
A new Parallelization for p3Enum and Parallelized
Generation of Optimized Pruning Functions

Michael Burger
Scientific Computing

TU Darmstadt
Darmstadt, Germany

michael.burger@sc.tu-darmstadt.de

Christian Bischof
Scientific Computing

TU Darmstadt
Darmstadt, Germany

christian.bischof@sc.tu-darmstadt.de

Juliane Krämer
Cryptography and Computer Algebra

TU Darmstadt
Darmstadt, Germany

j.kraemer@cdc.informatik.tu-darmstadt.de

Abstract—Since quantum computers will be able to break
all public-key encryption schemes employed today efficiently,
quantum-safe cryptographic alternatives are required. One group
of candidates are lattice-based schemes since they are efficient
and versatile. To make them practical, their security level must be
assessed on classical HPC systems in order to determine efficient
but secure parameterization.

In this paper, we propose a novel parallelization strategy for
the open source framework p3Enum which is designed to solve
the important lattice problem of finding the shortest non-zero
vector in a lattice (SVP). We also present the p3Enum extreme
pruning function generator (p3Enum-epfg) which generates op-
timized extreme pruning functions for p3Enum’s pruned lattice
enumeration by employing a parallelized simulated annealing
approach. We demonstrate the quality of the pruning functions
delivered. Combining the new parallelization with optimized
pruning functions speeds up p3Enum by a factor up to 3
compared to the previous version.

Additionally, we compare the required runtime to solve the
SVPs with state-of-the art tools and, for the first time, also visu-
alize the statistical effects in the runtime of the algorithms under
consideration. This allows a considerably better understanding
of the behavior of the implementations than previous average-
value considerations and demonstrates the relative stability of
p3Enum’s parallel runtimes which improve reproducibility and
predictability. All these advancements make it the fastest SVP
solver for lattice dimensions 66 to 92 and a suitable building
block as SVP-oracle in lattice basis reduction.

Index Terms—Lattice-based cryptography, Extreme pruning,
OpenMP, Parallel lattice enumeration, Parallel simulated anneal-
ing, Heuristic optimization

I. INTRODUCTION

To secure applications like mobile phone calls or messaging,
reliable and secure cryptography is required. With the internet
of things and future developments like autonomous cars,
the need for strong cryptography grows further. While we
have good cryptographic algorithms that have withstood the
classical cryptanalysis since many decades, we know that all
public-key cryptography in use today will be broken once
large-scale quantum computers exist [1]. Thus, quantum-safe
alternatives are required. One promising candidate is lattice-
based cryptography. One main problem for lattices is the
shortest vector problem (SVP) where one searches the shortest

This work has been co-funded by the DFG as part of project P1 within the
CRC 1119 CROSSING and BI 714/6-1.

non-zero vector in a lattice. Many other lattice problems can be
transformed to SVP instances. Hence, knowledge about the ac-
tual hardness of the SVP is crucial. Two prominent approaches
to solve SVPs are enumeration with extreme pruning [2]–[5]
and sieving [6]–[8]. To develop secure but efficient and practi-
cal cryptographic schemes, appropriate parameterizations, e.g,.
key sizes, have to be determined on classical hardware. Thus,
cryptanalysis tries to perform attacks on such schemes on
available HPC systems and efficient parallel implementations
of attacking algorithms are required. The main challenge in
this field is that the problems secure cryptographic schemes
rely on are not solvable in reasonable runtime. Otherwise
the scheme would be insecure. Hence, research targets on
solving problems of smaller size, in the case of lattices with
lower dimensions, as fast as possible and to extrapolate the
knowledge gained to higher dimensions to choose secure but
efficient parameterization for the instantiations of the crypto-
graphic schemes. An example for a software that is employed
in this context is the open source framework p3Enum [5]
implementing shared memory parallelized enumeration with
extreme pruning to solve the SVP.

In this paper, we propose two valuable extensions to
p3Enum. First we develop an alternative parallelization ap-
proach for the extreme pruning algorithm and second we
implement the extreme pruning function generator (p3Enum-
epfg) module which creates optimized pruning functions for
the novel parallelization. The pruning function generation is
based on a shared memory parallelized simulated annealing
algorithm and is highly configurable. In combination, both
extensions speed up p3Enum by a factor up to 3 and increase
the range of lattice dimensions for which p3Enum is the fastest
solver to {66, . . . , 94}. As a second contribution, we perform
for the first time a detailed performance comparison of state-
of-the-art SVP solvers based on enumeration with extreme
pruning and sieving and analyze the statistical effects due
to their inherent algorithmic randomness. This results in a
considerably better insight on the practical behavior of the
solvers than previous average case considerations. We show
the relative stability in p3Enum’s parallel runtimes enabling
better reproducibility and predictability.

II. PRELIMINARIES AND DEFINITIONS

A. Lattices and basis reduction

We denote vectors with bold lower case letters, e.g., u,
matrices with bold upper case letters, e.g., B, and scalars with
normal lower case letters, e.g., β. Bm×n stands for an m×n
matrix. If the dimensions are clear from the context, we simply
write B. Integers are denoted by Z and the real numbers by
R. The standard inner product is denoted by 〈·, ·〉 and the
Euclidean norm by ‖·‖.

A lattice of dimension d is a discrete additive subgroup of
Rd. Every lattice Λ ⊂ Rd can be represented by a basis, i.e., a
set of R-linearly independent vectors B = {b1, . . . ,bn} ⊂ Rd
such that Λ = Λ(B) = Zb1 + · · ·+ Zbn. We identify lattice
bases with matrices whose columns represent the basis vectors.
In this case, d is called the dimension of the lattice and
n ≤ d is called its rank. If n = d, the lattice is called a
full-rank lattice. All lattices within this work are full-rank and
their determinant or volume is given by det(Λ) = |det(B)|
for any basis B of Λ. The Gram-Schmidt (GS) basis (ob-
tained by GS orthogonalization) of a basis B is denoted
by B∗ = {b∗1, . . . ,b∗n} ⊂ Rd, the respective GS-lengths
by ||b∗1||2, . . . , ||b∗n||2, and the GS-coefficients by µi,j with
1 ≤ j < i ≤ n. The orthogonal projection to the span of
(b1, . . . ,bi) is denoted by πi.

The quality of a lattice basis B can, e.g., be measured
by the decrease of the series ||b∗1||2, . . . , ||b∗n||2, or by the
value of ||b∗1||2. The process of improving the quality of a
basis is called basis reduction. Geometrically, basis reduction
means, in particular, to make the basis vectors shorter and
more orthogonal. The most commonly used basis reduction
algorithm is BKZ 2.0 [4]. BKZ 2.0 works on local blocks of
lattices of dimension β < d and optimizes the basis by sliding
over all basis vectors in contiguous blocks. A basis processed
by BKZ with block size β is called BKZ-β reduced. Solutions
for the SVP or approximately good solutions, delivered by a
so-called SVP-oracle, are required within each local block.
Since the SVP-oracle may be called several thousand times
its performance and predictability is crucial.

B. Basics of enumeration

ENUM, which p3Enum is based on, was presented by
Schnorr and Euchner [9] in 1994. It fully enumerates all
integer coefficient vectors u = (u1, . . . , un) which fulfill
||u∗B|| < Ā where Ā is an upper bound for the length of the
shortest vector. Its runtime mainly depends on two factors. The
choice of the bound Ā (the tighter, the faster) and the quality
of the reduced basis where a higher quality of B reduces the
search space.

Algorithm 1 gives a high level overview of ENUM. The
vector l keeps the lengths resulting from the partial coeffi-
cient vectors while c holds the center-values for each level
which result from the choices for the previous entries in u.
Center means that other values for ui at level i are searched
symmetrically around ui. One main advantage of ENUM is
that its memory requirements only grow polynomially in d.

Algorithm 1: The ENUM algorithm.
Input : GS-lengths: ||b∗

1||2, . . . , ||b∗
n||2, GS-coefficients:

µi,j

Output : Coefficients of umin

1 Ā← ||b∗
1||2, umin = u = (1, 0, . . . , 0), l = c = 0, t = 1

2 while t ≤ n do
3 lt ← lt+1 + (ut + ct)

2||b∗
n||2

4 if lt < Ā then
5 if t > 1 then
6 t← t− 1
7 ct ←

∑n
i=t+1 uiµi,t, ut ← bcte

8 else
9 Ā← lt, umin = u

10 else
11 t← t+ 1, choose next value for ut

In essence, Algorithm 1 describes a depth-first traversal of a
weighted tree, where each level corresponds to one entry of u.
The tree is flipped compared to the order of the vector, i.e., its
deepest level corresponds to the first entry u1 of u. In Line 1,
we set our initial solution to (1, 0, . . . , 0) and determine that
we start our search at the leftmost entry of u. If the resulting
partial length in l at some level exceeds the bound Ā, the level
t is increased in the direction of the root and a new value for
ut+1 is set following the so-called zigzag pattern. This means
if we have a center value ct+1 for level t+ 1, we first try the
search with ct+1, then with ct+1±1, then ct+1±2 and so on.
To keep track of this pattern two additional vectors of length
n are required. bcte in Line 7 rounds ct to the nearest integer.

One important improvement to enumeration is the so-called
pruning. The concept of pruning is that instead of traversing
the whole weighted tree, one heuristically cuts off parts of
the tree where the shortest vector is unlikely to be found.
Technically, pruning is realized by replacing the constant Ā
of Algorithm 1 by a vector A = (A1, . . . , An) with A1 ≤
A2 ≤ · · · ≤ An ≤ Ā. Each Ai represents the maximum value
of li for each level i.

The idea of pruning was already mentioned in [9]. The
proposed strategy is defined as follows: An−i = Ā · in and is
called linear pruning where the chance of keeping the shortest
vector in the pruned tree is relatively high.

Extreme pruning was proposed by Gama et al. [2] where
large parts of the enumeration tree are cut off and the chance
of removing the shortest vector is high. Hence, many repeti-
tions have to be performed and B is randomized each time.
A is based on heuristic assumptions (see below). Gama et
al. [2] demonstrated that in this way SVPs can be solved
faster by several orders of magnitude. In the remainder of
this paper pruned enumeration always indicates enumeration
with extreme pruning for brevity and A denotes the vector
containing the Ai entries and at the same time A may be
referred as the (extreme) pruning function A. To generate A,
[2] employs heuristics to estimate the length of the shortest
vector Ā, the values of the GS-lengths ||b∗i ||2 and the runtime

of BKZ tBKZ . They also estimate the number of nodes to be
visited in the enumeration tree and measure the average time
to process one node on their system. The product of both gives
the runtime for one enumeration tENUM . Together with an es-
timate for the probability p of success for a single enumeration,
the overall runtime is calculated by tBKZ+tENUM

p . This term
is heuristically optimized by changing A which influences all
three variables tBKZ , tENUM and p.

Details about sieving, the second class of algorithms whose
performance is also considered in this paper can be found in
[6]–[8].

III. RELATED WORK

In this section, we present other SVP solvers based on
pruned enumeration and sieving as well as generators for
extreme pruning functions. Their performance is compared to
our extended p3Enum-version in Section V.

The template-based fplll library [10] is written in C++ and
implements important algorithms from the lattice domain like
LLL, BKZ 2.0, or solving SVPs with pruned enumeration.
The pruned enumerations are executed with one thread, based
on values provided by a strategy file which contains the
pruning function and determines the sequence of β-values
for the BKZ reduction. It is limited to dimension 90. So,
pruned enumeration is not possible for d > 90 by default.
The additional program fplll strategizer generates pruning
functions and the BKZ-β-strategies.

Kuo et al. [3] presented an implementation of extreme
pruning on GPUs. Their basic parallelization approach is taken
from Hermans et al. [11]. The enumeration tree is split into
two parts: The CPU searches within the first few dimensions
for coefficient vectors with a feasible length. Those starting
vectors are transferred to the GPUs which finish the vectors
by enumerating the remaining dimensions. The pruning func-
tion results from sampling the exemplary bounding function
visualized in [2, Fig. 1] as a polynomial of degree eight and
scaling it to the dimension required. In [3], dimensions 80 to
104 are solved on a workstation with eight NVIDIA GTX480
cards.

Aono et al. [4] developed progressive BKZ, an extended
version of BKZ 2.0. For the pre-processing of the blocks,
no predefined BKZ-strategy is used as, e.g., it is provided
in the fplll library by the strategy file. Instead, they apply a
progressive approach which starts with a small β value and
iteratively increases the block size in appropriate steps. They
also improve the value of the initial enumeration bound A
by optimizing the estimates with geometric series assumption.
The model for the overall runtime is changed to the so-called
full enumeration cost (FEC) which influences all automatic
parameter choices and the termination criterion. The FEC is
additionally based on a benchmark. Aono et al. [4] published
code implementing their methods (pBKZ-lib)1 which is mainly
meant to reproduce the published results and is not designed
as a library for lattice problems.

1https://www2.nict.go.jp/security/pbkzcode/

Concerning sieving, [6] and [7] simultaneously proposed
the idea of progressive sieving. Instead of directly solving the
SVP on the whole lattice basis, the process starts on sublattices
Λ[0,i]. These Λ[0,i] result from the projection of the basis B[0,i],
for instance with i = n/2 in [7]. In [6], a speedup up to
a factor of 5000 is achieved when extending their sieving
implementations with this new approach.

Ducas [7] proposes a second improvement for sieving which
results in a sub-exponential gain in the overall runtime. It
takes advantage of the fact that the output of sieving is not
a single vector shorter than the bound, but a whole list of
short vectors. This allows to solve the n-dimensional SVP with
several sieving calls on (n−δ)-dimensional sublattices, where
δ is heuristically determined. As an example, [7, Fig. 2] shows
that for an 82-dimensional lattice on average only sieving calls
in dimension 68 are required. The resulting sieving procedure
is called SubSieve2.

Recent work of Albrecht et. al [8] combines all principles
of SubSieve with further algorithmic improvements into the
General Sieve Kernel (G6K). The authors call G6K an abstract
stateful machine with some basic instructions that are suffi-
cient to encode the whole procedure. One main contribution
of this work is that it solves the following problem: If a basis is
processed in blocks, then how is it possible to take advantage
of the information gained by one block in the following one?
So, they do not have to process contiguous blocks when
reducing the basis. If the algorithm processed block [bi,bj]
with 1 ≤ i < j ≤ n, the next processed block may be[
bi+k,bmax(j+k,n)

]
with k > 1. Albrecht et. al [8] describe a

parallelized C++-implementation with a Python-based control
module for G6K and evaluate its performance in detail. The
code solves previously unsolved dimensions 153 and 155 in
the Darmstadt SVP challenge (D-SVPC)3, where researchers
are invited to try to find short vectors within provided random
lattices to compare various algorithmic approaches and is the
fastest algorithm for higher dimensions so far. The code has
recently been made available4.

IV. SOFTWARE ARCHITECTURE OF P3ENUM AND
P3ENUM-EPFG

A. Parallelization strategy for the SVP solver

In contrast to the original p3Enum-version and the ap-
proaches in the literature [3], [4], our extension does not
parallelize the enumeration itself, but executes several basis
reduction-enumeration-cycles in parallel. On the entry of the
function solveSVP() an OpenMP parallel-region is
spawned. Within an OpenMP single-block the number of
active threads for solveSVP() is determined and shared data
structures are allocated like the vector for randomized bases,
the shortest solution found per thread and a flag indicating to
stop the work. Afterward, each thread allocates its private data
structures like the GS-lengths ||b∗1||2, . . . , ||b∗n||2 vector or the

2https://github.com/lducas/SubSieve
3https://www.latticechallenge.org/svp-challenge/
4https://github.com/fplll/g6k

matrix for the GS-coefficients µi,j . Then, each thread enters a
while-loop which executes until the shortest vector is found
or the maximum number of trials is reached.

Per trial each thread randomizes the input base and reduces
it with two calls to the fplll library where the block size of
the first call of BKZ 1.0 is determined by the parameter pre-β
and the blocksize of the second call of BKZ 2.0 by β. The
randomization of the bases also takes the ID of the executing
thread into account to maximize the degree of randomness
between the different threads. Afterward, each thread executes
the enumeration on his basis. Hence, the level of parallelization
is shifted to one level higher. After each cycle, the threads
check if the solution was found and terminate in that case,
meaning that all other threads will finish their cycle but the
shortest vector is already outputted. They additionally incre-
ment the counter for the trials performed within an OpenMP
atomic. This minimizes the communication between the
threads and increases the parallel scalability.

In that way, we avoid the problem that the error between
the estimated number of nodes in the search tree (c.f. Section
IV-B2) and the actually visited nodes grows when executing
the parallelized enumeration because more nodes are visited to
create candidates which result in dead ends. Additionally, the
parameterization for the enumeration process is considerably
simplified since in contrast to the former version, no manual
parameter setting, like for the height of the serial part of
the enumeration or the shift of the pruning function (cf.
[5]), is necessary anymore. This guarantees efficiency without
additional effort by the user. Furthermore, the number of
shared data structures is reduced which simplifies the use of
additional degrees of parallelization through accelerators or
several compute nodes.

B. p3Enum-epfg

In this section, we first explain our design to estimate
the runtime for solving SVPs based on the original estimate
from [2] c = tBKZ+tENUM

p and second describe our mapping
between the extreme pruning function domain and simulated
annealing as well as the parallel implementation of this algo-
rithm.

1) Basis reduction benchmarks: In contrast to [4] and [2],
the times for BKZ-reduction tBKZ of the input bases are not
determined by heuristics but the reductions are executed and
their runtime is measured. The idea behind this procedure is
that the reductions are performed several hundred or thou-
sand times during solving SVPs of the corresponding lattice
dimension. Hence, some benchmarking runs do not have a
considerable effect on the overall runtime and the generation
of the pruning functions is a pre-processing step which is
executed once.

The benchmarking of BKZ is highly parameterizable. First,
the quadruple (pre-βstart, pre-βend, βstart, βend) determines
the search space for the BKZ-calls. All possible combinations
of pre-β and β with β > pre-β are performed succes-
sively with a step size of two for the pre-β and β values.
One unique pair (pre-β, β) is called a β-configuration. The

second parameter ann_parallel_reducing_threads
determines how many threads are spawned to reduce the
bases in parallel during the benchmark and later during the
execution of the SVP solution process. The time required as
well as the resulting values for the ||b∗i ||2 are logged in a
file. When timing values for a given β-configuration and the
same value of ann_parallel_reducing_threads are
available on the file system, they are automatically loaded
and complemented with those β-configurations that have to
be computed on-the-fly.

As a third parameter, ann_bkz_instances
determines how many bases for one dimension are
considered during the benchmark process and later in
the annealing optimization procedure. When setting
ann_bkz_instances to one, only the original input
base is employed. If ann_bkz_instances > 1
the parameter ann_num_different_bases comes
into play. It determines how many different bases with
different bases, e.g,. other random matrices with different
seeds of the same dimension, should be considered. If
ann_bkz_instances > ann_num_different_bases
then randomized instances of the bases are created as they
later appear in the pruned enumeration cycles. These
randomized bases may be of a worse quality than the original
ones thus requiring a higher runtime for BKZ. By integrating
them in the considerations, the resulting pruning function
covers a higher range of possible bases and algorithmic
behavior for a dimension.

All benchmark results are registered in an object called
BKZBenchmark which is unique during the execution and
globally readable.

2) Volume of simplexes and number of nodes in the search
tree: To estimate the number of nodes to visit in the pruned
enumeration nnodes, the volume of a d-dimensional cylinder
intersection which is described by A and lies within a d-
dimensional hypersphere with radius An has to be calculated.
The volume of this sphere is Vn(An) = Ann · πn/2

Γ(n/2+1) .
To calculate the volume of the cylinder intersection Vsim,

we employ the method proposed in [12] based on simplexes
which is also implemented in the pBKZ-lib [4]. The prereq-
uisites for the pruning function A are that the dimension of
the lattice is even and that it fulfills A1 = A2 ≤ A3 = A4 ≤
· · · ≤ An−1 = An. Simplexes determined by A’s of this form
are called even simplexes and pruning functions describing
them even functions in the following. An even function also
fulfilling Ai = b(i+1)/2c

d/2 is called an even linear function
because of the linear growth between neighboring pairs of
values.

The procedure of [12] returns the percentage pr of the
volume of the d-dimensional even simplex compared to that of
the corresponding d-dimensional hypersphere Vn(An). Hence,
the volume of the even simplex described by the pruning
function A is: Vn,sim(A) = pr · Vn(An). An estimate for
the number of the nodes in the search tree nnodes, is the sum
for the estimates of nodes for each level of the tree given by

nnodes =
1

2

n∑
k=1

Vn,sim(A1:k)∏n
i=n+1−k ||b∗i ||

and A1:k returns a k-dimensional cylinder intersection given
by the first k entries of A [2], [12].

3) Success probability and overall cost function: The orig-
inal cost function of [2] c = tBKZ+tENUM

p is modified to
incorporate the parallel execution of several basis reduction-
enumeration cycles in parallel. As a simplification, we assume
that at each time step all threads finish at about the same time.
The chance that a single enumeration succeeds psingle is given
by the result of the simplex volume calculation. It is the pr-
value corresponding to A1:d. The chance ppar of j trials in
parallel to succeed results from the Bernoulli chain assuming
that ’at least one trial is successful’ which we calculate by the
opposite ’no trial is successful’ by ppar = 1− (1− psingle)j .

4) Actual searching algorithm: The search for the pruning
function is realized by a parallelized simulating annealing pro-
cedure which is summarized in Algorithm 2. An introduction
to heuristic optimization with simulated annealing and further
details about the algorithm can be found in [13]. A solution
(sol in Algorithm2) within our simulated annealing represents
the combination of a pruning function A with its correspond-
ing β-configuration. The costs() of the solution is the run-
time estimated to solve the SVP and the soleven_linear repre-
sents the even linear pruning function with the β-configuration
that minimizes its costs. Random neighboring solutions as
required within randomModifyToNeighbor() are gen-
erated by first randomly selecting two entries Aj and Aj+1

with an odd j ∈ {1, . . . , n − 1} from the solutions pruning
function A and randomly increasing or decreasing Aj and
Aj+1 by a percentage ∈ [0.0001, 0.03] under the constraint
that the pruning function remains monotonically increasing.

Line 1 determines whether there are more β-configurations
in the BKZBenchmarker or more available threads. This
value sets the number of iterations of the main for-loop in
line 3 which is executed in parallel.

The function maxCostDistance() generates
sample_size random neighbors from solcurr to determine
the biggest cost-difference for neighboring solutions, which
is required to calculated the initial temperature tempinit for
the annealing in Line 6 following the literature. tempinit is
adapted for each iteration of the for-loop to optimize the
runtime.

To determine an appropriate starting solution,
createStartSolution() randomizes the soleven_linear
in dependence of i. To that end, a β-configuration depending
on i is assigned to soleven_linear. When i exceeds the
number of β-configurations in BKZBenchmarker, the
pruning function is additionally randomized by executing
3 · d consecutive calls of randomModifyToNeighbor()
so that each entry Ai is touched six times in average. This
procedure assures that each β-configuration is tested at least
by one thread, that each available thread is assigned some

Algorithm 2: p3Enum-epfg parallel simulated anneal-
ing approach.

Input : temptarget, sample_size, max_iterations,
coolrate ∈]0.0, 1.0[

Output : solmin

1 confid← max (numberOfThreads(), β−configurations)
2 Start parallel execution
3 for i← 1; i ≤ confid; i+ + do
4 solcur ← createStartSolution(soleven_linear , i)
5 max_dist← maxCostDistance(solcur , sample_size)
6 tempinit ← max_dist

log(0.8)

7 tempcurr ← tempinit

8 solbest ← solcur
9 while temptarget < tempcur do

10 soltemp ← randomModifyToNeighbor(solcur)
11 for its← 1; its < max_iterations; its+ + do
12 if costs(soltemp) < costs(solcurr) then
13 solcurr ← soltemp if

costs(solcurr) < costs(solbest) then
14 solbest ← solcurr

15 else if e−
(costs(soltemp−costs(solcurr))

tempcurr > rand (0,1)
then

16 solcurr ← soltemp

17 tempcur ← coolfac · tempcur

18 End parallel execution
19 solmin = reduceThreadSolutions()

work, and that the search space is entered from as many
points as possible.

Within the parallel loop, the algorithm follows the general
simulated annealing procedure and, in particular, allows to
randomly accept solutions worse than solcurr in dependence
of the current temperature tempcurr in Line 15. The left part
of Figure 1 shows the development of the first 100 changes
in the costs during annealing of the pruning function for 70-
dimensional lattice. It shows the increase of the costs between
several steps. The right part documents the overall decrease of
the costs for the whole annealing process. Finally, the output
solmin, which is the best solution of all threads, is returned.

0 20 40 60 80 10
0

23

23.5

24

step

co
st

s

0

5,
00

0

10
,0
00

15
,0
00

20
,0
00

10

15

20

25

step

co
st

s

Fig. 1. Development of costs during annealing.

Figure 2 summarizes the software architecture of p3Enum-
epfg in UML limited to the important classes, operations and
attributes explained in this section.

Fig. 2. Software architecture of p3Enum-epfg

V. EVALUATION

A. Methodology

The compute nodes employed for the runtime measurements
of this paper are dual socket machines with Intel E5-2680 v3
CPUs (24 cores) and 64 GB of RAM. For p3Enum, fplll, and
all the libraries they depend on, we use gcc compiler 8.2.0
and for SubSieve gcc 4.9.4.

For lattice dimensions 66−90, we generated random lattices
in the Goldstein-Mayer form of the Darmstadt SVP challenge
(D-SVPC) with random seed values (0, 237, 6880, 97575,
98937). The bound for the length Ā is determined by the
length of the shortest vector calculated with fplll increased
by 2.

For lattice dimensions 92 − 100 we employed the seeds
for which hall of fame entries in the D-SVPC exist and their
lengths increased by 2 as Ā. Hence, the number of lattices
employed per dimension varies from two to four.

For the visualizations of the performance data, we em-
ploy box plots of different color. The boxes represent the
values between the 25- and 75-percentile, called Q25 and
Q75, meaning that 50% of the measurement values lie in
that range. The lines below and above the boxes represent
the so-called whiskers. Their ends indicate the lowest and
highest measurement point, respectively, which lies within
1.5 ·(Q75−Q25) of the lower and upper quartile, respectively.
The median Q50 is shown by the black horizontal lines within
the boxes. Outlying measurement points are drawn as circles.
Due to the data distribution, no outliers below the whiskers
occur.

B. Runtimes with one thread

To establish a performance baseline and to verify the quality
of our pruning functions, we compare the runtimes with one
thread to the runtimes of fplll. We choose dimension 90 as
the highest dimension fplll is able to solve with the provided
strategy file and used five lattices with differing random seed.
Additionally, we performed a benchmark which measures
the number of nodes our program processes per second in
the enumeration tree identical to the benchmark in the fplll

strategizer. p3Enum achieves 2.6 · 107 nodes per second and
fplll 2.99·107 nodes per second. Thus, its enumeration is about
15 % faster than p3Enum’s. Figure 3 compares the overall
runtimes for solving the SVPs on our five random lattices split
between the different seeds. For each seed, we performed 20
runs of fplll and 30 runs of p3Enum.

0
23

7
68

80
97

57
5

98
93

7

Ove
ral

l

26

28

210

212

seed

To
ta

l
ru

nt
im

e
in

s

p3EnumOpt fplll

Fig. 3. Comparison for dimension 90 with one thread.

The shape of the runtime distribution for the varying seeds
is similar between p3Enum and fplll with an exception for
seed 97575 where the boxes have only a small overlapping
region. Considering the overall comparison at the right of the
diagram, the median of both programs is about the same with
1507 s for p3Enum and 1593 s for fplll which is also true
for the average runtime (2199 s vs. 2417 s) where p3Enum is
9 % faster. For all seeds, p3Enum delivers several trials with a
lower minimal runtime than fplll, but also for four out of the
five seeds at least one run that is slower than all fplll runs.
The runtime of p3Enum is slightly faster than the state-of-the-
art solution. However, p3Enum’s enumeration is slower and
internally time-consuming conversions from p3Enum’s data
structures to fplll’s and vice versa have to be performed to
employ fplll’s BKZ routines as library calls. This indicates
that the quality of our pruning functions is better.

C. Parallel runtimes

In this section, we compare the performance of p3Enum
employing the new pruning functions and the changed paral-
lelization strategy (cf. Section IV-A) to the former p3Enum-
performance, the fplll library, SubSieve and G6K. We split the
results into three Figures 4, 5 and 6 since this allows to refine
the scale of the y-axis to cope with the exponential growth.

Each box for p3Enum in the new version is created out of
200 single measurement points, while the others are based on
at least 75 single measurements. The diamonds in the boxes
for p3Enum additionally show the average of all runs for the
respective dimension. Finally, the red horizontal lines indicate
the average runtime of G6K reported in [8]. Both p3Enum-
versions always employ all 24 cores of the test systems.

70 72 74 76 78 80

20

22

24

26

28

210

dimension n

To
ta

l
ru

nt
im

e
in

s

pEnumOpt pEnum v1
fplll SubSieve

Fig. 4. Performance comparison for dimensions 70-80.

The box plots demonstrate a high variance within the
measurement values for all three implementations. Hence, we
believe this statistical visualization is very helpful compared to
just calculating averages. While pruned enumeration is known
to have highly varying runtimes [8], our experiments show
that SubSieve also exhibits this characteristic. In short tests
with the G6K-code we also reconsigned a similar behavior. We
employed the build-in functionality of G6K to solve the exact
SVP on our five 90-dimensional lattices which automatically
returns the average over the five matrices. We repeated the test
45 times with the fastest run of 20 s and the slowest more than
400 s, a factor higher than 20.

The speedup of the new p3Enum-version for d ∈
{70, . . . , 80} compared to the original code is a factor between
1.4 and 1.7, while it is between 2.3 to 6.7 times faster than
fplll. The speedup compared to SubSieve grows with the
dimension from 3.3 at d = 70 to 13.3 at d = 80. Hence,
although the runtime of sieving algorithms is predicted to
grow with a lower exponent than the runtime of enumeration
algorithms [6], [7] this is not the case for the available im-
plementations and the considered range of lattice dimensions.
Furthermore, [8] assumes that a good implementation of the
novel sieving algorithms will outperform pruned enumeration
already somewhere between d = 70 and d = 80. The speedup
compared to G6K lies between 2.3 and 3.3.

In the range d ∈ {82, 90}, the improved p3Enum-version
outperforms the original by a factor between 1.4 and 2.1.
Compared to SubSieve, the mean value and the average of the
runtimes are considerably lower by speedup factors between
14.6 and 19.3. Interestingly, the highest speedup is achieved
for d = 84 and starts to slightly decrease afterward. Maybe
this indicates that the lower growth in complexity of sieving
compared to enumeration shows up in this range but p3Enum
is still considerably faster. The speedup compared to G6K

82 84 86 88 90
22

24

26

28

210

212

214

dimension n

To
ta

l
ru

nt
im

e
in

s

pEnumOpt pEnum v1
fplll SubSieve

Fig. 5. Performance comparison for dimensions 82-90.

lies in [2.2, . . . , 2.7] for d ∈ {82, . . . , 88} but is just 1.05 for
d = 90, although the speedup of the new p3Enum-version is
the highest for d = 90 compared to the old version (factor 3.0)
and to fplll (factor 14.5). The matrices for d = 90 employed
in [8] or the dimension 90 at all seem to be very suitable for
G6K’s approach. This is underpinned by the fact that p3Enum
performs better for dimension 92 again as shown in Figure 6.
The speedup compared to G6K is 1.78. From dimension 94
on, where G6K is faster by a factor of 1.13, G6K continuously
outperforms p3Enum but its runtimes are still competitive.

92 94 96 98 10
0

23

26

29

212

215

dimension n

To
ta

l
ru

nt
im

e
in

s

pEnumOpt

Fig. 6. Performance comparison for dimensions 92-100.

Additionally, Figures 4 and 5 highlight another important
advantage of p3Enum: The parallel execution has a stabilizing
effect on the runtimes for all dimensions. For example, the
range of highest and lowest runtime for dimension 74 is 75 s

for fplll but only 10 s for p3Enum. This allows a much better
reproducibility and predictability of the runtimes and hence
makes p3Enum more practical and usable in applications
where an a priori knowledge of the expected runtimes is
important. The logarithmic scale of the y-axis somewhat hides
that this statement is also true for higher dimensions. While
the range of runtimes for dimension 90 is 882 s for p3Enum,
it is 8884 s for fplll.

D. Scaling behavior

To investigate the scaling behavior of the new p3Enum-
version, we take the SVP for the 88-dimensional lattice with
seed 0 as an example. We consider the overall runtimes to
solve the SVP when setting the number of threads to 1, 2,
4, 8, 16 and 24. For each number of threads, sixty runs are
taken into account resulting in 360 measurement points. The
results are summarized by box plots in Figure 7. The red line
connects the averages of the runtimes while the red numbers
show the relative speedup in the average runtime.

1 2 4 8 16 24

0

2,000

4,000

6,000

8,000

1.0 2.2 4.7 8.1 12.2 15.7

Number of threads

To
ta

l
ru

nt
im

e
in

s

pEnumOpt

Fig. 7. Scaling behavior of the optimized p3Enum-version.

For a fixed number of threads, there is again a high variance
in the runtimes resulting from the randomness within the
algorithm itself. The speedup in the average runtime is ideal
or even super-linear for 2, 4 and 8 threads. Afterward, the
performance of the increasing number of parallel instances of
BKZ and ENUM is limited by the memory bandwidth of the
test system. In particular, this means that the number of nodes
in the search trees which is processed per second within the
different threads decreases by up to 30 %. Since the efficiency
for 24 threads is still higher than 0.67 a moderate increase
of the number of threads will further noticeably improve the
runtimes.

Besides the overall runtimes we can see a second important
effect of the number of threads which is the span between
the fastest and slowest attempt. While the runtimes differ for
slightly more than 7200 s for a single thread they only differ
by about 320 s for 24 threads limiting the range by a factor
higher than 22 compared to a single thread. This considerably

increased stability of the runtimes is very important for an
SVP solver to be practical and further increasing the number
of threads employed will further increase the stability of the
runtimes.

E. Pruning functions

Figure 8 compares different pruning functions for a lattice
of rank 90. The light blue line shows the interpolated line
resulting from the procedure of [3] which was employed in
the former p3Enum version. The red line shows the pruning
function which is taken from the default strategy file of the
fplll library. The dark blue line represents the function which
results from the simulated annealing while the dashed line
is the even linear starting point of the optimization process.
All three pruning functions depicted have in common that
they increase the y-values in the very first part of the graph
compared to the even linear function, then fall below it at
different entries Ai of A. The crossover point varies between
i = 13 for the polynomial and i = 20 for fplll. Interestingly,
all consistently intersect the even linear graph around entry 58
of A again and assume values higher than the starting function
from there on. The lower the y-value the more aggressive the
pruning function at this position, meaning that the polynomial
from [3] cuts of many more vectors in the range 1 ≤ i ≤ 3
than the other two while the function from simulated annealing
accepts much more candidates.

20 40 60 80
0 · 100

2 · 106

4 · 106

6 · 106

entry of A

A
m

a
x

p3EnumOpt p3Enum v1
fplll even linear

Fig. 8. Different pruning functions for lattices with d = 90.

The function of [3] is smooth resulting from the fact that
it is represented by a polynomial of degree eight, while the
other two have the shape of stairs since they are based on
even simplexes. Section V-B shows that the usage of our
function performs comparably to fplll meaning that different
pruning functions can result in the same effective runtime of
the solution process.

Additionally, we noticed that besides all randomizations
within the simulated annealing two independent runs to create
a pruning function for dimension 90 with 24 threads converged
to nearly the same A. The maximum deviation between two

corresponding Ais is 0.2 % while the average deviation over
all entries is only 0.035 %. The resulting cost is 1704.90 s and
1704.89 s, respectively, indicating that a nearly ideal pruning
function was found.

VI. CONCLUSION AND OUTLOOK

We presented two important extensions to the SVP solver
p3Enum. A novel parallelization for the enumeration with
extreme pruning and optimized pruning functions generated
with the new p3Enum-epfg module by a shared memory
parallelized simulated annealing approach speed up the former
p3Enum-version by a factor up to 3. This makes p3Enum
the fastest SVP solver in the range of d = 66 to d = 92
which makes p3Enum a good SVP-oracle in lattice reductions
frameworks when higher values of β are required. Addi-
tionally, we performed a detailed study of state-of-the art
enumeration- and sieving-based SVP solvers and demonstrated
the randomness within all algorithms considered, including the
sieving-based SVP solvers. This shows that only considering
median or average values may be misleading when evaluating
the tractability. The parallelization makes p3Enum’s runtimes
more stable and reproducible also in comparison to sieving-
based SVP solvers and employing more threads will further
stabilize and reduce the runtimes.

In the future, we will increase the serial performance of
the enumeration to be at least the same as fplll’s which
enables a more detailed comparison of the pruning functions
generated by simulated annealing. We also will consider
random Goldstein-Mayer lattices of higher dimension and
other types of lattices like those resulting from knapsack
problems. Furthermore, we will extend our studies of the
convergence behavior of simulated annealing and optimize it’s
parameterization.

ACKNOWLEDGMENTS

This work has been co-funded by the DFG through CRC
1119 CROSSING and BI 714/6-1. Calculations were con-
ducted on the Lichtenberg high performance computer of the
TU Darmstadt, and computing resources granted by RWTH
Aachen University under project prep0016. We thank Yuntao
Wang for helpful discussions about progressive BKZ and the
pBKZ-lib code. We also thank Christian Iwainsky for the
discussions and ideas on parallelization on different levels of
the algorithm and the anonymous reviewers for their helpful
comments.

REFERENCES

[1] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM J. Comput.,
vol. 26, no. 5, pp. 1484–1509, Oct. 1997. [Online]. Available:
http://dx.doi.org/10.1137/S0097539795293172

[2] N. Gama, P. Q. Nguyen, and O. Regev, “Lattice enumeration using
extreme pruning,” in Advances in Cryptology - EUROCRYPT 2010,
H. Gilbert, Ed. Springer, 2010, pp. 257–278.

[3] P.-C. Kuo, M. Schneider, Ö. Dagdelen, J. Reichelt, J. Buchmann, C.-
M. Cheng, and B.-Y. Yang, “Extreme enumeration on GPU and in
clouds,” in Cryptographic Hardware and Embedded Systems - CHES
2011, B. Preneel and T. Takagi, Eds. Springer, 2011, pp. 176–191.

[4] Y. Aono, Y. Wang, T. Hayashi, and T. Takagi, “Improved progressive
BKZ algorithms and their precise cost estimation by sharp simulator,”
in Advances in Cryptology - EUROCRYPT 2016, M. Fischlin and J.-S.
Coron, Eds. Springer, 2016, pp. 789–819.

[5] M. Burger, C. Bischof, and J. Krämer, “p3Enum: A new parameteri-
zable and shared-memory parallelized shortest vector problem solver,”
in International Conference on Computational Science – ICCS-2019,
J. Rodrigues, P. Cardoso, and R. e. a. Lam, Eds. Springer, 2019.

[6] T. Laarhoven and A. Mariano, “Progressive lattice sieving,” in
Post-Quantum Cryptography - PQCrypto 2018, 2018, pp. 292–311.
[Online]. Available: https://doi.org/10.1007/978-3-319-79063-3_14

[7] L. Ducas, “Shortest vector from lattice sieving: A few dimensions for
free,” in Advances in Cryptology - EUROCRYPT 2018, 2018, pp. 125–
145. [Online]. Available: https://doi.org/10.1007/978-3-319-78381-9_5

[8] M. Albrecht, L. Ducas, G. Herold, E. Kirshanova, E. W. Postlethwaite,
and M. Stevens, “The general sieve kernel and new records in lattice
reduction,” to appear, 2019.

[9] C. P. Schnorr and M. Euchner, “Lattice basis reduction: Improved
practical algorithms and solving subset sum problems,” Mathematical
Programming, vol. 66, no. 1, pp. 181–199, Aug 1994. [Online].
Available: https://doi.org/10.1007/BF01581144

[10] T. f. development team, “fplll, a lattice reduction library,” 2016,
available at https://github.com/fplll/fplll. [Online]. Available: https:
//github.com/fplll/fplll

[11] J. Hermans, M. Schneider, J. Buchmann, F. Vercauteren, and B. Preneel,
“Parallel shortest lattice vector enumeration on graphics cards,” in
Progress in Cryptology - AFRICACRYPT 2010, D. J. Bernstein and
T. Lange, Eds. Springer, 2010, pp. 52–68.

[12] Y. Aono, “A faster method for computing gama-nguyen-regev’s extreme
pruning coefficients,” CoRR, vol. abs/1406.0342, 2014. [Online].
Available: http://arxiv.org/abs/1406.0342

[13] P. Van Laarhoven and E. Aarts, “Simulated annealing,” in Simulated
annealing: Theory and applications. Springer, 1987, pp. 7–15.

