
Multi-key Fully Homomorphic Encryption Scheme

with Compact Ciphertext

Tanping Zhou*

Institute of Software,
Chinese Academy of Sciences

Beijing China
tanping2020@iscas.ac.cn

Xiaoliang Che

Cryptography Engineering
Engineering University of PAP

Xi'an Shaanxi China
 smo_mrche@yeah.net

Zhenfeng Zhang
Institute of Software,

Chinese Academy of Sciences
Beijing China

zfzhang@tca.iscas.ac.cn

Wenchao Liu

Cryptography Engineering

Engineering University of PAP

Xi'an Shaanxi China

 mr_yangxy@yeah.net

Long Chen

Institute of Software,
Chinese Academy of Sciences

Beijing China
longchen@njit.edu

Xiaoyuan Yang*

Cryptography Engineering

Engineering University of PAP

Xi'an Shaanxi China

 mr_yangxy@yeah.net

ABSTRACT

Multi-Key fully homomorphic encryption (MKFHE) allows

computation on data encrypted under different and independent

keys. The previous researches show that the ciphertext size of

MKFHE scheme usually increases linearly or squarely with the

number of parties, which restricts the application of the MKFHE

scheme. In this paper, we propose a general construction of

MKFHE scheme with compact ciphertext. Firstly, we construct

the accumulated public key of the parties set with compact by

accumulating every party’s public key under the CRS model.

Secondly, all parties provide the ciphertext of their secret keys

key which is encrypted by the accumulated public-key as the

accumulated evaluation key. Thirdly, we run the bootstrapping

process (or key switching process) on each party's ciphertext and

accumulated evaluation key to refresh the ciphertext. Finally, We

homomorphically calculate the refreshed ciphertext and decrypt it

by the joint secret key. Furthermore, according to the advantages

of TFHE-type scheme’s efficient bootstrapping and CKKS

scheme supporting approximate data homomorphic computation,

we improve the bootstrapping in our general scheme and

specifically propose two efficient MKFHE schemes with compact

ciphertext.

Our work has two advantages. The one is that the ciphertext

size of the proposed general scheme is independent of the number

of parties, and the homomorphic computation is as efficient as the

single-party full homomorphic encryption scheme. When the

parties' set is updated, the ciphertext of the original set can

continue to be used for homomorphic computation of the new

parties' set after refreshed. Another advantage is that only by

authorization can a party’s data be used in the homomorphic

operation of a set, i.e., all parties need to regenerate their

accumulated evaluation key with the set. Compared with the fully

dynamic MKFHE scheme, the authorized MKFHE scheme we

proposed supports parties to effectively control which set their

data.

KEYWORDS

Multi-key Fully homomorphic encryption, Lattice cipher,

Bootstrapping process, Homomorphic decryption

1 INTRODUCTION

Single-party Fully homomorphic encryption (FHE) is a

cryptographic scheme that enables homomorphic operations on

encrypted data without decryption. Many of HE schemes (eg.1-13)

have been suggested following Gentry’s blueprint [3]. The typical

FHE schemes can only support homomorphic computation of

ciphertext for a single party, that is, all ciphertexts participating in

computation correspond to the one secret key. However, in many

scenarios, it is usually necessary to calculate the data uploaded to

the cloud by multi-party in the network. In 2012, López-Alt et al.

[14] proposed a multi-key fully homomorphic encryption (MKFHE)

scheme, which is a variant of FHE allowing computation on data

encrypted under different and independent keys. One of the most

appealing applications of MKFHE is to construct on-the-fly

multiparty computation (MPC) protocols. The process of MKFHE

is shown in Figure 1.

Multi-key Fully Homomorphic Encryption Scheme with Compact Ciphertext

Tanping Zhou is with the Engineering University of People's Armed Police，Xi’an,

China, E-mail: tanping2020@iscas.ac.cn

 T. Zhou et al.

Computing

function f

Cloud Server

...

 Return result ciphertext

 Homomorphic

computation

 Multi-

party joint

decryption
Party 2

Key2

Party 1

Key1

Party N

KeyN

 Encryption

 Encryption

 Encryption

Figure 1: Multiparty data security computing model of

MKFHE

1.1 Background

The MKFHE schemes are mainly divided into four types:

NTRU-type MKFHE, GSW-type MKFHE, BGV-type MKFHE and

TFHE-type MKFHE.

In 2012, López-Alt et al. first proposed the NTRU-type MKFHE

based on the NTRU cryptosystem[15], which was optimized later in

DHS16[2]. In PKC2017, Chongchitmate et al. proposed a general

transformation framework CO17[16] from MKFHE to MKFHE

with circuit privacy, and constructed a three-round dynamic secure

multi-party computation protocol. However, the security of this

construction is based on a new and somewhat non-standard

assumption on polynomial rings.

In CRYPTO2015, Clear and McGoldrick proposed the first

GSW-type MKFHE scheme CM15 based on LWE problem [17],

which proposes a transformation mode from FHE to MKFHE. The

ciphertext of the single-party FHE is expanded to a new large

ciphertext, which corresponds to the cascaded secret key of all

parties. Then, the extended ciphertexts are used for homomorphic

computation, and the final ciphertext is decrypted jointly by all

parties. This transformation mode is widely adopted by most

MKFHE schemes based on LWE or RLWE problems. In

EUROCRYPT 2016, Mukherjee and Wichs presented a

construction of MKFHE MW16[18] based on LWE that simplifies

the scheme of CM15 and admits a simple 1-round threshold

decryption protocol. Based on this threshold MKFHE, they

successfully constructed a general two-round MPC protocol upon it

in the common random string model. The schemes CM15 and

MW16 need to determine all the involved parties before the

homomorphic computation and do not allow any new party to join

in, which is called single-hop MKFHE[19]. In TCC2016, Peikert

and Shiehian proposed a notion of multi-hop MKFHE PS16[19], in

which the result ciphertexts of homomorphic evaluations can be

used in further homomorphic computations involving additional

parties (secret keys). That is, any party can dynamically join the

homomorphic computation at any time. However, the disadvantage

is that the number of parties is limited. In CRYPTO2016, A similar

notion named fully dynamic MKFHE BP16[20] was proposed by

Brakerski and Perlman. A slight difference is that in fully dynamic

MKFHE the bound of the number of parties does not need to be

input during the setup procedure. The length of extended ciphertext

only increases linearly with the number of parties. However, in the

process of homomorphic computation, the scheme needs to use the

parties' joint public key to run the bootstrapping process, so the

efficiency of ciphertext computation is low.

In TCC2017, Chen et al. proposed the first BGV-type multi-hop

MKFHE scheme CZW17[21]. They used GSW-type expansion

algorithm to encrypt the secret key to generate the joint evaluation

key of the parties set. CZW17 supports the ciphertext packaging

technology based on Chinese remainder theorem (CRT), and can be

used to construct 2-round MPC protocol and threshold decryption

protocol. In 2019, Li et al. put forward a nested ciphertext extension

method LZY+19[22], which reduces the evaluation key and the

expansion ciphertext size. In 2019, Chen et al. optimized the

relinearization process and constructed an efficient MKFHE

CDKS19 [23]. Because of its efficient homomorphic computation,

it is applied to the neural network to perform the privacy

computation.

In ASIACRYPT2016, Chillotti et al. constructed the full

homomorphic scheme CGGI16[24] based on a variant of GSW13

on the T=(0,1] ring TGSW. In the scheme, the external product of

TGSW ciphertext (matrix) and TLWE ciphertext (vector) is used to

replace the product of TGSW ciphertext (matrix) and TGSW

ciphertext (matrix). Therefore, the addition operation on polynomial

exponent is more efficient, such that the time of bootstrap process

and the size of bootstrap key are greatly reduced. In

ASIACRYPT2017, Chilotti et al. optimized the accumulation

process in the CGGI16 scheme and proposed CGGI17[25], which

reduced the bootstrapping time to 13ms. In the follow-up work, they

wrote the FHE software library TFHE. In ASIACRYPT2019, Chen

et al. designed an efficient ciphertext expansion algorithm based on

CGGI17, realized the efficient expansion evaluation key, and

proposed an MKFHE scheme CCS19[26]. The ciphertext length of

the scheme increases linearly with the number of parties. And also,

they compiled an MKFHE software library MKTFHE, which has

important guiding significance for the application of MKFHE

schemes.

1.2 Our Contributions

Throughout the paper, there are many definitions of each party.

Here we give a simple description of them. For the party i, firstly he

selects his secret key (sk) and generates the corresponding public

key (pk). Then it provides the part of its public key to generate the

joint public key (jpk). He uses the jpk to encrypt his ciphertext for

generating the accumulated ciphertext. Party i uses the jpk encrypt

his secret key for generating the evaluation key (ek), uses jpk

encrypt the joint ciphertext for generating the accumulated

evaluation key (aek). Similarly, party i generates switching key(wk),

accumulated switching key (awk), bootstrapping key (bk), and

accumulated bootstrapping key (abk) that participate in

homomorphic operation according to jpk.

Single-party FHE uses the same key for encryption or decryption.

To construct MKFHE like the FHE encryption mode, we need to

construct a common public key of the parties set. So the ciphertext

generated of each party in MKFHE scheme corresponds one joint

secret key(jsk). For any party i, he generates its key pair (isk , ipk)

Multi-key Fully Homomorphic Encryption Scheme with Fixed-

length Ciphertext

from the selected parameters. For example, :i isk  s ,

: [,] m n

i i i qpk    b s B e B . Then, the jpk of the parties set is

generated by accumulating all the parties’ pk. So the jpk is obtained

as  1: ... m n

k qpk    A b b B . pk can be used for all

parties to encrypt their data, so that all the ciphertexts correspond

the same jsk without performing the ciphertext extension program.

When decrypting, each party gets his partial decryption result, and

then integrates them into the final plaintext.

Our work is to generate the joint public key of the parties set by

directly accumulating the public keys of multi-parties under the

CRS model, introduce the bootstrapping or key switching process

into the ciphertext extension process, and construct the compact

extended ciphertext based on (R)LWE problem.

The result shows that the size of the ciphertext is independent of

the number of parties. And the homomorphic computation is as

efficient as the single party FHE scheme. When the parties set is

updated, the original joint ciphertext can continue to be used to

synthesize new joint ciphertext to participate in homomorphic

computation, but each party needs to provide a new public key. The

memory (bit-size) comparison between our scheme and LZY+19,

CCS19 and CDKS schemes are shown in Table 1.

Schemes

Bit-Size

ciphertext
evaluation

key

accumulated

switching key

LZY+19 ()O kn
3()O k n ()O kn

CCS19 ()O kn
2 2()O k n ()O kn

CDKS19 ()O kn ()O kn ()O kn

Our scheme ()O n ()O n ()O n

Table 1: The memory (bit-size) comparison between our

scheme with LZY+19, CCS19 and CDKS19. k denotes the

number of parties and n is the dimension of the (R)LWE

assumption.

2 PRELIMINARIES

2.1 Definition of multi-key fully holomorphic

encryption(MKFHE)

We now introduce the cryptographic definition of a leveled

multi-key FHE, which is similar to the one defined in CZW17 with

some modifications from LTV12.

Definition 2.1 (Multi-key FHE)[21]. Let be a class of

circuits. A leveled multi-key FHE scheme

(Setup, KeyGen, Enc, Eval, Dec) is described as follows:

.Setup(1 ,1 ,1)K L
：Given the security parameter , the

circuit depth L , and the number of distinct parties K that can be

tolerated in an evaluation, outputs the public parameters pp .

.Key Gen()pp
：Given the public parameters

pp
，derives

and outputs a public key ipk
, a secret key isk

, and the evaluation

keys ievk
 of party i (1,...,i K).

.Enc(,)ipk m
：Given a public key ipk

 and message


，

outputs a ciphertext ict
.

1 2
. Dec((, ,...,),)

ki i i Ssk sk sk ct ： Given a ciphertext Sct

corresponding to a set of parties 1 2{ , ,..., } []kS i i i K  ，and

their secret keys
1 2

{ , ,..., }
kS i i isk sk sk sk , outputs the message

 。

1 1 1
.Eval(, (, ,),..., (, ,))

t t tS S S S S Sct pk evk ct pk evk ： On

input a Boolean circuit along with t tuples

1,...,(,)
i i iS S S i tct pk evk ， ，each tuple comprises of a ciphertext

iSct corresponding to a parties set iS , a set of public keys

{ , }
iS j ipk pk j S   , and the evaluation keys

iSevk , outputs a

ciphertext Sct corresponding to a set of secret keys indexed by

1 []t

i iS S K  .

Definition 2.2 (Correctness of MKFHE)[21]. On input any

circuit of depth at most L and a set of tuples

{1,..., }{(,)}
i iS S i tct pk  , let Dec(,)

i ii S Ssk ct  , where

{ , }
iS j isk sk j S   , a leveled MKFHE scheme is correct if

it holds that

[] 1Pr[Dec(, (, (, ,))) (,...,)]

()

i i iS S S S i t tsk Eval ct pk evk

negl

  



Definition 2.3 (Compactness of MKFHE)[21]. A leveled

MKFHE scheme is compact if there exists a polynomial (, ,)poly   

such that (, ,)ct poly K L , which means that the length of ct

is independent of the circuit , but depend on the security

parameter , the number of parties K and the circuit depth L .

2.2 The general learning with errors (GLWE)

problem

The learning with errors (LWE) problem and the ring learning

with errors (RLWE) problem are syntactically identical, aside from

different rings, and these two problems are summarized as GLWE

problem in [BGV12].

Definition 2.4 (GLWE problem)[22]. Let be a security

parameter. For the polynomial ring [] / 1dX x R and

/q qR R R , and an error distribution () over R , the

GLWE problem is to distinguish the following two distributions: In

the first distribution, one samples 1(,) n

i i qb a R uniformly from

 T. Zhou et al.

1n

q

R . For the second distribution, one first draws
n

i qa R

uniformly, and samples
1(,) n

i i qb R a by choosing
n

qs R and

ie  uniformly, and set ,i i ib e  a s . The GLWE

assumption is that the GLWE problem is infeasible.

LWE problem. The LWE problem is simply GLWE problem

instantiated with 1d  .

RLWE problem. The RLWE problem is GLWE problem

instantiated with 1n  .

2.3 BitDecomp(·) and Powersof2(·)[3]

Here we introduce two subroutines (BitDecomp() and

Powersof 2()) which are widely used in FHE schemes. Let

n

qx R
 be a polynomial of dimension n over qR , and let

log 1q     .

BitDecomp(,)n

q qx R : On input
1(,...,) n

n qx x x R and

the modulus q ， outputs
1,0 1, 1 ,0 , 1(,..., ,..., ,...,)n nx x x x   

{0,1}n  where
,i jx is the j-th bit in ix ’s binary representation

(ordered from least significant to most significant), namely

1 1

1, ,0 0
(2 ,..., 2)j j

j n jj j
x x

  

 
  x .

Powersof 2(,)n

q qy R : On input
1(,...,) n

n qy y y R

and the modulus q , outputs 1

1 1 1(,2 ,..., 2 ,..., , 2 ,...,n ny y y y y 

12) n

n qy  R .

It’s straightforward to verify that for arbitrary , n

qx y R , it

holds that

BitDecomp(,), Powersof 2(,) , modq q qx y x y
.

3 General construction of MKFHE scheme with

compact ciphertext

In this section, we introduce the general construction of fixed

length ciphertext MKFHE (we call this kind of scheme FCMKFHE

scheme for short). The ciphertext expansion algorithm plays an

important role in MKFHE scheme. Its function is to expand one

party’s ciphertext to multi-parties’ ciphertext. When all parties’

ciphertexts correspond to the same joint secret key, the

homomorphic computation can be performed just like single-party

FHE scheme. The ciphertext expansion function is the core of the

ciphertext expansion algorithm. It generates the corresponding

extended ciphertext according to the form of the cascaded secret

key. Usually, the generated joint ciphertext is a linear or a square

relationship about the number of parties. When the number of

parties increases, the efficiency of the scheme will drop sharply,

which is exactly the bottleneck restricting the specific application of

MKFHE. Therefore, for MKFHE, the form of joint secret key

determines the size of ciphertext. In this paper, we would to

construct the joint secret key whose length is independent of the

number of parties by accumulating all parties’ secret keys. We

called it the compact secret key. Starting from the compact secret

key, we design a new ciphertext expansion algorithm to obtain the

joint ciphertext whose length is also independent of the number of

parties. Furthermore, we propose two general FCMKFHE

schemes——the static mode FCMKFHE scheme (SMMK) and

authorized mode FCMKFHE scheme (AMMK), which are suitable

for different scenarios.

3.1 Static mode FCMKFHE scheme

We can construct MKFHE by imitating the form of FHE, that is,

every party uses the same joint public key for encryption, so that all

ciphertexts correspond to one joint secret key. As long as the joint

public key is short enough, the corresponding joint secret key will

also be short, so the size of generated ciphertext will be small.

Therefore, homomorphic computation can be performed directly

without ciphertext expansion program. In this section, we construct

a joint private key and public key by accumulating all the parties’

keys, so we can get a MKFHE scheme with fixed ciphertext length.

Because when the parties participating in the calculation is updated,

the original ciphertext needs to be regenerated, so the scheme

constructed in this way does not support the dynamic update of

parties’ information. We call it static mode MKFHE scheme—

SMMK.

Since the size of ciphertext and joint secret key of SMMK

scheme are in the same magnitude as that of single-party FHE. So,

their homomorphic computation mode is same, which makes the

multi-key homomorphic computation of SMMK scheme very

efficient. Taking the party i as an example, the calculation process

of SMMK scheme is as follows. (Like most MKFHE schemes,

SMMK is based on the CRS model, and all parties use some shared

parameters).

SMMK.Setup(1) : FHE.Setup(1)   params
;

SMMK.KeyGen(, ,) :iparams B FHE.KeyGen(,)params B

,i ipk sk
;After all parties have completed the process

SMMK.KeyGen(), run the generation algorithm of evaluation key.

1SMMK.EvalKeyGen(, ,{ ,..., }):i ksk pk pkparams

1) 1SMMK.SMPK(, ,{ ,..., }):i ksk pk pkparams

This is the public key accumulation function used to generate

the jpk. Take the GSW-type MKFHE scheme as an example, input

the public parameter
(1)m n

q

 B , the party's secret key

i isk  s and public key [,] m n

i i i q

  b s B e B Output

the jpk as  1: ... m n

k qpk    A b b B .

2) FHE.SwitchKeyGen(, ,)isk pkparams : Input the party’s

sk and jpk, output the accumulated evaluation key (aek) of party i

FHE.Enc ()i i ipk
sk sk KS and the accumulated switching

Multi-key Fully Homomorphic Encryption Scheme with Fixed-

length Ciphertext

key (awk) of parties set
Set

KS . Due to the different structures of

the schemes (like the GSW-type MKFHE does not need to run

this key switching process), the generation process of the awk is

slightly different. See the specific scheme in Section 4 for details.

3) FHE.BootKeyGen(, ,)isk pkparams : Input the party’s sk

and jpk . Output the bootstrapping key (bk) of party i

FHE.Enc ()i ipk
skBK , and the accumulated strapping key

(abk) of the accumulated ciphertext

log() 1(,...,)kB kSet
HomAdd


BK BK BK , where (*)HomAddk

is the homomorphic addition circuit for l bits.

SMMK.Enc(,) :pk  FHE.Enc(,)pk  . The encryption is

the same as the single-party FHE schemes.

1SMMK.Dec((,...,),)Nsk sk C . Like most MKFHE schemes,

the decryption result consists of two parts: partial decryption and

final decryption.

1) .PartDecSMMK (), , ii skC ：Input the secret key of party i

(,1)i isk  s and the result ciphertext C, and output the partial

decryption. Taking the GSW-type FHE as an example, its

decryption form is
1 ˆ()T

i   s CG w . We only calculate

1

[1,..., 1;] i
ˆ: ()T sm

i i np e


  s C G w and get the partial decryption ip ,

where [1,..., 1;]nC represents the first n-1 columns of ciphertext C ,

and [,]
R

sm dec dec

i smdg smdge B B  is the generated error used to protect

the security of partial decryption.

2) 1.FinDec , . . . SM , MK ()Np p  ： Input all the partial

decryptions, and output the resulting plaintext

1

[;] 1

ˆ ˆ ˆ()
NT

n ii
m p


  C G w .

The homomorphic computation is as follows.

1 2SMMK.Add(,) :C C 1 2FHE.Add(,) C C C .

1 2SMMK.Mult(, ,) :
Set

C C EVK

1 2FHE.Mult (,)
Set

  EVK
C C C .

SMMK.Bootstrap(,) :
Set

BK C FHE.Bootstrap(,)
Set

BK C .

The correctness of the decryption process above can be verified

as following.

1 1

[;] 1 1

*

1

ˆ ˆ ˆˆ ˆ() ()

ˆ ˆ() / 2

N NT T

n i ii i

NT sm

ii

p

e q e

 

 



  

     

 



C G w e RG w

t w
 (1)

For the above scheme, the ciphertexts of all parties are

encrypted by the joint public key pk , and the homomorphic

computation is the same as single-party FHE scheme, so the

efficiency of the scheme is better than the previous MKFHE

schemes. By simply changing the form of encryption and

decryption, we can construct BGV-type FCMKFHE and TFHE-

type FCMKFHE. However, the SMMK scheme also has some

defects. When some new parties join, the original ciphertext and

evaluated key are unavailable. We must regenerate the new

ciphertext and evaluated key for the updated parties set. We aim

to construct a new FCMKFHE scheme, which supports the timely

updating parties set without regenerating their ciphertexts and

keys.

3.2 Authorized mode FCMKFHE scheme

The ciphertext and evaluated key of the SMMK scheme are all for

a constant parties set. In this section, we focus on constructing an

authorized mode FCMKFHE scheme (we call it AMMK scheme),

which has the following advantages: the size of ciphertext is

independent of the number of parties, and all ciphertexts continue

to be used in the updated set. The idea of the construction is: Party

i uses his pk encrypt his data and obtains his own ciphertext. Then,

by using the optimized bootstrapping process (or key switching

process), his own ciphertext is converted to the joint ciphertext

corresponding to the apk. So that the joint ciphertext can be

reused. Different from SMMK scheme, the scheme needs to

adjust the public key corresponding to the ciphertext to a new

parties set before homomorphic computation, and the parties set

needs to interact to generate a new evaluation key when updating.

The operation process is as follows.

AMMK.Setup(1) : FHE.Setup(1)   params ;

AMMK.KeyGen() :params FHE.KeyGen(,)params B

(,)i ipk sk ;After all parties have completed the process

AMMK.KeyGen(), run the generation algorithm of evaluation key.

1AMMK.EvalKeyGen(, ,{ ,..., })i Nsk pk pkparams ：

1SMMK.EvalKeyGen(, ,{ ,..., })

{ , , , , }

i N

i iSet Set

sk pk pk

pk

params

KS KS BK BK
;

AMMK.Enc(,) :pk  FHE.Enc(,)pk   C .（Note: This

is a single party's public key encryption, not a joint public key

encryption）

1AMMK.Dec((,...,),) :Nsk sk C 1SAMK.Dec((,...,),)Nsk sk C

 .

Similar to scheme BP16, this scheme uses bootstrapping

process to implement homomorphic computation.

1 2AMMK.Eval((,), ,) :i Set
C C BK KS

1) ,
{FHE.Dec ()}

ici

i sk ipk
Hom 

cBK
C C . This process can

refresh different public keys.
ic

BK is the bootstrapping key

corresponding to iC . If iC is the ciphertext of a single party, the

bootstrapping key
ic

BK is setted as
iBK . If . iC is the joint

 T. Zhou et al.

ciphertext of all parties, the bootstrapping key
ic

BK is setted as

set
BK .

2 ）
1 2FHE.Eval((,),)

Set
 C C KS . This process realizes the

homomorphic computation of joint ciphertext, where
Set

KS is

the accumulated evaluation key of the joint ciphertext.

The drawback of the AMMK scheme is that when the parties

set is updated, all parties need to update the evaluation key and

bootstrapping key. That is, if party i wants to updated his ek and

bk, he must obtain other parties’ authorization in updated set. So,

the scheme needs 3-rounds of interaction to construct MPC.

4 Specific structure of FCMKFHE scheme

The general SMMK and AMMK schemes need to perform the

bootstrapping process to refresh the ciphertext, so their efficiency

is low. In this section, relying on the efficient TFHE-type

MKFHE and BGV-type MKFHE, we propose a targeted

optimization method and construct two efficient FCMKFHE

schemes.

4.1 Construction of TFHE-type FCMKFHE

TFHE-type scheme is the fastest bootstrapping scheme at present,

but its secret key vectors are only taken from {0,1}N, and the

value of accumulated bootstrapping secret key is larger, so it can’t

be directly applied to AMMK. To combine the FCMKFHE

scheme with the TFHE-type scheme better, we design a secret key

extension algorithm, and construct an efficient TFHE-type

FCMKFHE scheme--AMTMK.
LWE GSWAMTMK.Setup(1) (,)pp pp pp   ：

LWELWE.Setup(1) (, , , , ,)ks kspp B d     B ；

GSWGSW.Setup(1) (, , , , ,)pp N B d    y , Where

,B y are common random variables.

, ,AMTMK.KeyGen() (, , ,)i i BK i BK ipp pk sk pk sk :

LWE.KeyGen() { , }i i i ipp pk sk  A s ；

, ,{ , }RGSW.KeyGen() BK i i BK i ipk s zpp k  Z .

After all parties have completed the program

AMTMK.KeyGen()params , run the algorithm of evaluation

key generation. If the parties set is updated, rerun the key

generation algorithm.

1AMTMK.EvalKeyGen(, ,{ ,..., }) { , , }:i k i ipp sk pk pk pk KS BK

1) Accumulate the public key. Given the public keys 1 ,..., kb b

of k parties, we obtain the joint public key

 1: ... m n

k qpk    b b B .

Accumulate the bootstrapping public key. Given the

bootstrapping public keys 1 ,..., kd d of k parties, we obtain the

accumulated bootstrapping public key

  2 2

1: ... d

BK k qpk T     Z d d y 。

2) Accumulate the single-party bootstrapping key. Input the

accumulated bootstrapping public key BKpk  Z and the secret

key
n

i s of LWE ciphertext. Output the single-party’s

accumulated bootstrapping key , []{ }i i j j nBK BK , where

, ,RGSW.Enc(,)i j i jsK ZB , []i k , []j n .

3) Accumulate the evaluation key. Input the accumulated

public key pk and the secret key iz of the RGSW ciphertext, let

,0 , 1 ,1: (, ,...,) N

i i i w iz z z   t , and output the accumulated

evaluation key (aek) LWE.KSGen(,)i i pkKS t of single

party, where []i k .

AMTMK.Enc(,)pk  ： Input the plaintext  , and single

party’s public key pk , run
1LWE.Enc(,) (,) npk b   ct a .

1AMTMK.Dec((,...,),)ksk sk ct ： Input the ciphertext

1(,) nb  ct a and the secret key 1(,...,)ksk sk . Return the

plaintext bit {0,1} that makes
1

41
| , |

k

jj
b m


    a s

be smallest.

[] []AMTMK.Boot(,{ } ,{ }) :i i k i i k c BK KS Input the

ciphertext
1(,) nb   ct a , the bootstrapping key set

[]{ }i i kBK and the accumulated evaluation key set
[]{ }i i kKS .

Then use bootstrapping process to realize homomorphic

computation.

1) The cloud server uses iKS to generate accumulated

switching key , []1
{ }

k

i j j NiSet 
 KS KS . The cloud sever also

uses the iBK to generate the accumulated bootstrapping key

1 0
1, ,(,) (,)

,..., (,...,)
l

j k jbit Set j bit Set j
HomAddk



BK BK BK BK ,

where []j n , log()l k   . (,)HomAddk is a homomorphic

addition algorithm for k 1-bit TGSW ciphertexts, which can be

constructed by homomorphic multiplication and homomorphic

addition of TGSW ciphertexts. See Annex C for details. For a

constant parties set, the cloud sever only needs to calculate

Set
KS and

Set
BK once, and then output them as public

variables.

2) Ciphertext refresh. Given ciphertext
1(,) nb   c a , and

the evaluated key
1 0() ()

{ ,..., }
lbit Set bit Set

BK BK or iBK . Run the

following homomorphic accumulation algorithm [24]:

Multi-key Fully Homomorphic Encryption Scheme with Fixed-

length Ciphertext

① Input the ciphertext
1(,) nb   c a , output

2b N b    , 2N    a a and the bootstrapping key

1
1{ ,..., }

 corresponds to the secret key

 corresponds to the secret key (...)
k

i i

kSet s s
s s







 
 



BK c s
BK

BK c

② Initialize the RLWE ciphertext 1

8
(() ,)bh X X  ACC 0 ,

where 2 2
1

() 1
N N

Nh X X X X X


       . Let

[]()j j na a , for j=1 to n, run the following process.

0

1

1

-1

(,)

2

(,)

(2)

(,)

(1). =CMux(,)

(2). =CMux(,

, ;

, ;

...

(1)

)

=CMux(,).. ,
l

j

j

j

l

a

bit Set j

a

bit Set j

bit

a

Set j

X

X

l X




BK

BK

ACC ACC ACC

ACC ACC ACC

ACC ACC ACCBK

We select the largest circuit 1 0CMux(, ,)C d d . Input one

TGSW ciphertext C and two input RLWE ciphertexts 1 0,d d .

Output RLWE ciphertext 1 0 0() C d d d , where is a

hybrid homomorphic multiplication of GSW ciphertext and BGV

ciphertext. The specific process is shown in [24].

③ Output 1

8
(,) (mod1) ACC 0 ACC

3）Key switching process. The last step is to convert ACC into

LWE ciphertext and run the key switching algorithm.

① Input the ciphertext
2

0 1(,)c c T ACC . Set b be a

constant term of polynomial 0c and a be a vector composed of

coefficients of polynomial 1c . Output LWE ciphertext .
.
.

②Let , []1
{ }

k

i j j NiSet 
 KS KS ， run the key switching

algorithm and output the ciphertext

LWE.MKSwitch(,)
Set

ct ct KS .

The NAND circuit of homomorphic NAND gate is

constructed by the bootstrapping process.

1 2 1 2AMTMK.NAND(,) HDTMK.Boot((,5 / 8))c c c c0
.

Security. Like most schemes, our scheme security also rely

on cyclic security assumption. The semantic security of our

scheme is based on (R)LWE assumption, and the parameters
LWEpp and

GSWpp make the (R)LWE assumption to be λ - bit

secure.

Correctness. In this scheme, the error of ciphertext (,)b a

in bootstrap process is
4

(,) mb e      a s , where 1

16
| |e  .

So the error magnitude e of the output LWE ciphertext is small.

The detailed process of noise analysis is shown in Appendix D.

4.2 Construction of BGV-type FCMKFHE scheme

CKKS17 scheme is an efficient and concerned BGV-type

FHE scheme. It can calculate floating-point data efficiently and is

widely used in secure neural network et.al. According to the

characteristics of CKKS scheme, we construct an effect BGV-

type FCMKFHE scheme AMCMK in this section.

SetuAMCMK. p(1) ：Input the security parameters λ and

select an integer N (where N is the power of 2). Let key , err

and enc be the distribution of secret key, error and encryption

process on [] (1)/ NX XR  respectively. Select prime P

and p. L respects the circuit layers, the ciphertext modulus is
l

lq p , where 1 l L  . Select ()
L

d

P qU R a and

1()
LP qa U R 

  . Output common parameter

, , (, , , , , ,)key err e lncpp N L P q a a    .

 KeyGeAMCMK. n()pp ： Input the parameters pp . Select

keys  and erre   , and output the public key

1:
LP qpk b s a e R 

       . Select
d

erre and generate the

calculated public key :
LPvk

d

qe s Rpk    b a e ., generate

the evaluation key evk for basic CKKS : Let
2s s  . Set the

evaluation key as
2, ()

LPqevk b a R   where.

After all parties have completed the program

AMCMK.KeyGen()pp , run the algorithm of evaluation key

generation. If the parties set is updated, rerun the generation

algorithm.

[] , []AMCMK.EvalKeyGen(, ,{ } ,{ })i i i k evk i i kpp sk pk pk 

{ , , , }pk rks ckk ：

1) Accumulate the public key. Given k parties’ public key

1 k,...,b b , the CKKS-type accumulated public key is generated as

1: ()
L

d

Pqkpk +...+ R b b , where [,]j
pk represents the j-th

element of pk .

2 ） Accumulate the evaluation key. Given the k parties’

evaluation public key 1 kb ,...,b  , the CKKS-type accumulated

evaluation public key is generated as

1

1: ()
Lev k Pqkpk b +...+b R   .

3）The accumulated evaluation key generation.

AMCMK.SEvalKey(, ,)pk a s ： Select (0.5)ZOr 

randomly, and the partial switching key is obtained as

 T. Zhou et al.

0 1 0,[,] 1,[,] []() : {(), }, j jj dd d d d , where

[,]
0,[,] 1[,] [,],

, CKKS.E() nc ()
j L

j j jpk Pq
d d r  g , []j d and

1(1, ,...,)d

g gB B g . gB is the decomposition basis. Set

2 2 mod()Ld r a e P s Pq     , where s erre  .

Output:

1

0 ,1 2
1 2

() | + 0 | CKKS (): i is
d

se
d

b d P s s

 

        
       


  

ks g d d

.

The refresh key of party’s ciphertext set is obtained as

,
CKKS.Enc ()

Lvi e k
ips s k Pq

P s


ks . Then, output the shift key

, 5,
CKKS.E ()(nc)r

Levk
i r ipk Pq

srk and conjugate key

1,
CKKS.KSGen ()()

Levk
i ipk Pq

sck .

4) Generate the evaluation key in cloud.

,1
C (): KKS

k

set se ii s
Ps s


  ks ks

, , 5,1
CKKS.Enc ()()r

L
set r i r pk Pq

k

i
s


rk rk

1 1,
CKKS.Enc ()()

L
set i pk q

k

i P
s

  ck ck .

When the parties set of the AMCMK scheme is updated, the

bootstrapping process is no longer needed. The original

ciphertexts are converted to the ciphertexts of the new set through

the accumulated key switching process. Compared with BP16

scheme, AMCMK can improve efficiency.

AMCMK.Enc(,)pk m ：  CKKS.Enc pk mc . The

encrypted ciphertexts are modulo P to reduce their size.

1AMCMK.Dec((,...,),)ksk sk c ：Input the ciphertext c of l-

th level. Output 1, ... mod()k lsk skm q  c .

[]AMCMK.KeySwitchingKey(,{ }) :
i

i ks s 
c ks Input the

ciphertext (,)b a  c , output the corresponding accumulated

switching key

11

 corresponds to the secret key

 corresponds to the secret key (...)

i

i

is s

refresh k

ki s s
s s





 




 
 

ks c s

s
cks

k

, where k  represent the original parties set.

Homomorphic computation. If the public keys corresponding to

the ciphertexts participating in homomorphic operation are

different, we use the process

[]AMCMK.KeySwitchingKey(,{ })
i

i ks s 
c ks to convert them

to the same. The homomorphic computation process and

bootstrapping process of the AMCMK are the same as CKKS17.

We just replace the evaluation key with the accumulated

evaluation key, so the calculation efficiency is the same as

CKKS17.

.AddAMCM (,K)ct ct : CKKS.Add(,)ct ct ;

.CMult()AMCMK ,a ct : CKKS.CMult(,)a ct ;

.MultA (MC ,)MK
set


ks

ct ct : CKKS.Mult (,)
set


ks

ct ct ;

,
, ,

AMCMK.Bootstrapping ()
set set r set

ks rk ck
c :

,
, ,

CKKS.Bootstrapping ()
set set r set

ks rk ck
c .

Whether the ciphertext can be decrypted correctly depends on

the size of the error in the ciphertext. Following the expression of

CKKS17, in this section, we analyze the works of the main

functions and growth of the error.

Let || ||cana  denote the infinite normal form of ()a  (the

inner product of the coefficients of a and vectors

1(1, ,...,)N

M M  
) obtained by normal embedding of polynomial

() [] / (())Ma X R X X   . According to the analysis in

CKKS17, || || 6cana   , where
2 is the variance of ()a  .

1 2|| || 16canab    , where
2

1 and
2

2 are the variance of ()a 

and ()b  respectively. If the coefficient of a is taken from the

uniform distribution of [0,)q , then
2(()) /12MVar a q N  . If

a is taken from the discrete Gaussian distribution
2()qDG 

with variance
2 , then

2(())MVar a N  . If a is taken from

the {0, 1} distribution ()HWT h with Hamming weight h ,

then (())MVar a h  . The CKKS17 scheme can encrypt plural

vectors. Considering the accuracy, the scheme usually expands the

data by  times before encryption, and  is called the increment

factor. For a given ciphertext
2

qRct , the scheme can decrypt

correctly if the increment factor > 2N B  , where

, mod() Lm e q  ct sk , B is the upper bound of || ||cane  .

The error growth of important functions is shown in the following

Lemmas.

Lemma 1[23]. Let ()pkEnc mct be an encryption of

m R and e R , then , mod() Lm e q  ct sk , where

|| ||can

cleane B  , such that

 8 2 6 16cleanB N N hN     .

Lemma 2. Let ()
pk

Enc mct denote the ciphertext of

m R encrypted by the accumulated public key pk , for a

certain set e R , there is , (1,) (m)od Ls m e q  ct ,

where 1(... ,)kpk b b a   , || ||can

scleane B  and

 8 2 6 16scleanB k N N k hN     .

Multi-key Fully Homomorphic Encryption Scheme with Fixed-

length Ciphertext

See Appendix B for detail proof of lemma 2.

For the refresh key
,

CKKS.Enc ()
Lvi e k

ips s k Pq
P s


ks , the

shift key , 5,
CKKS.E ()(nc)r

Levk
i r ipk Pq

srk and the conjugate

key 1,
CKKS.KSGen ()()

Levk
i ipk Pq

sck , we have

|| ||can

scleane B  .

Lemma 3. Let
setks be the accumulated switch-key, ,se iks

be one element of
setks ， then ,

,
,

1, (1,) mo()d
se i

se i Li s P s s e q   
ks

ks , where

,

|| || || ||
set set se i

can canB k ee  
ks ks ks

 and

,

|| || 8 / 3
se i se

can

ks scleanB B Be dN  
ks ks

.

See Appendix B for detail proof of lemma 3.

Lemma 4[23]. Let () l lRS 
 ct ct (where

2

qRct), for

 e R , there is), mod(,l

l

q

lq
e q


    ct sk ct sk , where

|| ||can

rse B  , (/ 3 3)8rsB N h  .

Lemma 5. Let
1 2,()

set
mult Mult

ks
ct ct ct (where

2

1 2, qRct ct), for e R , there is

1 2, , , m)od(mult mult le q     ct sk ct sk ct sk , where

|| ||can

multe B  ,
1

set
mult l rsB P q B B  

ks
.

Lemma 5 can be obtained by taking the upper bound

|| ||
set

can

set B 
ks

ks

of the switching key into Lemma 3. The

specific proof is omitted.

Lemma 6. Let ()
refresh

KS 
ks

ct ct .
2

qRct corresponds to

the secret key sk . Let

11

 (1,)

 (1, ...)

i

i

is s

refresh k

ki s s

s

s s





 




 
  

sk

ks
sk

ks

ks
,

for e R , there is , (1,) (), modkss e q   ct ct sk ,

where
1|| ||can

ks sclean rse P q k B B

    .

Lemma 6 can also be obtained by taking the upper bound

|| || sclean

can

refresh k B ks

of the switching key into Lemma 4. The

specific proof is omitted.

Cloud Sever

Ciphertext C1

（correspond the

secret key sk1）

(2)

Ciphertext

refresh

(3)

Homomorphic

Computation

User 1

User 2

Accumulated

Ciphertext CT1

Accumulated

refresh key

Ciphertext C2

（correspond the

secret key sk2）

Accumulated

Ciphertext CT2

Output the

Ciphertext C

(4) Joint

Decryption

Joint secret key

sk1&sk2

Joint secret key

sk1&sk2

(2)

Ciphertext

refresh

Accumulated

Evaluated Key

Accumulated Refresh Key

Accumulated Evaluated Key

(1)Data

Encryption

(1)Data

Encryption

Accumulated

refresh key

Figure 2: The homomorphic computation model of MKFHE

with compact ciphertext

Figure 2 takes two parties as an example to introduce the steps

of homomorphic operation.

Step 1. System initialization stage.

The two parties interact with the cloud twice to construct the

public key. Parties publish their public key, obtain the

accumulated public key from the cloud sever. They use the

accumulated public key to generate their own accumulated

evaluated key and refresh key, then upload them to the cloud

sever. The cloud sever collects the accumulated calculation key

and refresh key of all parties sets, and generates the accumulated

evaluated key and accumulated refresh key.

Step 2. Data encryption.

The two parties use the public key or accumulated public key to

encrypt the ciphertext, and upload the ciphertext to the cloud

sever.

Step 3. Ciphertext refresh.

The cloud sever uses the accumulated refresh key to refresh

parties’ ciphertext.

Step 4. Homomorphic Computation.

The cloud sever uses the accumulated evaluated key to run

homomorphic computation, and outputs ciphertext.

Step 5. Joint decryption.

The parties decrypt the ciphertext separately to get the final

plaintext.

5 CONCLUSION

In this paper, firstly, we proposed a general construction of

MKFHE scheme with compact ciphertext. Then, according to the

advantages of TFHE-type scheme’s efficient bootstrapping and

CKKS scheme supporting approximate data homomorphic

computation, we improve the bootstrapping in our general scheme.

Finally, we specifically propose the TFHE-type MKFHE and

BGV-type MKFHE with compact ciphertext. The analysis shows

that the ciphertext size of our schemes is independent of the

number of parties, and the homomorphic computation efficiency

is as high as the single-party FHE scheme.

ACKNOWLEDGMENTS

Insert paragraph text here.

REFERENCES

 T. Zhou et al.

[1] Brakerski Z, Gentry C, Vaikuntanathan V. (Leveled) fully homomorphic

encryption without bootstrapping[C]. Proceedings of the 3rd Innovations in

Theoretical Computer Science Conference. ACM, New York, 2012: 309–325.

[2] Doröz Y, Hu Y, Sunar B. Homomorphic AES evaluation using the modified

LTV scheme[J]. Designs, Codes and Cryptography, 2016, 80(2): 333-358.

[3] Gentry C, Sahai A, Waters B. Homomorphic encryption from learning with

errors: Conceptually-simpler, asymptotically-faster, attribute-based[C].

Advances in Cryptology—CRYPTO 2013. Springer, Berlin, Heidelberg, 2013:

75–92.

[4] Ducas L, Micciancio D. FHEW: Bootstrapping homomorphic encryption in less

than a second[C]. Advances in Cryptology—EUROCRYPT 2015. Springer,

Berlin, Heidelberg, 2015: 617–640.

[5] Alperin-Sheriff J, Peikert C. Faster bootstrapping with polynomial error[C]. In:

Advances in Cryptology—CRYPTO 2014. Springer, Berlin, Heidelberg, 2014:

297–314.

[6] Chillotti I, Gama N, Georgieva M, et al. Faster fully homomorphic encryption:

bootstrapping in less than 0.1 seconds[C]. International Conference on the

Theory and Application of Cryptology and Information Security—

ASIACRYPT 2016. Springer, Berlin, Heidelberg, 2016:3-33.

[7] Chillotti I, Gama N, Georgieva M, et al. Faster packed homomorphic operations

and efficient circuit bootstrapping for TFHE[C]. International Conference on

the Theory and Application of Cryptology and Information Security—

ASIACRYPT 2017. Springer, Cham, 2017:377-408.

[8] Brakerski Z, Vaikuntanathan V. Fully homomorphic encryption from ring-LWE

and security for key dependent messages[C]. In: Advances in Cryptology—

CRYPTO 2011. Springer, Berlin, Heidelberg, 2011: 505–524.

[9] Brakerski Z, Vaikuntanathan V. Efficient fully homomorphic encryption from

(standard) LWE[C]. IEEE 52nd Annual Symposium on Foundations of

Computer Science—FOCS 2011. IEEE, 2011: 97–106.

[10] Brakerski Z. Fully homomorphic encryption without modulus switching from

classical GapSVP[C]. In: Advances in Cryptology—CRYPTO 2012. Springer,

Berlin, Heidelberg, 2012: 868–886.

[11] Gentry C, Halevi S, Smart N P. Fully homomorphic encryption with polylog

overhead[C]. Advances in Cryptology—EUROCRYPT 2012. Springer, Berlin,

Heidelberg, 2012: 465–482.

[12] Halevi S, Shoup V. Faster homomorphic linear transformations in HElib

[EB/OL]. [2018-03-04]. https://eprint.iacr.org/2018/244.

[13] Cheon J H, Kim A , Kim M , et al. Homomorphic encryption for arithmetic of

approximate numbers[C]. International Conference on the Theory and

Application of Cryptology and Information Security—ASIACRYPT 2017.

Springer, Cham, 2017:409-437.

[14] López-Alt A, Tromer E, Vaikuntanathan V. On-the-fly multiparty computation

on the cloud via multikey fully homomorphic encryption[C]. In Proceedings of

the 44th annual ACM symposium on Theory of computing—STOC 2012. ACM,

New York, 2012: 1219-1234.

[15] Hoffstein J, Pipher J, Silverman J H. NTRU: A ring-based public key

cryptosystem[C]. International Algorithmic Number Theory Symposium.

Springer, Berlin, Heidelberg, 1998: 267-288.

[16] Chongchitmate W, Ostrovsky R. Circuit-private Multi-Key fhe[C].

International Conference on Practice and Theory in Public Key Cryptography—

PKC. Springer, Berlin, Heidelberg, 2017:241–270.

[17] Clear M, McGoldrick C. Multi-identity and Multi-Key leveled FHE from

learning with errors[C]. Advances in Cryptology—CRYPTO 2015. Springer,

Berlin, Heidelberg, 2015: 630-656.

[18] Mukherjee P, Wichs D. Two round multiparty computation via Multi-Key

FHE[C]. Annual International Conference on the Theory and Applications of

Cryptographic Techniques. Springer, Berlin, Heidelberg, 2016: 735-763.

[19] Peikert C, Shiehian S. Multi-Key FHE from LWE, revisited[C]. Theory of

Cryptography Conference. Springer, Berlin, Heidelberg, 2016: 217-238.

[20] Brakerski Z, Perlman R. Lattice-based fully dynamic Multi-Key FHE with short

ciphertexts[C]. Advances in Cryptology—CRYPTO 2016. Springer, Berlin,

Heidelberg, 2016: 190-213.

[21] Chen L, Zhang Z, Wang X. Batched multi-hop Multi-Key FHE from ring-lwe

with compact ciphertext extension[C]. Theory of Cryptography Conference.

Springer, Cham, 2017: 597-627.

[22] Li N, Zhou T, Yang X, et al. Efficient Multi-Key FHE with short extended

ciphertexts and directed decryption protocol[J]. IEEE Access, 2019(7): 56724-

56732.

[23] Chen H, Dai W, Kim M, et al. Efficient Multi-Key homomorphic encryption

with packed ciphertexts with application to oblivious neural network inference

[C]. Proceedings of the 2019 ACM SIGSAC Conference on Computer and

Communications Security, 2019:395-412.

[24] Chillotti I, Gama N, Georgieva M, et al. Faster fully homomorphic encryption:

bootstrapping in less than 0.1 seconds[C]. International Conference on the

Theory and Application of Cryptology and Information Security—

ASIACRYPT 2016. Springer, Berlin, Heidelberg, 2016:3-33.

[25] Chillotti I, Gama N, Georgieva M, et al. Faster packed homomorphic operations

and efficient circuit bootstrapping for TFHE[C]. International Conference on

the Theory and Application of Cryptology and Information Security—

ASIACRYPT 2017. Springer, Cham, 2017:377-408.

[26] Chen H, Chillotti I, Song Y. Multi-Key homomorphic encryption from

TFHE[C]. In: Advances in Cryptology – ASIACRYPT, 2019:446-472.

A TFHE Scheme

The TFHE scheme based on LWE is usually symmetric mode, but

the asymmetric mode is usually used in practical application. To

show the accumulated public key conveniently, we show the

asymmetric mode of TFHE scheme as bellow.
LWELWE.Setup(1) (, , , ,)ks kspp n B d    ： Input the

security parameters, generate the LWE dimension n, secret key

distribution χ, error distribution parameter α, decomposition basis

ksB , decomposition degree ksd , common matrix
m nB for

all users, and output common parameter
LWE (, , , , ,)ks kspp n B d  B

.

LWE.KeyGen() { , }pp pk sk ： Select
n  s , and

generate the public key  A b B , where   b Bs e . Output

pk  A ， sk  s .

1LWE.Enc(,) (,) npk m b   ct a ： Select
mr

randomly, and calculate 1

4
(,) : (,0...,0)b m  a rA e .

(1)
LWE.KSGen(,) [|] ksd n

j j jpk
 

  t KS b A ： Input

the LWE secret
N

i t , accumulated public key pk .

1[|] [... |] m n

k

    A b B b b B corresponds the secret

key 1 ... k  s s s , where is is the secret key of party i. Output

the switch key , []{ }i i j j NKS KS from
N

i t to s , where

, , ,(,0,...,0) (,0,...,0)i j ks i j i j kst   KS R A e g , ksd m

ks q


R ,

2(1/ ,1/ ,...,1 /)ksd T

ks ks ks ksB B Bg , []j N .

1 1

, [], []LWE.Switch(,{ })N n

i j i N j w

 

 
  ct KS ct ：

Input the accumulated ciphertext
1(,) Nb  ct a and the

switch key , [], []{ }i j i k j N KS . Construct the accumulated switch

key , []1
{ }

k

i j j NiSet 
 KS KS , where user []i k and

dimension []j N . Calculate

1

1 ,
(,) () (mod1)

N

ks jj Set j
b a


  a g KS . Output the ciphertext

1(,) nb b     ct a .

Multi-key Fully Homomorphic Encryption Scheme with Fixed-

length Ciphertext

Correctness. For
1

,1 1
(,) ()

N k

ks j i jj i
b a

 
   a g KS , we can

obtain , (1,) , (1,) kse   ct s ct t , where

1

,1 1
(), (,0,...,0)

N k

ks j j ks j ks i jj i j
e t e a

 
     g R A e .

The correctness derivation process is shown in the following

equation:

(,)

1

1

, ,1 1

1

,1

1
1

,1

1

, (1,)

(), (,0,...,0) (,0,...,0)

(), (,0,...,0)

(), (,0,...,0)

(),

b b
N

j jj

N k

ks j ks i j i j ksj i

k

N ks j ks i ji

j k

ks j i j ksi

ks j ks

b b a s

b a t

a
b

a t

b a

   





 












      

      

   
 

  

  



 






ct a

ct s

g R A e g

g R A e

g g

g R , ,1 1

1

,1 1

(,0,...,0)

, (1,) (), (,0,...,0)

N k

i j i j j j j jj i

N k

j j ks j ks i jj i j

e a t t e

t e a

 



 

     

      

 

 

A e

ct t g R A e

where

1

1 ,

, []1

, , ,

(,) ()

{ }

(,0,...,0) (,0,...,0)

N

ks jj Set j

k

i j j NiSet

i j ks i j i j ks

b a

t







  



   





a g KS

KS KS

KS R A e g

.

If 1

8
| |kse  , , []1

{ }
N

i j j wiSet 
 KS KS can be seen as the valid

switch key from
wt to

ns .

B CKKS17 Scheme

CKKS.Setup(1) , , (, , ,)lkey err encpp N L q    ：

Input the parameters λ, and select an integer N to the power of 2.

Let key , err and enc be the distribution of secret key, error

and encryption process on [] (1)/ NX XR  respectively.

Select prime p and the circuit layer L. The ciphertext modulus is
l

lq p , where 1 l L  . Output common parameter

, , (, , , , , ,)key err e lncpp N L P q a a    .

()CK (, , , ,)KS.KeyGen rparams pk sk ks rk ck ：

- CKKS.PSKey ()Gen (,)params pk sk ： Select

keys  , and let the secret key (1,)sk s . Select

 
Lqa U R and the error erre  . Set the public key

  2,
Lqpk b a R  , where   mod Lb as e q   .

- CKKS.KSGen(,)sk s ： Input s R ， and select

LP qa R 
  and erre   .let the evaluated key be

  2,
LP qevk b a R 

   , where

 (mod)Lb a s e Ps P q        .

Obtain the switch key
2CKKS.KS ()Gen s

sk
ks ；

Obtain the shift key
5

CKKS.KSGe (()n)rr s
sk

rk ；

Obtain the conjugate key 1CKKS.KSGen (())s
sk

ck .

 ,CKKS.Enc pk q m : Select
 encr 

, 0 1, erre e 

randomly. Output    0 1· , mod Lr pk m e e q  ct , such that

(), Lmod q m  ct sk .

CKKS.Dec ()sk ct ： Input the ciphertext ct of the l-th level,

and output the plaintext , mod()lqm  ct sk .

CKKS.Add(,)ct ct ：Input the ciphertexts ct and ct of the

l-th level, and output the ciphertext add (mod)lq ct ct ct .

CKKS.CMult (,)a
ks

ct ： Input the constant a R and the

ciphertext ct of the l-th level. Output the ciphertext

cmult mod la q   ct ct .

CKKS.Mult (,)
ks

ct ct ： Input the ciphertext

2

0 1 0 1(,), (,)
lqc c c c R    ct ct of the l-th level, and output the

ciphertext
1

mult 0 1 2(,) mod ld d P d q      ct ks .

 KS
swk

ct ：Input the evaluated key swk and the ciphertext

ct of the l-th level. Output the ciphertext

  1

0 1 , 0 () lc P c mod q     ct swk .

CKKS.Rescale ()l l   ct ：Input the ciphertext ct of the l-

th level and the next level label l  . Output the ciphertext

modl l

lp q



      ct ct .

CKKS.Bootstrapping ()
ks,rk,ck

c ： Input the evaluated key

ks,rk,ck
 and ciphertext c . Output the refreshed ciphertext c .

See the CHKKS and CCS18 schemes for the detail bootstrapping

process.

CKKS.Rotate (;)k
rk

ct ： Input the shift key rk and the

ciphertext ct . If the plaintext vector ()m Y moves k bits, then

output the ciphertext of
5()

k

m Y .

CKKS.Conjugate ()
ck

ct ： Input the shift key ck and the

ciphertext ct . If the plaintext vector ()m Y is conjugated to a

vector
1()m Y 

, then output the ciphertext of
1()m Y 

.

- GSW.PSKeyG ()n (e ,)params pk sk ： Select

keys  , and set the secret key (1,)sk s . Select

 T. Zhou et al.

2

L

U d

P qR a and
2

err

e , output the public key

2 2: [,]
L

d

P qpk z R 

   b a e a
, where

2 2

[1] [1]

: [,]

[2] [2]
L

d

P qpk z R

d d





 
 

    
 
  

b a

b a e a

b a

.

 GSW.Enc pk  ： Select encr  and

2 2

0 1: [|] err

  E e e . Output the ciphertext

2 2
[,] l

Lp qr p R
 

   b a E sGC , where

2 2: [,]
L

d

P qpk z R 

   b a e a . That is

1

1

log

1

1

2

2

2

log

2

[1] [1]

[2] [2]

GSW.Enc()

[2 1] [2 1] 2

[2] [2]

[1] [1]

[2] [2]

[2 1] [2 1]

[2] [2] 2

q

q

r p

r p

r p

r p

r p

r p

r p

r p





  

 



 

  

 

 

 






 

    

 

 


 




  

  

s

b e

b e

b e

b e

a e

a e

a e

a e

.

B1 Proof of Lemma 2

Proof. Define 1 ... ke e e   , 1 ... ks s s   , and

1 ... kb b b   . For the ciphertext

   0 1(, od, m)r m e e qb a     ct ， where

  modi i i Lb as e q   . Select (0.5)r ZO ，

2

0 1, ()qe e DG    ， ()is HWT h ，
Lqa  and

2()
Li qe DG  ，then calculate the expression of error e and

the upper limit of || ||cane  .

 

 

0 1

0 1

 mod

0 1

(,) ,

(,),

, (1,) , (1,)

(1,) (,)), (1,

i i i Lb as e q

b ae s m r m e e s m

r s e e s

re e

a

s

b

e
 

         

      

  

ct

0 1

0 1

0 1

|| || || ||

|| || || || || ||

 8 2 6 16

e re e e s
can can

can can can

e re e e s

re e e s

k N N k hN  

  

 

  

   

   

  

.

B2. Proof of Lemma 3.

Proof：（1）calculate the error of
,se i

e
ks

.

 

, ,

1

,2 ,0 ,1
1 2

1

,2 1
1

0 | (

1

1 1

(

)

))

|

(mod

se i se i

i i i
d d

i i sclean d
d

i

L

iP

d b P

r e e s b

e s s
s

s s

Pq

s s



 






 
  

  

   
     

  



       
          

    
 

   

 


ks ks

g d d

g e

c

where

1 1

,0 ,1 ,2
1 2

,2 ,2

1 1

,0 ,
2 1

,

1
1

:

1
(

() | + 0 | CKKS ()

. 0 | mod

. ()
1

| ()

)

i i i is
d d

i i i i i L

i i i sc
d d

e

d

s i b d P s

a d r b r e e
s

s P s s Pq

b b b r b
s

 

 

 

  

        
          

        
  



 
 

  

 
 

 

         
        


 



ks g d d

g d d g e 
1lean d

.

2 2

1

0,[,] 1[,]

()

(

,2 ,2

mod

,2

=

,2

1

,0 ,1
1 2

,

1

()

()

. 0 |

m

1

od

mod

. () |

L

i i i P qL

j j

i i

d r a e P s Pq

i i L

r b r s a r e R

i i i i L

i i
d d

d d

a d d s

r a s e s P s s Pq

r b r e e s P s s Pq

b b

s

s



    

    









 
 

  

  
  

      



 
 

      

    
         



g d d

 

[,]
,[,]

[],[,]

CKKS.Enc ())

()

1

1

1

1
1

() ()

()

j
pk Pqj L

sclean sclean j dj

r

i sclean
d

i sclean d
d

b r

b r b



 












    
  

    
  

g

e e

g g e

g e

（2）Calculate the upper limit of
,

|| ||
se i

cane ks
.

 

 

,

,

1

,2 1
1

1

,2 1
1

() mod

() m

|| || || () ||

8 2 16 8 / 3

od()

se i

se i

can can

i i sclean Ld
d

i i sclean Ld
d

ks sclean

e

k N k hN B

r e e s b Pq

r e e s b P

B dN

e q

 











  

  



    
  

    
  

ks

ks

g e

g e

where

Multi-key Fully Homomorphic Encryption Scheme with Fixed-

length Ciphertext

 

 

,

1

,2 1
1

,2

1

1
1

(()

|| |

) mod

(

| 8 2

||

)

|| 16

|| || 8 / 3

se i
i i scle

can

an

can

can

Ld
d

i

i

sclea ksn d
d

sclean

e

k N

k hN

r e e s b Pq

r e

B B N

e s

b






















    
  





  
 

 








ks
g e

g e

.

 

1 1

[,] ,[,]
1

1

[,] ,[,]

1

1
1

1
() (|| || || ||

|| ||

8 / 3

where

|| || 8 /

)

()

) 3(

clean i clean i
d

i cle

dcan can

i

can

ks sclean

can

k

an i

scle s sclea d an n
d

d

B B dN

Bb N

b b

B

b

 


 












  
  



  
 












g e g e

g e

g e

（3）Calculate the
set

e
ks

, and the upper limit of || ||
set

cane ks
.

,1

, ,

:

,1

1 1

1 1
k

set se ii

se i se i

k

set se ii

k k

ii i
P Ps

s s

s s e es






 

   
   

      

    



 

ks ks

ks ks

ks ks

,

, ,
1

|| || || || || ||
set se i se i

kcan can can

i
e e k e  

 ks ks ks
.

C Homomorphic adder

Homomorphic adder is constructed by homomorphic addition and

homomorphic multiplication of TGSW ciphertext

C.1 Mathematical expression of adder

C.1.1 Half-Adder：

Input two single bit binary numbers x, y, corresponding to GSW

ciphertexts TGSW()x and TGSW()y .

Output：

-Carry: TGSW() TGSW() TGSW()outc x y . The

corresponding plaintext is
out

c x y  .

-Sum: TGSW() TGSW() TGSW()
out

c x y  . The

corresponding plaintext is
out

c x y  .

C.1.2 Full-Adder(x,y,c)：

Input two single bit binary numbers x, y and the carry

inc ,corresponding to GSW ciphertexts TGSW()x , TGSW()y

and TGSW()inc .

Output：

-Carry:

TGSW() TGSW() TGSW()

TGSW() {TGSW() TGSW()}

out

in

c x y

c x y

 


.

The corresponding plaintext is ()
iout n

x y cc x y    .

-Sum:

TGSW() TGSW() TGSW() TGSW()ou intc x y c   .

The corresponding plaintext is
iout n

xc y c   .

Homomorphic addition algorithm for two l-bit TGSW ciphertexts

HomAdd:

Input two groups of TGSW ciphertext

01{TGSW(),...,TGSW()}l xx  and 01{TGSW(),...,TGSW()}l yy 

with length of l. The ripple-carry adder is used to calculate the

homomorphic addition of two l-bit TGSW ciphertexts.

For 0i  to 1l  ,

0

0 0

(1) {TGSW(),TGSW()}

FullAdd(TGSW(),TGSW(),)

c s

x y



0

：

1

1 1

(2) {TGSW(),TGSW()}

FullAdd(TGSW(),TGSW(),TGSW())

c s

x y c

：

…

1

1 1

(1) {TGSW(),TGSW()}

FullAdd(TGSW(),TGSW(),TGSW())

l

l l

l c s

x y c



 

 ：
.

Output the ciphertext

1 0{TGSW(),TGSW(),...,TGSW()}lc s s .

For the homomorphic addition

0HomAddk{TGSW(),...,TGSW()}k xx of k l -bit TGSW

ciphertexts, we use HomAdd algorithm and binary tree to realize

fast calculation.

C.2 Error analysis of adder

For convenience, let X , Y , inC , S and outC represent

TGSW()x , TGSW()y , TGSW()inc , and TGSW()outc ,

respectively. TGSW()x and TGSW()y have the same error

variance.

(1) For the homomorphic multiplication between TGSW

ciphertexts, we have

2

2 2

2

(()) (1) (())

(1)() (())

2 (()) (1) (())

A A

B

Var Err A B k lN Var Err A

kN Var Err B

dNV Var Err A N Var Err B



  



  

 

   

where
2

2
1, , , , ={0 1}gB

B Ak l d V      ， ,and
2 is the

var of gap round.

(2) For the full-adder based on homomorphic multiplication

between TGSW ciphertexts, we have

2

(()) (()) (())

(()) 4 (())in in

Var Err S Var Err X Var Err Y

Var Err C dkN Var Err c

 

  
,

 T. Zhou et al.

2

2 2

(()) (6 1) (())

2(1) (())

(6 +1)2 2(1) (())

out B

in

B in

Var Err C dNV Var Err X

N Var Err C

dNV dkN N Var Err C



 

  

 

   

.

(3) The l-bit HomAdd algorithm is formed by continuously

running l full-adders, the output has an error of variance：

2 2(()) (6 +1) 2 2 (1)BVar Err c l dNV dkN l N    ,

2

2

2 2

(()) 2 (1) {(6 +1) 2

2(1) }

(6 +1) 2 2 (1)

i B

B

Var Err s l dNV dkN

N

l dNV dkN l N

 



 

    



  

For convenience,

2

2

((HomAdd ())) (6 +1) 2

2 (1)

l BVar Err output l dNV dkN

l N





 



HomAddk algorithm can realize homomorphic addition of k l-

bit TGSW ciphertexts. There are two methods as bellow.

1) When the number of users is large, we can use the serial

mode to add one addend once. Because this method needs to run

HalfAdd algorithm
1

1
2

l i

i
i

 times, the calculation speed is

slow, but the error growth is small. The error variance of its

output is

1 2 2 2

1

((HomAddk()))

(2)(2 2 (1)) 2
l i

Bi

Var Err output

i dNV dkN N dkN  





   
.

2) When the number of users is small, we can run HomAdd

algorithm in the form of binary tree. This method needs to operate

HomAdd algorithm for log()l k   times, so the calculation

speed is fast, but the error growth is also large. Since the length of

HomAdd addition is from 1 to log()l k   , the error variance

of the output is

2

((HomAddk()))

(!)(6 1) 2l

B

Var Err output

l dNV dkN



 
.

We can use the above two methods to balance the

computational complexity and noise to achieve better results.

Appendix D: Error analysis of AMTMK scheme.

The decomposition basis is defined as B , and the

decomposition degree is defined as d . Let
2 21/ (12)dB  be

the variance of a uniform distribution over (1/ 2 ,1/ 2]d dB B .

Define

21

12

21

12

(1) if is odd

(2) if is even
B

B B
V

B B

 
 


 as the uniformly

distributed variance over (1/ 2 ,1/ 2]d dB B . Also, define the

parameters
2

ks ,
ksBV and ksB in the bootstrapping algorithm.

Define the secret key distribution {0,1}w  and {0,1}n  on

RGSW and LWE. Let Var()e be the variance of the random

variable e over . If e is a vector composed of random

variables, Var()e is the maximum variance of the vector.

Rounding error. Given 2b N b    and 2N    a a ,

assuming that the each rounding of error obeys the random

uniform distribution of (mod1) (0.5,0.5]  , then the

variance of the overall rounding error of expression

() ,b N b N           a a s is 1

12
(1 / 2)n .

The initial error of the evaluation key.

The variance of error
,i jKS is

LWE.KSGen(,)

,

2

,

(())

(((,0,...,0)))

i i pk

i j

ks i j ks

Var Err

Var Err t mk 





   

KS t

KS

R A g

.

The variance of error ,i jBK is

, ,RGSW.Enc(,)

,

2

,

(())

(() 2

i j i js

i j

i j

Var Err

Var Err s dkN 





   

ZBK

BK

R Z h

.

According to CGGI17 scheme ， the bootstrap error of

AMTMK scheme is analyzed as follows.

令 Let 0 1,d d be TRLWE samples and let

TGSW ({0,1})C
s . Then, 1 0(CMux(, ,))msg C d d

1 0() () ()msg C msg msg d d . And we have

 1 0

0 1

CMux(, ,) ||

max(|| () || ,|| Err() |

|

|)

|

+ ()

C

Er

E

r

rr





 

d d

d d C
,

 where      2
 || 2 || 1gB

C N Er kd r C    . So

  

        

1 0

0 1max ,

CMu (,

x ,)Var Err

Var Err Var Err C

C







d d

d d
,

where        22 1BC N Var EV Cd rr N    .

The accumulated process. The initial RLWE ciphertext is

general, and its error is 0. All bootstrap keys

1 0
[](,) (,)

{ ,..., }
l

j nbit Set j bit Set j
BK BK are generated by HomAdd

algorithm, and the variance of error is

1 2 2 2

1
(2)(2 2 (1)) 2

l i

Bi
i dNV dkN N dkN  


    . By

recursively running Cmux circuit for l n times, the error

variance of accumulated process is

 

1 2

1

22 2

2 { (2)(2 2

(1)) 2 } 1

l i

B Bi
d V l i dNV dkN n

ln N

N

N dkN



  






  

 




.

The key switching algorithm. Input accumulated ciphertext
1(,) Nb  ct a and accumulated key

, []1
{ }

k

i j j NiSet 
 KS KS , where

Multi-key Fully Homomorphic Encryption Scheme with Fixed-

length Ciphertext

, , ,(,0,...,0) (,0,...,0)i j ks i j i j kst   KS R A e g . Output the

ciphertext
1

1 ,
(,) () (mod1)

N

ks jj Set j
b a


  a g KS and its error

variance

2 21
2

(()) (1)+

(())

ksks BVar Err N d V N m

Var Err

    ct

ct
.

The bootstrapping process. The error of bootstrap process can

be obtained from the accumulated process and the key switching

process, so the error variance is

2 21
2

1 2

2 2

1

2

(1)

2 { (2)(2 2

((1)) 2 } 1)

ksks B

l i

B Bi

N d V N m

d V l i dNV dkN

N dkN

N n

N ln

 



  







  

 





 

 .

