowed by the protocol, 
with at most 𝑘 −  1  corrupted servers. We also 
assume that secure communication exists between the 
client and the servers. 

 
The organization of this paper is as follows. In 

Section 2, we present preliminaries. In Section 3, we 
explain the related works. In Section 4, we present our 
new protocol for multiplication. In Section 5, we 
discuss the security of our proposed method of 
multiplication. In addition, in Chapter 6, we evaluate 
our proposed method. Finally, in Chapter 7, we show 
the comparison between our proposed method and 
conventional methods. 

2 PRELIMINARIES 

In this section, we introduce some notations and 
known techniques. 

2.1 (𝒌, 𝒏) Threshold Secret Sharing 

Scheme 

A secret sharing scheme that satisfies both conditions 

stated below is known as (𝑘, 𝑛)  threshold secret-

sharing scheme. 



─ Any 𝑘 − 1 or fewer number of shares will reveal 

nothing about the original secret information 𝑠. 

─ Any 𝑘 or greater number of shares will allow for 

the reconstruction of the original secret 

information 𝑠. 

The classic methods for the (𝑘, 𝑛)  threshold secret 

sharing scheme is Shamir’s (𝑘, 𝑛)  threshold secret 

sharing scheme, proposed by Shamir (Shamir, 1979) 

(Shamir’s (𝑘, 𝑛)  method). In our protocol, all 

computations are performed in finite field 𝐺𝐹(𝑝) and 

shares of secret information 𝑠 is represented by [𝑠]̅̅̅̅
𝑖.  

The protocol for the distribution and 
reconstruction of Shamir’s (𝑘, 𝑛)  method is as 
follows.  

Distribution Protocol 

1. The dealer selects 𝑛  number of 𝑥𝑖  (𝑖 =
 0, 1, … , 𝑛 −  1)  and assigns them as the server 

𝐼𝐷. 

2. The dealer selects 𝑘 −  1  random numbers 

𝛼𝑙  (𝑙 = 1, 2, … , 𝑘 −  1)  and generates a random 

polynomial 𝑊(𝑥𝑖). 

[𝑠]̅̅̅̅
𝑖 = 𝑊(𝑥𝑖) = 𝑠 + 𝛼1𝑥𝑖 + 𝛼2𝑥𝑖

2  +  … 
+ 𝛼𝑘−1𝑥𝑖

𝑘−1 

3. The dealer then inserts the server 𝐼𝐷  into 𝑥𝑖 , 

calculates the shares [𝑠]̅̅̅̅
𝑖  corresponding to 

each 𝐼𝐷, and distributes them. 

Restoration Protocol 

1. The player who wishes to restore the original 

secret collects 𝑘 shares [𝑠]̅̅̅̅
𝑗  (𝑗 =  0, … , 𝑘 −  1). 

2. The player restores the original secret 𝑠 by using 

Lagrange’s Interpolation.  

𝑠 = ∑ ∏
𝛼𝑗

𝛼𝑗 − 𝛼𝑖

𝑛

𝑗=1, 𝑗≠𝑖

𝑠𝑖

𝑛

𝑖=1

 

2.2 Multiplication Based on 

Shamir’s (𝒌, 𝒏) Method 

Let 𝑎 and 𝑏 be two secrets. Shares of each secret are 

produced by Shamir’s (𝑘, 𝑛) method as shown below 

and are distributed to 𝑛  servers. Note that 𝑖 =
0, 1, … , 𝑛 − 1. 

[𝑎]̅̅ ̅̅
𝑖 = 𝑎 + 𝛼1𝑥𝑖 + 𝛼2𝑥𝑖

2  +  … + 𝛼𝑘−1𝑥𝑖
𝑘−1 

[𝑏]̅̅ ̅̅
𝑖 = 𝑏 +  𝛽1𝑥𝑖 + 𝛽2𝑥𝑖

2  +  … + 𝛽𝑘−1𝑥𝑖
𝑘−1 

Each server then computes the multiplication 

between shares of 𝑎  and 𝑏 , and produces [𝑎𝑏]̅̅ ̅̅ ̅̅
𝑖  as 

shown below. 

[𝑎𝑏]̅̅ ̅̅ ̅̅
𝑖 = 𝑎𝑏 + … + (𝛼𝑘−1𝛽𝑘−1)𝑥𝑖

2𝑘−2 

Although secrets 𝑎  and 𝑏  are shared using 
polynomials of (𝑘 − 1)  degree, the result of 
multiplication 𝑎𝑏 is a polynomial of (2𝑘 − 2) degree. 
Therefore, the problem with conventional method of 
multiplication of Shamir’s (𝑘, 𝑛) method is that the 
number of shares required to reconstruct 𝑎𝑏 increase 
from 𝑘  to 2𝑘 − 1 . Thus, the following Theorem 1 
was proposed for the passive model (Ben-Or et al., 
1988). 

Theorem 1 In the passive mode, a set 𝒫 =
{𝑃1,  … , 𝑃𝑛}  of 𝑛  servers can compute every 
specification securely if and only if the adversary 
corrupts at most 𝑘 − 1 < 𝑛/2 of the servers. 

2.3 Multiplication of Shares Using 

Recombination Vector 

As mentioned in Section 2.2, the result of 

multiplication of two polynomials of degree (𝑘 − 1) 

will be a polynomial of degree (2𝑘 − 2). Note that 

𝑛 ≥ 2𝑘 − 1  implies that the 𝑛  product shares are 

sufficient for recovering 𝑎𝑏 . However, any further 

multiplication will raise the degree, and once the 

degree passes 𝑛, there will be not have enough points 

for the interpolation. Hence, a (𝑘 − 1) sharing of 𝑎𝑏 

can be achieved by using recombination vector as 

shown in (Cramer et al. 2015).  

To better understand this, let us assume that the 

parameter 𝑘 = 2, 𝑛 = 2𝑘 − 1 = 3 , the resulting 

multiplication will be a quadratic polynomials 

𝑦(𝑥𝑖 )  =  𝛼0 + 𝛼1𝑥𝑖 +  𝛼2𝑥𝑖 
2, where 𝛼0 is the result 

of the multiplication. Since 𝑛 = 3, the shares for each 

server 𝐼𝐷 are as follows. 

𝑦(1) =  𝛼0  +  𝛼1 +  𝛼2 

𝑦(2) =  𝛼0  +  2𝛼1  +  4𝛼2 

𝑦(3)  =  𝛼0  +  3𝛼1  +  9𝛼2 

By solving the equations above, we can state that 
multiplication result 𝛼0  can always be computed 
from the shares 𝑦(1), 𝑦(2)  and 𝑦(3)  as 𝛼0  =
 3𝑦(1) − 3𝑦(2) + 𝑦(3) . This formula was found 
using simple Gaussian elimination, but is also given 
by the Lagrange interpolation formula, where 𝑟 =
 (3, −3, 1) is known as the recombination vector.  



More precisely, each party first shares its value of 
multiplication result [𝑎𝑏]̅̅ ̅̅ ̅̅

𝑖 using polynomials of (𝑘 −
1)  degree to all parties. The parties then locally 
combine their shares by an inner product with the 
recombination vector.  By this, each party will hold 
(𝑘 − 1) sharing of 𝑎𝑏 . However, the problem with 
this method is that it still requires 𝑛 > 2𝑘 − 1 
number of servers, therefore increasing the total 
operation cost of the system. 

3 RELATED WORKS 

3.1 Watanabe Method 

Typically, in a (𝑘, 𝑛)  threshold secret sharing 

scheme, a server possesses only one share. When 

multiplication of shares is performed, the number of 

servers required will also increase from 𝑘 to 2𝑘 − 1.  
Watanabe et al. solved this problem by allowing 

a server to hold two shares (Watanabe et al., 2015). 
However, this method does not solve the problem of 
increase in degree of polynomial from 𝑘 − 1 to 2𝑘 −
2. This means that the number of shares required to 
reconstruct the result remain at 2𝑘 − 1 instead of 𝑘. 
Therefore, the communication cost between the client 
and the servers remain the same as all conventional 
methods. Our method solves this by proposing 
method of computing (𝑘 − 1)  sharing of 𝑎𝑏  using 
only 𝑁 = 𝑘 servers.  

Due to the page limit, we only included the 
distribution and multiplication protocols below. Note 
that variables 𝑎, 𝑏 and all random numbers generated 
are derived from finite field 𝐺𝐹(𝑝) and all 
computations are performed under finite field 𝐺𝐹(𝑝). 

Distribution Protocol 

1. Players 𝐴  and 𝐵  each generates 2𝑛  shares from 

secrets 𝑎  and 𝑏  and distributes [𝑎]̅̅ ̅̅
𝑖 , [𝑏]̅̅ ̅̅

𝑖  (𝑖 =
0, … , 𝑛 − 1) to 𝑛 servers 𝑆𝑖.  

2. Player 𝐴  generates a random number 𝑟𝐴   and 

distributes [𝑟𝐴𝑎]̅̅ ̅̅ ̅̅ ̅
𝑛, … . , [𝑟𝐴𝑎]̅̅ ̅̅ ̅̅ ̅

2𝑛−1  to 𝑛  servers 𝑆𝑖 . 

Then, distributes shares [𝑟𝐴]̅̅ ̅̅ ̅
𝑖 of 𝑟𝐴 to 𝑛 servers 𝑆𝑖. 

3. Player 𝐵  generates a random number  𝑟𝐵 and 

distributes [𝑟𝐵𝑏]̅̅ ̅̅ ̅̅ ̅
𝑛, … , [𝑟𝐵𝑏]̅̅ ̅̅ ̅̅ ̅

2𝑛−1  to 𝑛  servers 𝑆𝑖 . 

Then, distributes shares [𝑟𝐵]̅̅ ̅̅ ̅
𝑖 of 𝑟𝐵 to 𝑛 servers 𝑆𝑖. 

Multiplication Protocol 

1. Each server calculates the following: 

[𝑎𝑏]̅̅ ̅̅ ̅̅
𝑖 = [𝑎]̅̅ ̅̅

𝑖 × [𝑏]̅̅ ̅̅
𝑖  (𝑖 = 0, 1, … , 𝑛 − 1) 

[𝑟𝐴𝑟𝐵𝑎𝑏]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖+𝑘 = [𝑟𝐴𝑎]̅̅ ̅̅ ̅̅ ̅

𝑖+𝑘 × [𝑟𝐵𝑏]̅̅ ̅̅ ̅̅ ̅
𝑖+𝑘  

3.2 The TUS Method 

Shingu et al. proposed a 2-inputs-1-output multi-

party computation named the TUS method (Shingu et 

al., 2016), where the secret (e.g. 𝑎) is first encrypted 

with a random number (e.g. 𝛼 ). When performing 

multiplication, the encrypted secret is momentarily 

restored as a scalar value (e.g. 𝛼𝑎) and multiplication 

is realized using the (𝑠𝑐𝑎𝑙𝑎𝑟 𝑣𝑎𝑙𝑢𝑒 × 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙) 

approach to prevent an increase in the polynomial 

degree. However, the TUS method introduced 

another problem: when the reconstructed scalar value 

𝛼𝑎 = 0, the adversary will learn that secret 𝑎 = 0. 

Therefore, condition where the secret does not 

include the value 0 is required.  
Due to the page limit, we only included the 

distribution and multiplication protocols below. Note 
that variables 𝑎, 𝑏 and all random numbers generated 
are derived from finite field 𝐺𝐹(𝑝), provided that the 
secret inputs  𝑎, 𝑏  and all random numbers do not 
include 0.  

Distribution Protocol 

1. Players 𝐴  and 𝐵  each selects 𝑘  random numbers 

𝛼𝑗, 𝛽𝑗  (𝑗 = 0, 1, … , 𝑘 − 1) and computes the value 

of 𝛼 = ∏ 𝛼𝑗
𝑘−1
𝑗=0  and 𝛽 = ∏ 𝛽𝑗

𝑘−1
𝑗=0 , respectively.  

2. Player 𝐴  computes 𝛼𝑎 = 𝛼 × 𝑎  and distributes 

𝛼𝑎, 𝛼𝑗 to 𝑛 servers using Shamir’s (𝑘, 𝑛) method.  

3. Player 𝐵  computes 𝛽𝑏 = 𝛽 × 𝑏  and distributes 

𝛽𝑏, 𝛽𝑗 to 𝑛 servers using Shamir’s (𝑘, 𝑛) method. 

4. Each server 𝑆𝑖  (𝑖 = 0, 1, … , 𝑛 − 1)  holds the 

following as set of shares about secrets 𝑎, 𝑏: 

[𝑎]𝑖 = [𝛼𝑎]̅̅ ̅̅ ̅̅
𝑖 , [𝛼0]̅̅ ̅̅ ̅

𝑖, … , [𝛼𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑖 ,   

  [𝑏]𝑖 = [𝛽𝑏]̅̅ ̅̅ ̅̅
𝑖 , [𝛽0]̅̅ ̅̅ ̅

𝑖 , … , [𝛽𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑖  

Multiplication Protocol 

1. One of the servers (here, we assume server 𝑆0 ) 

collects [𝛼𝑎]̅̅ ̅̅ ̅̅
𝑗  from 𝑘 servers. Server 𝑆0  then 

restores 𝛼𝑎 and sends it to all servers 𝑆𝑖. 

2. Servers 𝑆𝑖 compute [𝛼𝛽𝑎𝑏]̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 = 𝛼𝑎 × [𝛽𝑏]̅̅ ̅̅ ̅̅

𝑖.  

3. 𝑘  number of servers 𝑆𝑗  each collect 

shares [𝛼0]̅̅ ̅̅ ̅
ℓ, … , [𝛼𝑘−1]̅̅ ̅̅ ̅̅ ̅̅

ℓ, [𝛽0]̅̅ ̅̅ ̅
ℓ, … , [𝛽𝑘−1]̅̅ ̅̅ ̅̅ ̅̅

ℓ (ℓ =
0, 1, … , 𝑘 − 1) and restore 𝛼𝑗 , 𝛽𝑗 . Servers 𝑆𝑗  then 

calculate 𝛼𝑗𝛽𝑗 = 𝛼𝑗 × 𝛽𝑗.  

4. Servers 𝑆𝑗 distribute 𝛼𝑗𝛽𝑗 to all servers 𝑆𝑖 by using 

Shamir’s (𝑘, 𝑛) method. 

5. Each server 𝑆𝑖 now holds the following as a set of 

shares for the result of 𝑎𝑏.  

[𝑎𝑏]𝑖 = [𝛼𝛽𝑎𝑏]̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑖 , [𝛼0𝛽0]̅̅ ̅̅ ̅̅ ̅̅

𝑖 , … , [𝛼𝑘−1𝛽𝑘−1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑖 



4 PROPOSED METHOD OF 

MULTIPLICATION 

Our protocol focus on an approach that differentiate 

between parameter 𝑁, which is the number of servers 

that is actually needed, and parameter 𝑛 of the (𝑘, 𝑛) 

threshold secret sharing scheme, and realizes 

multiplication under a setting of 𝑁 = 𝑘, 𝑛 ≥ 2𝑘 − 1. 

In addition, to solve the problem of Watanabe 

method, where the result of multiplication can only be 

reconstructed by collecting 2𝑘 shares from 𝑘 servers, 

we propose a new method of reducing the polynomial 

degree of 𝑎𝑏  from 2𝑘 − 2  to 𝑘 − 1  by using 

recombination vector with only 𝑁 = 𝑘 servers.  
Below, for ease of understanding, we demonstrate 

multiplication under the setting of 𝑁 = 𝑘, 𝑛 ≥ 2𝑘 −
1 . In the protocol below, secrets 𝑎, 𝑏 , all random 
numbers and all computations are performed in finite 
field 𝐺𝐹(𝑝)．  

Notation: 

─ [𝑎]𝑖: Share of 𝑎 for server 𝑆𝑖 where the number of 

shares required for reconstructing 𝑎 is 𝑘 

─ [𝛼1𝛽1𝑎𝑏]𝑖
∗:  Share of 𝛼1𝛽1𝑎𝑏  for server 𝑆𝑖  where 

the number of shares required for reconstructing 

𝛼1𝛽1𝑎𝑏 is 2𝑘 − 1. 

Distribution Protocol 

1. Player 𝐴  generates 2𝑘  random numbers 

𝛼1,0, … , 𝛼1,𝑘−1, 𝛼2,0, … , 𝛼2,𝑘−1  and computes the 

following. 

𝛼1 = ∏ 𝛼1,𝑗

𝑘−1

𝑗=0

 

  𝛼2 = ∏ 𝛼2,𝑗

𝑘−1

𝑗=0

 

2. Player 𝐴  generates 2𝑘  shares of secret 𝑎  using 

Shamir’s (𝑘, 2𝑘)  method and computes the 

following. 

[𝛼1𝑎]0 = 𝛼1 × [𝑎]0, … , [𝛼1𝑎]𝑘−1 = 𝛼1 × [𝑎]𝑘−1 

[𝛼2𝑎]𝑘 = 𝛼2 × [𝑎]𝑘 , … , [𝛼2𝑎]2𝑛−1 = 𝛼2 × [𝑎]2𝑛−1 

3. Player 𝐴 sends [𝛼1𝑎]𝑖 , [𝛼2𝑎]𝑖+𝑘 , 𝛼1,𝑖, 𝛼2,𝑖 to server 

𝑆𝑖  (𝑖 = 0, 1, … , 𝑘 − 1). 

4. Player 𝐵  generates 2𝑘  random numbers 

𝛽1,0, … , 𝛽1,𝑘−1, 𝛽2,0, … , 𝛽2,𝑘−1  and computes the 

following. 

𝛽1 = ∏ 𝛽1,𝑗

𝑘−1

𝑗=0

 

 𝛽2 = ∏ 𝛽2,𝑗

𝑘−1

𝑗=0

 

5. Player 𝐵  generates 2𝑘  shares of secret 𝑏  using 

Shamir’s (𝑘, 2𝑘)  method and computes the 

following.  

[𝛽1𝑏]0 = 𝛽1 × [𝑏]0, … , [𝛽1𝑏]𝑘−1 = 𝛽1 × [𝑏]𝑘−1 

[𝛽2𝑏]𝑘 = 𝛽2 × [𝑏]𝑘 , … , [𝛽2𝑏]2𝑛−1 = 𝛽2 × [𝑏]2𝑛−1 

6. Player 𝐵 sends [𝛽1𝑏]𝑖 , [𝛽2𝑏]𝑖+𝑘, 𝛽1,𝑖 , 𝛽2,𝑖  to server 

𝑆𝑖  (𝑖 = 0, 1, … , 𝑘 − 1). 

Multiplication Protocol 

1. Each server 𝑆𝑖  (𝑖 = 0, 1, … , 𝑘 − 1)  computes the 

following. 

[𝛼1𝛽1𝑎𝑏]𝑖
∗ = [𝛼1𝑎]𝑖 × [𝛽1𝑏]𝑖 

[𝛼2𝛽2𝑎𝑏]𝑖+𝑘
∗ = [𝛼2𝑎]𝑖+𝑘 × [𝛽2𝑏]𝑖+𝑘 

𝛼1,𝑖𝛽1,𝑖 = 𝛼1,𝑖 × 𝛽1,𝑖  

𝛼2,𝑖𝛽2,𝑖 = 𝛼2,𝑖 × 𝛽2,𝑖 

2. Each server 𝑆𝑖  generates random number 𝛾𝑖 , 

computes the following and sends to one of the 

servers (here, we assume server 𝑆0). 

𝛾𝑖

𝛼1,𝑖𝛽1,𝑖

,
𝛾𝑖

𝛼2,𝑖𝛽2,𝑖

 

3. Server 𝑆0 computes the following and sends to all 

servers. 

𝛾

𝛼1𝛽1

= ∏
𝛾𝑖

𝛼1,𝑖𝛽1,𝑖

𝑘−1

𝑖=0

 

𝛾

𝛼2𝛽2

= ∏
𝛾𝑖

𝛼2,𝑖𝛽2,𝑖

𝑘−1

𝑖=0

 

4. Each server 𝑆𝑖  computes [𝛾𝑎𝑏]𝑖
∗, [𝛾𝑎𝑏]𝑖+𝑘

∗  as 

follows, and distribute [𝛾𝑎𝑏]𝑖
∗, [𝛾𝑎𝑏]𝑖+𝑘

∗  using 

Shamir’s (𝑘, 𝑘) method to all servers 𝑆𝑖. 

[𝛾𝑎𝑏]𝑖
∗ =

𝛾

𝛼1𝛽1

× [𝛼1𝛽1𝑎𝑏]𝑖
∗ 

[𝛾𝑎𝑏]𝑖+𝑘
∗ =

𝛾

𝛼2𝛽2

× [𝛼2𝛽2𝑎𝑏]𝑖+𝑘
∗  



[𝛾𝑎𝑏]𝑖
∗ ⟹ {

[𝛾𝑎𝑏]𝑖,0 ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆0

⋮
[𝛾𝑎𝑏]𝑖,𝑘−1 ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆𝑘−1

 

[𝛾𝑎𝑏]𝑖+𝑘
∗ ⟹ {

[𝛾𝑎𝑏]𝑖+𝑘,0 ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆0

⋮
[𝛾𝑎𝑏]𝑖+𝑘,𝑘−1 ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆𝑘−1

 

5. Each server 𝑆𝑖 computes the following (𝜆𝑖  are the 

recombination vector). 

[𝛾𝑎𝑏]𝑖 = 𝜆0 × [𝛾𝑎𝑏]0,𝑖 + ⋯ + 𝜆2𝑘−1 × [𝛾𝑎𝑏]2𝑘−1,𝑖 

Reconstruction Protocol 

1. The player collects [𝛾𝑎𝑏]𝑖 , 𝛾𝑖  from 𝑘  servers 𝑆𝑖 , 

reconstructs 𝛾𝑎𝑏 and computes 𝛾 as follows. 

𝛾 = ∏ 𝛾𝑖

𝑘−1

𝑖=0

 

2. Finally, the player reconstructs multiplication 

result 𝑎𝑏 as follows. 

𝑎𝑏 =
𝛾𝑎𝑏

𝛾
 

5 SECURITY OF THE 

PROPOSED METHOD 

In a 2-input-1-output multiplication process, when the 

adversary has information of one of the inputs (e.g. 

input 𝑎) and output (e.g. output 𝑎𝑏), the second input 

(e.g. input 𝑏 ) will be leaked. Therefore, we only 

consider the following adversaries. The attack is 

considered a success if the adversary can achieve the 

aim of learning the information that he/she wants to 

know. Therefore, we can state that our proposed 

method is secure if it is secure against the following 

adversaries. 

Adversary 1: The adversary has information from 
𝑘 −  1  servers. According to this information, the 
adversary attempts to know inputs 𝑎, 𝑏  and output 
𝑎𝑏.  

Adversary 2: One of the players who inputted a 
secret is the adversary. In addition, the adversary also 
has information from 𝑘 − 1 servers. According to this 
information, the adversary attempts to know the 
remaining one input 𝑎 or 𝑏, and output 𝑎𝑏.  

Adversary 3: The player who reconstructed the 
output is the adversary. In addition, the adversary has 
information from 𝑘 − 1 servers. According to this 
information, the adversary attempts to know two 
inputs 𝑎 and 𝑏. 

In the following, we evaluate the security of our 
proposed method. 

Evaluation of security against Adversary 1 
Here, Adversary 1 has information from 𝑘 − 1 

number of servers. In the distribution protocol, 
Adversary 1 has the following information 𝐷𝐴  from 
Player 𝐴 and 𝐷𝐵 from Player 𝐵. 

𝐷𝐴 = [𝛼1𝑎]𝑙 , [𝛼2𝑎]𝑙+𝑘 , 𝛼1,𝑙, 𝛼2,𝑙  (𝑙 = 0, … , 𝑘 − 2) 

𝐷𝐵 = [𝛽1𝑏]𝑙 , [𝛽2𝑏]𝑙+𝑘 , 𝛽1,𝑙 , 𝛽2,𝑙  (𝑙 = 0, … , 𝑘 − 2) 

However, encrypted secrets  𝛼1𝑎, 𝛼2𝑎, 𝛽1𝑏, 𝛽2𝑏  are 
not leaked from 𝑘 − 1 shares. Moreover, Adversary 1 
is not able to learn about random numbers 
𝛼1, 𝛼2, 𝛽1, 𝛽2  from 𝑘 − 1  servers. Therefore, even 
with this information, secrets 𝑎 and 𝑏 are not leaked. 
Thus, the following are true. 

𝐻(𝑎) = 𝐻(𝑎|𝐷𝐴) 

𝐻(𝑏) = 𝐻(𝑏|𝐷𝐵) 

In Step 1 of the multiplication protocol, Adversary 1 

learns about 𝛼1,𝑙𝛽1,𝑙 , 𝛼2,𝑙𝛽2,𝑙  (𝑙 = 0, … , 𝑘 − 2) , in 

Step 2 about 𝛾𝑙 , 𝛾𝑙 𝛼1,𝑙𝛽1,𝑙⁄ , 𝛾𝑙 𝛼2,𝑙𝛽2,𝑙⁄ , in Step 3 

about 𝛾 𝛼1𝛽1⁄ , 𝛾 𝛼2𝛽2⁄ , in Step 4 about 

[𝛾𝑎𝑏]0
∗ , … , [𝛾𝑎𝑏]𝑘−2

∗ , [𝛾𝑎𝑏]𝑘
∗ , … , [𝛾𝑎𝑏]2𝑘−2

∗  and in 

Step 5 about [𝛾𝑎𝑏]0, … , [𝛾𝑎𝑏]𝑘−2. As a result, we can 

transform the problem into determining whether the 

adversary can learn about inputs 𝑎, 𝑏  or output 𝑎𝑏 

from the following information. 

𝛼1,𝑙 , 𝛼2,𝑙 , 𝛽1,𝑙 , 𝛽2,𝑙 , 𝛾𝑙 ,
𝛾

𝛼1𝛽1

,
𝛾

𝛼2𝛽2

, 

[𝛾𝑎𝑏]𝑙
∗, [𝛾𝑎𝑏]𝑙+𝑘

∗ , [𝛾𝑎𝑏]𝑙  (𝑙 = 0, … , 𝑘 − 2) 

Since [𝛾𝑎𝑏]𝑖
∗ is represented by polynomial of (2𝑘 −

2) degree, 2𝑘 − 1 number of shares are required to 

reconstruct 𝛾𝑎𝑏 . However, Adversary 1 only has 

information of 2𝑘 − 2 number of shares, therefore, 

𝛾𝑎𝑏 is not leaked. The same is true when Adversary 

1 only has information of 𝑘 − 2  number of shares 

[𝛾𝑎𝑏]𝑙 ,  𝛾𝑎𝑏  is not leaked. Moreover, because 

Adversary 1 has no information 𝛼1, 𝛼2, 𝛽1, 𝛽2 , 

random number 𝛾 used to encrypt the output 𝑎𝑏 is not 

leaked. Therefore, our proposed method is secure 

against Adversary 1 and the following are true: 



𝐻(𝛾) = 𝐻 (𝛾|𝛼1,𝑙 , 𝛼2,𝑙 , 𝛽1,𝑙 , 𝛽2,𝑙 , 𝛾𝑙 ,
𝛾

𝛼1𝛽1

,
𝛾

𝛼2𝛽2

) 

𝐻(𝛾𝑎𝑏) = 𝐻(𝛾𝑎𝑏|[𝛾𝑎𝑏]𝑙
∗, [𝛾𝑎𝑏]𝑙+𝑘

∗ , [𝛾𝑎𝑏]𝑙  (𝑙

= 0, … , 𝑘 − 2)) 

Evaluation of security against Adversary 2 
Assume that the player who inputted input 𝑎  is 

Adversary 2. Adversary 2 also has information from 
𝑘 −  1 servers. Therefore, in the distribution protocol, 
Adversary 2 has information about 
𝑎, 𝛼1,𝑖 , 𝛼2,𝑖 , 𝛼1, 𝛼2 (𝑖 = 0, … , 𝑘 − 1)  in addition to 
information  from 𝑘 − 1 servers (Adversary 1). 

Therefore, the evaluation of security against 
Adversary 2 can be translated to the problem of 
determining whether the adversary can learn about 
the remaining input 𝑏  and output 𝑎𝑏  from the 
following information: 

𝑎, 𝛼1,𝑖 , 𝛼2,𝑖 , 𝛼1, 𝛼2, 𝛽1,𝑙 , 𝛽2,𝑙 , 𝛾𝑙 ,
𝛾

𝛽1

,
𝛾

𝛽2

, 

[𝛽1𝑏]𝑙 , [𝛽2𝑏]𝑙+𝑘 , [𝛾𝑎𝑏]𝑙
∗, [𝛾𝑎𝑏]𝑙+𝑘

∗ , [𝛾𝑎𝑏]𝑙   (𝑙
= 0, … , 𝑘 − 2) 

From the above information, the adversary will be 
able to learn 𝛽1 𝛽2⁄  from 𝛾 𝛽1⁄ , 𝛾 𝛽2⁄ . Furthermore, 
the adversary will be able to learn the following from 
𝛽1 𝛽2⁄ , [𝛽1𝑏]𝑙 , [𝛽2𝑏]𝑙+𝑘. 

[𝛽1𝑏]𝑙 , [𝛽1𝑏]𝑙+𝑘, [𝛽2𝑏]𝑙 , [𝛽2𝑏]𝑙+𝑘 

Since 𝛽1𝑏, 𝛽2𝑏 are distributed using Shamir’s (𝑘, 2𝑘) 
method, the adversary will be able to learn the value 
of 𝛽1𝑏, 𝛽2𝑏  from [𝛽1𝑏]𝑙 , [𝛽1𝑏]𝑙+𝑘, [𝛽2𝑏]𝑙 , [𝛽2𝑏]𝑙+𝑘 . 
Here, if the reconstructed value of  𝛽1𝑏 = 0 or 𝛽2𝑏 =
0, the adversary will be able to learn that secret 𝑏 =
0 . Therefore, the following condition is required 
when considering Adversary 2.  

Condition 1 (for Adversary 2): the input does not 
include the value 0. 

However, to obtain information about secret 𝑏 from 
𝛽1𝑏, 𝛽2𝑏, the adversary must first obtain information 
of random numbers 𝛽1, 𝛽2 . The information that is 
related to random numbers 𝛽1, 𝛽2  are 
𝛽1,𝑙 , 𝛽2,𝑙 , 𝛾𝑙 , 𝛾 𝛽1⁄ , 𝛾 𝛽2⁄ . However, even from this 
information, random numbers 𝛽1, 𝛽2 are not leaked. 
Therefore,  

𝐻(𝑏) = 𝐻 (𝑏|𝛽1𝑏, 𝛽2𝑏, 𝛽1,𝑙 , 𝛽2,𝑙 , 𝛾𝑙 ,
𝛾

𝛽1

,
𝛾

𝛽2

) 

Finally, to obtain multiplication result 𝑎𝑏 , the 
adversary must first obtain information 𝛾𝑎𝑏  and 
random number 𝛾. The adversary will be able to learn 
𝛾𝑎𝑏 from the following information. 

𝑎, 𝛼1, 𝛽1𝑏,
𝛾

𝛼1𝛽1

 

However, since random number 𝛾  are not leaked 
from 𝛾𝑙 , 𝛾 𝛽1⁄ , 𝛾 𝛽2⁄ . Therefore,  

𝐻(𝑎𝑏) = 𝐻 (𝑎𝑏|𝛾𝑎𝑏, 𝛾𝑙 ,
𝛾

𝛽1

,
𝛾

𝛽2

) 

In addition, the evaluation above remains valid even 
if the adversary is the player who inputted input 𝑏. 
Therefore, our proposed method is secure against 
Adversary 2 as long as the input of the computation 
does not include the value 0. 

Evaluation of security against Adversary 3 
Assume that the player who reconstructed output 

𝑎𝑏 is Adversary 3. Adversary 3 also has information 
from 𝑘 − 1 servers. Therefore, in the reconstruction 
protocol, Adversary 3 has information about 
[𝛾𝑎𝑏]𝑖 , 𝛾𝑖 , 𝛾𝑎𝑏, 𝛾 (𝑖 = 0, … , 𝑘 − 1)  in addition to 
information from 𝑘 − 1 servers (Adversary 1). 

Therefore, the evaluation of security against 
Adversary 3 can be translated to the problem of 
determining whether the adversary can learn about 
the inputs 𝑎, 𝑏 from the following information: 

𝐴 = {𝑎𝑏, 𝛾𝑖 , 𝛾, 𝛼1,𝑙 , 𝛼2,𝑙 , 𝛽1,𝑙 , 𝛽2,𝑙 , 𝛼1𝛽1, 𝛼2𝛽2, 

[𝛼1𝑎]𝑙 , [𝛼2𝑎]𝑙 , [𝛽1𝑏]𝑙 , [𝛽2𝑏]𝑙   (𝑙 = 0, … , 𝑘 − 2) } 

To obtain information about secret 𝑎, 𝑏, the adversary 
must first obtain information of 𝛼1𝑎, 𝛼2𝑎, 𝛽1𝑏, 𝛽2𝑏 
and random numbers 𝛼1, 𝛼2, 𝛽1, 𝛽2. The information 
that is related to random numbers 𝛼1, 𝛼2, 𝛽1, 𝛽2  are 
𝛼1,𝑙 , 𝛼2,𝑙 , 𝛽1,𝑙 , 𝛽2,𝑙 , 𝛼1𝛽1, 𝛼2𝛽2 . However, even from 
these information, random numbers 𝛼1, 𝛼2, 𝛽1, 𝛽2 are 
not leaked. Moreover, encrypted secret 
𝛼1𝑎, 𝛼2𝑎, 𝛽1𝑏, 𝛽2𝑏   will not be leaked from 𝑘 − 1 
number of shares. Finally, even with the 
multiplication result 𝑎𝑏, Adversary 3 will not be able 
to learn about each secret 𝑎, 𝑏. Therefore,  

𝐻(𝑎) = 𝐻(𝑎|𝐴) 

𝐻(𝑏) = 𝐻(𝑏|𝐴) 

Therefore, we can state that our proposed method is 

also secure against Adversary 3. 

6 EVALUATION OF OUR 

PROPOSED METHOD 

In this section, we perform evaluation of our proposed 

method in term of computation and communication 

costs. Below is the definition of parameters used 



throughout our analysis. Note that in secret sharing 

scheme, size of share 𝑑1 is usually almost the same 

size as the original secret. Moreover, in a secret 

sharing scheme, the computational cost of the 

distribution and the reconstruction process differs, but 

for ease of understanding, we consider that the 

computation cost of both the distribution and 

reconstruction process of a secret sharing scheme to 

be the same. Table 1 shows the communication cost 

and number of rounds of our proposed method. Table 

2 shows the computational cost of our method. 

Definition of Parameters: 

─ 𝑑1: Size of share from secret sharing scheme 

─ 𝐶1: Computational cost of Shamir’s (𝑘, 2𝑘) secret 

sharing scheme 

─ 𝐶2: Computational cost of Shamir’s (𝑘, 𝑘) secret 

sharing scheme 

─ 𝑀: Computational cost of multiplication 

─ 𝐷: Computational cost of division 

─ 𝐴: Computational cost of addition 

 

Table 1. Communication and number of rounds of 

the proposed method 

Process Communication  Rounds 

Distribution of 𝑎 4𝑘𝑑1 
1 

Distribution of 𝑏 4𝑘𝑑1 

Multiplication of 

𝑎 and 𝑏 

Step 2 2𝑘𝑑1 

3 Step 3 2𝑁𝑑1 

Step 4 2𝑁𝑘𝑑1 

Reconstruction of 

𝑎𝑏 
2𝑘𝑑1 1 

 

Table 2. Computational cost of the proposed method 

Process Computation Cost 

Distribution of 

𝑎, 𝑏 

Step 1 2(𝑘 − 1)𝑀 

Step 2 𝐶1 + (2𝑛 − 1)𝑀 

Step 4 2(𝑘 − 1)𝑀 

Step 5 𝐶1 + (2𝑛 − 1)𝑀 

Multiplication 

of 𝑎 and 𝑏 

Step 1 4𝑘𝑀 

Step 2 2𝑘(𝑀 + 𝐷) 

Step 3 2(𝑘 − 1)𝑀 

Step 4 2𝑘(𝑀 + 𝐶2) 

Step 5 2𝑁𝑘(𝑀 + 𝐴) 

Reconstruction 

of 𝑎𝑏 
𝐶2 + (𝑘 − 1)𝑀 + 𝐷 

7 COMPARISON WITH 

CONVENTIONAL METHODS 

In this section, we perform comparison with 
conventional methods (Watanabe method (Watanabe 
et al., 2015) proposed by Watanabe et al. and the TUS 
method (Shingu et al., 2016) proposed by Shingu et 
al.) that also realize multiplication of secret sharing 
schemes using only 𝑁 = 𝑘 servers.  

First, the TUS method allows for multiplication in 
the setting of 𝑁 = 𝑛 ≥ 𝑘  since multiplication is 
performed by multiplying scalar value with a share, 
therefore, allowing the result of multiplication to be 
restored by only 𝑘 shares instead of the conventional 
2𝑘 − 1 shares. On the other hand, our method allows 
for multiplication in the setting of 𝑁 = 𝑘 by reducing 
the degree of the resulting polynomial. However, the 
TUS method requires one precondition where the 
input does not include the value 0 to securely perform 
multiplication. In contrast, our method only requires 
this condition when one of the players who inputted a 
secret is the adversary (Adversary 2).  

Next, Watanabe method also allows for 
multiplication in the setting of 𝑁 ≥ 𝑘 and 𝑛 ≥ 2𝑘 −
1 ; however, the number of shares required to 
reconstruct the result remain at 2𝑘 − 1 instead of 𝑘. 
On the other hand, our method allows for 
multiplication in the setting of 𝑛 ≥ 2𝑘 − 1  and 
number of servers 𝑁 to remain at 𝑘. Moreover, our 
protocol produces 𝑘 − 1 sharing of 𝑎𝑏, therefore, we 
only need to collect 𝑘 instead of 2𝑘 − 1 shares for 
reconstruction. All the comparisons discussed above 
are summarized in Table 3. 

Next, in Table 4, we show comparison with 
conventional methods. However, since the 
computation cost of secret sharing scheme 𝐶1, 𝐶2 are 
typically larger than local computation cost of 𝑀, 𝐷 
and 𝐴, we omit the cost of 𝑀, 𝐷 and 𝐴 when either 𝐶1 
or 𝐶2 is present in the computation cost. 

Table 4 shows that the computation cost for 
distribution of 𝑎, 𝑏  and reconstruction of 𝑎𝑏  of our 
method are lower than both Watanabe and TUS 
methods. Next, since our proposed method includes 
the process of redistributing of local shares to all 
servers, we learnt that the computation cost of 
multiplication of our proposed method is larger than 
Watanabe method. However, we were able to reduce 
the computation cost for the reconstruction, and 
therefore, reducing the computation cost needed by 
the client.  

 
 
 



Table 3. Comparison with conventional methods (for multiplication) 

 Proposed method Watanabe method TUS method 

Approach used 

for multiplication  

𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙
× 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 

𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙
× 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 

𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙
× 𝑆𝑐𝑎𝑙𝑎𝑟 𝑉𝑎𝑙𝑢𝑒 

Parameter of 𝑛, 𝑘 𝑛 ≥ 2𝑘 − 1 𝑛 ≥ 2𝑘 − 1 𝑛 ≥ 𝑘 

Number of 

servers 𝑁 
𝑁 = 𝑘 𝑁 ≥ 𝑘 𝑁 ≥ 𝑘 

Number of shares 

for reconstruction 
𝑘 2𝑘 − 1 𝑘 

Number of  

Precondition 
0 (1*) 0 1 

(*A condition where the secret does not include 0 is required when Adversary 2 is considered) 

 
Table 4. Comparison with conventional methods 

 Process Proposed method Watanabe method TUS method 

C
o

m
p

u
ta

ti
o

n

 

Distribution 
of 𝑎, 𝑏 

2𝐶1 2(𝐶1 + 𝐶2) 2(𝑘 + 1)𝐶2 

Multiplication 
of 𝑎𝑏 

2𝑘𝐶2 2𝑛𝑀 (3𝑘 + 1)𝐶2 

Reconstruction 
of 𝑎𝑏 

𝐶2 𝐶1 + 2𝐶2 (𝑘 + 1)𝐶2 

C
o

m
m

u
n

ic
at

io
n

 

Distribution 
of 𝑎, 𝑏 

8𝑘𝑑1 8𝑛𝑑1 2𝑛𝑑1(𝑘 + 1) 

Multiplication 
of 𝑎𝑏 

(2𝑘 + 2𝑁 + 2𝑁𝑘)𝑑1 0 (𝑘 + 𝑛 + 2𝑘2 + 𝑛𝑘)𝑑1 

Reconstruction 
of 𝑎𝑏 

2𝑘𝑑1 4𝑘𝑑1 (𝑘2 + 𝑘)𝑑1 

R
o

u
n

d
s

 

Distribution 
of 𝑎, 𝑏 

1 1 1 

Multiplication 
of 𝑎𝑏 

3 0 4 

Reconstruction 
of 𝑎𝑏 

1 1 1 

In terms of communication cost, the merits and 
demerits of each method depend on 𝑑1, 𝑛, 𝑘.However, 
when comparing with Watanabe method, since our 
proposed method produce a polynomial of (𝑘 − 1) 
degree instead of polynomial of (2𝑘 − 2) degree, we 
were able to reduce the communication cost for 
reconstruction of 𝑎𝑏 by half. 

8 CONCLUSIONS 

In this paper, we proposed an improved method 
of multiplication of shares by using only 𝑁 = 𝑘 
number of servers. Furthermore, by implementing the 
use of recombination vector, we proposed a method 
of computing 𝑘 − 1 sharing of multiplication 𝑎𝑏 by 
using only 𝑘 servers instead of the previous 2𝑘 − 1 
servers. Through this proposed method, we realized 
secure multi-party computation of multiplication 

using Shamir’s (𝑘, 𝑛) method in the setting of 𝑛 ≥
2𝑘 − 1, 𝑁 = 𝑘. 

In a future study, we will focus on including the 
function for verification of shares in addition to 
allowing for different combination of computation 
(such as product-sum operation) to be performed 
simultaneously.  

REFERENCES 

Ben-Or M., Goldwasser S., Wigderson A., 1988. 

Completeness theorems for non-cryptographic fault-

tolerant distributed computation. In Proceedings of the 

20th Annual ACM Symposium on Theory of 

Computing, pp. 1-10. ACM, New York, NY, USA. 

Bendlin R., Damgård I., Orlandi C., Zakarias S., 2011. 

Semi-homomorphic encryption and multiparty 

computation. In Paterson K. G. (eds) Advances in 



Cryptology-EUROCRYPT 2011. LNCS, vol. 6632, pp. 

169-188. Springer, Berlin, Heidelberg. 

Brakerski Z., Vaikuntanathan V., 2011. Fully 

homomorphic encryption from ring-LWE and security 

for key dependent messages. In Rogaway P. (eds) 

Advances in Cryptology – CRYPTO 2011. LNCS, vol 

6841, pp. 505-524. Springer, Berlin, Heidelberg. 

Chaum D., Crépeau C., Damgård I., 1988. Multiparty 

unconditionally secure protocols. In Proceedings of the 

20th Annual ACM Symposium on Theory of 

Computing. pp. 11-19. ACM, New York, NY, USA. 

Cramer R., Damgård I., Maurer U., 2000. General secure 

multiparty computation from any linear secret sharing 

scheme. In Preneel B. (eds) Advances in Cryptology-

EUROCRYPT 2000. LNCS, vol. 1807, pp. 316-334. 

Springer, Berlin, Heidelberg. 

Cramer R., Damgård I., Nielsen J., 2015. Secure multiparty 

computation and secret sharing. Cambridge University 

Press, 1st edition. 

Damgård I., Pastro V., Smart N., Zakarias S., 2012. 

Multiparty computation from somewhat homomorphic 

encryption. In Safavi-Naini R., Canetti R., (eds) 

Advances in Cryptology-CRYPTO 2012. LNCS, vol 

7417, pp. 643-662. Springer, Berlin, Heidelberg. 

Damgård I., Keller M., Larraia E., Pastro V., Scholl P., 

Smart N.P., 2013. Practical covertly secure MPC for 

dishonest majority or: breaking the SPDZ limits. In 

Crampton J., Jajodia S., Mayes K. (eds) Computer 

Security – ESORICS 2013. LNCS, vol. 8134, pp. 1-18. 

Springer, Berlin, Heidelberg. 

Gennaro R., Rabin M. O., Rabin T., 1998. Simplified VSS 

and fast-track multiparty computations with 

applications to threshold cryptography.” In Proceedings 

of the 17th Annual ACM Symposium on Principles of 

Distributed Computing. pp. 101-111. ACM, New York, 

NY, USA. 

Gentry C., 2009. A fully homomorphic encryption scheme, 

Ph.D Thesis, Stanford University, Stanford, CA, USA. 

Hirt M., 2001. Multiparty computation: efficient protocols, 

general adversaries, and voting. PhD Thesis, ETH 

Zurich. Reprint as ETH Series in Information Security 

and Cryptography vol. 3. 

Shamir A., 1979. How to share a secret. Communications 

of the ACM, 22, (11), pp. 612-613. 

Sharemind, Cybernetica. https://sharemind.cyber.ee 

Shingu T., Iwamura K., Kaneda K., 2016. Secrecy 

computation without changing polynomial degree in 

Shamir’s (𝑘, 𝑛) secret sharing scheme. In Proceedings 

of the 13th International Joint Conference on e-

Business and Telecommunications, vol.1, pp. 89-94. 

SCITEPRESS. 

Watanabe T., Iwamura K., Kaneda K., 2015. Secrecy 

multiplication based on a (𝑘, 𝑛) -threshold secret-

sharing scheme using only 𝑘  servers. In Park J., 

Stojmenovic I., Jeong H., Yi G. (eds) Computer Science 

and Its Applications. LNEE, vol. 330, pp. 107-112. 

Springer, Berlin, Heidelberg. 

Yao A. C., 1982. Protocols for Secure Computations. In 

23rd Annual Symposium on Foundations of Computer 

Science. pp. 160-164. Chicago, IL, USA. 

APPENDIX 1: ADDITION (𝒂 + 𝒃)  

Protocol for computing addition of 𝑎 + 𝑏 using our 
proposed method of distribution is as follows: 

1. Each server 𝑆𝑖  (𝑖 = 0, 1, … , 𝑛 − 1)  generates 

random number 𝛾𝑖 , computes the following and 

sends to one of the servers (here, we assume server 

𝑆0). 

𝛾𝑖

𝛼1,𝑖

,
𝛾𝑖

𝛽1,𝑖

 

2. Server 𝑆0 computes the following and sends to all 

servers. 

𝛾

𝛼1

= ∏
𝛾𝑖

𝛼1,𝑖

𝑘−1

𝑖=0

,
𝛾

𝛽1

= ∏
𝛾𝑖

𝛽1,𝑖

𝑘−1

𝑖=0

 

3. Each server 𝑆𝑖 computes [𝛾(𝑎 + 𝑏)]𝑖as follows. 

[𝛾(𝑎 + 𝑏)]𝑖 =
𝛾

𝛼1

× [𝛼1𝑎]𝑖 +
𝛾

𝛽1

× [𝛽1𝑏]𝑖 

Security. 
Here, due to the page limit, we had omitted the 

security proof against Adversaries 2 and 3. Below, we 
show the security against Adversary 1, where the 
adversary has information from 𝑘 − 1 servers. In the 
distribution protocol, Adversary 1 has the following 
information 𝐷𝐴 from Player 𝐴 and 𝐷𝐵 from Player 𝐵. 

𝐷𝐴 = [𝛼1𝑎]𝑙 , [𝛼2𝑎]𝑙+𝑘 , 𝛼1,𝑙, 𝛼2,𝑙  (𝑙 = 0, … , 𝑘 − 2) 

𝐷𝐵 = [𝛽1𝑏]𝑙 , [𝛽2𝑏]𝑙+𝑘 , 𝛽1,𝑙 , 𝛽2,𝑙  (𝑙 = 0, … , 𝑘 − 2) 

As shown in Section 5, Adversary 1 will not able 
to learns neither 𝑎 nor 𝑏 from the information above. 
Moreover, in the protocol for addition, the adversary 
learns about the following. 

𝛾

𝛼1

,
𝛾

𝛽1

, 𝛾𝑙 , 𝛼1,𝑙 , 𝛽1,𝑙 , [𝛾(𝑎 + 𝑏)]𝑙  (𝑙 = 0, … , 𝑘 − 2) 

 To learn the output 𝑎 + 𝑏 , Adversary 1 has to 
obtain information 𝛾(𝑎 + 𝑏) and random number 𝛾. 
However, from 𝑘 − 1  shares [𝛾(𝑎 + 𝑏)]𝑙  and 
random numbers 𝛾𝑙 , information of 𝛾(𝑎 + 𝑏) and 𝛾 
are not leaked. Therefore, we can state that the 
addition protocol is secure against Adversary 1. 

https://sharemind.cyber.ee/


APPENDIX 2: SCALAR 

MULTIPLICATION (𝒄𝒂) 

Protocol for computing scalar multiplication between 
constant 𝑐 and secret 𝑎 is as follows: 

1. Let 𝑐 ∈ 𝐺𝐹(𝑝), 𝑐 ≠ 0  be some constant. Each 

server 𝑆𝑖  (𝑖 = 0, 1, … , 𝑛 − 1)  computes the 

following locally. 

[𝛼1(𝑐𝑎)]𝑖 = 𝑐 × [𝛼1𝑎]𝑖 

Security. 
In the protocol for scalar multiplication between 

constant 𝑐  and secret 𝑎 , all computations are 
performed locally without any communication 
between players. Therefore, the security will depend 
on the distribution of secret 𝑎 (which was proven to 
be secure in Section 5). Moreover, the adversary will 
not be able to learn the result of 𝑐𝑎 if no more than 
𝑘 − 1 shares of [𝛼1(𝑐𝑎)]𝑖 are leaked. Therefore, we 
can state that our protocol for scalar multiplication of 
𝑐𝑎 is also secure against semi-honest adversary (we 
omitted the detailed proof due to the page limit). 

APPENDIX 3: EXAMPLE OF 

COMPUTATION 

Below, for ease of understanding, we demonstrate the 

computation of multiplication between secrets 𝑎 = 3 

and 𝑏 = 2 of Players 𝐴 and 𝐵, respectively, under the 

setting of 𝑁 = 𝑘 = 2, 𝑛 ≥ 3 . Since 𝑘 = 2 , 

multiplication of shares of 𝑎  and 𝑏  will produce a 

(2𝑘 − 2) = 2  degree polynomial. As shown in 

Section 2.3, the process of reducing the degree of 

polynomial from (2𝑘 − 2) = 2  to (𝑘 − 1) = 1  can 

be achieved by using the recombination vector 𝑟 =
 (3, −3, 1). In the example shown below, secrets 𝑎, 𝑏, 

all random numbers and all computations are 

performed with 𝑝 = 97. 

Distribution Protocol 

1. Player 𝐴  generates 2𝑘 = 4  random numbers 

𝛼1,0, 𝛼1,1, 𝛼2,0, 𝛼2,1 and computes the following. 

𝛼1,0 = 2, 𝛼1,1 = 4  

𝛼2,0 = 3, 𝛼2,1 = 6 

𝛼1 = 𝛼1,0 × 𝛼1,1 = 2 × 4 = 8 (𝑚𝑜𝑑 97)  

𝛼2 = 𝛼2,0 × 𝛼2,1 = 3 × 6 = 18 (𝑚𝑜𝑑 97) 

2. Player 𝐴 generates 2𝑘 = 4 shares of secret 𝑎 = 3 

using Shamir’s (2, 4)  method and computes the 

following. Here, let [𝑎]𝑖 = 3 + 𝑥. 

[𝛼1𝑎]0 = 8 × 4 = 32 (𝑚𝑜𝑑 97) 

[𝛼1𝑎]1 = 8 × 5 = 40 (𝑚𝑜𝑑 97) 

[𝛼2𝑎]2 = 18 × 6 = 11 (𝑚𝑜𝑑 97) 

[𝛼2𝑎]3 = 18 × 7 = 29 (𝑚𝑜𝑑 97) 

3. Player 𝐴  sends  [𝛼1𝑎]0, [𝛼2𝑎]2, 𝛼1,0, 𝛼2,0  to server 

𝑆0 and [𝛼1𝑎]1, [𝛼2𝑎]3, 𝛼1,1, 𝛼2,1 to server 𝑆1 . 

4. Player 𝐵  generates 2𝑘 = 4  random numbers 

𝛽1,0, 𝛽1,1, 𝛽2,0, 𝛽2,1 and computes the following. 

𝛽1,0 = 1, 𝛽1,1 = 6 

 𝛽2,0 = 8, 𝛽2,1 = 2 

𝛽1 = 𝛽1,0 × 𝛽1,1 = 1 × 6 = 6 (𝑚𝑜𝑑 97)  

𝛽2 = 𝛽2,0 × 𝛽2,1 = 8 × 2 = 16 (𝑚𝑜𝑑 97) 

5. Player 𝐵 generates 2𝑘 = 4 shares of secret 𝑏 = 2 

using Shamir’s (2, 4)  method and computes the 

following. Here, let [𝑏]𝑖 = 2 + 3𝑥. 

[𝛽1𝑏]0 = 6 × 5 = 30 (𝑚𝑜𝑑 97) 

[𝛽1𝑏]1 = 6 × 8 = 48 (𝑚𝑜𝑑 97) 

[𝛽2𝑏]2 = 16 × 11 = 79 (𝑚𝑜𝑑 97) 

[𝛽2𝑏]3 = 16 × 14 = 30 (𝑚𝑜𝑑 97) 

6. Player 𝐵  sends  [𝛽1𝑏]0, [𝛽2𝑏]2, 𝛽1,0, 𝛽2,0  to server 

𝑆0 and  [𝛽1𝑏]1, [𝛽2𝑏]3, 𝛽1,1, 𝛽2,1 to server 𝑆1. 

7. Finally, each server 𝑆𝑖  (𝑖 = 0, 1)  holds the 

following. 

─ Server 𝑆0 holds the following: 

[𝛼1𝑎]0 = 32, [𝛼2𝑎]2 = 11, 𝛼1,0 = 2, 𝛼2,0 = 3 

[𝛽1𝑏]0 = 30, [𝛽2𝑏]2 = 79, 𝛽1,0 = 1, 𝛽2,0 = 8 

─ Server 𝑆1 holds the following: 

[𝛼1𝑎]1 = 40, [𝛼2𝑎]3 = 29, 𝛼1,1 = 4, 𝛼2,1 = 6 

[𝛽1𝑏]1 = 48, [𝛽2𝑏]3 = 30, 𝛽1,1 = 6, 𝛽2,1 = 2 

Multiplication Protocol 

1. Each server 𝑆𝑖  (𝑖 = 0, 1) computes the following. 

─ Server 𝑆0 computes the following: 



[𝛼1𝛽1𝑎𝑏]0
∗ = [𝛼1𝑎]0 × [𝛽1𝑏]0 = 32 × 30

= 87 (𝑚𝑜𝑑 97) 

[𝛼2𝛽2𝑎𝑏]2
∗ = [𝛼2𝑎]2 × [𝛽2𝑏]2 = 11 × 79

= 93 (𝑚𝑜𝑑 97) 

𝛼1,0𝛽1,0 = 𝛼1,0 × 𝛽1,0 = 2 × 1 = 2 (𝑚𝑜𝑑 97) 

𝛼2,0𝛽2,0 = 𝛼2,0 × 𝛽2,0 = 3 × 8 = 24 (𝑚𝑜𝑑 97) 

─ Server 𝑆1 computes the following: 

[𝛼1𝛽1𝑎𝑏]1
∗ = [𝛼1𝑎]1 × [𝛽1𝑏]1 = 40 × 48

= 77 (𝑚𝑜𝑑 97) 

[𝛼2𝛽2𝑎𝑏]3
∗ = [𝛼2𝑎]3 × [𝛽2𝑏]3 = 29 × 30

= 94 (𝑚𝑜𝑑 97) 

𝛼1,1𝛽1,1 = 𝛼1,1 × 𝛽1,1 = 4 × 6 = 24 (𝑚𝑜𝑑 97) 

𝛼2,1𝛽2,1 = 𝛼2,1 × 𝛽2,1 = 6 × 2 = 12 (𝑚𝑜𝑑 97) 

2. Each server 𝑆𝑖  (𝑖 = 0, 1)  generates random 

number 𝛾𝑖 , computes the following and sends to 

one of the servers (here, we assume server 𝑆0). 

─ Server 𝑆0  generates 𝛾0 = 4 , computes the 

following and sends to server 𝑆0. 

𝛾0

𝛼1,0𝛽1,0

=
4

2
= 2 (𝑚𝑜𝑑 97) 

  
𝛾0

𝛼2,0𝛽2,0

=
4

24
= 81 (𝑚𝑜𝑑 97) 

─ Server 𝑆1  generates 𝛾1 = 2 , computes the 

following and sends to server 𝑆0. 

𝛾1

𝛼1,1𝛽1,1

=
2

24
= 89 (𝑚𝑜𝑑 97), 

  
𝛾1

𝛼2,1𝛽2,1

=
2

12
= 81 (𝑚𝑜𝑑 97) 

3. Server 𝑆0 computes the following and sends to all 

servers. 

𝛾

𝛼1𝛽1

=
𝛾0

𝛼1,0𝛽1,0

×
𝛾1

𝛼1,1𝛽1,1

= 2 × 89

= 81 (𝑚𝑜𝑑 97) 

  
𝛾

𝛼2𝛽2

=
𝛾0

𝛼2,0𝛽2,0

×
𝛾1

𝛼2,1𝛽2,1

= 81 × 81

= 62 (𝑚𝑜𝑑 97) 

4. Each server 𝑆𝑖  (𝑖 = 0, 1)  computes 

[𝛾𝑎𝑏]𝑖
∗, [𝛾𝑎𝑏]𝑖+𝑘

∗  as follows, and distribute 

[𝛾𝑎𝑏]𝑖
∗, [𝛾𝑎𝑏]𝑖+𝑘

∗  using Shamir’s (2, 2) method to 

all servers 𝑆𝑖. 

─ Server 𝑆0 computes the following: 

[𝛾𝑎𝑏]0
∗ =

𝛾

𝛼1𝛽1

× [𝛼1𝛽1𝑎𝑏]0
∗ = 81 × 87

= 63 (𝑚𝑜𝑑 97) 

[𝛾𝑎𝑏]2
∗ =

𝛾

𝛼2𝛽2

× [𝛼2𝛽2𝑎𝑏]2
∗ = 62 × 93

= 43 (𝑚𝑜𝑑 97) 

𝑙𝑒𝑡 𝑡ℎ𝑒 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑏𝑒 [𝛾𝑎𝑏]0
∗ = 63 + 𝑥 

{
[𝛾𝑎𝑏]0,0 = 64 ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆0

[𝛾𝑎𝑏]0,1 = 65 ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆1
 

𝑙𝑒𝑡 𝑡ℎ𝑒 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑏𝑒 [𝛾𝑎𝑏]2
∗ = 43 + 2𝑥 

{
[𝛾𝑎𝑏]2,0 = 45 ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆0

[𝛾𝑎𝑏]2,1 = 47 ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆1
 

─ Server 𝑆1 computes the following: 

[𝛾𝑎𝑏]1
∗ =

𝛾

𝛼1𝛽1

× [𝛼1𝛽1𝑎𝑏]1
∗ = 81 × 77

= 29 (𝑚𝑜𝑑 97) 

[𝛾𝑎𝑏]3
∗ =

𝛾

𝛼2𝛽2

× [𝛼2𝛽2𝑎𝑏]3
∗ = 62 × 94

= 8 (𝑚𝑜𝑑 97) 

𝑙𝑒𝑡 𝑡ℎ𝑒 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑏𝑒 [𝛾𝑎𝑏]1
∗ = 29 + 𝑥 

{
[𝛾𝑎𝑏]1,0 = 30 ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆0

[𝛾𝑎𝑏]1,1 = 31 ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆1
 

𝑙𝑒𝑡 𝑡ℎ𝑒 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑏𝑒 [𝛾𝑎𝑏]3
∗ = 8 + 3𝑥 

{
[𝛾𝑎𝑏]3,0 = 11 ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆0

[𝛾𝑎𝑏]3,1 = 14 ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆1
 

5. Each server 𝑆𝑖  (𝑖 = 0, 1) computes the following 

using the recombination vector 𝑟 = (3, −3, 1, 0). 

─ Server 𝑆0 computes the following: 

[𝛾𝑎𝑏]0 = 3 × [𝛾𝑎𝑏]0,0 + (−3) × [𝛾𝑎𝑏]1,0

+ 1 × [𝛾𝑎𝑏]2,0 + 0 × [𝛾𝑎𝑏]3,0 

= 3 × 64 − 3 × 30 + 1 × 45 + 0 × 11
= 50 (𝑚𝑜𝑑 97) 

─ Server 𝑆1 computes the following: 

[𝛾𝑎𝑏]1 = 3 × [𝛾𝑎𝑏]0,1 + (−3) × [𝛾𝑎𝑏]1,1

+ 1 × [𝛾𝑎𝑏]2,1 + 0 × [𝛾𝑎𝑏]3,1 



= 3 × 65 − 3 × 31 + 1 × 47 + 0 × 14
= 52 (𝑚𝑜𝑑 97) 

Reconstruction Protocol 

1. The player collects [𝛾𝑎𝑏]0 = 50, [𝛾𝑎𝑏]1 =
52, 𝛾0 = 4, 𝛾1 = 2  from 𝑁 = 𝑘 = 2  servers 

𝑆𝑖  (𝑖 = 0, 1), reconstructs 𝛾𝑎𝑏 using Shamir’s (2, 

2) method and computes 𝛾 as follows.  

𝛾𝑎𝑏 = 48 

𝛾 = 𝛾0 × 𝛾1 = 4 × 2 = 8 (𝑚𝑜𝑑 97) 

2. Finally, the player reconstructs multiplication 

result 𝑎𝑏 as follows. 

𝑎𝑏 =
𝛾𝑎𝑏

𝛾
=

48

8
= 6 (𝑚𝑜𝑑 97) 

 


