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ABSTRACT 

Multi-Key fully homomorphic encryption (MKFHE) allows 

computation on data encrypted under different and independent 

keys. The previous researches show that the ciphertext size of 

MKFHE scheme usually increases linearly or squarely with the 

number of parties, which restricts the application of the MKFHE 

scheme. In this paper, we propose a general construction of 

MKFHE scheme with compact ciphertext. Firstly, we construct 

the accumulated public key of the parties set with compact by 

accumulating every party’s public key under the CRS model. 

Secondly, all parties provide the ciphertext of their secret keys 

key which is encrypted by the accumulated public-key as the 

accumulated evaluation key. Thirdly, we run the bootstrapping 

process (or key switching process) on each party's ciphertext and 

accumulated evaluation key to refresh the ciphertext. Finally, We 

homomorphically calculate the refreshed ciphertext and decrypt it 

by the joint secret key. Furthermore, according to the advantages 

of TFHE-type scheme’s efficient bootstrapping and CKKS 

scheme supporting approximate data homomorphic computation, 

we improve the bootstrapping in our general scheme and 

specifically propose two efficient MKFHE schemes with compact 

ciphertext. 

Our work has two advantages. The one is that the ciphertext 

size of the proposed general scheme is independent of the number 

of parties, and the homomorphic computation is as efficient as the 

single-party full homomorphic encryption scheme. When the 

parties' set is updated, the ciphertext of the original set can 

continue to be used for homomorphic computation of the new 

parties' set after refreshed. Another advantage is that only by 

authorization can a party’s data be used in the homomorphic 

operation of a set, i.e., all parties need to regenerate their 

accumulated evaluation key with the set. Compared with the fully 

dynamic MKFHE scheme, the authorized MKFHE scheme we 

proposed supports parties to effectively control which set their 

data. 

KEYWORDS 

Multi-key Fully homomorphic encryption, Lattice cipher, 

Bootstrapping process, Homomorphic decryption 

1 INTRODUCTION 

Single-party Fully homomorphic encryption (FHE) is a 

cryptographic scheme that enables homomorphic operations on 

encrypted data without decryption. Many of HE schemes (eg.1-13) 

have been suggested following Gentry’s blueprint [3]. The typical 

FHE schemes can only support homomorphic computation of 

ciphertext for a single party, that is, all ciphertexts participating in 

computation correspond to the one secret key. However, in many 

scenarios, it is usually necessary to calculate the data uploaded to 

the cloud by multi-party in the network. In 2012, López-Alt et al. 

[14] proposed a multi-key fully homomorphic encryption (MKFHE) 

scheme, which is a variant of FHE allowing computation on data 

encrypted under different and independent keys. One of the most 

appealing applications of MKFHE is to construct on-the-fly 

multiparty computation (MPC) protocols. The process of MKFHE 

is shown in Figure 1. 
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Figure 1: Multiparty data security computing model of 

MKFHE 

1.1 Background 

The MKFHE schemes are mainly divided into four types: 

NTRU-type MKFHE, GSW-type MKFHE, BGV-type MKFHE and 

TFHE-type MKFHE. 

In 2012, López-Alt et al. first proposed the NTRU-type MKFHE 

based on the NTRU cryptosystem[15], which was optimized later in 

DHS16[2]. In PKC2017, Chongchitmate et al. proposed a general 

transformation framework CO17[16] from MKFHE to MKFHE 

with circuit privacy, and constructed a three-round dynamic secure 

multi-party computation protocol. However, the security of this 

construction is based on a new and somewhat non-standard 

assumption on polynomial rings.  

In CRYPTO2015, Clear and McGoldrick proposed the first 

GSW-type MKFHE scheme CM15 based on LWE problem [17], 

which proposes a transformation mode from FHE to MKFHE. The 

ciphertext of the single-party FHE is expanded to a new large 

ciphertext, which corresponds to the cascaded secret key of all 

parties. Then, the extended ciphertexts are used for homomorphic 

computation, and the final ciphertext is decrypted jointly by all 

parties. This transformation mode is widely adopted by most 

MKFHE schemes based on LWE or RLWE problems. In 

EUROCRYPT 2016, Mukherjee and Wichs presented a 

construction of MKFHE MW16[18] based on LWE that simplifies 

the scheme of CM15 and admits a simple 1-round threshold 

decryption protocol. Based on this threshold MKFHE, they 

successfully constructed a general two-round MPC protocol upon it 

in the common random string model. The schemes CM15 and 

MW16 need to determine all the involved parties before the 

homomorphic computation and do not allow any new party to join 

in, which is called single-hop MKFHE[19]. In TCC2016, Peikert 

and Shiehian proposed a notion of multi-hop MKFHE PS16[19], in 

which the result ciphertexts of homomorphic evaluations can be 

used in further homomorphic computations involving additional 

parties (secret keys). That is, any party can dynamically join the 

homomorphic computation at any time. However, the disadvantage 

is that the number of parties is limited. In CRYPTO2016, A similar 

notion named fully dynamic MKFHE BP16[20] was proposed by 

Brakerski and Perlman. A slight difference is that in fully dynamic 

MKFHE the bound of the number of parties does not need to be 

input during the setup procedure. The length of extended ciphertext 

only increases linearly with the number of parties. However, in the 

process of homomorphic computation, the scheme needs to use the 

parties' joint public key to run the bootstrapping process, so the 

efficiency of ciphertext computation is low. 

In TCC2017, Chen et al. proposed the first BGV-type multi-hop 

MKFHE scheme CZW17[21]. They used GSW-type expansion 

algorithm to encrypt the secret key to generate the joint evaluation 

key of the parties set. CZW17 supports the ciphertext packaging 

technology based on Chinese remainder theorem (CRT), and can be 

used to construct 2-round MPC protocol and threshold decryption 

protocol. In 2019, Li et al. put forward a nested ciphertext extension 

method LZY+19[22], which reduces the evaluation key and the 

expansion ciphertext size. In 2019, Chen et al. optimized the 

relinearization process and constructed an efficient MKFHE 

CDKS19 [23]. Because of its efficient homomorphic computation, 

it is applied to the neural network to perform the privacy 

computation. 

In ASIACRYPT2016, Chillotti et al. constructed the full 

homomorphic scheme CGGI16[24] based on a variant of GSW13 

on the T=(0,1] ring TGSW. In the scheme, the external product of 

TGSW ciphertext (matrix) and TLWE ciphertext (vector) is used to 

replace the product of TGSW ciphertext (matrix) and TGSW 

ciphertext (matrix). Therefore, the addition operation on polynomial 

exponent is more efficient, such that the time of bootstrap process 

and the size of bootstrap key are greatly reduced. In 

ASIACRYPT2017, Chilotti et al. optimized the accumulation 

process in the CGGI16 scheme and proposed CGGI17[25], which 

reduced the bootstrapping time to 13ms. In the follow-up work, they 

wrote the FHE software library TFHE. In ASIACRYPT2019, Chen 

et al. designed an efficient ciphertext expansion algorithm based on 

CGGI17, realized the efficient expansion evaluation key, and 

proposed an MKFHE scheme CCS19[26]. The ciphertext length of 

the scheme increases linearly with the number of parties. And also, 

they compiled an MKFHE software library MKTFHE, which has 

important guiding significance for the application of MKFHE 

schemes.  

1.2 Our Contributions 

Throughout the paper, there are many definitions of each party. 

Here we give a simple description of them. For the party i, firstly he 

selects his secret key (sk) and generates the corresponding public 

key (pk). Then it provides the part of its public key to generate the 

joint public key (jpk). He uses the jpk to encrypt his ciphertext for 

generating the accumulated ciphertext. Party i uses the jpk encrypt 

his secret key for generating the evaluation key (ek), uses jpk 

encrypt the joint ciphertext for generating the accumulated 

evaluation key (aek). Similarly, party i generates switching key(wk), 

accumulated switching key (awk), bootstrapping key (bk), and 

accumulated bootstrapping key (abk) that participate in 

homomorphic operation according to jpk. 

Single-party FHE uses the same key for encryption or decryption. 

To construct MKFHE like the FHE encryption mode, we need to 

construct a common public key of the parties set. So the ciphertext 

generated of each party in MKFHE scheme corresponds one joint 

secret key(jsk). For any party i, he generates its key pair ( isk , ipk ) 
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from the selected parameters. For example, :i isk  s ,

: [ , ] m n

i i i qpk    b s B e B . Then, the jpk of the parties set is 

generated by accumulating all the parties’ pk. So the jpk is obtained 

as  1: ... m n

k qpk    A b b B . pk  can be used for all 

parties to encrypt their data, so that all the ciphertexts correspond 

the same jsk without performing the ciphertext extension program. 

When decrypting, each party gets his partial decryption result, and 

then integrates them into the final plaintext. 

Our work is to generate the joint public key of the parties set by 

directly accumulating the public keys of multi-parties under the 

CRS model, introduce the bootstrapping or key switching process 

into the ciphertext extension process, and construct the compact 

extended ciphertext based on (R)LWE problem. 

The result shows that the size of the ciphertext is independent of 

the number of parties. And the homomorphic computation is as 

efficient as the single party FHE scheme. When the parties set is 

updated, the original joint ciphertext can continue to be used to 

synthesize new joint ciphertext to participate in homomorphic 

computation, but each party needs to provide a new public key. The 

memory (bit-size) comparison between our scheme and LZY+19, 

CCS19 and CDKS schemes are shown in Table 1.  

Schemes 

Bit-Size 

ciphertext 
evaluation 

key 

accumulated 

switching key 

LZY+19 ( )O kn  
3( )O k n  ( )O kn  

CCS19 ( )O kn  
2 2( )O k n  ( )O kn  

CDKS19 ( )O kn  ( )O kn  ( )O kn  

Our scheme ( )O n  ( )O n  ( )O n  

Table 1: The memory (bit-size) comparison between our 

scheme with LZY+19, CCS19 and CDKS19. k denotes the 

number of parties and n is the dimension of the (R)LWE 

assumption.  

2 PRELIMINARIES 

2.1 Definition of multi-key fully holomorphic 

encryption(MKFHE) 

We now introduce the cryptographic definition of a leveled 

multi-key FHE, which is similar to the one defined in CZW17 with 

some modifications from LTV12. 

Definition 2.1 (Multi-key FHE)[21]. Let  be a class of 

circuits. A leveled multi-key FHE scheme 

(Setup, KeyGen, Enc, Eval, Dec)  is described as follows: 

.Setup(1 ,1 ,1 )K L
：Given the security parameter , the 

circuit depth L , and the number of distinct parties K  that can be 

tolerated in an evaluation, outputs the public parameters pp . 

.Key Gen( )pp
：Given the public parameters 

pp
，derives 

and outputs a public key ipk
, a secret key isk

, and the evaluation 

keys ievk
 of party i ( 1,...,i K ).  

.Enc( , )ipk m
：Given a public key ipk

 and message 


，

outputs a ciphertext ict
.  

1 2
. Dec(( , ,..., ), )

ki i i Ssk sk sk ct ： Given a ciphertext Sct  

corresponding to a set of parties 1 2{ , ,..., } [ ]kS i i i K  ，and 

their secret keys 
1 2

{ , ,..., }
kS i i isk sk sk sk , outputs the message 

 。 

1 1 1
.Eval( , ( , , ),..., ( , , ))

t t tS S S S S Sct pk evk ct pk evk ： On 

input a Boolean circuit  along with t  tuples 

1,...,( , )
i i iS S S i tct pk evk ， ，each tuple comprises of a ciphertext 

iSct  corresponding to a parties set iS , a set of public keys 

{ , }
iS j ipk pk j S   , and the evaluation keys 

iSevk , outputs a 

ciphertext Sct  corresponding to a set of secret keys indexed by 

1 [ ]t

i iS S K  . 

Definition 2.2 (Correctness of MKFHE)[21]. On input any 

circuit  of depth at most L  and a set of tuples

{1,..., }{( , )}
i iS S i tct pk  , let Dec( , )

i ii S Ssk ct  , where 

{ , }
iS j isk sk j S   , a leveled MKFHE scheme  is correct if 

it holds that 

[ ] 1Pr[Dec( , ( , ( , , ) )) ( ,..., )]

( )

i i iS S S S i t tsk Eval ct pk evk

negl

  


 

Definition 2.3 (Compactness of MKFHE)[21]. A leveled 

MKFHE scheme is compact if there exists a polynomial ( , , )poly     

such that ( , , )ct poly K L , which means that the length of ct  

is independent of the circuit , but depend on the security 

parameter , the number of parties K  and the circuit depth L . 

2.2 The general learning with errors (GLWE) 

problem  

The learning with errors (LWE) problem and the ring learning 

with errors (RLWE) problem are syntactically identical, aside from 

different rings, and these two problems are summarized as GLWE 

problem in [BGV12]. 

Definition 2.4 (GLWE problem)[22]. Let  be a security 

parameter. For the polynomial ring [ ] / 1dX x R  and 

/q qR R R , and an error distribution ( )  over R , the 

GLWE problem is to distinguish the following two distributions: In 

the first distribution, one samples 1( , ) n

i i qb a R  uniformly from 
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1n

q

R . For the second distribution, one first draws 
n

i qa R  

uniformly, and samples 
1( , ) n

i i qb R a  by choosing 
n

qs R  and 

ie   uniformly, and set ,i i ib e  a s . The GLWE 

assumption is that the GLWE problem is infeasible.  

LWE problem. The LWE problem is simply GLWE problem 

instantiated with 1d  . 

RLWE problem. The RLWE problem is GLWE problem 

instantiated with 1n  . 

2.3 BitDecomp(·) and Powersof2(·)[3] 

Here we introduce two subroutines ( BitDecomp( )  and 

Powersof 2( ) ) which are widely used in FHE schemes. Let 

n

qx R
 be a polynomial of dimension n  over qR , and let 

log 1q     . 

BitDecomp( , )n

q qx R : On input 
1( ,..., ) n

n qx x x R  and 

the modulus q ， outputs 
1,0 1, 1 ,0 , 1( ,..., ,..., ,..., )n nx x x x     

{0,1}n   where 
,i jx  is the j-th bit in ix ’s binary representation 

(ordered from least significant to most significant), namely 

1 1

1, ,0 0
( 2 ,..., 2 )j j

j n jj j
x x

  

 
  x . 

Powersof 2( , )n

q qy R : On input 
1( ,..., ) n

n qy y y R  

and the modulus q , outputs 1

1 1 1( ,2 ,..., 2 ,..., , 2 ,...,n ny y y y y   

12 ) n

n qy  R .  

It’s straightforward to verify that for arbitrary , n

qx y R , it 

holds that 

BitDecomp( , ), Powersof 2( , ) , modq q qx y x y
. 

3  General construction of MKFHE scheme with 

compact ciphertext 

In this section, we introduce the general construction of fixed 

length ciphertext MKFHE (we call this kind of scheme FCMKFHE 

scheme for short). The ciphertext expansion algorithm plays an 

important role in MKFHE scheme. Its function is to expand one 

party’s ciphertext to multi-parties’ ciphertext. When all parties’ 

ciphertexts correspond to the same joint secret key, the 

homomorphic computation can be performed just like single-party 

FHE scheme. The ciphertext expansion function is the core of the 

ciphertext expansion algorithm. It generates the corresponding 

extended ciphertext according to the form of the cascaded secret 

key. Usually, the generated joint ciphertext is a linear or a square 

relationship about the number of parties. When the number of 

parties increases, the efficiency of the scheme will drop sharply, 

which is exactly the bottleneck restricting the specific application of 

MKFHE. Therefore, for MKFHE, the form of joint secret key 

determines the size of ciphertext. In this paper, we would to 

construct the joint secret key whose length is independent of the 

number of parties by accumulating all parties’ secret keys. We 

called it the compact secret key. Starting from the compact secret 

key, we design a new ciphertext expansion algorithm to obtain the 

joint ciphertext whose length is also independent of the number of 

parties. Furthermore, we propose two general FCMKFHE 

schemes——the static mode FCMKFHE scheme (SMMK) and 

authorized mode FCMKFHE scheme (AMMK), which are suitable 

for different scenarios. 

3.1 Static mode FCMKFHE scheme 

We can construct MKFHE by imitating the form of FHE, that is, 

every party uses the same joint public key for encryption, so that all 

ciphertexts correspond to one joint secret key. As long as the joint 

public key is short enough, the corresponding joint secret key will 

also be short, so the size of generated ciphertext will be small. 

Therefore, homomorphic computation can be performed directly 

without ciphertext expansion program. In this section, we construct 

a joint private key and public key by accumulating all the parties’ 

keys, so we can get a MKFHE scheme with fixed ciphertext length. 

Because when the parties participating in the calculation is updated, 

the original ciphertext needs to be regenerated, so the scheme 

constructed in this way does not support the dynamic update of 

parties’ information. We call it static mode MKFHE scheme—

SMMK. 

Since the size of ciphertext and joint secret key of SMMK 

scheme are in the same magnitude as that of single-party FHE. So, 

their homomorphic computation mode is same, which makes the 

multi-key homomorphic computation of SMMK scheme very 

efficient. Taking the party i as an example, the calculation process 

of SMMK scheme is as follows. (Like most MKFHE schemes, 

SMMK is based on the CRS model, and all parties use some shared 

parameters). 

SMMK.Setup(1 ) : FHE.Setup(1 )   params
; 

SMMK.KeyGen( , , ) :iparams B FHE.KeyGen( , )params B
 

,i ipk sk
;After all parties have completed the process 

SMMK.KeyGen(), run the generation algorithm of evaluation key. 

1SMMK.EvalKeyGen( , ,{ ,..., }):i ksk pk pkparams   

1) 1SMMK.SMPK( , ,{ ,..., }):i ksk pk pkparams  

This is the public key accumulation function used to generate 

the jpk. Take the GSW-type MKFHE scheme as an example, input 

the public parameter 
( 1)m n

q

 B , the party's secret key 

i isk  s  and public key [ , ] m n

i i i q

  b s B e B  Output 

the jpk as  1: ... m n

k qpk    A b b B . 

2) FHE.SwitchKeyGen( , , )isk pkparams : Input the party’s 

sk and jpk, output the accumulated evaluation key (aek) of party i 

FHE.Enc ( )i i ipk
sk sk KS and the accumulated switching 
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key (awk) of parties set 
Set

KS .  Due to the different structures of 

the schemes (like the GSW-type MKFHE does not need to run 

this key switching process), the generation process of the awk is 

slightly different. See the specific scheme in Section 4 for details. 

3) FHE.BootKeyGen( , , )isk pkparams : Input the party’s sk 

and jpk . Output the bootstrapping key (bk) of party i 

FHE.Enc ( )i ipk
skBK , and the accumulated strapping key 

(abk) of the accumulated ciphertext 

log( ) 1( ,..., )kB kSet
HomAdd


BK BK BK , where (*)HomAddk  

is the homomorphic addition circuit for l bits.  

SMMK.Enc( , ) :pk  FHE.Enc( , )pk  . The encryption is 

the same as the single-party FHE schemes.  

1SMMK.Dec(( ,..., ), )Nsk sk C . Like most MKFHE schemes, 

the decryption result consists of two parts: partial decryption and 

final decryption. 

1) .PartDecSMMK ( ), ,  ii skC ：Input the secret key of party i 

( ,1)i isk  s  and the result ciphertext C, and output the partial 

decryption. Taking the GSW-type FHE as an example, its 

decryption form is 
1 ˆ( )T

i   s CG w . We only calculate 

1

[1,..., 1;] i
ˆ: ( )T sm

i i np e


  s C G w  and get the partial decryption ip , 

where [1,..., 1;]nC  represents the first n-1 columns of ciphertext C , 

and [ , ]
R

sm dec dec

i smdg smdge B B   is the generated error used to protect 

the security of partial decryption. 

2) 1.FinDec ,  . . . SM ,  MK ( )Np p  ： Input all the partial 

decryptions, and output the resulting plaintext 

1

[ ;] 1

ˆ ˆ ˆ( )
NT

n ii
m p


  C G w . 

The homomorphic computation is as follows. 

1 2SMMK.Add( , ) :C C 1 2FHE.Add( , ) C C C . 

1 2SMMK.Mult( , , ) :
Set

C C EVK

1 2FHE.Mult ( , )
Set

  EVK
C C C . 

SMMK.Bootstrap( , ) :
Set

BK C FHE.Bootstrap( , )
Set

BK C . 

The correctness of the decryption process above can be verified 

as following. 

1 1

[ ;] 1 1

*

1

ˆ ˆ ˆˆ ˆ( ) ( )

ˆ ˆ( ) / 2

N NT T

n i ii i

NT sm

ii

p

e q e

 

 



  

     

 



C G w e RG w

t w
             (1) 

For the above scheme, the ciphertexts of all parties are 

encrypted by the joint public key pk , and the homomorphic 

computation is the same as single-party FHE scheme, so the 

efficiency of the scheme is better than the previous MKFHE 

schemes. By simply changing the form of encryption and 

decryption, we can construct BGV-type FCMKFHE and TFHE-

type FCMKFHE. However, the SMMK scheme also has some 

defects. When some new parties join, the original ciphertext and 

evaluated key are unavailable. We must regenerate the new 

ciphertext and evaluated key for the updated parties set. We aim 

to construct a new FCMKFHE scheme, which supports the timely 

updating parties set without regenerating their ciphertexts and 

keys. 

3.2  Authorized mode FCMKFHE scheme 

The ciphertext and evaluated key of the SMMK scheme are all for 

a constant parties set. In this section, we focus on constructing an 

authorized mode FCMKFHE scheme (we call it AMMK scheme), 

which has the following advantages: the size of ciphertext is 

independent of the number of parties, and all ciphertexts continue 

to be used in the updated set. The idea of the construction is: Party 

i uses his pk encrypt his data and obtains his own ciphertext. Then, 

by using the optimized bootstrapping process (or key switching 

process), his own ciphertext is converted to the joint ciphertext 

corresponding to the apk. So that the joint ciphertext can be 

reused. Different from SMMK scheme, the scheme needs to 

adjust the public key corresponding to the ciphertext to a new 

parties set before homomorphic computation, and the parties set 

needs to interact to generate a new evaluation key when updating. 

The operation process is as follows. 

AMMK.Setup(1 ) : FHE.Setup(1 )   params ; 

AMMK.KeyGen( ) :params FHE.KeyGen( , )params B

( , )i ipk sk ;After all parties have completed the process 

AMMK.KeyGen(), run the generation algorithm of evaluation key. 

1AMMK.EvalKeyGen( , ,{ ,..., })i Nsk pk pkparams ： 

1SMMK.EvalKeyGen( , ,{ ,..., })

{ , , , , }

i N

i iSet Set

sk pk pk

pk

params

KS KS BK BK
; 

AMMK.Enc( , ) :pk  FHE.Enc( , )pk   C .（Note: This 

is a single party's public key encryption, not a joint public key 

encryption） 

1AMMK.Dec(( ,..., ), ) :Nsk sk C 1SAMK.Dec(( ,..., ), )Nsk sk C

 . 

Similar to scheme BP16, this scheme uses bootstrapping 

process to implement homomorphic computation. 

1 2AMMK.Eval(( , ), , ) :i Set
C C BK KS  

1) ,
{FHE.Dec ( )}

ici

i sk ipk
Hom 

cBK
C C . This process can 

refresh different public keys. 
ic

BK  is the bootstrapping key 

corresponding to iC . If iC  is the ciphertext of a single party, the 

bootstrapping key 
ic

BK is setted as 
iBK . If . iC  is the joint 
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ciphertext of all parties, the bootstrapping key 
ic

BK is setted as

set
BK . 

2 ）
1 2FHE.Eval(( , ), )

Set
 C C KS . This process realizes the 

homomorphic computation of joint ciphertext, where 
Set

KS  is 

the accumulated evaluation key of the joint ciphertext. 

The drawback of the AMMK scheme is that when the parties 

set is updated, all parties need to update the evaluation key and 

bootstrapping key. That is, if party i wants to updated his ek and 

bk, he must obtain other parties’ authorization in updated set. So, 

the scheme needs 3-rounds of interaction to construct MPC. 

4  Specific structure of FCMKFHE scheme 

The general SMMK and AMMK schemes need to perform the 

bootstrapping process to refresh the ciphertext, so their efficiency 

is low. In this section, relying on the efficient TFHE-type 

MKFHE and BGV-type MKFHE, we propose a targeted 

optimization method and construct two efficient FCMKFHE 

schemes. 

4.1  Construction of TFHE-type FCMKFHE 

TFHE-type scheme is the fastest bootstrapping scheme at present, 

but its secret key vectors are only taken from {0,1}N, and the 

value of accumulated bootstrapping secret key is larger, so it can’t 

be directly applied to AMMK. To combine the FCMKFHE 

scheme with the TFHE-type scheme better, we design a secret key 

extension algorithm, and construct an efficient TFHE-type 

FCMKFHE scheme--AMTMK. 
LWE GSWAMTMK.Setup(1 ) ( , )pp pp pp   ： 

LWELWE.Setup(1 ) ( , , , , , )ks kspp B d     B ； 

GSWGSW.Setup(1 ) ( , , , , , )pp N B d    y , Where 

,B y  are common random variables. 

, ,AMTMK.KeyGen( ) ( , , , )i i BK i BK ipp pk sk pk sk : 

LWE.KeyGen( ) { , }i i i ipp pk sk  A s ； 

, ,{ , }RGSW.KeyGen( ) BK i i BK i ipk s zpp k  Z . 

After all parties have completed the program 

AMTMK.KeyGen( )params , run the algorithm of evaluation 

key generation. If the parties set is updated, rerun the key 

generation algorithm. 

1AMTMK.EvalKeyGen( , ,{ ,..., }) { , , }:i k i ipp sk pk pk pk KS BK  

1) Accumulate the public key. Given the public keys 1 ,..., kb b  

of k parties, we obtain the joint public key 

 1: ... m n

k qpk    b b B . 

Accumulate the bootstrapping public key. Given the 

bootstrapping public keys 1 ,..., kd d  of k parties, we obtain the 

accumulated bootstrapping public key 

  2 2

1: ... d

BK k qpk T     Z d d y 。 

2) Accumulate the single-party bootstrapping key. Input the 

accumulated bootstrapping public key BKpk  Z  and the secret 

key 
n

i s  of LWE ciphertext. Output the single-party’s 

accumulated bootstrapping key , [ ]{ }i i j j nBK BK , where 

, ,RGSW.Enc( , )i j i jsK ZB , [ ]i k , [ ]j n . 

3) Accumulate the evaluation key. Input the accumulated 

public key pk  and the secret key iz  of the RGSW ciphertext, let 

,0 , 1 ,1: ( , ,..., ) N

i i i w iz z z   t , and output the accumulated 

evaluation key (aek) LWE.KSGen( , )i i pkKS t  of single 

party, where [ ]i k .  

AMTMK.Enc( , )pk  ： Input the plaintext  , and single 

party’s public key pk , run 
1LWE.Enc( , ) ( , ) npk b   ct a . 

1AMTMK.Dec(( ,..., ), )ksk sk ct ：  Input the ciphertext 

1( , ) nb  ct a  and the secret key 1( ,..., )ksk sk . Return the 

plaintext bit {0,1}  that makes 
1

41
| , |

k

jj
b m


    a s  

be smallest. 

[ ] [ ]AMTMK.Boot( ,{ } ,{ } ) :i i k i i k c BK KS  Input the 

ciphertext 
1( , ) nb   ct a , the bootstrapping key set

[ ]{ }i i kBK  and the accumulated evaluation key set
[ ]{ }i i kKS . 

Then use bootstrapping process to realize homomorphic 

computation. 

1) The cloud server uses iKS  to generate accumulated 

switching key , [ ]1
{ }

k

i j j NiSet 
 KS KS . The cloud sever also 

uses the iBK  to generate the accumulated bootstrapping key 

1 0
1, ,( , ) ( , )

,..., ( ,..., )
l

j k jbit Set j bit Set j
HomAddk



BK BK BK BK , 

where [ ]j n , log( )l k   . (, )HomAddk  is a homomorphic 

addition algorithm for k  1-bit TGSW ciphertexts, which can be 

constructed by homomorphic multiplication and homomorphic 

addition of TGSW ciphertexts. See Annex C for details. For a 

constant parties set, the cloud sever only needs to calculate 

Set
KS  and 

Set
BK  once, and then output them as public 

variables. 

2) Ciphertext refresh. Given ciphertext 
1( , ) nb   c a , and 

the evaluated key 
1 0( ) ( )

{ ,..., }
lbit Set bit Set

BK BK  or iBK . Run the 

following homomorphic accumulation algorithm [24]: 



Multi-key Fully Homomorphic Encryption Scheme with Fixed-

length Ciphertext 
 

 

 

① Input the ciphertext 
1( , ) nb   c a , output 

2b N b    , 2N    a a  and the bootstrapping key  

 

1
1{ ,..., }

        corresponds to the secret key 

        corresponds to the secret key ( ... )
k

i i

kSet s s
s s







 
 



BK c s
BK

BK c

 

② Initialize the RLWE ciphertext 1

8
( ( ) , )bh X X  ACC 0 , 

where 2 2
1

( ) 1 ... ...
N N

Nh X X X X X


       . Let 

[ ]( )j j na a , for j=1 to n, run the following process. 

0

1

1

-1

( , )

2

( , )

(2 )

( , )

(1). =CMux( , )

(2). =CMux( ,

, ;

, ;

...

( 1)

)

=CMux( , ).. ,
l

j

j

j

l

a

bit Set j

a

bit Set j

bit

a

Set j

X

X

l X




BK

BK

ACC ACC ACC

ACC ACC ACC

ACC ACC ACCBK

 

We select the largest circuit 1 0CMux( , , )C d d . Input one 

TGSW ciphertext C  and two input RLWE ciphertexts 1 0,d d . 

Output RLWE ciphertext 1 0 0( ) C d d d , where  is a 

hybrid homomorphic multiplication of GSW ciphertext and BGV 

ciphertext. The specific process is shown in [24]. 

③ Output 1

8
( , ) (mod1) ACC 0 ACC  

3）Key switching process. The last step is to convert ACC into 

LWE ciphertext and run the key switching algorithm. 

① Input the ciphertext 
2

0 1( , )c c T ACC . Set b  be a 

constant term of polynomial 0c  and a  be a vector composed of 

coefficients of polynomial 1c . Output LWE ciphertext .
.
. 

②Let , [ ]1
{ }

k

i j j NiSet 
 KS KS ， run the key switching 

algorithm and output the ciphertext 

LWE.MKSwitch( , )
Set

ct ct KS . 

The NAND circuit of homomorphic NAND gate is 

constructed by the bootstrapping process. 

1 2 1 2AMTMK.NAND( , ) HDTMK.Boot(( ,5 / 8) )c c c c0
. 

Security. Like most schemes, our scheme security also rely 

on cyclic security assumption. The semantic security of our 

scheme is based on (R)LWE assumption, and the parameters 
LWEpp  and 

GSWpp  make the (R)LWE assumption to be λ - bit 

secure. 

Correctness. In this scheme, the error of ciphertext ( , )b a  

in bootstrap process is 
4

( , ) mb e      a s , where 1

16
| |e  . 

So the error magnitude e  of the output LWE ciphertext is small. 

The detailed process of noise analysis is shown in Appendix D. 

4.2  Construction of BGV-type FCMKFHE scheme 

CKKS17 scheme is an efficient and concerned BGV-type 

FHE scheme. It can calculate floating-point data efficiently and is 

widely used in secure neural network et.al. According to the 

characteristics of CKKS scheme, we construct an effect BGV-

type FCMKFHE scheme AMCMK in this section. 

SetuAMCMK. p(1 ) ：Input the security parameters λ and 

select an integer N (where N is the power of 2). Let key , err  

and enc  be the distribution of secret key, error and encryption 

process on [ ] (  1)/ NX XR   respectively.  Select prime P 

and p. L respects the circuit layers, the ciphertext modulus is 
l

lq p , where 1 l L  . Select ( )
L

d

P qU R a  and 

1( )
LP qa U R 

  . Output common parameter 

,  ,  ( , , , , , , )key err e lncpp N L P q a a    . 

 KeyGeAMCMK. n( )pp ： Input the parameters pp . Select 

keys   and erre   , and output the public key 

1:
LP qpk b s a e R 

       . Select 
d

erre  and generate the 

calculated public key :
LPvk

d

qe s Rpk    b a e ., generate 

the evaluation key evk for basic CKKS : Let
2s s   . Set the 

evaluation key as 
2,  ( )

LPqevk b a R     where. 

After all parties have completed the program 

AMCMK.KeyGen( )pp , run the algorithm of evaluation key 

generation. If the parties set is updated, rerun the generation 

algorithm. 

[ ] , [ ]AMCMK.EvalKeyGen( , ,{ } ,{ } )i i i k evk i i kpp sk pk pk 

{ , , , }pk rks ckk ： 

1) Accumulate the public key. Given k parties’ public key

1 k,...,b b , the CKKS-type accumulated public key is generated as 

1: ( )
L

d

Pqkpk +...+ R b b , where [, ]j
pk  represents the j-th 

element of pk .  

2 ） Accumulate the evaluation key. Given the k parties’ 

evaluation public key 1 kb ,...,b  , the CKKS-type accumulated  

evaluation public key is generated as 

1

1: ( )
Lev k Pqkpk b +...+b R   . 

3）The accumulated evaluation key generation. 

AMCMK.SEvalKey( , , )pk a s ： Select (  0.5)ZOr   

randomly, and the partial switching key is obtained as 
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0 1 0,[, ] 1,[, ] [ ]( ) : {( ), }, j jj dd d d d , where 

[, ]
0,[, ] 1[, ] [, ],

, CKKS.E( ) nc ( )
j L

j j jpk Pq
d d r  g , [ ]j d  and 

1(1, ,..., )d

g gB B g . gB  is the decomposition basis. Set 

2 2 mod( )Ld r a e P s Pq     , where s erre  .  

Output: 

1

0 ,1 2
1 2

( ) | + 0 | CKKS ( ): i is
d

se
d

b d P s s

 

        
       


  

ks g d d

. 

The refresh key of party’s ciphertext set is obtained as

,
CKKS.Enc ( )

Lvi e k
ips s k Pq

P s


ks . Then, output the shift key 

, 5,
CKKS.E ( )(nc )r

Levk
i r ipk Pq

srk  and conjugate key 

1,
CKKS.KSGen ( )( )

Levk
i ipk Pq

sck . 

4) Generate the evaluation key in cloud. 

,1
C ( ): KKS

k

set se ii s
Ps s


  ks ks  

, , 5,1
CKKS.Enc ( )( )r

L
set r i r pk Pq

k

i
s


rk rk  

1 1,
CKKS.Enc ( )( )

L
set i pk q

k

i P
s

  ck ck . 

When the parties set of the AMCMK scheme is updated, the 

bootstrapping process is no longer needed. The original 

ciphertexts are converted to the ciphertexts of the new set through 

the accumulated key switching process. Compared with BP16 

scheme, AMCMK can improve efficiency. 

AMCMK.Enc( , )pk m ：  CKKS.Enc pk mc . The 

encrypted ciphertexts are modulo P to  reduce their size. 

1AMCMK.Dec(( ,..., ), )ksk sk c ：Input the ciphertext c  of l-

th level. Output 1, ... mod( )k lsk skm q  c . 

[ ]AMCMK.KeySwitchingKey( ,{ } ) :
i

i ks s 
c ks  Input the 

ciphertext ( , )b a  c , output the corresponding accumulated 

switching key 

 

11

        corresponds to the secret key 

        corresponds to the secret key ( ... )

i

i

is s

refresh k

ki s s
s s





 




 
 

ks c s

s
cks

k

, where k   represent the original parties set.  

Homomorphic computation. If the public keys corresponding to 

the ciphertexts participating in homomorphic operation are 

different, we use the process 

[ ]AMCMK.KeySwitchingKey( ,{ } )
i

i ks s 
c ks  to convert them 

to the same. The homomorphic computation process and 

bootstrapping process of the AMCMK are the same as CKKS17. 

We just replace the evaluation key with the accumulated 

evaluation key, so the calculation efficiency is the same as 

CKKS17. 

.AddAMCM ( ,K )ct ct : CKKS.Add( , )ct ct ; 

.CMult( )AMCMK ,a ct : CKKS.CMult( , )a ct ; 

.MultA (MC , )MK
set


ks

ct ct : CKKS.Mult ( , )
set


ks

ct ct ; 

,
, ,

AMCMK.Bootstrapping ( )
set set r set

ks rk ck
c : 

,
, ,

CKKS.Bootstrapping ( )
set set r set

ks rk ck
c . 

Whether the ciphertext can be decrypted correctly depends on 

the size of the error in the ciphertext. Following the expression of 

CKKS17, in this section, we analyze the works of the main 

functions and growth of the error. 

Let || ||cana   denote the infinite normal form of ( )a   (the 

inner product of the coefficients of a  and vectors 

1(1, ,..., )N

M M  
) obtained by normal embedding of polynomial 

( ) [ ] / ( ( ))Ma X R X X   . According to the analysis in 

CKKS17, || || 6cana   , where 
2  is the variance of ( )a  . 

1 2|| || 16canab    , where 
2

1  and 
2

2  are the variance of ( )a   

and ( )b   respectively. If the coefficient of a  is taken from the 

uniform distribution of [0, )q , then 
2( ( )) /12MVar a q N  . If 

a  is taken from the discrete Gaussian distribution 
2( )qDG   

with variance 
2 , then 

2( ( ))MVar a N  . If a  is taken from 

the {0, 1}  distribution ( )HWT h  with Hamming weight h , 

then ( ( ))MVar a h  .  The CKKS17 scheme can encrypt plural 

vectors. Considering the accuracy, the scheme usually expands the 

data by   times before encryption, and   is called the increment 

factor. For a given ciphertext 
2

qRct , the scheme can decrypt 

correctly if the increment factor > 2N B  , where

, mod( ) Lm e q  ct sk , B  is the upper bound of || ||cane  . 

The error growth of important functions is shown in the following 

Lemmas. 

Lemma 1[23]. Let ( )pkEnc mct  be an encryption of 

m R and  e R , then , mod( ) Lm e q  ct sk , where 

|| ||can

cleane B  , such that 

 8 2  6  16cleanB N N hN     .  

Lemma 2. Let ( )
pk

Enc mct denote the ciphertext of 

m R  encrypted by the accumulated public key pk , for a 

certain set  e R , there is , (1, ) (  m )od Ls m e q  ct , 

where 1( ... , )kpk b b a   , || ||can

scleane B   and  

 8 2  6  16scleanB k N N k hN     . 
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See Appendix B for detail proof of lemma 2. 

For the refresh key 
,

CKKS.Enc ( )
Lvi e k

ips s k Pq
P s


ks , the 

shift key , 5,
CKKS.E ( )(nc )r

Levk
i r ipk Pq

srk  and the conjugate 

key 1,
CKKS.KSGen ( )( )

Levk
i ipk Pq

sck , we have 

|| ||can

scleane B  . 

Lemma 3. Let 
setks  be the accumulated switch-key, ,se iks  

be one element of
setks ，  then , 

,
,

1, (1, ) mo( )d  
se i

se i Li s P s s e q   
ks

ks , where 

,

|| || || ||
set set se i

can canB k ee  
ks ks ks

 and 

,

|| || 8 / 3
se i se

can

ks scleanB B Be dN  
ks ks

. 

See Appendix B for detail proof of lemma 3. 

Lemma 4[23]. Let ( ) l lRS 
 ct ct (where 

2

qRct ), for 

 e R , there is ), mod(,l

l

q

lq
e q


    ct sk ct sk , where 

|| ||can

rse B  , (/ 3 3  )8rsB N h  . 

Lemma 5. Let 
1 2,( )

set
mult Mult

ks
ct ct ct  (where 

2

1 2, qRct ct ), for  e R , there is 

1 2, , , m )od(mult mult le q     ct sk ct sk ct sk , where 

|| ||can

multe B  , 
1

set
mult l rsB P q B B  

ks
. 

Lemma 5 can be obtained by taking the upper bound 

|| ||
set

can

set B 
ks

ks
 
of the switching key into Lemma 3. The 

specific proof is omitted. 

Lemma 6. Let ( )
refresh

KS 
ks

ct ct . 
2

qRct  corresponds to 

the secret key sk . Let  

11

       (1, )

   (1, ... )

i

i

is s

refresh k

ki s s

s

s s





 




 
  

sk

ks
sk

ks

ks
, 

for  e R , there is , (1, ) ( ), modkss e q   ct ct sk , 

where 
1|| ||can

ks sclean rse P q k B B

    . 

Lemma 6 can also be obtained by taking the upper bound 

|| || sclean

can

refresh k B ks
 
of the switching key into Lemma 4. The 

specific proof is omitted. 
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Figure 2: The homomorphic computation model of MKFHE 

with compact ciphertext 

Figure 2 takes two parties as an example to introduce the steps 

of homomorphic operation. 

Step 1. System initialization stage. 

The two parties interact with the cloud twice to construct the 

public key. Parties publish their public key, obtain the 

accumulated public key from the cloud sever. They use the 

accumulated public key to generate their own accumulated 

evaluated key and refresh key, then upload them to the cloud 

sever. The cloud sever collects the accumulated calculation key 

and refresh key of all parties sets, and generates the accumulated 

evaluated key and accumulated refresh key.  

Step 2. Data encryption. 

The two parties use the public key or accumulated public key to 

encrypt the ciphertext, and upload the ciphertext to the cloud 

sever. 

Step 3. Ciphertext refresh. 

The cloud sever uses the accumulated refresh key to refresh 

parties’ ciphertext.  

Step 4. Homomorphic Computation. 

The cloud sever uses the accumulated evaluated key to run 

homomorphic computation, and outputs ciphertext.  

Step 5. Joint decryption. 

The parties decrypt the ciphertext separately to get the final 

plaintext. 

5  CONCLUSION 

In this paper, firstly, we proposed a general construction of 

MKFHE scheme with compact ciphertext. Then, according to the 

advantages of TFHE-type scheme’s efficient bootstrapping and 

CKKS scheme supporting approximate data homomorphic 

computation, we improve the bootstrapping in our general scheme. 

Finally, we specifically propose the TFHE-type MKFHE and 

BGV-type MKFHE with compact ciphertext. The analysis shows 

that the ciphertext size of our schemes is independent of the 

number of parties, and the homomorphic computation efficiency 

is as high as the single-party FHE scheme. 
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A  TFHE Scheme 

The TFHE scheme based on LWE is usually symmetric mode, but 

the asymmetric mode is usually used in practical application. To 

show the accumulated public key conveniently, we show the 

asymmetric mode of TFHE scheme as bellow. 
LWELWE.Setup(1 ) ( , , , , )ks kspp n B d    ： Input the 

security parameters, generate the LWE dimension n, secret key 

distribution χ, error distribution parameter α, decomposition basis 

ksB , decomposition degree ksd , common matrix 
m nB  for 

all users, and output common parameter 
LWE ( , , , , , )ks kspp n B d  B

.  

LWE.KeyGen( ) { , }pp pk sk ： Select 
n  s , and 

generate the public key  A b B , where   b Bs e . Output 

pk  A ， sk  s  . 

1LWE.Enc( , ) ( , ) npk m b   ct a ： Select 
mr  

randomly, and calculate 1

4
( , ) : ( ,0...,0)b m  a rA e . 

( 1)
LWE.KSGen( , ) [ | ] ksd n

j j jpk
 

  t KS b A ： Input 

the LWE secret 
N

i t , accumulated public key pk . 

1[ | ] [ ... | ] m n

k

    A b B b b B  corresponds the secret 

key 1 ... k  s s s , where is  is the secret key of party i. Output 

the switch key , [ ]{ }i i j j NKS KS  from 
N

i t  to s , where 

, , ,( ,0,...,0) ( ,0,...,0)i j ks i j i j kst   KS R A e g , ksd m

ks q


R , 

2(1/ ,1/ ,...,1 / )ksd T

ks ks ks ksB B Bg , [ ]j N . 

1 1

, [ ], [ ]LWE.Switch( ,{ } )N n

i j i N j w

 

 
  ct KS ct ： 

Input the accumulated ciphertext 
1( , ) Nb  ct a  and the 

switch key , [ ], [ ]{ }i j i k j N KS . Construct the accumulated switch 

key , [ ]1
{ }

k

i j j NiSet 
 KS KS , where user [ ]i k  and 

dimension [ ]j N . Calculate 

1

1 ,
( , ) ( ) (mod1)

N

ks jj Set j
b a


  a g KS . Output the ciphertext 

1( , ) nb b     ct a . 
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Correctness. For 
1

,1 1
( , ) ( )

N k

ks j i jj i
b a

 
   a g KS , we can 

obtain , (1, ) , (1, ) kse   ct s ct t , where 

1

,1 1
( ), ( ,0,...,0)

N k

ks j j ks j ks i jj i j
e t e a

 
     g R A e . 

The correctness derivation process is shown in the following 

equation: 

( , )

1

1

, ,1 1

1

,1

1
1

,1

1

, (1, )

( ), ( ,0,...,0) ( ,0,...,0)

( ), ( ,0,...,0)

( ), ( ,0,...,0)

( ),

b b
N

j jj

N k

ks j ks i j i j ksj i

k

N ks j ks i ji

j k

ks j i j ksi

ks j ks

b b a s

b a t

a
b

a t

b a

   





 












      

      

   
 

  

  



 






ct a

ct s

g R A e g

g R A e

g g

g R , ,1 1

1

,1 1

( ,0,...,0)

, (1, ) ( ), ( ,0,...,0)

N k

i j i j j j j jj i

N k

j j ks j ks i jj i j

e a t t e

t e a

 



 

     

      

 

 

A e

ct t g R A e

where 

1

1 ,

, [ ]1

, , ,

( , ) ( )

{ }

( ,0,...,0) ( ,0,...,0)

N

ks jj Set j

k

i j j NiSet

i j ks i j i j ks

b a

t







  



   





a g KS

KS KS

KS R A e g

. 

If 1

8
| |kse  , , [ ]1

{ }
N

i j j wiSet 
 KS KS  can be seen as the valid 

switch key from 
wt  to 

ns . 

B  CKKS17 Scheme 

CKKS.Setup(1 ) ,  ,  ( , , , )lkey err encpp N L q    ：

Input the parameters λ, and select an integer N to the power of 2. 

Let key , err  and enc  be the distribution of secret key, error 

and encryption process on [ ] (  1)/ NX XR   respectively.  

Select prime p and the circuit layer L. The ciphertext modulus is 
l

lq p , where 1 l L  . Output common parameter 

,  ,  ( , , , , , , )key err e lncpp N L P q a a    . 

( )CK ( , , , , )KS.KeyGen rparams pk sk ks rk ck  ： 

- CKKS.PSKey ( )Gen ( , )params pk sk ： Select

keys  , and let the secret key (1,  )sk s . Select 

 
Lqa U R  and the error erre  . Set the public key

  2,  
Lqpk b a R  , where     mod Lb as e q   . 

- CKKS.KSGen( , )sk s  ： Input s R ， and select 

LP qa R 
   and erre    .let the evaluated key be 

  2,  
LP qevk b a R 

   , where 

 ( mod )Lb a s e Ps P q        . 

Obtain the switch key 
2CKKS.KS ( )Gen s

sk
ks  ； 

Obtain the shift key 
5

CKKS.KSGe (( )n )rr s
sk

rk ； 

Obtain the conjugate key 1CKKS.KSGen ( ( ))s
sk

ck . 

 

 ,CKKS.Enc pk q m : Select 
  encr 

, 0 1,  erre e   

randomly. Output    0 1· ,  mod Lr pk m e e q  ct , such that 

( ),  Lmod q m  ct sk . 

CKKS.Dec ( )sk ct  ： Input the ciphertext ct  of the l-th level, 

and output the plaintext , mod( )lqm  ct sk . 

CKKS.Add( , )ct ct ：Input the ciphertexts ct  and ct  of the 

l-th level, and output the ciphertext add (mod )lq ct ct ct . 

CKKS.CMult ( , )a
ks

ct  ： Input the constant a R  and the 

ciphertext ct  of the l-th level. Output the ciphertext 

cmult mod la q   ct ct . 

CKKS.Mult ( , )
ks

ct ct ： Input the ciphertext 

2

0 1 0 1( , ),  ( , )
lqc c c c R    ct ct  of the l-th level, and output the 

ciphertext 
1

mult 0 1 2( , ) mod ld d P d q      ct ks . 

 KS
swk

ct ：Input the evaluated key swk  and the ciphertext 

ct  of the l-th level. Output the ciphertext 

  1

0 1  ,  0   (  ) lc P c mod q     ct swk . 

CKKS.Rescale ( )l l   ct ：Input the ciphertext ct  of the l-

th level and the next level label l  . Output the ciphertext 

modl l

lp q



      ct ct . 

CKKS.Bootstrapping ( )
ks,rk,ck

c ： Input the evaluated key 

ks,rk,ck
 and ciphertext c . Output the refreshed ciphertext c . 

See the CHKKS and CCS18 schemes for the detail bootstrapping 

process.  

CKKS.Rotate ( ; )k
rk

ct ： Input the shift key rk  and the 

ciphertext ct . If the plaintext vector ( )m Y  moves k  bits, then 

output the ciphertext of 
5( )

k

m Y .  

CKKS.Conjugate ( )
ck

ct  ： Input the shift key ck  and the 

ciphertext ct . If the plaintext vector ( )m Y  is conjugated to a 

vector 
1( )m Y 

, then output the ciphertext of 
1( )m Y 

.  

- GSW.PSKeyG ( )n (e , )params pk sk ：  Select 

keys  , and set the secret key (1,  )sk s . Select 
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2

L

U d

P qR a  and 
2

err

e , output the public key 

2 2: [ , ]
L

d

P qpk z R 

   b a e a
, where 

2 2

[1] [1]

: [ , ]

[2 ] [2 ]
L

d

P qpk z R

d d





 
 

    
 
  

b a

b a e a

b a

. 

 GSW.Enc pk  ： Select   encr   and 

2 2

0 1: [ |  ] err

  E e e . Output the ciphertext 

2 2
[ , ] l

Lp qr p R
 

   b a E sGC , where 

2 2: [ , ]
L

d

P qpk z R 

   b a e a . That is 

1

1

log

1

1

2

2

2

log

2

[1] [1]

[2] [2]

GSW.Enc( )

[2 1] [2 1] 2

[2 ] [2 ]

[1] [1]

[2] [2]

[2 1] [2 1]

[2 ] [2 ] 2

q

q

r p

r p

r p

r p

r p

r p

r p

r p





  

 



 

  

 

 

 






 

    

 

 


 




  

  

s

b e

b e

b e

b e

a e

a e

a e

a e

. 

B1   Proof of Lemma 2 

Proof. Define 1 ... ke e e   , 1 ... ks s s   , and 

1 ... kb b b   . For the ciphertext

   0 1( ,  od, m)r m e e qb a     ct ， where 

  modi i i Lb as e q   . Select (0.5)r ZO ，

2

0 1, ( )qe e DG    ， ( )is HWT h ，
Lqa  and 

2( )
Li qe DG  ，then calculate the expression of error e  and 

the upper limit of || ||cane  . 

 

 

0 1

0 1

 mod

0 1

( , ) ,

( , ),

, (1, ) , (1, )

(1, ) ( , ) ), (1,

i i i Lb as e q

b ae s m r m e e s m

r s e e s

re e

a

s

b

e
 

         

      

  

ct

 

0 1

0 1

0 1

|| || || ||

|| || || || || ||

 8 2  6  16

e re e e s
can can

can can can

e re e e s

re e e s

k N N k hN  

  

 

  

   

   

  

. 

B2. Proof of Lemma 3.  

Proof：（1）calculate the error of 
,se i

e
ks

. 

 

, ,

1

,2 ,0 ,1
1 2

1

,2 1
1

0 | (

1

1 1

(

)

) )

|

( mod

se i se i

i i i
d d

i i sclean d
d

i

L

iP

d b P

r e e s b

e s s
s

s s

Pq

s s



 






 
  

  

   
     

  



       
          

    
 

   

 


ks ks

g d d

g e

c

 

where 

1 1

,0 ,1 ,2
1 2

,2 ,2

1 1

,0 ,
2 1

,

1
1

:

1
(

( ) | + 0 | CKKS ( )

. 0 | mod

. ( )
1

| ( )

)

i i i is
d d

i i i i i L

i i i sc
d d

e

d

s i b d P s

a d r b r e e
s

s P s s Pq

b b b r b
s

 

 

 

  

        
          

        
  



 
 

  

 
 

 

         
        


 



ks g d d

g d d g e 
1lean d

. 

2 2

1

0,[, ] 1[, ]

( )

(

,2 ,2

mod

,2

=

,2

1

,0 ,1
1 2

,

1

( )

( )

. 0 |

m

1

od

mod

. ( ) |

L

i i i P qL

j j

i i

d r a e P s Pq

i i L

r b r s a r e R

i i i i L

i i
d d

d d

a d d s

r a s e s P s s Pq

r b r e e s P s s Pq

b b

s

s



    

    









 
 

  

  
  

      



 
 

      

    
         



g d d

 

[, ]
,[, ]

[ ],[, ]

CKKS.Enc ( ))

( )

1

1

1

1
1

( ) ( )

( )

j
pk Pqj L

sclean sclean j dj

r

i sclean
d

i sclean d
d

b r

b r b



 












    
  

    
  

g

e e

g g e

g e

 

（2）Calculate the upper limit of 
,

|| ||
se i

cane ks
. 

 

 

,

,

1

,2 1
1

1

,2 1
1

( ) mod

( ) m

|| || || ( ) ||

8 2 16 8 / 3

od( )

se i

se i

can can

i i sclean Ld
d

i i sclean Ld
d

ks sclean

e

k N k hN B

r e e s b Pq

r e e s b P

B dN

e q

 











  

  



    
  

    
  

ks

ks

g e

g e

where 
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C  Homomorphic adder 

Homomorphic adder is constructed by homomorphic addition and 

homomorphic multiplication of TGSW ciphertext 

C.1 Mathematical expression of adder 

C.1.1 Half-Adder： 

Input two single bit binary numbers x, y, corresponding to GSW 

ciphertexts TGSW( )x  and TGSW( )y . 

Output： 

-Carry: TGSW( ) TGSW( ) TGSW( )outc x y . The 

corresponding plaintext is
out

c x y  . 

-Sum: TGSW( ) TGSW( ) TGSW( )
out

c x y  . The 

corresponding plaintext is 
out

c x y  . 

C.1.2 Full-Adder(x,y,c)： 

Input two single bit binary numbers x, y and the carry 

inc ,corresponding to GSW ciphertexts TGSW( )x , TGSW( )y  

and TGSW( )inc . 

Output： 

-Carry: 

TGSW( ) TGSW( ) TGSW( )

TGSW( ) {TGSW( ) TGSW( )}

out

in

c x y

c x y

 


.  

The corresponding plaintext is ( )
iout n

x y cc x y    . 

-Sum: 

TGSW( ) TGSW( ) TGSW( ) TGSW( )ou intc x y c   .  

The corresponding plaintext is 
iout n

xc y c   . 

Homomorphic addition algorithm for two l-bit TGSW ciphertexts 

HomAdd: 

Input two groups of TGSW ciphertext 

01{TGSW( ),...,TGSW( )}l xx   and 01{TGSW( ),...,TGSW( )}l yy   

with length of l. The ripple-carry adder is used to calculate the 

homomorphic addition of two l-bit TGSW ciphertexts.   

For 0i   to 1l  , 

0

0 0

(1) {TGSW( ),TGSW( )}

FullAdd(TGSW( ),TGSW( ), )

c s

x y



0

：
  

1

1 1

(2) {TGSW( ),TGSW( )}

FullAdd(TGSW( ),TGSW( ),TGSW( ))

c s

x y c

：
 

… 

1

1 1

( 1) {TGSW( ),TGSW( )}

FullAdd(TGSW( ),TGSW( ),TGSW( ))

l

l l

l c s

x y c



 

 ：
. 

Output the ciphertext 

1 0{TGSW( ),TGSW( ),...,TGSW( )}lc s s . 

For the homomorphic addition 

0HomAddk{TGSW( ),...,TGSW( )}k xx  of k l -bit TGSW 

ciphertexts, we use HomAdd algorithm and binary tree to realize 

fast calculation. 

 

C.2  Error analysis of adder 

For convenience, let X , Y , inC , S  and outC  represent 

TGSW( )x , TGSW( )y , TGSW( )inc ,  and TGSW( )outc , 

respectively. TGSW( )x  and TGSW( )y  have the same error 

variance. 

(1) For the homomorphic multiplication between TGSW 

ciphertexts, we have 

2

2 2

2

( ( )) ( 1) ( ( ))

(1 )( ) ( ( ))

2 ( ( )) (1 ) ( ( ))

A A

B

Var Err A B k lN Var Err A

kN Var Err B

dNV Var Err A N Var Err B



  



  

 

   

 

where
2

2
1, ,  , , ={0 1}gB

B Ak l d V      ， ,and
2  is the 

var of gap round. 

(2) For the full-adder based on homomorphic multiplication 

between TGSW ciphertexts, we have 

2

( ( )) ( ( )) ( ( ))

( ( )) 4 ( ( ))in in

Var Err S Var Err X Var Err Y

Var Err C dkN Var Err c

 

  
, 
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2

2 2

( ( )) (6 1) ( ( ))

2(1 ) ( ( ))

(6 +1)2 2(1 ) ( ( ))

out B

in

B in

Var Err C dNV Var Err X

N Var Err C

dNV dkN N Var Err C



 

  

 

   

. 

(3) The l-bit HomAdd algorithm is formed by continuously 

running l full-adders, the output has an error of variance： 

2 2( ( )) (6 +1) 2 2 (1 )BVar Err c l dNV dkN l N    ,

2

2

2 2

( ( )) 2 ( 1) {(6 +1) 2

2(1 ) }

(6 +1) 2 2 (1 )

i B

B

Var Err s l dNV dkN

N

l dNV dkN l N

 



 

    



  

 

For convenience,  

2

2

( (HomAdd ( ))) (6 +1) 2

2 (1 )

l BVar Err output l dNV dkN

l N





 


 

HomAddk algorithm can realize homomorphic addition of k l-

bit TGSW ciphertexts. There are two methods as bellow. 

1) When the number of users is large, we can use the serial 

mode to add one addend once. Because this method needs to run 

HalfAdd algorithm 
1

1
2

l i

i
i

  times, the calculation speed is 

slow, but the error growth is small. The error variance of its 

output is  

1 2 2 2

1

( (HomAddk( )))

(2 )(2 2 (1 ) ) 2
l i

Bi

Var Err output

i dNV dkN N dkN  





   
. 

2) When the number of users is small, we can run HomAdd 

algorithm in the form of binary tree. This method needs to operate 

HomAdd algorithm for log( )l k    times, so the calculation 

speed is fast, but the error growth is also large. Since the length of 

HomAdd addition is from 1 to log( )l k   , the error variance 

of the output is 

 
2

( (HomAddk( )))

( !)(6 1) 2l

B

Var Err output

l dNV dkN



 
. 

We can use the above two methods to balance the 

computational complexity and noise to achieve better results. 

Appendix D: Error analysis of AMTMK scheme. 

The decomposition basis is defined as B , and the 

decomposition degree is defined as d . Let 
2 21/ (12 )dB   be 

the variance of a uniform distribution over ( 1/ 2 ,1/ 2 ]d dB B . 

Define 

21

12

21

12

( 1)     if  is odd

( 2)     if  is even
B

B B
V

B B

 
 


 as the uniformly 

distributed variance over ( 1/ 2 ,1/ 2 ]d dB B . Also, define the 

parameters 
2

ks ,
ksBV  and ksB  in the bootstrapping algorithm. 

Define the secret key distribution {0,1}w   and {0,1}n   on 

RGSW and LWE. Let Var( )e  be the variance of the random 

variable e  over . If e  is a vector composed of random 

variables, Var( )e  is the maximum variance of the vector.  

Rounding error. Given 2b N b     and 2N    a a , 

assuming that the each rounding of error obeys the random 

uniform distribution of (mod1) ( 0.5,0.5]  , then the 

variance of the overall rounding error of expression 

( ) ,b N b N           a a s  is 1

12
(1 / 2)n .  

The initial error of the evaluation key.  

The variance of error 
,i jKS  is  

LWE.KSGen( , )

,

2

,

( ( ))

( ( ( ,0,...,0) ))

i i pk

i j

ks i j ks

Var Err

Var Err t mk 





   

KS t

KS

R A g

. 

The variance of error ,i jBK  is 

, ,RGSW.Enc( , )

,

2

,

( ( ))

( ( ) 2

i j i js

i j

i j

Var Err

Var Err s dkN 





   

ZBK

BK

R Z h

. 

According to CGGI17 scheme ， the bootstrap error of 

AMTMK scheme is analyzed as follows. 

令 Let 0 1,d d  be TRLWE samples and let 

TGSW ({0,1})C
s . Then, 1 0(CMux( , , ))msg C d d

1 0( ) ( ) ( )msg C msg msg d d . And we have  

 1 0

0 1

CMux( , , ) ||

max(|| ( ) || ,|| Err( ) |

|

| )

|

+ ( )

C

Er

E

r

rr





 

d d

d d C
, 

 where      2
  ||    2 || 1gB

C N Er kd r C    . So 

  

        

1 0

0 1max ,

CMu ( ,

 

x , )Var Err

Var Err Var Err C

C







d d

d d
,  

where        22     1BC N Var EV Cd rr N    . 

The accumulated process. The initial RLWE ciphertext is 

general, and its error is 0. All bootstrap keys 

1 0
[ ]( , ) ( , )

{ ,..., }
l

j nbit Set j bit Set j
BK BK  are generated by HomAdd 

algorithm, and the variance of error is 

1 2 2 2

1
(2 )(2 2 (1 ) ) 2

l i

Bi
i dNV dkN N dkN  


    . By 

recursively running Cmux circuit for l n  times, the error 

variance of accumulated process is  

 

1 2

1

22 2

2 { (2 )(2 2

(1 ) ) 2 }   1

l i

B Bi
d V l i dNV dkN n

ln N

N

N dkN



  






  

 




.  

The key switching algorithm. Input accumulated ciphertext 
1( , ) Nb  ct a  and accumulated key 

, [ ]1
{ }

k

i j j NiSet 
 KS KS , where 
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, , ,( ,0,...,0) ( ,0,...,0)i j ks i j i j kst   KS R A e g . Output the 

ciphertext 
1

1 ,
( , ) ( ) (mod1)

N

ks jj Set j
b a


  a g KS  and its error 

variance  

2 21
2

( ( )) (1 )+

( ( ))

ksks BVar Err N d V N m

Var Err

    ct

ct
.  

The bootstrapping process. The error of bootstrap process can 

be obtained from the accumulated process and the key switching 

process, so the error variance is  

2 21
2

1 2

2 2

1

2

(1 )

2 { (2 )(2 2

( (   1 ) ) 2 } 1)

ksks B

l i

B Bi

N d V N m

d V l i dNV dkN

N dkN

N n

N ln

 



  







  

 





 

 . 


