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Abstract. Multi-Key fully homomorphic encryption (MKFHE) allows
computations on data encrypted by different parties. One disadvantage
of previous MKFHE schemes is that the ciphertext size increases linearly
or squarely with respect to the number of parties. It incurs a heavy com-
munication and computation burden for the homomorphic evaluation,
especially when the number of involved parties is large. In this paper,
we propose the first method to construct MKFHE scheme while keeping
the size of the ciphertext and corresponding evaluation key to be inde-
pendent of the number of parties during the homomorphic evaluation.
Specifically, we construct efficient compact MKFHE schemes with var-
ious advantages. On the one hand, we show how to construct compact
MKFHE schemes which support the homomorphic encryption of ring el-
ements and are friendly to floating point numbers. On the other hand,
we give a compact MKFHE scheme that supports high efficient boot-
strapping. In our paper, we show a novel method to reduce the cost of
generating these evaluation keys from a quadratic time to a linear time
with respect to the number of parties.

Keywords: Multi-key fully homomorphic encryption · Compact cipher-
text · Compact evaluation key.

1 INTRODUCTION

Fully homomorphic encryption (FHE) is a cryptographic scheme that enables
homomorphic operations on encrypted data without decryption [21,7,19]. Tradi-
tional FHE schemes can only support homomorphic computation of ciphertext
from a single party, i.e., all ciphertexts participating in the computation are en-
crypted by one secret key. However, in many scenarios, it is usually required to
calculate the data uploaded to the cloud by multiple parties in the network. In
2012, López-Alt et al. [24] proposed a multi-key fully homomorphic encryption
(MKFHE) scheme, which is a variant of FHE allowing computation on data
encrypted under different and independent keys. One of the most appealing ap-
plications of MKFHE is to construct on-the-fly multi-party computation (MPC)
protocols, where the circuit to be evaluated can be dynamically decided after
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Fig. 1. multi-party data security computing model of MKFHE

the data providers upload their encrypted data. The typical application model
of MKFHE is shown in Figure 1.

The original MKFHE proposed by López-Alt et al. is based a variant of
NTRU assumption [24], which may be valuable to potential attacks [1]. Recently,
a series of MKFHE constructions based on LWE [24,17,16,25,26,8,9] and its ring
variant [11,10] has been proposed. However, a crucial issue for these LWE/Ring-
LWE based MKFHE schemes is that the size of the ciphertext increase linearly
with respect to the number of parties. Therefore, when we consider the appli-
cation scenarios such that data are collected from a large group of parties, the
communication and the homomorphic operations will be far from practical. To
handle this practical issue, we are trying to design Ring-LWE based MKFHE
schemes with compact ciphertexts.

1.1 Background

The MKFHE schemes are mainly divided into four types: NTRU-type MKFHE,
GSW-type MKFHE, BGV-type MKFHE and TFHE-type MKFHE. In 2012,
López-Alt et al. first proposed the NTRU-type MKFHE based on the NTRU
cryptosystem[24], which was optimized later in DHS16[17]. In PKC2017, Chong-
chitmate et al. proposed a general transformation framework CO17[15] from
MKFHE to MKFHE with circuit privacy, and constructed a three-round dy-
namic secure multi-party computation protocol. However, the security of this
construction is based on a new and somewhat non-standard assumption on poly-
nomial rings.

In CRYPTO15, Clear and McGoldrick proposed the first GSW-type MKFHE
scheme CM15 based on the LWE problem[16], which proposed a transformation
mode from FHE to MKFHE. The ciphertext of the single-party FHE is expanded
to a new large ciphertext, which corresponds to the cascaded secret key of all
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parties. Then, the extended ciphertexts are used for homomorphic computation,
and the final ciphertext is decrypted jointly by all parties. This transformation
mode is widely adopted by most MKFHE schemes based on (R)LWE prob-
lems. In EUROCRYPT16, Mukherjee and Wichs presented the construction of
MKFHE MW16[25] based on LWE that simplifies the scheme of CM15 and ad-
mited a simple one-round threshold decryption protocol. Based on this threshold
MKFHE(ThMKFHE), they successfully constructed a general two-round MPC
protocol upon it in the common random string model. The schemes CM15 and
MW16 need to determine all the involved parties before the homomorphic com-
putation and do not allow any new party to join in, which is called single-hop
MKFHE[26]. In TCC16, Peikert and Shiehian proposed a notion of multi-hop
MKFHE PS16[26], in which the result ciphertexts of homomorphic evaluations
can be used in further homomorphic computations involving additional parties
(secret keys). That is, any party can dynamically join the homomorphic compu-
tation at any time. However, the disadvantage is that the number of parties is
limited. In CRYPTO16, A similar notion named fully dynamic MKFHE BP16[8]
was proposed by Brakerski and Perlman. A slight difference is that in fully dy-
namic MKFHE the bound of the number of parties does not need to be input
during the setup procedure. The length of extended ciphertext only increases lin-
early with the number of parties. However, the scheme needs to use the parties’
joint public key to run the bootstrapping process, in the process of homomorphic
computation, so the efficiency of ciphertext computation is low.

In TCC17, Chen et al. proposed the first BGV-type multi-hop MKFHE
scheme CZW17[11]. They used GSW-type expansion algorithm to encrypt the
secret key to generate the joint evaluation key of the parties set. CZW17 sup-
ports the ciphertext packaging technology based on Chinese remainder theorem
(CRT), and can be used to construct two-round MPC protocol and threshold
decryption protocol. In 2019, Li et al. put forward a nested ciphertext extension
method LZY+19[23], which reduces the evaluation key and the expansion ci-
phertext size. In 2019, Chen et al. optimized the relinearization process and con-
structed an efficient MKFHE CDKS19 [10]. Because of its efficient homomorphic
computation, it is applied to the neural network to perform the privacy compu-
tation. In ASIACRYPT19, Chen et al. designed an efficient ciphertext expansion
algorithm based on CGGI17[14], which is an FHE that has efficient bootstrap-
ping, and proposed an MKFHE scheme CCS19[9]. The ciphertext length of the
scheme increases linearly with the number of parties. And also, they compiled an
MKFHE software library MKTFHE, which has important guiding significance
for the application of MKFHE schemes.

Except for the MKFHE, threshold FHE(ThFHE) also involves many parties.
The difference lies in that: in threshold FHE, all ciphertexts are encrypted in
the same public key(joint public key); while in MKFHE, the ciphertexts are
encrypted in different public keys. In threshold FHE, the joint public key is
always the accumulation of the users’ public key, which induce the compact
ciphertext. While the difficulty of ThFHE lies in the generation of the evaluation
key for bootstrapping or homomorphic multiplication. In TCC12, Asharov et
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al. first proposed the concept of threshold FHE and constructed an N -out-of-N
threshold FHE scheme in AJL+12[2]. Based on a common reference string(CRS),
AJL+12 scheme uses the idea of public key accumulation to generate the joint
public key, and uses secret sharing to decompose the secret key. One of their
main contributions lies in the interactive generation of evaluation key using a
key homomorphism symmetric encryption scheme. While AJL+12 scheme has
some defects: It is incompatible with single-key homomorphic encryption since
each user needs to use the joint public key for encryption; the amount of data
broadcast by each user is linearly related to the number of users; when the user
set is updated, the ciphertext needs to be regenerated (the ciphertext cannot be
reused). At CRYPTO15, Gordon et al. designed a three-round MPC protocol
that can resist abort attackers, and constructed the (N/2+1) out-of-N Threshold
FHE scheme in GLS15[18]. One of their main contributions lies in the efficient
generation of joint GSW ciphertext. The defects of GLS15 are: their scheme is
based on the GSW13 scheme, which has the natural defect of a large ciphertext
scale; moreover, the ciphertext scale of GLS15 is linearly related to the number
of users. At CRYPTO18, Boneh et al. designed a threshold FHE BGG+18[4]
with a center based on the linear secret sharing scheme, which reduced the
noise of joint decryption in the TFHE scheme. Then, the decentralized TFHE is
proposed, by taking the cryptographer as the center and sharing the private key,
then generating a temporary joint public key and private key. All the other users
in the scheme need to use the temporary public key for encryption. The defects
of the scheme are: the size of the ciphertext is related to the number of users; it is
difficult to select a suitable user to act as the center when there are multiple data
encryptors. In ASIACRYPT20, Badrinarayanan et al.[3] followed the idea of the
BGG+18 scheme and constructed a threshold MKFHE scheme. The size of the
ciphertext is related to the number of users, since the scheme uses a cascaded
method to generate the ciphertext. Very recently, Lee et al.[22] designed a new
blind rotation using ring automorphisms, and constructed efficient FHEW-type
FHE support for arbitrary secret key distributions at no additional runtime
costs. Lee et al. applicate the FHE to threshold homomorphic encryption and
generate the joint evaluation key by encrypting the secret key with the joint
public key, the method is similar to ours. The drawback of the scheme is that it
does not analyze how to update the ciphertext when the user set is updated.

1.2 Our Contributions

In this paper, we propose constructions of MKFHE scheme with compact ci-
phertexts. The sizes of the ciphertexts, as well as the size of the evaluation key,
are independent of the number of parties. Our core technique is a methodology
to obtain the joint ciphertexts from the ciphertexts encrypted with a single key,
as well as the corresponding evaluation keys for the joint ciphertext.

Moreover, we studied how to optimize the ciphertext extension procedure
according to different underlying FHE schemes. On the one hand, we adapt our
ciphertext extension technique to the CKKS scheme[12] and obtain an MKFHE
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scheme that can deal with the approximate number. In the meantime, we suc-
cessfully reduce the cost of generating the evaluation key from a quadratic time
for the naive approach to a linear time with respect to the number of parties.
On the other hand, we adapt our ciphertext extension technique to the TFHE
scheme [13,14] and obtain an MKFHE with fast bootstrapping.

1.3 Technique Overview

To make the size of ciphertext to be independent of the number of parties, we
need to solve problems.

First of all, we need to perform homomorphic evaluation between the ci-
phertexts corresponding to two different public keys. In the previous MKFHE
schemes, the ciphertexts encrypted under one secret key need to be extended to
the ones encrypted under joint public keys. Particularly, this kind of extension
must be proceeded by the semi-honest evaluator who only knows the ciphertext
and the public key. Since all parties have not coordinated before, it is extremely
hard to make the ciphertext compact.

Our intuition is nature: We let the evaluator first generate the joint public
key from all the public keys of the users participating the evaluation by accumu-
lating them. Secondly, the user uses the joint public key to encrypt his private
key to generate a partial evaluation key. Finally, the evaluator uses the key
switching technology to convert the ciphertexts corresponding to different pub-
lic keys to the joint ciphertext corresponding to the user set, and then perform
the homomorphic operation on the joint ciphertext.

However, the above final procedure is not trivial, since the homomorphic
operation needs the evaluation key. Intuitively and informally, the evaluation
key of MKFHE can be viewed as the encryption of the joint secret key with the
joint public key. But in our setting, no party alone holds the joint secret key, so
it is doomed to require more complex techniques to deal with the evaluation key
generation. In this work, we let the user generate a partial evaluation key which
is the encryption of his private key and the evaluation key of the joint ciphertexts
is derived from the partial evaluation keys of all users. Specifically, we design
different approaches to compute the evaluation key of the joint ciphertexts for
different FHE schemes.

Another issue is to update the ciphertext. When the user set is updated,
we need to convert the ciphertexts of the old user group into the ciphertext
corresponding to the new user set. The solution is that the old user set, as the
owner of the old ciphertext, should authorize the new user set. Firstly, the user in
old user set encrypts his secret by the new joint public key corresponding to the
new user set, and generates the partial evaluation key. Secondly, The cloud uses
the partial evaluation key to generate the joint evaluation key of the new user
set. Finally, the cloud runs the key switching process or bootstrapping process
to convent the old joint ciphertext to ciphertext corresponding to the new joint
public key.
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1.4 Related works

Similar to MKFHE, threshold FHE also involves multiple parties. However, in
threshold FHE, all ciphertexts are encrypted with the same public key(joint
public key), while in MKFHE, the ciphertexts are encrypted with different public
keys.

The comparison between our schemes and the most current MKFHE and
threshold FHE(ThMKFHE) schemes is shown in Table 1. As we know, we con-
struct the first MKFHE scheme with compact ciphertext and evaluation key,
which makes it almost as efficient as FHE. Moreover, our scheme supports the
authentication of the user.

Compared with the ThFHE scheme, our scheme has the advantages: the data
is encrypted by the user’s public key; when the user set is updated, the ciphertext
can be reused by regenerating the new joint public key and new joint evaluation
key. Compared with the MKFHE scheme, our scheme has the advantages: Users
can decide whether to participate in a computation task with a given user set
by authorizing the user set; the scheme is compact and the joint evaluation key
is also independent of the number of users, and the homomorphic operation is
as efficient as single-party FHE scheme.

Table 1. The comparison between our scheme and the most current MKFHE and
Threshold FHE schemes, k denotes the number of parties,l denotes the number of
ciphertexts and n is the dimension of the (R)LWE assumption

Scheme Ciphertext
Joint evaluation
key (jek)

Computational
complex of
generating jek

Encrypt with
personal pk

Ciphertext
reusable

Depth of
bootstrapping

AJL+12 O(n) O(n) O(kn) No No > log(n)
GLS15 O(kn2 logn) 0(GSW-type) 0(GSW-type) No No > log(n)
BGG+18
centralized version

O(n) O(n) O(n) No No > log(n)

BGG+18
decentralized version
instance with CDKS19

O(ln) O(ln) O(l2n) No No > log(n)

BGM+20 instance
with CDKS19

O(ln) O(ln) O(l2n) Yes No > log(n)

LZY+19 O(kn) O(k3n) O(k3n) Yes Yes > log(n)
CCS19 O(kn) O(k2n2) O(k2n2) Yes Yes O(1)
CDKS19 O(kn) O(kn) O(k2n) Yes Yes > log(n)
Our AMCMK O(n) O(n) O(kn) Yes Yes > log(n)
Our AMTMK O(n) O(n) O(kn) Yes Yes O(1)

2 PRELIMINARIES

Throughout the paper, there are many definitions of each party. Here we give
a simple description of them. For the party i, he selects his secret key (sk) and
generates the corresponding public key (pk). The public key corresponding to a
user set is joint public key (jpk). The ciphertext corresponding to joint public key
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(jpk) is called joint ciphertext. The ciphertexts about user’s secret is called partial
evaluation key (pevk), the pevk contains of partial switching key (psk) and partial
bootstrapping key (pbk). The difference between psk and pbk is that they have a
different form of the encrypted secret key. The evaluation key corresponding to
the joint ciphertext is called joint evaluation key (jek) , the jek contains of joint
switching key (jsk) and joint bootstrapping key (jbk).

2.1 Definition of multi-key fully homomorphic encryption

We now introduce the cryptographic definition of a leveled multi-key FHE, which
is similar to the definitions in CZW17[11,24] with some modifications.

The one modification is that we separate the evaluation key generation from
the key generation process. In the previous MKFHE schemes, the user cannot
decide which user set is involved in the evaluation of his ciphertext, which makes
it easy for users to lose control over data and their privacy. We separate the
evaluation key generation process to let the users decide whether to participate
in a computation task with a given user set, by generating the corresponding
partial evaluation key of the set.

The other modification is that when the user set is updated, we need to
regenerate the evaluation key, and convert the ciphertext of the old user set into
the ciphertext corresponding to the new user set, which is done in C.Eval process.
This requirement is reasonable in real-world scenarios. Because when the user set
is updated, the old user set, as the owner of the old ciphertext, should authorize
the new user set.

Definition 1 (Multi-key FHE). Let C be a class of circuits. A leveled multi-
key FHE scheme E = (Setup,KeyGen,EvalKeyGen,Enc,Eval,Dec) is described as
follows:

– E .Setup( 1λ, 1K , 1L): Given the security parameter λ, the circuit depth L, and
the number of distinct parties K that involving in the evaluation, outputs the
public parameters pp.

– E .KeyGen(pp): Given the public parameters pp, derives and outputs a public
key pki, a secret key ski, and the evaluation keys evki of party Pi, where
i = {1, ...,K}.

– E .EvalKeyGen(pp, {ski}i∈[K], {pki}i∈[K]):
• JPKGen(pp, {pki}i∈[K]): Given the public key {pki}i∈[K] of all user to

evaluator, the evaluator outputs the joint public key pk, and send them
to all users.

• PEvalKeyGen(pp, ski, pk): Input the pk and secret key ski, the user Pi

outputs his partial evaluation key pevki.
• AggEvalKey(pp, {pevki}i∈[k]): Given {pevki}i∈[K], the evaluator (usually
the cloud) aggregate them to generate and output the joint evaluation
key evkset. The evaluation key may consist bootstrapping key, switching
key, which is different for different schemes. If the parties set is updated,
rerun E .EvalKeyGen().
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– E .Enc(pki,m): Given a public key pki and message µ, outputs a ciphertext
cti.

– E .Dec((sk1, · · · , skK), ctS): Given a ciphertext ctS corresponding to a set of
parties S = {i1, i2, ..., ik} ⊆ [K], and their secret keys skS = {sk1, sk2, ..., skK},
outputs the message µ.

– E .Eval(C, ct1, · · · , ctt, {pevki}i∈[K], evkset): On input a Boolean circuit C along
with t ciphertext {cti}i∈[t] corresponding to the user i or a user set S′, and

the joint evaluation key evkset, output a ciphertext ctS corresponding to the
user set S.

Definition 2 (Correctness of MKFHE[11]). On input any circuit of depth
at most L and a set of ciphertexts {cti}i∈[t], let µi = Dec(ski, cti), a leveled
MKFHE scheme E is correct if it holds that

Pr[Dec({ski}i∈[K],Eval(C, ct1, · · · , ctt, evkset)) ̸= C(µ1, ..., µt)] = negl(λ)

In general, the ciphertext length of the compact MKFHE scheme is related
to the security parameter λ, the number of participants K, and the circuit depth
L polynomial level. While the compact defined in this paper is more strict, we
require the ciphertext length is independent of K.

Definition 3 (Compact Multi-key FHE). For a leveled MKFHE scheme,
the ciphertext of the MKFHE scheme is compact if there is a polynomial function
poly(·) such that the length of the ciphertext |c| ≤ poly(λ, L), and the length
of the ciphertext are independent of the operation circuit C and the number of
participants K.

2.2 The general learning with errors (GLWE) problem

The learning with errors (LWE) problem and the ring learning with errors
(RLWE) problem are syntactically identical, aside from different rings, and these
two problems are summarized as GLWE problem in BGV12[6].

Definition 4. GLWE problem[6]. Let λ be a security parameter. For the poly-
nomial ring R = Z[X]/xd + 1 and Rq = R/qR, and an error distribution
χ = χ(λ) over R, the GLWE problem is to distinguish the following two dis-
tributions: In the first distribution, one samples (ai, bi) ∈ Rn+1

q uniformly from
Rn+1

q . For the second distribution, one first draws ai ← Rn
q uniformly, and

samples (ai, bi) ∈ Rn+1
q by choosing s ← Rn

q and ei ← χ uniformly, and set
bi =< ai, s > +ei.

The LWE problem is simply GLWE problem instantiated with d = 1. The
RLWE problem is GLWE problem instantiated with n = 1.
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2.3 Gadget decomposition

Homomorphic multiplication of two ciphertexts will make the noise increase
sharply. One method proposed by BGV12 is to reduce the noise by bit decom-
posite one ciphertext.

Let g = (gi) ∈ Zd be a gadget vector and q an integer. The gadget decompo-
sition, denoted by g−1, is a function from Rq to Rd which transforms an element
a ∈ Rq into a vector u = (u0, · · · , ud−1) ∈ Rd of small polynomials such that

a =
∑d−1

di=0 gi · ui( (mod q))[10].

2.4 Static mode CMKFHE scheme

To solve the problem that the length of ciphertext usually increases linearly or
squarely with the increase of the number of users, which leads to the low ef-
ficiency of the scheme. Many researchers have made related attempts, among
which threshold fully homomorphic encryption is a typical representative[2]. N -
out-of-N threshold fully homomorphic encryption is a special case of the thresh-
old fully homomorphic encryption scheme. Those schemes are usually compact
in ciphertext, simple in structure . While in those schemes the ciphertext and
the user set are bounded,i.e., when the parties participating involved in the cal-
culation are updated, the ciphertext needs to be regenerated. In order to be
consistent with the authorized mode compact MKFHE scheme in section 3, this
paper refers to N -out-of-N threshold fully homomorphic encryption with com-
pact ciphertext as static mode CMKFHE scheme—SMMK.

Based on the CRS model , we present the general construction of static mode
CMKFHE scheme based on FHE, called SMMK. We take the GSW-type FHE
as an example to illustrate.

SMMK.Setup(1λ): Run FHE.Setup(1λ)→ params, and all users jointly gener-

ate a common reference string B ∈ Zm×(n−1)
q .

SMMK.KeyGen(params, i,B): Run FHE.KeyGen(params,B) → (pki, ski).
For all the user i ∈ [k], run the key generation algorithm : The user selects
si ← χkey, sets the secret key ski := (1,−si); and generate the public key
bi = [siB+ei,B] ∈ Zm×n

q . Output the public key and private key pair (pki, ski).
After all parties have completed the process SMMK.KeyGen(), run the gen-

eration algorithm to generate the joint evaluation key.
SMMK.EvalKeyGen(params, ski, {pk1, ..., pkk}):

– SMMK.JPKGen(params, {pk1, ..., pkk}): Generate the joint public key. Input
public keys {pk1, ..., pkk} of all users, output the joint public key pk := A =[
b1 + ...+ bk B

]
∈ Zm×n

q .

– FHE.SwitchKeyGen(params, ski, pk): Generate partial switching key and joint
switching key. Input the party i ’s ski and joint public key, the user i generate
the partial switching key (psk) KSi = Encpk(ski), which is used to translate
the ciphertext of user i to the user set. Generate the joint switching key
(jsk) KSSet = Encpk(ski ⊗ ski) for the user set, which is used to deal with
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the homomorphic multiplication for the joint ciphertext. Due to the differ-
ent structures of the schemes, the generation process of the psk is slightly
different(for example, the GSW-type MKFHE does not need to run this key
switching process).

– FHE.BootKeyGen(params, ski, pk): Generate the partial bootstrapping key and
joint bootstrapping key. Input the party’s ski and jpk pk. Firstly, according
to the single-key fully homomorphic encryption scheme, the user i generate
the partial bootstrapping key pbk BKi = Encpk(ski) of party i ( Due to the
different structures of the schemes, the pbk and psk can be the same or not).
Then, generate the joint bootstrapping key by the partial bootstrapping key
pbk BSSet = HomAddlog(kBχ)(BK1, · · · ,BKk) which is used to bootstrap
the joint ciphertext.

Due to the different types of bootstrapping, the HomAdd operation is slightly
different. If the bootstrapping is implemented by the arithmetic operation, then
the HomAdd operation is an arithmetic operation; if the bootstrapping is im-
plemented by the boolean circuit, the HomAdd operation is the boolean circuit.

SMMK.Enc(pk, µ): FHE.Enc(pk, µ). The encryption is the same as the single-
party FHE schemes. Input the plaintext µ and the accumulated public key pk,
and call the single-key FHE scheme encryption algorithm to generate the cipher-
text C.

SMMK.Dec((sk1, ..., skN ),C): The decryption result consists of two parts:
partial decryption and final decryption.

– SMMK.PartDec(C, i, ski): Input the secret key ski = (−si, 1) of party i and
the ciphertext C, and output the partial decryption result p′i. In GSW-
type FHE, its decryption form is µ′ = siCG−1(ŵT ). We calculate p′i :=
siC[1,··· ,n−1;]G

−1(ŵT )+ei
sm and get the partial decryption p′i whereC[1,··· ,n−1;]

represents the first n-1 columns of ciphertext C, ŵ = (0, · · · , ⌈q/2⌉) ∈ Zkn,

and esmi
R←[−Bdec

smdg, B
dec
smdg] is the generated error used to protect the secu-

rity of partial decryption.
– SMMK.FinDec(p′1, · · · p′N ): Input all the partial decryption results p′i, and

output the plaintext m′ = Ĉ[n;]Ĝ
−1(ŵT )−

∑N
i=1 p

′
i.

The homomorphic computation is just like the FHE with the joint keys.
SMMK.Add(C1,C2): C+ ← FHE.Add(C1,C2).
SMMK.Mult(C1,C2,KSSet): C× ← FHE.MultKSSet

(C1,C2).

SMMK.Bootstrap(BKSet,C): FHE.Bootstrap(BKSet,C).
The advantages of SMMK are: (1) The scheme is efficient. The ciphertexts of

all parties are encrypted by the joint public key pk, the scheme is strongly com-
pact, and the homomorphic operation is as efficient as single-party FHE scheme.
(2) The construction idea of the scheme can be applied to various MKFHE
schemes, such as BGV-type and GSW-type FCMKFHE. (3) Users can decide
whether to participate in a computation task with a given user set. The partic-
ipants of this scheme can control the set of users whose data participate in the



Title Suppressed Due to Excessive Length 11

evaluation (by encrypting the data with the joint public key of this specific user
set).

However, the SMMK scheme also has some defects: (1) The data encrypted
by the users’ public key pki cannot be homomorphically evaluated with the
ciphertext data of other users, which limits the application of the scheme; (2)
When the user set is updated, the user needs to regenerate the ciphertext.

3 The General construction of authorized mode compact
MKFHE scheme

The ciphertext and evaluated key of the SMMK are all corresponding to a par-
ticular party set. In this section, we focus on constructing an authorized mode
compact MKFHE scheme (we call it AMMK scheme). Our target is: the size of
ciphertext is independent of the number of parties; the data encrypted by the
user’s public key pki can also be calculated with the ciphertext of other users;
all ciphertexts can be reused after authorized by the old user set and new user
set. To construct an AMMK scheme that satisfies the above conditions, we need
to solve three problems.

– How to perform homomorphic evaluation between the ciphertexts corre-
sponding to two different public keys. The solution in this paper is: dif-
ferent from the ciphertext expansion algorithms of other MKFHE schemes,
we first accumulate the public keys of the users participating in the evalua-
tion to generate the joint public key. Secondly, the user uses the joint public
key to encrypt his private key to generate a partial evaluation key. Finally,
the computer uses the key switching technology to convert the ciphertexts
corresponding to different public keys to the joint ciphertext corresponding
to the user set, and then perform the homomorphic operation on the joint
ciphertext.

– How to update the ciphertext. When the user set is updated, how to convert
the ciphertext of the old user set into the ciphertext corresponding to the
new user set. The solution is that the old user set, as the owner of the old
ciphertext, should authorize the new user set, i.e. firstly, the user in old user
set encrypts his secret by the new joint public key corresponding to the new
user set, and generate the partial bootstrapping key. Secondly, The cloud
uses the partial bootstrapping key to generate the joint bootstrapping key
of the new user set. Finally, the cloud runs the bootstrapping process (or
key switching process in section 4) to convent the old joint ciphertext to
ciphertext corresponding to the new joint public key.

– How to update the evaluation keys (bootstrapping keys and conversion keys).
That is, when the user set is updated, how to update the calculation key of
the user set. The solution in this paper is to use the SMMK method to
generate an evaluation key for a new set of users.

The general construction of AMMK is as follows.
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AMMK.Setup(1λ): Run FHE.Setup(1λ)→ params.
AMMK.KeyGen(params): Run FHE.KeyGen(params,B) → (pki, ski).
After all parties have completed the process AMMK.KeyGen(params), run

the generation algorithm of the evaluation key.
AMMK.EvalKeyGen(params, ski, {pk1, ..., pkN}): This step is for the user to

authorize the user set. Run SMMK.EvalKeyGen(params, ski, {pk1, ..., pkN}) →
{pk,KSi,KSSet,BKi, BSSet}.

AMMK.Enc(pki, µ): Run FHE.Enc(pki, µ)→ C.
AMMK.Dec((sk1, · · · , skN ),C): Run SAMK.Dec((sk1, · · · , skN ),C) → µ′.
AMMK.Eval((C1,C2),BKi,BKSet,KSSet): Different from SMMK scheme,

the AMMK.Eval has two steps: adjuste the public key corresponding to the ci-
phertext to the same user set; call the homomorphic evaluation function of FHE.

– C′
i = Hompk,BKci

{FHE.Decskci
(Ci)}. This process can switch the public

key of the ciphertexts to the public key of usesr set.BKci is the bootstrapping
key corresponding to Ci. If Ci is the ciphertext of a single party, the BKci

is setted as partial bootstrapping key BKi. If Ci is the joint ciphertext of all
parties, the BKci

is setted as joint bootstrapping key BKSet

– FHE.Eval((C′
1,C

′
2),KSSet). This process realizes the homomorphic compu-

tation of joint ciphertext, where KSSet is the accumulated evaluation key of
the joint ciphertext.

Compared with the ThFHE scheme, our scheme has the advantages: the data
is encrypted by the user’s public key; when the user set is updated, the ciphertext
can be reused by regenerating the new joint public key and new joint evaluation
key. Compared with the MKFHE scheme, our scheme has the advantages: Users
can decide whether to participate in a computation task with a given user set by
authorizing the user set; the scheme is strongly compact, and the homomorphic
operation is as efficient as single-party FHE scheme.

4 Construction of BGV-type CMKFHE scheme

CKKS17 [11] scheme is an efficient BGV-type FHE scheme, which can deal
with approximate numbers and is friendly to floating point calculations. In this
section, we construct an effective compact MKFHE scheme based on CKKS17,
called AMCMK. AMCMK scheme can also be extended to the BGV/BFV[5,20]
schemes trivially. Our contributions are as follows:

– We reduce the number of multiplication of constructing the joint switch-
ing key from O(k2) to O(k). The joint switching key of joint ciphertext is
Encpk(s ⊗ s)(see BGV for more details), where s = s1 + s2 + · · · + sk.The
general way to generate the evaluation key is as follows: user i encrypts si
with to obtain the partial switching key Encpk(si); the calculator then ob-

tains the joint switching key Encpk(s⊗s) by implement O(k2) homomorphic
multiplications and homomorphic additions on Encpk(si). In this paper, we
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present an algorithm, where the user Pi can generate Encpk(s · si) with 1
multiplication. Then by sum the items Encpk(s · si) for different users, we

can get Encpk(s⊗ s) =
∑k

i=1 Encpk(s · si) with only O(k) multiplications.

– We reduce the size of switching key (relinearization key) of CDKS19 by rais-
ing the ciphertext modulus. Homomorphic multiplication of two ciphertexts
will make the noise increase sharply. There are two common solutions: one
method proposed by BGV12 is to reduce the noise by bit decomposite one
ciphertext. Another method proposed by CKKS17 scheme is to raise the
modulus of one ciphertext. The defect of the bit decomposition method is
that the ciphertext size increases dramatically. The CDKS19 scheme uses
twice consecutive bit decomposition to generate the switching key , which
makes the size of switching key grows quadratically with the decompose pa-
rameters. We suggest mixed-use of bit decomposition and raising modulus
to reduce the size of switching key.

4.1 Generation of joint switching key

In the BGV-type FHE scheme, the homomorphic multiplication operation of
the (joint) ciphertext Encs(a) needs to input the (joint) switching key in the
form of Encpk(s⊗ s). The generation of the joint switching key is the core of the
CMKFHE. We present an efficient way to generate the joint switching key, by
optimizing the relinearization algorithm of CDKS19 to adjust the joint secret
key. For the convenience of description, this section takes two users P1, P2 as
examples to introduce our idea of generating the joint switching key.

We denote the secret/public key pair of users P1 and P2 as sk = (1,−s),
pk = (b = −s · a1 + e1 (mod q), a1), sk

′ = (1,−s′), pk′ = (b′ = −s′ · a1 + e′1
(mod q), a1). Then the joint secret/public key pair is sk = (1,−s) = (1,−s−s′),
pk = (b = −s · a1 + e (mod q), a1). The problem is: how to efficiently generate
joint switching key Encpk(s⊗ s), where ŝ = s⊗ s = (1;−s;−s; s2).

The solution in this paper is as follows: Define the four ciphertext components
of the joint switching key asK1 = Encpk(1),K2 = K3 = Encpk(−s),K4 = Encpk(s

2
).

The generation process of K4 = Encpk(s
2
) is the most complicated since the mul-

tiplication operation is involved. This section takes the process of generating K4

as an example to illustrate.

– Decompose K4 into two parts: K4 = Encpk(s
2) = Encpk(ss) + Encpk(s

′s).

– User P1 generates the corresponding component Encpk(ss), user P2 gener-
ates the corresponding component as follows: Encpk(s

′s)

• P1 and P2 jointly generate a public random polynomial a ∈ Rq.

• P1 and P2 separately generate the matrix D and D′. We take the gen-
eration D = [d0|d1|d2] of P1 as an example to illustration.

∗ Generate the RLWE ciphertext d2 = r ·a+e2+s (mod q) of s, where
e2 ← ψ, a ∈ Rq is the public random polynomial.
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∗ Encrypt r with the public key b̄ and get the ciphertext (d̄1, d̄0) =
r′(b, a)+e+ r, such that d̄0 = −s̄ · d̄1+e1+ r (mod q), for a random
d̄1 ∈ Rq,and small e1( The idea behind this step is: Use s̄ to force
decrypt d2, s̄d2 = r · s̄a+ s̄e2 + s̄s (mod q) ≈ r · b̄+ s̄s, then makeup
r · b̄ with (d̄0 − s̄d̄1) · b̄.)

The equation holds:(1,−s− s′) · ( b̄d0
b̄d1 + d2

) ≈ ss̄.

– Compute and output K̄4 = Encp̄k(s̄
2) = (

b̄d0
b̄d1 + d2

) + (
b̄d′0

b̄d′1 + d′2
).

Note: The above generation process involves the multiplication of ciphertext
b̄d0, b̄d1. We use the method of bit decomposition and modulus raising to solve
this problem.

4.2 Construction

Our scheme is based on CKKS17, see Appendix A for more details. The con-
structions of AMCMK are as follows:

AMCMK.Setup(1λ): Input the security parameters λ and select an integer N
(where N is the power of 2). Let χkey, χerr and χenc be the distribution
of secret key, error and encryption process on R = Z[X]/(XN + 1) re-
spectively. Select prime numbers P and p, the max circuit layers L, the
ciphertext modulus ql = pl, where 1 ≤ l ≤ L. Select common reference
strings a ← U(Rd

P ·qL) and a′ ← U(R1
P ·qL). Output public parameter pp =

{N,χkey, χerr, χenc, L, P, ql,a, a
′}.

In this step, we generate some common reference strings, which can be used
to generate the public keys.

AMCMK.KeyGen(pp): Given the public parameters pp = {N,χkey, χerr, χenc, L, P
, ql, a, a

′}, the party i outputs the public key pki := {b′i = −si·a+e′i} ∈ R1
P ·qL

where si ← χkey, e
′
i ← χerr, the evaluation public key epki := {bi =

−s · ai + ei} ∈ Rd
P ·qL where ei ← χd

err.
After all parties have completed the program AMCMK.KeyGen(pp), run the
algorithm of evaluation key generation. If the parties set is updated, rerun
the generation algorithm.

AMCMK.EvalKeyGen(pp, {ski}i∈[k], {pki, epki}i∈[k])→ {pk, evk}: Our (joint) eval-

uation key evk = {ksset, rkset,r, ckset,kssi→s} consist of 4 parts: the joint
switching key, joint rotation key, joint conjugation key, and the partial switch-
ing key, which is used to refresh the public key of single-user ciphertext to
user set.

– JPKGen(pp, pk1, · · · , pkk): Evaluator accumulate the public keys and eval-
uation public keys. Given k parties’ public key b1, ...,bk, the joint public
key is generated as epk := b = (b1 + ... + bk) ∈ Rd

PqL
. Denote epk[,j]

as the j-th element of epk. Given the k parties’ evaluation public key
b′1, ..., b

′
k, the joint evaluation public key is generated as pk := b′ =

(b′1 + ...+ b′k) ∈ R1
PqL

.
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– PEvalKeyGen(pp, ski, pk): Given joint public key pk and secret key ski,
the user Pi outputs the pevki = {ksset,i, rki,r,kssi→s,kssi→s}.
• PSwitchKeyGen(pp, ski, pk): User Pi generates the partial switching

key. Select r ← ZO(0.5) randomly, and the partial switching key is
obtained as (d0,d1) := {(d0,[,j], d1,[,j])}j∈[d], where (d0,[,j], d1[,j]) ←
CKKS.Encepk[,j],PqL

(r · g[,j]), j ∈ [d] and g = (1, Bg, ..., B
d−1
g ). Bg is

the decomposition basis. We denote CKKS.Encpk,q(m) as the CKKS
ciphertext ofm under the public key pk and modulus q, see Appendix
A for details. Set d2 = r · a′+ e2+P · s(modPqL), where e2 ← χerr.
Output partial switching key:

ksset,i :=
[
g−1(b′)

]
1×d
·
[
d0|di,1

]
d×2

+
[
0|d2

]
∈ CKKS.Encpk,P ·qL(P ·sis).

• PBootKeyGen(pp, ski, pk): Generate and output the partial boot-
strapping key: the partial refresh key kssi→s ← CKKS.Encpk,PqL

(P ·
si), the partial rotation key rki,r ← CKKS.Encpk,PqL

(κ5r (si)), the

partial conjugate key kssi→s ← CKKS.Encpk,PqL
(P · si).

– AggEvalKey(pp, {pevki}i∈[k]): Given the partial evaluation key {pevki}i∈[k],

the evaluator output evk = {ksset, rkset,r, ckset,kssi→s}.:
• AggSwitchKey(pp, ski, pk): The evaluator generates the joint switch-

ing key ksset := {K1,K2,K3,K4}, whereK1 = (1, 0) ∈ CKKS.Encpk,P ·qL(1),K2 =

K3 = −
∑k

i=1 kssi→s ∈ CKKS.Encpk,P ·qL(−s),K4 =
∑k

i=1 ksset,i ∈
CKKS.Encpk,P ·qL(Ps · s).

• AggBootKey(pp,kssi→s, rki,r): The evaluator generates the joint boot-
strapping key:

rkset,r =
∑k

i=1
rki,r ∈ CKKS.Encpk,PqL

(κ5r (s))

ckset =
∑k

i=1
cki ∈ CKKS.Encpk,PqL

(κ−1(s)).

AMCMK.Enc(pk,m): Given the public key pk := {b′ = −s ·a′+e′} ∈ R1
P ·qL . Se-

lect r ← χenc, e0, e1 ← χerr randomly. Output ct = r·(b′, a′)+(m+ e0, e1)( mod
qL), such that ⟨ct, sk⟩(modqL) ≈ m.
The public key pk ∈ R1

P ·qL has two purposes, one is to encrypt plaintext,
and the other is to generate joint evaluation keys.

AMCMK.Eval(ksset, rkset,r, ckset, c): This procedure consists of two subroutines:
one is to refresh public key of the ciphertexts to the same user set, the other
is homomorphic computation.
– Generate the refreshing key ksrefresh, we denote [k

′] as the original par-
ties set.

ksrefresh =

{
kssi→s c is corresponds to the secret key si∑k′

i=1 kssi→s c is corresponds to the secret key (s1 + ...+ sk′).

When the secret key corresponding to c is si, the refreshing switching
key is used to refresh the ciphertext of a single user; when the secret key
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corresponding to c is s1 + · · · + sk′ , refreshing switching key is used to
refresh the ciphertext of the old user set.

– Run the key switching process for all ciphertexts CKKS.KeySwitching(c,
ksrefresh). The original single-user or old set ciphertexts are converted
to the ciphertexts of the new set through the key switching process.
Compared with using bootstrapping in BP16 [8], key switching is much
more efficient.
The homomorphic computation process is the same as CKKS17, while
replacing the evaluation key with the joint evaluation key.

– AMCMK.Add(ct, ct′): Input the ciphertexts ct and ct′ of the l -th level,
and output the ciphertext ctadd = ct+ ct′(modql).

– AMCMK.Multksset(ct, ct
′): Run CKKS.Multksset(ct, ct

′).

AMCMK.Dec((sk1, ..., skk), c): Input the ciphertext c of l-th level. Output m′ =
⟨c, sk1 + ...+ skk⟩(modql).

4.3 Scheme analysis

Security analysis. Based on the LWE assumption, this scheme can achieve IND-
CPA security, under the cyclic security assumption. The biggest difference be-
tween this scheme and the CKKS17 scheme lies in the generation process of the
joint public key b = b1 + ... + bk. The joint public key is the accumulation of
multiple user public keys bi. According to the LWE assumption, bi is indistin-
guishable from a uniform distribution, so joint public keys b is indistinguishable
from a uniform distribution. Moreover, the encryption and decryption opera-
tions and homomorphic operation functions of this scheme are the same as the
TFHE. So our scheme is IND-CPA security like CKKS17.

Correctness analysis. Whether the ciphertext can be decrypted correctly de-
pends on the size of the error in the ciphertext. Following the expression of
CKKS17, we analyze the works of the main functions and the growth of the
error . Analysis shows that the noise of our scheme is about

√
k times large than

CKKS17, which is much less than about k2 times in CDKS19. The details are
as follows:

Let ||a||can∞ denote the infinite normal form of a(ζ) (the inner product of the
coefficients of and vectors (1, ζM , ..., ζ

N−1
M ) ) obtained by normal embedding of

polynomial a(X) ∈ R = Z[X]/(ΦM (X)). Considering the accuracy, the scheme
usually expands the data by ∆ times before encryption, and ∆ is called the
increment factor. For a given ciphertext ct ∈ R2

q , the scheme can decrypt
correctly if the increment factor ∆>N +2B, where < ct, sk >= m+e(mod qL),
B is the upper bound of ||e||can∞ . The error growth of important functions is
shown in the following lemmas.

Lemma 1 ([12]). Let ct ← CKKS.Encpk(m) be an encryption of m ∈ R with
public key pk and e ∈ R, then < ct, sk >= m + e(modqL), where ||e||can∞ ⩽
Bclean, such that Bclean = 8

√
2σN + 6σ

√
N + 16σ

√
hN .

Lemma 2. Let ct← CKKS.Encpk(m) denote the ciphertext of m ∈ R encrypted

by the accumulated public key pk, for a certain set e ∈ R, there is < ct, (1, s) >=
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m + e(modqL), where pk = (b1 + ... + bk, a) , ||e||can∞ ⩽ Bsclean and Bsclean =
8
√
2kσN + 6σ

√
N + 16σk

√
hN.

Proof. Define e = e1 + ... + ek, s = s1 + · · · sk, and b = b1 + ... + bk. For the
ciphertext ct = r · (b, a) + (m+ e′0, e

′
1) (modq), where bi = −asi + ei (modqL).

Select r ← ZO(0.5), e′0, e
′
1 ← DGq(σ

2), si ← HWT (h), a ← UqL and ei ←
DGqL(σ

2), the expression of error e and the upper limit of ||e||can∞ is as follows:

e =< ct, (1, s) > −m =< r · (b, a) + (m+ e′0, e
′
1) , (1, s) > −m

=< r · (b, a), (1, s) > + < (e′0, e
′
1), (1, s) >

= re+ e′0 + e′1s,

||e||can∞ = ||re+ e′0 + e′1s||can∞

⩽ ||re||can∞ + ||e′0||can∞ + ||e′1s||can∞

⩽ 8
√
2kσN + 6σ

√
N + 16σk

√
hN.

Lemma 3. Let ksset be the accumulated switch-key, ksset,i be one element of
ksset, then , < ksset,i, (1, s) >= P−1 ·sis+eksset,i( mod qL), where ||eksset ||

can
∞ ⩽

Bksset
=
√
k||eksset,i ||

can
∞ and ||eksset,i ||

can
∞ ⩽⩽ 8

√
2kσN + 16σk

√
hN +Bksse

=

8BksBsclean

√
dN/3 .

Proof. For the partial refresh key kssi→s ← CKKS.Encpkevk,PqL
(P · si), the par-

tial rotation key rki,r ← CKKS.Encpkevk,PqL
(κ5r (si)) and the partial conjugate

key cki ← CKKS.KSGenpkevk,PqL
(κ−1(si)), we suppose ||e||can∞ ⩽ Bsclean.

(1) calculate the error of eksset,i .

eksset,i = cksset,i

[
1
s

]
− P · sis

=
[
0|di,2

] [1
s

]
+
[
g−1(b′)

]
1×d
·
[
di,0|di,1

]
d×2

[
1
s

]
− P · sis

= rie′ + ei,2 · s+
[
g−1(b′)

]
1×d
· [esclean]d×1(modPqL)

.

(2) Calculate the upper limit of ||eksset,i ||
can
∞ .

||eksset,i ||
can
∞ = ||rie′ + ei,2 · s+

[
g−1(b′)

]
1×d
· [esclean]d×1(modPqL)||can∞

⩽ 8
√
2kσN + 16σk

√
hN + 8BksBsclean

√
dN/3

.

(3) Calculate the eksset , and the upper limit of ||eksset ||
can
∞ .

ksset

[
1
s

]
ksset:=

∑k
i=1 ksset,i
=

∑k

i=1
ksset,i

[
1
s

]
=

∑k

i=1
P · sis+ eksset,i = Ps · s+

∑k

i=1
eksset,i

,

||eksset ||
can
∞ = ||

∑k
i=1 eksset,i ||

can
∞ ⩽

√
k||eksset,i ||

can
∞ .

Lemma 4 ([12]). Let ct′ ← RSl→l′(ct)(where ct ∈ R2
q ), for e ∈ R, there is <

ct′, sk >= ql′
ql
< ct, sk > +e(modql′), where ||e||can∞ ⩽ Brs, Brs =

√
N/3(3 +

8
√
h).
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Lemma 5. Let ctmult ← Multksset(ct1, ct2) (where ct1, ct2 ∈ R2
q ), for e ∈

R, there is < ctmult, sk >=< ct1, sk >< ct2, sk > +emult(modql′), where
||e||can∞ ⩽ Bmult, Bmult = P−1ql ·Bksset

+Brs.

Lemma 5 can be obtained by taking the upper bound ||ksset||can∞ ⩽ Bksset
of

the switching key into Lemma 3. The specific proof is omitted.

Lemma 6. Let ct′ ← KSksrefresh
(ct), ct ∈ R2

q corresponds to the secret key

sk. Let

ksrefresh =

{
kssi→s sk = (1, si)∑k′

i=1 kssi→s sk = (1, s1 + ...+ sk′),

for e ∈ R, there is < ct′, (1, s) >=< ct, sk > +eks(modq), where ||eks||can∞ ⩽
P−1q ·

√
kBsclean +Brs.

Lemma 6 can also be obtained by taking the upper bound ||ksrefresh||can∞ ⩽√
kBsclean of the switching key into Lemma 4. The specific proof is omitted.

These lemmas show that the noise is about
√
k times large than CKKS17,

which is much less than about k2 times in CDKS19.

5 Construction of TFHE-type FCMKFHE

TFHE-type FHE scheme has the fastest bootstrapping operation, which is suit-
able for homomorphic logic operations, and has important applications in pri-
vacy computing systems, privacy neural networks, etc. In this chapter, we will
construct an efficient compact TFHE-type CMKFHE, called AMTMK. Our con-
tributions are as follows:

– We solve the problem of joint secret keyspace being mismatched with TFHE
by proposing a variant of TFHE which support non-binary secret. TFHE-
type FHE scheme requires that the secret keys should be taken from {0, 1}n,
but the joint secret key is the accumulation of secret keys in the user set,
which does not match the requirement. Our solution is: On the one hand,
since the accumulation operation of binary secret keys in T := R/Z is mean-
ingless, we extend T := R/Z to Zq , which is following the implementation
of TFHE. On the other hand, we use the homomorphic addition boolean
circuit to realize the accumulation of the secret key s = s1 + ...+ sN , where
si ∈ Bn, denote sbin as the binary representation of the joint private key,
which meets the requirement of TFHE scheme. The homomorphic addition
boolean circuit can be construct by constructing Half-Adder, Full-Adder and
k bits homomorphic adder. In addition to the above methods, the very recent
TFHE variant scheme[22] that supports arbitrary secret key distributions
can be adapted to solve the problem of mismatching secret keyspace.
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– We propose a method to generate the joint bootstrapping key by the public
key. The bootstrapping key RGSW.Encs′′(si) is encrypted by a special de-
signed symmetric RGSW scheme, whose ciphertext structure of the scheme
does not match well with the public key encryption scheme. While in CMKFHE
scheme, bootstrapping key is encrypted by the joint public key, then a public
key RGSW scheme is needed. We adapt the public key Ring-GSW scheme
proposed by the CZW17, and the corresponding hybrid homomorphic multi-
plication operation in the LZY+19[23] to fulfill the bootstrapping in TFHE.

5.1 Basic scheme tools of AMTMK

This section introduces the underlying LWE scheme and Ring-GSW scheme of
the AMTMK scheme.

LWE.Setup(1λ) → ppLWE = (n, χ, α,Bks, dks, q,B): Input security parameter
λ, generate LWE dimension n, key distribution χkey, noise distribution χerr

with parameter α, decomposition base Bks, decomposition degree dks, modulus
q, matrix B ∈ Zm×n

q shared by all users, output ppLWE = (n, χkey, α,Bks, dks,
q,B).

LWE.KeyGen(pp)→ {pk, sk}: Select the private key s ∈ Bn, and calculate the
public key A =

[
b = −Bs+ e |B

]
∈ Zm×n

q ,where e ← χerr , output pk = A,

sk = (1, s) ∈ Bn+1 . We denote the joint public key as pk := A = [b|B] =
[b1 + ...+ bk|B] , m = O(n log n).

LWE.Enc(pk,m)→ ct = (b,a) ∈ Zn+1
q : Select r ∈ Bm at random and output

(b,a) := rA+ ( q4m, 0..., 0) + e′, where e′ ← χerr.
To meet the requirement of public key encryption with homomorphic oper-

ation, we adapt the Ring-GSW scheme given by the CZW17.
GSW.Setup(1λ) → ppGSW = (N,χkey, α,B, d,y, q): Input security parameter

λ, generate a polynomial ring Rq = Zq[X]/(XN +1), where the dimension is N,
key distribution χkey, noise distribution χerr with parameter α, decomposition
base B, decomposition degree d, matrix y ∈ Zm×n

q shared by all users, output

common parameter ppGSW = (N,χkey, α,B, d,y, q).
GSW.KeyGen(params)→ (pk, sk): Select z ← χkey, generate the private key

sk ← (1,−z). Randomly select a
U←− R2d

q and e ← χ2d
err, denote the public key

as pk := [b = az + e,a] ∈ R2d×2
q .

GSW.Encpk (µ): Select r ← χenc and E := [e0|e1] ← χ2d×2
err . Output cipher-

text C = r[b,a] + 2E+ µG ∈ R2d×2
q .

To meet the requirement of hyper homomorphic operation, we adapt the
hyper homomorphic multiplication operation in LZY+19.

RLWE.Enc(z, µ): Input the plaintext µ ∈ R2, secret key sk = (1,−z), output
ciphertext c = (az + 2e+ µ, a) ∈ R2

q.

LWE.SampleExtract(a′′, b′′) → (a′, b′) ∈ ZkN+1
q : (a′′, b′′) is an instance of

TLWEs′′(µ) with secret key s′′ ∈ Rk, let s′ = KeyExtract(s
′′ ∈ Rk) := (coefs(s′′1(X)

, ..., coefs(s′′k(X))) ∈ ZkN and LWE instance (a′, b′) ∈ ZkN+1
q , where a′ =

{coefs(a′′1( 1
X ), ..., coefs(a′′k(

1
X ))}, b′ = b′′0 is the constant term of b′′.
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LWE.KSGen(ti, pk) → KSj = [bj |Aj ] ∈ Zdks×(n+1)
q , j ∈ [N ]: Input LWE

private key ti ∈ ZN , the joint public key pk = A = [b|B] = [b1 + ...+ bk|B] ∈
Zq

m×n, output the switching key KSi = {KSi,j}j∈[N ] from ti ∈ ZN to s, where

KSi,j = LWE.Encpk(ti,jBks
j), i.e. KSi,j = RksA+ (ei,j , 0, ..., 0) + (ti,j , 0, ..., 0) ·

gks, Rks ∈ Zdks×m
q , gks = (Bks, B

2
ks, ..., B

dks

ks )T , j ∈ [N ].

LWE.Switch(ct ∈ ZN+1
q , {KSi,j}i∈[N ],j∈[w]) → ct′ ∈ Zn+1

q : Input joint ci-

phertext ct = (b,a) ∈ ZN+1
q and joint switching key KSSet. Run (b′,a′) =∑N

j=1 g
−1
ks (aj)KSSet,j , where g−1

ks (aj) is the decomposition of aj based on Bks.

Output ciphertext ct′ = (b′ + b,a′) ∈ Zn+1
q .

5.2 Homomorphic adder

The principle of the homomorphic adder circuit is the same as that of the com-
mon ripple carry adder circuit, except that the plaintexts in the adder are re-
placed by the ciphertexts, and the operations are replaced by the homomorphic
operations on the ciphertext. In our scheme, the homomorphic adder is con-
structed by homomorphic addition and multiplication of RGSW ciphertexts.
We construct the k bits homomorphic addition boolean circuit by constructing
Half-Adder, Full-Adder. The noise analysisi of Homomorphic adder is present in
appendix B.

Half-Adder: Input two ciphertexts RGSW(x), RGSW(x) corresponding to
the bit x and y. Output carry ciphertext RGSW(c) = RGSW(x) · RGSW(y), and
the sum ciphertext RGSW(s) = RGSW(x)+RGSW(y), where · means homomor-
phic multiplication and + means homomorphic addition.

Full-Adder: Input two ciphertexts RGSW(x), RGSW(x) corresponding to
the bit x and y, and a carry ciphertext RGSW(cin). Output carry ciphertext
RGSW(cout) = RGSW(x) ·RGSW(y) +RGSW(cin) · (RGSW(x) +RGSW(y)), sum
ciphertext RGSW(sout) = RGSW(cin) + RGSW(x) + RGSW(y).

HomAddl: Input two sequence ciphertexts RGSW(xl−1), . . . ,RGSW(x0) and
RGSW(yl−1), . . . ,RGSW(y0), corresponding to the binary representation of two
number x, y. Firstly, compute (RGSW(c0),RGSW(s0)) = Full− Adder(RGSW(x0),
RGSW(y0), 0); Secondly, for i = 0 to l−2, run RGSW(ci+1),RGSW(si+1) = Full−
Adder(RGSW(xi),RGSW(yi),RGSW(si)); Finally, output ciphertext (RGSW(cl−1),
RGSW(sl−1), . . . ,RGSW(s0)).

5.3 Construction

The underlying LWE scheme and Ring-GSW scheme of the AMTMK scheme is
in [27]. We construction AMTMK as follow:

AMTMK.Setup(1λ) → pp = (ppLWE, ppGSW): Run LWE.Setup(1λ) → ppLWE =
(η, χ, α,Bks, dks,B, q),GSW.Setup(1λ)→ ppGSW = (N,χkey, α,B,d,y,q), where
B, y are common random variables.

AMTMK.KeyGen(pp)→ (pki, ski, pkBK,i, skBK,i): User i generates public key
and secret key. Run LWE.KeyGen(pp)→ {pki = Ai, ski = si},GSW.KeyGen(pp)→
{pkBK,i = Zi, skBK,i = zi}.
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When all parties have completed the program AMTMK.KeyGen(pp), the eval-
uator runs the algorithm of evaluation key generation.

AMTMK.EvalKeyGen(pp, ski, {pk1, · · · , pkk}) → {pk,KSi,BKi}: User au-
thorization to the user set (generating the evaluation keys).

– JPKGen(pp, pk1, , pkk): Evaluator accumulate the public key. Given the pub-
lic keys {b1, ...,bk} and bootstrapping public keys {d1, ...,dk} of k parties,
evaluator generate and send the joint public key pk :=

[
b1 + ...+ bk B

]
∈

Zm×n
q and the joint bootstrapping public key pkBK := Z =

[
d1 + ...+ dk y

]
∈

Z2d×2
q to all user.

– PEvalKeyGen(pp, {ski, skBK,i}, {pk, pkBK}): Given joint public key pk and
secret key ski, the user Pi output the pevki = {KSi,kssi→s}.
• PSwitchKeyGen(pp, skBK,i, pk): Pi generate the partial switching key.
Input pk and the secret key zi of the RGSW ciphertext, let ti =:
(zi,0,−zi,w−1, ...,−zi,1) ∈ BN , and output the the partial switching key
(psk) KSi = LWE.KSGen(ti, pk) of user i.

• PBootKeyGen(pp, ski, pkBK): Pi generate the partial bootstrapping key.
Input pkBK = Z and the secret key si ∈ Zn of user i for LWE ciphertext.
Output the partial bootstrapping key (pbk) BKi = {BKi,j}j∈[n], where

BKi,j = RGSW.Enc(si,j ,Z), i ∈ [k], j ∈ [n].
– AggEvalKey(pp, {pevki}i∈[k]): Given the partial evaluation key {pevki}i∈[k],

the evaluator output evk = {KSSet,BKSet,BKi,j}.:
• AggSwitchKey(pp,KSi): Evaluator generate the joint switching keyKSSet =

{
∑k

i=1 KSi,j}j∈[N ].

• AggBootKey(pp,kssi→s): Evaluator generate the joint bootstrapping keys
in cloud. Run The cloud sever uses the BKi to generate the joint boot-
strapping key BKSet = {BKbitl−1(Set,j), · · · ,BKbit0(Set,j)} = HomAddk

(BK1,j , ...,BKk,j), where j ∈ [n], l = ⌈log(k)⌉. HomAddk(, ) is a homo-
morphic addition circuit for k -bit. The details are shown in [27].

AMTMK.Enc(pk, µ): Run LWE.Enc(pk, µ)→ ct = (b,a) ∈ Zn+1
q .

AMTMK.Dec((sk1, ..., skk), ct): Input the ciphertext ct. Outputm′ such that
= ⟨ct, (1, sk1 + · · ·+ skk)⟩ − q

4m(modq) be smallest.
The bootstrapping process has two purposes: one is to refresh the noise in

the ciphertext, and the other is to use the evaluation key to refresh the public
key of the ciphertexts to the user set.

AMTMK.Boot(c, evk):

– Ciphertext refresh. Input ciphertext c = (b′,a′) ∈ Zn+1
q , and the bootstrap-

ping key {BKbitl−1(Set), ...,BKbit0(Set)} or BKi, the evaluator runs:

• Input the ciphertext c = (b′,a′) ∈ Zn+1
q , output b̃ = ⌊2N · b′/q⌉, ã =

⌊2N · a′/q⌉ and the (joint) bootstrapping key

BK =

{
BKi c corresponds to the secret key si

BKSet′={s1,...,sk′} c corresponds to the secret key (s1 + ...+ sk′).
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When the secret key corresponding to c is si, the bootstrapping key can
refresh the ciphertext of a single user; when the secret key corresponding
to c is s1 + ... + sk′ , bootstrapping key can refresh the ciphertext of the
old user set.

• Initialize the RLWE ciphertext ACC = (− q
8h(X)·X b̃,0), where h(X) =

1 +X + ...+X
N
2 −1 −X

N
2 − ...−XN . Let ã = (ãj)j∈[n], for j=1 to n,

run the following process.
∗ ACC = CMux(BKbit0(Set,j), X

ajACC,ACC);
∗ · · ·
∗ ACC = CMux(BKbitl−1(Set,j), X

(2l - 1)ajACC,ACC).

The CMux(C,d1,d0) = C ⊡ (d1 − d0) + d0. The ⊡ is a hybrid homo-
morphic multiplication of RGSW ciphertext and BGV ciphertext( see
CGGI16/LZY+19 for more details).

• Output ACC← ( q8 ,0) +ACC(modq).
– Switching the RLWE ciphertext ACC to the LWE ciphertext.

• Input the ciphertext ACC = (c0, c1) ∈ R2
q, output LWE ciphertext

(b′′,a′′) = LWE.SampleExtract(ACC) ∈ ZkN+1
q .

• computer and output the ciphertext ct← LWE.Switch(ct
′′
,KSSet).

Analysis. Based on the LWE assumption, this scheme can achieve IND-
CPA security, under the cyclic security assumption. The difference between this
scheme and the TFHE scheme lies in the generation process of the joint public
key b = b1+ ...+bk. According to the LWE assumption, bi is indistinguishable
from a uniform distribution, so joint public keys b is indistinguishable from a
uniform distribution. The correctness follows the CGGI17. The detailed analysis
is shown in Appendix C. Our AMTMK scheme has the advantages: The size of
ciphertext, evaluation key, and joint switching key are independent of the number
of users; the bootstrapping operation is almost as efficient as TFHE; users of our
scheme can decide whether to participate in a computation task with a given
user set, by authentication to the user set(generate the corresponding partial
evaluation key).

6 CONCLUSION

In this paper, we propose a general construction of MKFHE scheme with com-
pact ciphertext. We show how to construct a compact MKFHE scheme that
supports the homomorphic encryption of ring elements and is friendly to floating-
point numbers, and construct a compact MKFHE scheme that supports efficient
bootstrapping.

References

1. Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on overstretched ntru as-
sumptions. In: Annual International Cryptology Conference. pp. 153–178. Springer
(2016)



Title Suppressed Due to Excessive Length 23
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Appendix

A CKKS17 scheme

CKKS.Setup(1λ)→ pp = (N,χkey, χerr, χenc, L, ql) : Input the parameters λ, and
select an integer N to the power of 2. Let χkey, χerr, χenc be the distribution
of secret key, error and encryption process on R = Z/(XN + 1) respectively.
Select prime p and the circuit layer L. The ciphertext modulus is ql = pl, where
1 ≤ l ≤ L. Output common parameter pp = (N,χkey, χerr, χenc, L, ql).

CKKS.KeyGen(params)→ (pk, sk, ks, rkr, ck):
-CKKS.PSKeyGen(params) → (pk, sk): Select s ← χkey, and let the secret

key sk ← (1, s). Select a← U (RqL) and the error e← χerr. Set the public key
pk ← (b, a) ∈ R2

qL , where b = −as+ e (modqL).
-CKKS.KSGen(sk, s′): Input s′ ∈ R, and select a′ ← RP ·qL and e′ ← χerr. let

the evaluated key be evk ← (b′, a′) ∈ R2
P ·qL , where b

′ = −a′s+ e′+Ps′(modP ·
qL).

Obtain the switch key ks← CKKS.KSGensk(s
2);

Obtain the rotation key rkr ← CKKS.KSGensk(κ5r (s));
Obtain the conjugate key ck← CKKS.KSGensk(κ−1(s))
CKKS.Encpk,q (m): Select r ← χenc, e0, e1 ← χerr randomly. Output ct =

r · pk + (m+ e0, e1)(modqL), such that < ct, sk > (modqL) ≈ m.
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CKKS.Decsk(ct): Input the ciphertext ct of the l -th level, and output the
plaintext m′ =< ct, sk > (modql)

CKKS.Add(ct, ct′): Input the ciphertexts ct and ct′ of the l -th level, and
output the ciphertext ctadd = ct+ ct′(modql).

CKKS.CMultks(a, ct): Input the constant a ∈ R and the ciphertext ct of the
l -th level. Output the ciphertext ctcmult = a · ct(modql).

CKKS.Multks(ct, ct
′): Input the ciphertext ct = (c0, c1), ct

′ = (c′0, c
′
1) ∈ R2

ql

of the l -th level, and output the ciphertext ctmult = (d0, d1)+
⌊
P−1 · d2 · ks

⌉
( mod

ql).
KSswk (ct): Input the evaluated key swk and the ciphertext ct of the l -th

level. Output the ciphertext ct′ ← (c0, 0) +
⌊
P−1 · c1 · swk

⌉
(modql).

CKKS.Rescalel→l′ → (ct): Input the ciphertext ct of the l -th level and the

next level label l′. Output the ciphertext ct′ =
⌊
pl

′−l · ct
⌉
∈ (modql′).

CKKS.Bootstrappingks,rk,ck(c): Input the evaluated key ks, rk, ck and cipher-
text c. Output the refreshed ciphertext c′. See the CHKKS and CCS18 schemes
for the details of bootstrapping process.

CKKS.Rotaterk(ct; k): Input the rotation key rk and the ciphertext ct. If the

plaintext vector m(Y ) moves k bits, then output the ciphertext of m(Y 5k).
CKKS.Conjugateck(ct): Input the rotation key ck and the ciphertext ct. If

the plaintext vector m(Y ) is conjugated to a vector m(Y −1), then output the
ciphertext of m(Y −1).

B Noise analysis of Homomorphic adder

For convenience, we denote RGSWx, y, cin, s, cout as RGSWx,RGSWy,RGSWcin,RGSWs,
RGSWcout, respectively.

1. For the homomorphic multiplication between TGSW ciphertexts, we have

V ar(Err(A ·B)) ≤ (k + 1)lNβ2V ar(Err(A)) + (1 + kN)(µAε)
2 + µ2

AV ar(Err(B))

= 2dNVBV ar(Err(A)) + (1 +N)ε2 + V ar(Err(B))

where

k = 1, l = d, β =
Bg

2 , VB = β2, µA ∈ 0, 1

and ϵ is the var of gap round.
2. For the full-adder based on homomorphic multiplication between RGSW

ciphertexts, we have

V ar(Err(S)) ≤ V ar(Err(X)) + V ar(Err(Y )) + V ar(Err(Cin))
= 4dkNβ2 + V ar(Err(cin))

V ar(Err(Cout)) ≤ (6dNVB + 1)V ar(Err(X)) + 2(1 +N)ε2 + V ar(Err(Cin))
= (6dNVB + 1)2dkNβ2 + 2(1 +N)ε2 + V ar(Err(Cin))
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3. The l-bit HomAdd algorithm is formed by continuously running l full-adders,
the output has an error of variance:

V ar(Err(c)) ≤ l(6dNVB + 1)
√
2dkNβ2 + 2l(1 +N)ε2

V ar(Err(si)) ≤ 2β + (l − 1) · {(6dNVB + 1)
√
2dkNβ2 + 2(1 +N)ε2}

≤ l(6dNVB + 1)
√
2dkNβ2 + 2l(1 +N)ε2

For convenience of expression, we express it uniformly as:

V ar(Err(HomAddl(output))) ≤ l(6dNVB + 1)
√
2dkNβ2 + 2l(1 +N)ε2

HomAddk algorithm can realize homomorphic addition of k l-bit TGSW cipher-
texts. There are two methods as bellow: Method 1: When the number of users is
large, we can use the serial mode to add one addend once. Because this method
needs to run HalfAdd algorithm

∑l
i=1 2

i−1i times, the calculation speed is slow,
but the error growth is small. The error variance of its output is

V ar(Err(HomAddk(output))) ≤
∑l

i=1
(2i−1i)(2dNVB ·2dkNβ2+(1+N)ε2)+2dkNβ2.

Method 2: When the number of users is small, we can run HomAdd algorithm
in the form of binary tree. This method needs to operate HomAdd algorithm for
l = ⌈log(k)⌉ times, so the calculation speed is fast, but the error growth is also
large. Since the length of HomAdd addition is from 1 to l = ⌈log(k)⌉, the error
variance of the output is

V ar(Err(HomAddk(output))) ≤ (l!)(6dNVB + 1)l · 2dkNβ2.

We can use the above two methods to balance the computational complexity
and noise to achieve better results.

Output carry ciphertext RGSW(cout) = RGSW(x) · RGSW(y) + RGSW(cin) ·
(RGSW(x)+RGSW(y)), sum ciphertext RGSW(sout) = RGSW(cin)+RGSW(x)+
RGSW(y).

C Error analysis of AMTMK scheme

The decomposition basis is defined as B, and the decomposition degree is defined
as d. Let ϵ2 = 1

12B2d be the variance of a uniform distribution over (− 1
2Bd ,

1
2Bd ].

Define |VB | =

{
1

12(B−1) if B is odd,
1

12(B+2) if B is even
as the uniformly distributed variance over

(− 1
2Bd ,

1
2Bd ]. Also, define the parameters ϵ2ks, VBks

and Bks in the bootstrapping
algorithm. Define the secret key distribution χ ∈ {0, 1}ω and ϕ ∈ {0, 1}n on
RGSW and LWE. Let V ar(e) be the variance of the random variable e over
Zq. If e is a vector composed of random variables, then V ar(e) is the maximum
variance of the vector.

Rounding error. Given b̃ = ⌊2N · b′⌉ and ã = ⌊2N · a′⌉, assuming that
the each rounding of error obeys the random uniform distribution of Z, then the
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variance of the overall rounding error of expression (b̃−2N ·b′)+ < ã−2N ·a′, s >
is 1

12 (1+n/2). The initial error of the evaluation key. The variance of error

KSi,j is

V ar(Err(KSi,j)) = V ar(Err(RksA+ (ti,j , 0, ..., 0) · gks)) ≤ mk · α2.

The variance of error BKi,j is

V ar(Err(BKi,j)) = V ar(Err(R · Z+ si,jh) ≤ 2dkN · β2.

According to CGGI16 scheme, the bootstrap error of AMTMK scheme is
analyzed as follows. Let d0, d1 be TRLWE samples and let C ∈ RGSWs(m).
Then msg(CMux(C,d1,d0)) = m · msg(d1) + (1 − m) · msg(d0). And we
have ||Err (CMux(C,d1,d0)) ||∞ ≤ max(||Err(d0)||∞, ||(d1)||∞)+ η(C) where

η(C) = 2dN
Bg

2 ||Err(C)||∞ + (k + 1)ε. So

V ar(Err(CMux(C,d1,d0))) ≤ max(V ar(Err(d0)), V ar(Err(d1))) + ϑ(C),

where ϑ(C) = 2dNVBV ar(Err(C)) + (N + 1)ε2. The accumulated process.
The initial RLWE ciphertext is general, and its error is 0. All bootstrap keys
{BKbitl−1(set,j)

, ...,BKbit0(set,j)
}j∈[n] are generated by HomAdd algorithm, and

the variance of error is
∑l

i=1 (2
i−1i)(2dNVB · 2dkNβ2 + (1 +N)ε2) + 2dkNβ2.

By recursively running Cmux circuit for ln times, the error variance of ac-
cumulated process is 2dNVB · ln{

∑l
i=1 (2

i−1i)(2dNVB · 2dkNβ2 + (1+N)ε2) +
2dkNβ2} + ln(N + 1)ε2. The key switching algorithm. Input accumulated ci-

phertext ct = (b,a) ∈ ZN+1
q and accumulated key KSSet = {

∑k
i=1 KSi,j}j∈[N ],

where KSi,j = RksA+ (ei,j , 0, ..., 0) + (ti,j , 0, ..., 0) · gks. Output the ciphertext

(b′,a′) =
∑N

j=1 g
−1
ks (aj)KSSet,j(mod1) and its error variance V ar(Err(ct′)) =

1
2ε

2N + dksVBks
Nα2(1 +m) + V ar(Err(ct)). The bootstrapping process. The

error of bootstrap process can be obtained from the accumulated process and
the key switching process, so the error variance is 1

2ε
2N +dksVBks

Nα2(1+m)+

2dNVB ·ln{
∑l

i=1 (2
i−1i)(2dNVB ·2dkNβ2+(1+N)ε2)+2dkNβ2}+(N+1)lnε2.
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