
Security Analysis of CPace
Michel Abdalla

CNRS and DI/ENS, PSL University

Paris, France

michel.abdalla@ens.fr

Björn Haase

Endress+Hauser Liquid Analysis

Gerlingen, Germany

bjoern.haase@endress.com

Julia Hesse

IBM Research

Zurich, Switzerland

jhs@zurich.ibm.com

ABSTRACT
In response to standardization requests regarding password-authen-

ticated key exchange (PAKE) protocols, the IRTF working group

CFRG has setup a PAKE selection process in 2019, which led to the

selection of the CPace protocol in the balanced setting, in which

parties share a common password.

In this paper, we provide a security analysis of CPace in the

universal composability framework for implementations on elliptic-

curve groups. When doing so, we restrict the use of random or-

acles to hash functions only and refrain from modeling CPace’s

Map2Point function that maps field elements to curve points as an

idealized function. As a result, CPace can be proven secure under

standard complexity assumptions in the random-oracle model.

Finally, in order to extend our proofs to different CPace variants

optimized for specific environments, we employ a new approach,

which represents the assumptions required by the proof as libraries

which a simulator can access. By allowing for the modular replace-

ment of assumptions used in the proof, this new approach avoids a

repeated analysis of unchanged protocol parts and lets us efficiently

analyze the security guarantees of all the different CPace variants.

1 INTRODUCTION
Security analysis and efficient implementation of cryptographic

protocols are often split into separate working groups. As a result,

subtle differences between the actually implemented and analyzed

protocols easily emerge, for example when implementors slightly

tweak the protocol to improve efficiency. An example where par-

ticularly aggressive optimization for efficiency is implemented on

the protocol level is CPace as specified in current internet drafts

[Haa20, HL18]. CPace is a password-authenticated key exchange

protocol (PAKE) [BM92], which allows two parties to establish a

shared cryptographic key from matching passwords of potentially

low entropy. On a high level, CPace works as follows. Given a cyclic

group G, parties first locally and deterministically compute a gen-

erator 𝑔 ∈ G from their passwords in a secure way, so that 𝑔 reveals

as little information about the password as possible. Then, both

parties perform a Diffie-Hellman key exchange by choosing secret

exponents 𝑥 and 𝑦, respectively, exchanging 𝑔𝑥 and 𝑔𝑦 and locally

compute 𝐾 = (𝑔𝑥)𝑦 = (𝑔𝑦)𝑥 . The final key is then computed as

the hash of 𝐾 together with session-identifying information such

as transcript. The currently most efficient implementations of the

above blueprint protocol use elliptic curve groups of either prime or

composite order. To securely compute the generator, the password

is first hashed to the finite field F𝑞 the curve is constructed over,

and then mapped to the curve by a map calledMap2Point. Depend-

ing on the choice of curve, efficiency tweaks such as simplified

point verification on curves with twist security, or computation

with only x-coordinates of points can be applied [HL19, Haa20].

Unfortunately, until today, it is not clear how these modifications

impact security of CPace.

A short history of CPace. In 1996, Jablon [Jab96] introduced the

SPEKE protocol, which performs a Diffie-Hellman key exchange

with generators computed as 𝑔← H(pw). Many variants of SPEKE

have emerged in the literature since then, including ones that fixed

initial security issues of SPEKE. Among them, the PACE proto-

col [PAC08, BFK09] aims at circumventing direct hashing onto

the group with an interactiveMap2Point protocol to compute the

password-dependent generators. From this, CPace [HL19] emerged

by combining the best properties of PACE and SPEKE, namely com-

puting the generator without interaction while avoiding the need to

hash directly onto the group. More precisely, password-dependent

generators are computed as 𝑔← Map2Point(H(pw)). In 2020, the

IRTF working group CFRG has chosen CPace as the recommended

protocol for (symmetric) PAKE.

Our Contributions. In this paper, we provide the first compre-

hensive security analysis of the CPace protocol that applies also to

variants of CPace optimized for usage with state-of-the-art elliptic

curves. On a technical level, in Section 3.3 we first identify the core

properties of the deterministic Map2Point function that allow to

prove strong security properties of CPace. Crucially, we restrict the

use of random oracles to hash functions only and refrain from mod-

elingMap2Point as an idealized function, as it would not be clear

how to instantiate it in practice. We show that, using some weak

invertibility properties of Map2Point that we demonstrate to hold

for many candidate implementations, CPace can be proven secure

under standard Diffie-Hellman-type assumptions in the random-

oracle model. Our security proof captures adaptive corruptions and

weak forward secrecy and is carried out in the Universal Compos-

ability (UC) framework, which is today’s standard when analyzing

security of PAKE protocols.

In Section 6 we then turn our attention to modifications of CPace

and, for each modification individually, state under which assump-

tions the security properties are preserved. In more detail, our

analysis captures the following modifications.

• Using groups of composite order 𝑐 · 𝑝 , where 𝑝 is a large

prime and 𝑐 is a small cofactor coprime to 𝑝 .

• Consider both, constructions based on a map-twice-and-add

strategy and single execution of Map2Point.

• Using only single-coordinate representations of elliptic curve

points in order to speed up and facilitate implementation.

• Avoiding computationally costly point verification on curves

with secure quadratic twists such as Curve25519[Ber06].

To demonstrate the security of these variants, we take a new

approach that saves us from a repeated analysis of unchanged parts

of CPace. Namely, we implement the CDH-type cryptographic as-

sumptions required by CPace as libraries which a simulator can

access. This allows for modular replacement of assumptions re-

quired in the security proof, and lets us efficiently analyze all the

different CPace variants’ security guarantees. We believe that this

new proof technique introduced in Section 5.1 might be of inde-

pendent interest in particular for machine-assisted proving, since

reductions are captured in code instead of textual descriptions only.

As a side contribution, we identify a common shortcoming in

all UC PAKE security definitions in the literature [CHK
+
05, JKX18,

Hes20, ABB
+
20a], which may impact the usability of these defi-

nitions as building blocks in higher-level applications. All these

definitions allow amalicious party to learn the shared key computed

by an honest party without knowing her password. We strengthen

the definition to prevent such attacks, and demonstrate with our

analysis of CPace that our fix yields a security definition that is still

met by PAKE protocols. Even more, our analysis captures adaptive

corruptions, where an adversary can corrupt users who already

started the protocol and computed secret values. Our work provides

the first evidence that SPEKE-like protocols can withstand these

strong corruptions.

In conclusion, our results demonstrate that CPace enjoys strong

provable security guarantees in all its variants that have been pro-

posed for the sake of efficiency improvements.

Related Work. In [BFK09] a game-based security analysis of ex-

plicitly authenticated PACE protocol variants as used in travel

documents has been carried out, with a focus on different variants

of interactive Map2Point constructions. Security of CPace (includ-

ing Map2Point and cofactor clearing) was formally analyzed in

[HL19]. However, the proof was found to be insufficient by reviews

done during the CFRG selection process, and indeed, the claimed

security under plain CDH seems to be difficult to achieve. Further,

no analysis of real world implementation artifacts such as cofactor

clearing, map2point function and twist security was conducted

in that work. Altogether, for establishing full trust in real-world

implementations of CPace we identify the urgent need for filling

the gaps in the existing analysis in [HL19].

[ABB
+
20a] analyzed the security of several EKE [BM92] and

SPEKE variants in the UC framework, including SPAKE2 [AP05]

and TBPEKE [PW17]. They also indicated that their proof for

TBPEKE could be extended to CPace with the inclusion of the

protocol transcript and password-dependent generator in the fi-

nal key derivation hash [ABB
+
20b]. Although the need for the

password-dependent generator in the final hash could be excluded

with a more refined argument, their analysis still does not deal

with adaptive security and only considers a simplified version of

CPace, similar to the CPace
base

variant in Section 5, which does

not account for the implementation issues being addressed in this

paper.

[ABK
+
20] formalized the algebraic-group model within the UC

framework and proved that the SPAKE2 and CPace protocols are

universally composable in the new model with respect to the stan-

dard functionality for password-based authenticated key exchange

in [CHK
+
05]. As in [ABB

+
20a], their analysis does not deal with

adaptive security and only considers a simplified version of CPace,

similar to CPace
base

.

Organization of this paper. We introduce the PAKE security

model in Section 2, hardness assumptions and requirements for

the map in Section 3. We then repeat the essential properties of

the CPace construction in Section 4. Then we analyse CPace, first

using a simplified CPace in Section 5 (modeling the map as random-

oracle) and then extending the analysis to real-world instantiations

using mapping constructions in Section 6. Section 7 presents some

concluding remarks and possible directions for future work.

Session initiation

On (NewSession, sid, P, P′, pw) from P, ignore this query if record

⟨sid, P, ·, ·⟩ already exists. Otherwise record ⟨sid, P, P′, pw⟩ marked fresh

and send (NewSession, sid, P, P′) to A.

Active attack

• On (TestPwd, sid, P, pw∗) from A, if ∃ a fresh record

⟨sid, P, P′, pw, ·⟩ then:
– If pw

∗ = pw then mark it compromised and return “correct guess”;

– If pw
∗ ≠ pw then mark it interrupted and return “wrong guess”.

• On (RegisterTest, sid, P) from A, if ∃ a fresh record ⟨sid, P, P′, ·⟩
then mark it interrupted and flag it tested.

• On (LateTestPwd, sid, P, pw∗) from A, if ∃ a record
⟨sid, P, P′, pw, 𝐾 ⟩ marked completed with flag tested then

remove this flag and do:

– If pw
∗ = pw then return 𝐾 to A;

– If pw
∗ ≠ pw then return 𝐾$ ←R {0, 1}𝜅 to A.

Key generation

On (NewKey, sid, P, 𝐾∗) from A, if ∃ a record ⟨sid, P, P′, pw⟩ not marked

completed then do:

• If the record is compromised, or either P or P′ is corrupted, then

set 𝐾 := 𝐾∗ .
• If the record is fresh and ∃ a completed record ⟨sid, P′, P, pw, 𝐾 ′⟩

that was fresh when P′ output (sid, 𝐾 ′) , then set 𝐾 := 𝐾 ′.
• In all other cases pick 𝐾 ←R {0, 1}𝜅 .

Finally, append 𝐾 to record ⟨sid, P, P′, pw⟩, mark it completed, and output

(sid, 𝐾) to P.

Adaptive corruption

On (AdaptiveCorruption, sid, P) from A, if ∃ a record ⟨sid, P, ·, pw⟩ not
marked completed then mark it completed and output (sid, pw) .

Figure 1: UC PAKE variants: The original PAKE functional-
ity FpwKE of Canetti et al. [CHK+05] is the version with all
gray text omitted. The lazy-extraction PAKE functionality
F
lePAKE

[ABB+20a] includes everything, and the variant of
F
lePAKE

used in this work includes everything but the dashed
box.

2 PAKE SECURITY MODEL
We use the Universal Composability (UC) framework of Canetti

[Can01] to formulate security properties of CPace. For PAKE, usage

of the simulation-based UC framework comes with several advan-

tages over the game-based model for PAKE introduced by Bellare et

al. [BPR00]. Most importantly, UC secure PAKE protocols preserve

their security properties in the presence of adversarially-chosen

passwords andwhen composed with arbitrary other protocols. Orig-

inally introduced by Canetti et al. [CHK
+
05], the ideal functionality

FpwKE for PAKE (depicted in Fig. 1) is accessed by two parties,P and

P ′, who both provide their passwords. FpwKE then provides both

parties with a uniformly random session key if passwords match,

and with individual random keys if passwords mismatch. Since an

adversary can always engage in a session and guess the counter-

part’s password with non-negligible probability, FpwKE must in-

clude an adversarial interface TestPwd for such guesses. Crucially,

only one guess against every honest party is allowed, modeling the

fact that password guessing is an online attack and cannot be used

to brute-force the password from a protocol’s transcript. We refer

the reader to [CHK
+
05] for a more comprehensive introduction to

the PAKE functionality.

An ideal functionality for the SPEKE protocol family. Unfortu-
nately, FpwKE is not suitable to analyze SPEKE-like PAKE protocols

such as CPace, where session keys are computed as hashes of Diffie-

Hellman keys (and possibly parts of the transcript). The reason

is that FpwKE’s TestPwd interface allows password guesses only

during a protocol run, which requires a simulator to extract pass-

word guesses from the protocol’s transcript. When the final output

is a hash, the adversary might postpone its computation, keeping

information from the simulator that is required for password ex-

traction. To circumvent these issues, recently a “lazy-extraction

PAKE” functionality F
lePAKE

was proposed and shown useful in

the analysis of SPEKE-like protocols by Abdalla et al. [ABB
+
20a].

F
lePAKE

, which we also depict in Fig. 1, allows either one online
or one offline password guess after the key exchange was finished.

One might argue that usage of keys obtained from F
lePAKE

is never

safe, since the adversary might eventually extract the key from it

at any later point in time. This however can be easily prevented by

adding a key confirmation round, which keeps an adversary from

postponing the final hash query and guarantees perfect forward se-

crecy [ABB
+
20a]. We refer the reader to [ABB

+
20a] for a thorough

discussion of F
lePAKE

.

Our adjustments to F
lePAKE

. The main difference between our

F
lePAKE

and all PAKE functionalities from the literature [CHK
+
05,

JKX18, Hes20, ABB
+
20a] is that we remove a shortcoming that ren-

dered these functionalities essentially useless as building blocks for

higher-level applications. More detailed, we remove the ability of

the adversary to determine an honest party’s output key in a cor-

rupted session. The change can be seen in Fig. 1, where the dashed

box shows the weakening that we simply omit in our version of

F
lePAKE

. In reality, nobody would want to use a PAKE where an

adversary can learn (even set) the key of an honest party without
knowing the honest party’s password. This is not what one would
expect from an authenticated key exchange protocol. In Appendix B

we explain why existing PAKE protocols can still be considered se-

cure, but also provide an illustrating example how this shortcoming

hinders usage of PAKE functionalities in modular protocol analysis.

In this paper, we demonstrate that CPace can be proven to protect

against such attacks.

We also make two minor adjustments, which are merely to ease

presentation in this paper. Namely, we add an explicit interface for

adaptive corruptions, and we omit roles since we analyze a protocol

where there is no dedicated initiator.

3 PRELIMINARIES
3.1 Notation
Throughout the paper, we use 𝑘 as security parameter. With←

R

we denote uniformly random sampling from a set. With oc(𝑃𝑖 , 𝑃 𝑗)
we denote ordered concatenation, i.e., oc(𝑃𝑖 , 𝑃 𝑗) = 𝑃𝑖 | |𝑃 𝑗 if 𝑃𝑖 ≤ 𝑃 𝑗
and oc(𝑃𝑖 , 𝑃 𝑗) = 𝑃 𝑗 | |𝑃𝑖 otherwise.

3.2 Cryptographic assumptions
The security of CPace is based on the hardness of a combination of

strong and simultaneous Diffie-Hellman problems. To ease access

to the assumptions, we state them with increasing complexity.

Definition 3.1 (Strong CDH problem (sCDH) [ABR01]). Let
G be a cyclic group with a generator 𝐵 and (𝑌𝑎 = 𝐵𝑦𝑎 , 𝑌𝑏 = 𝐵𝑦𝑏) sam-
pled uniformly from (G\𝐼G)2. Given access to oraclesDDH (𝐵,𝑌𝑎, ·, ·)
and DDH (𝐵,𝑌𝑏 , ·, ·), provide 𝐾 such that 𝐾 = 𝐵𝑦𝑎 ·𝑦𝑏 .

We note that sCDH is a weaker variant of the so-called gap-CDH

assumption, where the adversary has access to “full” DDH oracles

with no fixed inputs. Next we provide a stronger variant of sCDH

where two CDH instances need to be solved that involve a common,

adversarially chosen element.

Definition 3.2 (Strong simultaneous CDH problem (sSDH)).

Let G be a cyclic group and (𝑌𝑎,𝐺1,𝐺2) sampled uniformly from (G\
𝐼G)3. Given access to oracles DDH (𝐺1, 𝑌𝑎, ·, ·) and DDH (𝐺2, 𝑌𝑎, ·, ·),
provide (𝑋𝑏 , 𝐾1, 𝐾2) ∈

(
G \ 𝐼G

)
× G × G s. th. DDH (𝐺1, 𝑌𝑎, 𝑋𝑏 , 𝐾1)

= DDH (𝐺2, 𝑌𝑎, 𝑋𝑏 , 𝐾2) = 1

Again we note that sSDH is a weaker variant of the gap simulta-

neous Diffie-Hellman problem from [PW17] and [ABB
+
20a] as the

access to the DDH oracles is restricted by fixing two inputs. Lastly,

we state a variant of the sSDH assumption where generators are

sampled according to some probability distribution. Looking ahead,

we require this variant since in CPace parties derive generators by

applying a map which does not implement uniform sampling from

the group. We state the non-uniform variant of sSDH for arbitrary

probability distributions and investigate its relation to “uniform”

sSDH afterwards.

Definition 3.3 (Strong simultaneous non-uniform CDH

problem (DG-sSDH)). Let G be a group and DG be a probability
distribution on G. The strong simultaneous non-uniform CDH prob-
lem DG-sSDH is defined as the sSDH problem but with (𝑌𝑎,𝐺1,𝐺2)
sampled using UG × DG × DG , where UG denotes the uniform
distribution on G.

Clearly,UG\𝐼G -sSDH is equivalent to sSDH. We show that hard-

ness of uniform and non-uniform sSDH are equivalent given that

the distribution allows for probabilistic polynomial time (PPT) re-

jection sampling, which we now formalize.

Definition 3.4 (Rejection sampling algorithm for (G,DG)).
Let G be a group and DG be a probability distribution on G. With
DG (𝐺) we denote the probability for point𝐺 . Let RS be a probabilistic
algorithm taking as input elements𝐺 ∈ G and outputting⊥ or a value
≠⊥. Then 𝑅𝑆 is called a rejection sampling algorithm for (G,DG)
if 𝑃𝑟 [RS(𝐺) ≠⊥] = DG (𝐺) for 𝐺 ∈ G.

Informally RS is a probabilistic algorithm which accepts (output

different from ⊥) or rejects (output ⊥) a candidate point. When

queried multiple times on the same input 𝐺 ∈ G, the probability
that 𝐺 will be accepted or rejected models the distribution DG .
Looking ahead, we define such a rejection sampler algorithm for

the maps used in CPace and use this as part of our proof strategy.

For avoiding that our simulator gets computationally exhausted,

we require that DG allows for a PPT instantiation of a rejection

sampling process using RS with a sufficiently large acceptance rate.

We formalize this requirement as follows.

Definition 3.5 (Acceptance rate of a rejection sampler for

(G,DG)). Let G be a group andDG be a probability distribution on
G. Let RS be a rejection sampling algorithm for (G,DG). Let𝐺𝑖 ∈ G
be a sequence of𝑚 uniformly drawn points and 𝑟𝑖 = RS(𝐺𝑖). Then RS
is said to have an acceptance rate of (1/𝑛) if the number of accepted
points with 𝑟𝑖 ≠⊥ converges to𝑚/𝑛 when𝑚 →∞.

Using these definitions, we are able to prove that given some

assumptions on the distribution DG hardness of sSDH and DG-
sSDH are equivalent up to the additional PPT computational effort

generated by the rejection sampling algorithm.

Theorem 3.6 (sSDH⇐⇒DG-sSDH). Let G be a cyclic group of
order 𝑝 and DG a probability distribution on G. If there exists a PPT
rejection sampler RS for

(
G,DG

)
with acceptance rate (1/𝑛) then the

probability of PPT adversaries againstDG-sSDH and sSDH of solving
the respectively other problem differs by at most (2D(𝐼G) + (1/𝑝)) and
solving sSDH with the help of aDG-sSDH adversary requires at most
2𝑛 executions of RS on average.

Proof. sSDH hard⇒DG − sSDH hard: Given an adversary

BDG−sSDH against DG − sSDH with non-negligible success prob-

ability 𝜈 , we show how to construct an adversary AsSDH. On re-

ceiving an sSDH-challenge (𝑌𝑎,𝐺1,𝐺2), first note that 𝑌𝑎 is uni-

formly sampled from G \ {𝐼G}. AsSDH uniformly samples 𝑟, 𝑠 ∈
Z𝑝 until RS(𝐺𝑟

1
) = 1 and RS(𝐺𝑠

2
) = 1, which requires 2𝑛 calls

to RS on average. AsSDH runs BDG−sSDH on input (𝑌𝑎,𝐺𝑟
1
,𝐺𝑠

2
).

If B queries DDH(𝐺𝑟
1
, 𝑌𝑎, 𝑋, 𝐿), A queries his own oracle with

DDH(𝐺1, 𝑌𝑎, 𝑋, 𝐿
1/𝑟) and relays the answer to B (queries 𝐺𝑠

2
are

handled analogously). On receiving (𝑌𝑏 , 𝐾1, 𝐾2) from BDG−sSDH,
AsSDH provides (𝑌𝑏 , 𝐾

1/𝑟
1
, 𝐾

1/𝑠
2
) as solution in his sSDH experi-

ment.

As RS is a rejection sampler for DG , (𝑌𝑎,𝐺𝑟1,𝐺
𝑠
2
) is a random

DG − sSDH challenge, and thus B solves it with probability 𝜈 . If

B provides a solution, then AsSDH succeeds in solving his own

challenge unless 𝐺𝑟
1
or 𝐺𝑠

2
= 𝐼G or 𝐺𝑟

1
= 𝐺𝑠

2
which occurs at most

with probability (2DG (𝐼G) +1/𝑝). As RS executes in PPT,AsSDH is

PPT, uses (2𝑛) calls to RS on average and succeeds with probability

𝜈 (1 − 2DG (𝐼G) − 1/𝑝), which is non-negligible since 𝜈 is.

sSDH hard⇒DG − sSDH hard: Given an adversary AsSDH

against sSDH with non-negligible probability 𝜇 we show how to

construct aDG−sSDH adversaryBDG−sSDH. On receiving aDG−
sSDH challenge (𝑌𝑎,𝐺1,𝐺2), B samples 𝑟, 𝑠 ∈ Z𝑝 \ 0 and starts

AsSDH on input (𝑌𝑎,𝐺𝑟
1
,𝐺𝑠

2
). DDH oracle queries are handled the

same as above. On receiving (𝑌𝑏 , 𝐾1, 𝐾2) from AsSDH, B provides

(𝑌𝑏 , 𝐾
1/𝑟
1
, 𝐾

1/𝑠
2
) as solution to his own challenge.

If A is successful, then B succeeds unless either 𝐺1 or 𝐺2 = 𝐼G
or𝐺𝑟

1
= 𝐺𝑠

2
which occurs at most with probability (2DG (𝐼G) +1/𝑝).

Thus, B is a PPT adversary against DG − sSDH succeeding with

non-negligible probability 𝜇 (1 − 2DG (𝐼G) − 1/𝑝). □

Informally, the assumptions sSDH and DG − sSDH become

equivalent if stepping over an element that gets accepted in the

sampling process becomes sufficiently likely for a randomly drawn

sequence of candidates. Secondly, the probability of accidentaly

drawing the neutral element from DG needs to be negligible.

On elliptic curves groups G that provide a property coined twist
security in [BL19], CPace allows for implementations with reduced

computational complexity and code size under an additional as-

sumption including the group G′ on the curve’s quadratic twist.

We formalize the corresponding problem sTCDH as follows.

Definition 3.7 (Strong twist CDH problem (sTCDH)). Let
G be a first cyclic group with a generator 𝐵 and (𝑌𝑎 = 𝐵𝑦𝑎) sampled
uniformly from (G \ 𝐼G). Let G′ be a second cyclic group. Given
access to DDH oracle DDH(𝐵,𝑌𝑎, ·, ·) in G, provide 𝑋,𝑍 ∈ G′ \ 𝐼G′
with 𝑍 = 𝑋 𝑦𝑎 .

3.3 The function Map2Point
The generators of the Diffie-Hellman exchange in CPace are com-

puted via a deterministic function Map2Point : F𝑞 → G, either by
using one single execution ofMap2Point or, alternatively, by adding

the results of two independent invocations of Map2Point. In both

cases, security of CPace relies onMap2Point meeting the require-

ments from this section. Informally, we first require thatMap2Point

is invertible. That is, for any point on the image of the map, there

must be an efficient algorithmMap2PointPreImages that outputs

all preimages in F𝑞 . Details on how such an inversion algorithm

can be efficiently implemented for various elliptic curve groups

are given in [FHSS
+
19, BHKL13, BCI

+
10a, Ham20] and references

therein. Secondly, the maximum number of preimages 𝑛max map-

ping to the same element must be konwn and needs to be small.

This is needed in order to construct a rejection sampling algorithm

whose acceptance rate must depend on 𝑛max.

Definition 3.8. LetG be a group of points on an elliptic curve over
a field F𝑞 . LetMap2Point : F𝑞 → G be a deterministic function. Then
Map2Point(·) is called probabilistically invertible with at most 𝑛max

preimages if there exists a probabilistic polynomial-time algorithm
(𝑟1, . . . , 𝑟𝑛 (𝐺)) ← Map2PointPreImages(𝐺) that outputs all 𝑛(𝐺)
values 𝑟𝑖 ∈ F𝑞 s.th. 𝐺 = Map2Point(𝑟𝑖) for all 𝐺 ∈ G; and ∀𝐺 ∈ G,
𝑛max ≥ 𝑛(𝐺).

For a map that fulfills this property an inverse probabilistic

map Map2Point
−1

can be defined that also serves as rejection

sampling algorithm for the distribution DG that is produced by

Map2Point(𝑟) for uniformly distributed inputs 𝑟 ∈ F𝑞 :

Algorithm 1 Map2Point
−1 (·)

On input 𝐺 ∈ G: Sample 𝑖 uniformly from {1, . . . , 𝑛max}; Then
obtain𝑚 ∈ {0, . . . , 𝑛max} pre-images

(𝑟1, . . . , 𝑟𝑚) ← Map2PointPreImages(𝐺); If𝑚 < 𝑖 return (⊥), else
return (𝑟𝑖)

Lemma 3.9. Given a probabilistically invertible map with at most
𝑛max preimages according to Definition 3.8, then Algorithm 1 is a PPT
rejection sampler for (G,DG) according to the Definition 3.5 with
average acceptance rate (|F𝑞 |/|G|)/𝑛max.

Proof. We first define the average number of preimages 𝑛max ≥
𝑛 ≥ 1 as the quotient of the order of the field F𝑞 and the number

of points on the image of the map, i.e., 𝑛 = |F𝑞 |/|support (DG) |.
When drawing an element 𝐺 uniformly from G, the probability
that the number of preimages𝑚 for 𝐺 is nonzero is given by the

quotient of the order of the support of DG and the order of the

group. By the definition of 𝑛 above this is |F𝑞 |/(𝑛 |G|).
For any point on the map with a nonzero number𝑚 of preimages,

Algorithm 1 returns a result ≠⊥ with probability𝑚/𝑛max. As the

average value for the number of preimages for any point on the

image of the map is 𝑛, the average acceptance rate is (|F𝑞 |/(𝑛 |G|)) ·
𝑛/𝑛max = (|F𝑞 |/|G|)/𝑛max. □

Use of Map2Point−1 for uniformly sampling field elements from
F𝑞 . ForMap2Point

−1
fromAlgorithm 1 the probability of returning

𝑟 ≠⊥ increases proportionally with the number of preimages for a

given input. As a result we can use it for transforming a sequence

of uniformly sampled group elements 𝐺𝑙 ∈ G to a sequence of

uniformly sampled field elements 𝑟𝑙 ∈ F𝑞 .

Corollary 3.10. Given a probabilistically invertible map with at
most 𝑛max preimages according to Definition 3.8, and points 𝐺𝑙 uni-
formly sampled fromG, then 𝑟𝑙 ← Map2Point−1 (𝐺𝑙) according to Al-
gorithm 1 outputs results 𝑟𝑙 ≠⊥with probability𝑝 ≥ (|F𝑞 |/|G|)/𝑛max
and the distribution of outputs 𝑟𝑙 ≠⊥ will be uniform in F𝑞 .

Collision probability for map-generated points: Moreover, we can

give a bound the collision probability. When sampling two field ele-

ments 𝑟𝑎, 𝑟𝑏 ←R
F𝑞 uniformly from F𝑞 , the probability of a collision

𝐺𝑎 = 𝐺𝑏 , where 𝐺𝑎 ← Map2Point(𝑟𝑎) and 𝐺𝑏 ← Map2Point(𝑟𝑏),
is bounded by 𝑛2

max
/𝑞.

4 THE CPACE PROTOCOL
As described in Section 1, the CPace protocol [HL19], whose de-

scription can be found in Fig. 2, is a SPEKE-like protocol [Jab96]

allowing parties to compute a common key via a Diffie-Hellman

key exchange with password-dependent generators. Informally, a

party P willing to establish a key with party P ′ first computes a

generator 𝐺 from a password pw, a session identifier sid, and the

party identifiers P and P ′. Next, P generates an element 𝑌𝑎 from

a secret value 𝑦𝑎 sampled at random and sends it to P ′ together
with sid. Upon receiving a value 𝑌𝑏 from P ′ with respect to same

session identifier sid and verifying its validity, P then computes a

Diffie-Hellman key 𝐾 and aborts if 𝐾 equals the identity element.

Finally, it computes the session key as the hash of 𝐾 together with

sid, the party identifiers, and the exchanged values 𝑌𝑎 and 𝑌𝑏 .

In order to allow for efficient instantiations over different elliptic

curve groups, the CPace description in Fig. 2 contains several speci-

ficities: (1) for our analysis the concatenation of party identifiers

and exchanged messages uses an ordered concatenation function

oc so that messages can be sent in any order and parties do not have

to play a specific initiator or responder role (see Appendix C); (2) to

avoid directly hashing onto a group or using interactiveMap2Point

P P ′

h← H1 (𝑠𝑖𝑑 | |oc(P,P ′) | |pw) h
′ ← H1 (𝑠𝑖𝑑 | |oc(P,P ′) | |pw′)

𝐺 ← Map2Point(h) 𝐺 ′ ← Map2Point(h′)
𝑦𝑎 ← SampleScalar() 𝑦𝑏 ← SampleScalar()
𝑌𝑎 ← ScalarMult(𝐺,𝑦𝑎) 𝑌𝑏 ← ScalarMult(𝐺 ′, 𝑦𝑏)

(sid, 𝑌𝑏)

(sid, 𝑌𝑎)

𝐾 ← ScalarMultVfy(𝑌𝑏 , 𝑦𝑎) 𝐾 ′ ← ScalarMultVfy(𝑌𝑎, 𝑦𝑏)
Abort if 𝐾 = 𝐼G Abort if 𝐾 ′ = 𝐼G
𝐼𝑆𝐾 ← H2 (𝑠𝑖𝑑 | |𝐾 | |oc(𝑌𝑎, 𝑌𝑏)) 𝐼𝑆𝐾 ′ ← H2 (𝑠𝑖𝑑 | |𝐾 ′ | |oc(𝑌𝑎, 𝑌𝑏))
Erase 𝐾, pw, 𝑦𝑎,𝐺 Erase 𝐾 ′, pw′, 𝑦𝑏 ,𝐺

′

Output 𝐼𝑆𝐾 Output 𝐼𝑆𝐾 ′

Figure 2: The parallel CPace protocol.

functions, 𝑠𝑖𝑑 | |oc(P,P ′) | |pw is first hashed to the finite field F𝑞
overwhich the curve is constructed and thenmapped onto the curve

via aMap2Point function; (3) the computation of the𝑦 and𝑌 values

does not assume a particular group and uses generic functions for

sampling (SampleScalar) and scalar multiplication (ScalarMult); (4)

point verification is performed to protect against trivial attacks

against the scheme and merged with scalar multiplication into a

ScalarMultVfy function; (5) ephemeral values are erased as soon

as they are no longer needed for adaptive security; and (6) tran-

scripts are included in the final key computation to protect against

man-in-the-middle attacks.

CPace is usually implemented with elliptic curves. In the up-

coming section, however, we start with a security analysis of the

“basic” CPace protocol on general groups which is shown in Fig. 10.

This simplified protocol is parametrized by a security parameter 𝑘

a group G and two hash functions H1 and H2, both modeled as a

random oracle, where H1 hashes to G (i.e. without the map).

5 SECURITY OF SIMPLIFIED CPACE
In this Section, as a warm-up, we analyze security of a simplified

variant of CPace, which we call CPace
base

. The main simplification

is that we assume the function H1 to hash onto the group G, such
that parties compute generators as 𝐺 ← H1 (𝑠𝑖𝑑 | |oc(P,P ′) | |pw),
omitting the map Map2Point. Further, we assume G to be a mul-

tiplicatively written group of prime order 𝑝 . We further instanti-

ate ScalarMult(𝐵,𝑦) := 𝐵𝑦 as exponentiation, ScalarMultVfy(𝑋,𝑦)
such that it returns the neutral element if 𝑋 is not in the group

and 𝑋 𝑦 otherwise, and SampleScalar with uniform sampling from

{1 . . . 𝑝}. We postpone dealing with security-related issues intro-

duced by instantiating G with an elliptic curve, which comes with

“imperfect” Map2Point mappings and other artifacts such as X-

coordinate-only and cofactor clearing, to a later Section. For clarity,

we give a UC execution of CPace
base

in Fig. 10 and prove its security

properties in the following theorem.

Theorem 5.1 (Security of CPace
base

). Let 𝑘, 𝑝 ∈ N with 𝑝 prime
and of bit size 𝑘 . Let G be a group of order 𝑝 , and let H1 : {0, 1}∗ →

The simulator S (G2) samples and stores a generator 𝐵 ← G.

On (NewSession, sid, 𝑃𝑖 , 𝑃 𝑗) from FlePAKE:
(G4) sample 𝑧𝑖 ←R

Z𝑝 , set 𝑌𝑖 ← 𝐵𝑧𝑖 , store (𝑃𝑖 , 𝑧𝑖 , 𝑌𝑖 ,⊥)
(G4) send 𝑌𝑖 to A intended to 𝑃 𝑗

On 𝑍 ∗ from A as msg to (sid, 𝑃𝑖):
(G4) if 𝑍

∗
is adversarially generated and 𝑍 ∗ ∈ G \ 𝐼G ,

then send (RegisterTest, sid, 𝑃𝑖) to FlePAKE

Upon 𝑃𝑖 receiving 𝑌𝑗 ∈ G from 𝑃 𝑗 :

(G4) retrieve record (𝑃𝑖 , 𝑧𝑖 , 𝑌𝑖 , ∗)
(G4) if ∃ records (G5) (H1, oc(𝑃𝑖 , 𝑃 𝑗), pw, 𝑟 , 𝑟−1,𝐺), (H2, 𝐾 | |oc(𝑌𝑖 , 𝑌𝑗), 𝐼𝑆𝐾) such that 𝐾 = 𝑌

𝑧𝑖𝑟
−1

𝑗

(G5) store (guess,𝐺,𝑌𝑗), abort if ∃ record (guess,𝐺 ′, 𝑌𝑗) with 𝐺 ≠ 𝐺 ′ and (G4) send (TestPwd, sid, 𝑃𝑖 , pw) to FlePAKE
(G4) send (NewKey, sid, 𝑃𝑖 , 𝐼𝑆𝐾) to FlePAKE and store (𝑃𝑖 , 𝑧𝑖 , 𝑌𝑖 , 𝐼𝑆𝐾)
(G4) else sample a fresh random 𝐼𝑆𝐾 ′ and send (NewKey, sid, 𝑃𝑖 , 𝐼𝑆𝐾 ′) to FlePAKE //F

lePAKE
will discard 𝐼𝑆𝐾 ′

On H1 (sid | |P | |P ′ | |pw) from A:

(G2) if this is the first such query then

(G2) create one by sampling 𝑟 ←
R
F𝑝 \ {0}

(G3) abort if there exists a record (H1, ∗, ∗, 𝑟 , ∗, ∗)
(G2) store (H1,P||P ′, pw, 𝑟 , 𝑟−1, 𝐵𝑟) and set ℎ ← 𝐵𝑟

(G2) else retrieve record (H1,P||P ′, pw, ∗, ∗, ℎ)
(G2) reply with ℎ

On receiving (AdaptiveCorruption, sid) from A as msg to 𝑃𝑖 :

send AdaptiveCorruption, sid, 𝑃𝑖) to FlePAKE
retrieve record (sid, pw)
(G4) if a message 𝑌𝑖 := 𝐵𝑧𝑖 was already sent to 𝑃 𝑗 , then

(G4) if a record (H1, ∗, pw, 𝑟 , 𝑟−1, ∗) exists then set 𝑦𝑖 ← 𝑧𝑖𝑟
−1

(G4) else store (H1, ∗, pw, 𝑟 ′, 𝑟 ′−1, 𝐵𝑟
′), 𝑟 ′ ←

R
Z𝑝 and set 𝑦𝑖 ← 𝑧𝑖𝑟

′−1

(G4) send (pw, 𝑦𝑖) to A
On H2 (sid | |𝐾 | |𝑌𝑖 | |𝑌𝑗) from A:

(G4) if this is the first such query then

(G7) if ∃ records (𝑃𝑖 , 𝑧𝑖 , 𝑌𝑖 , ∗), (𝑃 𝑗 , 𝑧 𝑗 , 𝑌𝑗 , ∗), (H1, oc(𝑃𝑖 , 𝑃 𝑗), 𝑟 , 𝑟−1, ∗) such that 𝐾𝑟 = 𝐵𝑧𝑖𝑧 𝑗 then abort

(G4) if � records (𝑃𝑖 , ∗, 𝑌𝑖 , ∗) or (𝑃 𝑗 , ∗, 𝑌𝑗 , ∗), or if 𝑌𝑎 | |𝑌𝑏 ≠ oc(𝑌𝑎, 𝑌𝑏), then sample 𝐴←
R
{0, 1}2𝑘

(G4) if ∃ records (𝑃𝑖 , 𝑧𝑖 , 𝑌𝑖 , 𝐼𝑆𝐾) and (G5) (H1, oc(𝑃𝑖 , 𝑃 𝑗), pw, 𝑟 , 𝑟−1,𝐺) such that 𝐾 = 𝑌
𝑧𝑖𝑟
−1

𝑗
, (G5) record (guess,𝐺,𝑌𝑗), abort if

∃ record (guess,𝐺 ′, 𝑌𝑗) with 𝐺 ≠ 𝐺 ′. Send (LateTestPwd, sid, 𝑃𝑖 , pw) to FlePAKE. Upon answer 𝐾̂ set 𝐴← 𝐾̂

(G4) if ∃ records (𝑃 𝑗 , 𝑧 𝑗 , 𝑌𝑗 , 𝐼𝑆𝐾) with 𝐼𝑆𝐾 ≠ ⊥ and (G5) (H1, oc(𝑃𝑖 , 𝑃 𝑗), pw, 𝑟 , 𝑟−1,𝐺) such that 𝐾 = 𝑌
𝑧 𝑗𝑟
−1

𝑖
, (G5) store (guess,𝐺,𝑌𝑖),

abort if ∃ record (guess,𝐺 ′, 𝑌𝑖) with 𝐺 ≠ 𝐺 ′. Send (LateTestPwd, sid, 𝑃 𝑗 , pw) to FlePAKE. Upon answer 𝐾̂ set 𝐴← 𝐾̂

(G4) if no matching H1 records are found set 𝐴←
R
{0, 1}2𝑘

(G4) finally, store (H2, 𝐾 | |𝑌𝑖 | |𝑌𝑗 , 𝐴) and reply with 𝐴

(G4) else retrieve record (H2, 𝐾 | |𝑌𝑖 | |𝑌𝑗 , 𝐴) and reply with 𝐴

Figure 3: Simulator for CPace
base

, with game numbers to indicate which game introduces a particular line of code (cf. full
proof of Theorem 5.1 in Appendix A. For brevity we omit session identifiers sid from all records stored by the simulator.

G,H2 : {0, 1} → {0, 1}𝑘 be two hash functions. If the sCDH and
sSDH problems are hard in G, then protocol CPace

base
depicted in

Fig. 10 UC-emulates F
lePAKE

in the random oracle model with respect
to adaptive corruptions and both hash functions modeled as random
oracles. More detailed, it holds that

|𝑃𝑟 [RealZ (CPacebase,A)] − 𝑃𝑟 [IdealZ (FlePAKE,S)|

≤ 𝑙2
H1

/𝑝 + 2𝑙2
H1

AdvsSDH + AdvsCDH

where 𝑙H1
denotes the number of H1 queries made by the adversary

A and simulator S is depicted in Fig. 3.

Proof Sketch. The main idea of the simulation is to fix a secret

generator 𝐵 ∈ G and carry out the simulation with respect to 𝐵.

Messages of honest parties are simulated as 𝐵𝑧 for a fresh expo-

nent 𝑧. Queries H1 (sid | |oc(P,P ′) | |pw) are answered with 𝐵𝑟 for

a freshly chosen “trapdoor” 𝑟 . The simulator might learn an hon-

est party’s password via adaptive corruption or via an adversarial

password guess. The simulator can now adjust the simulation in ret-

rospective to let the honest party use 𝐵𝑟 = H1 (sid | |oc(P,P ′) | |pw)

by claiming the party’s secret exponent to be 𝑧𝑟−1
. This already con-

cludes simulation of honest parties without passwords. Adversarial

password guesses can be read from A injecting 𝑋 (or, similarly,

𝑌) and then querying H2 (sid | |𝐾 | |𝑋 | |𝑌) with 𝐾 being a correctly

computed key w.r.t some generator 𝐵𝑟 provided by the simulation.

S can now read the guessed password from the H1 list, and submit

it as password guess to F
lePAKE

. In case of success, the simulator

sets the key of the honest party to H2 (sid | |𝐾 | |𝑋 | |𝑌).
The simulation is complicated by the order of honest parties’ out-

puts (which are generated upon receipt of the single message) and

the adversary’s computation of final session keys via H2 queries. If

the key is generated by F
lePAKE

beforeA computes it viaH2 (which

constitutes a password guess as detailed above), then S needs to

invoke the LateTestPwd query of F
lePAKE

instead of TestPwd. In

case of a correct guess, this letsS learn the output key of the honest

party, which S can then program into the corresponding H2 query.

Finally, the simulation can fail in some cases. Firstly, S might

find more than one password guesses against an honest party with

simulated message 𝑋 . In this case simulation cannot continue since

F
lePAKE

allows for only one password guess per party. In this case,

however, A would provide (𝐵𝑟 , 𝑋,𝑌 , 𝐾),(𝐵𝑟 ′, 𝑋,𝑌 , 𝐾 ′) which are

two CDH tuples for passwords pw, pw′ with 𝐵𝑟 ← H1 (pw), pw′ ←
H1 (pw′) (omitting session and party identifiers for brevity). Pro-

vided that the simultaneous strong CDH assumption (sSDH, cf.

Definition 3.2) holds, this cannot happen. Here, the “strong” prop-

erty, providing a type of DDH oracle, is required to help S identify

CDH tuples among all queries to H2. A second case of simulation

failure occurs when A wants to compute a key of an uncorrupted

session via a H2 query. Since S does not know such keys, it would

have to abort. Using a similar strategy as above, pseudorandomness

of keys can be shown to hold under the strong CDH assumption,

and thus the probability of A issuing such a H2 query is negligible.

The full proof can be found in Appendix A. □

5.1 Embedding CDH experiment libraries into
the simulator

In this section, we discuss an alternative approach to carrying out

reductions to cryptographic assumptions in the case of CPace/CDH.

Both assumptions required by CPace
base

, sCDH and sSDH, allow

for an efficient implementation in the following sense: the secret

exponents that are sampled by the experiment code (often also

called the challenger) for generating challenges are sufficient for

answering the restricted DDH queries allowed by both assump-

tions. An example for an assumption that does not allow for such

efficient instantiation is, e.g., gap CDH. In gap-CDH, the adversary

is provided with a “full” DDH oracle that he can query on arbitrary

elements, of which the experiment might not know an exponent

for.

Due to this property, we can integrate implementations of the

CDH experiments in the simulator’s code. The simulator will thus

implement the DDH oracles on its own, and abort if at any time

an oracle query solves the underlying assumption. We chose to

integrate experiments as libraries (written as objects in python-style

notation) into the simulator’s code. This eases not only presentation

but will also become useful when analyzing variants of CPace that

require slightly different assumptions.

The corresponding result for CPace
base

is shown in Fig. 4. The

sCDH class in Fig. 4 produces a challenge consisting of two uni-

formly drawn group elements 𝑌1 ← 𝐵𝑦1 , 𝑌2 ← 𝐵𝑦2
. The limited

DDH oracle provided by the sCDH assumption can only receive

inputs w.r.t one of these elements, and thus it can be implemented

efficiently using secret exponents 𝑦1, 𝑦2. If a correct CDH solution

𝐵,𝑌1, 𝑌2, 𝐵
𝑦1,𝑦2

is provided, the library aborts. The simulator from

Fig. 3 is adapted to call the libraries. As an example, honest parties’

messages are simulated by calling the challenge sampling procedure

exp.sampleY().
Proving indistinguishability. With this simulation approach, a

proof consists in demonstrating that ideal and real world execu-

tions are indistinguishable except for events in which the experi-

ment libraries abort because a challenge was correctly answered.

Compared to our proof of Theorem 5.1, the indistinguishability

argument becomes simpler because the reduction strategies to both

CDH-type assumptions are already embedded in the correspond-

ing assumption experiment libraries. Losses such as the factor of

2𝑙2
H1

AdvssCDH in the reduction to sSDH in game G5 translate to

libraries producing more than one challenge per simulation run,

as is the case for the sSDH experiment from Fig. 4. Altogether, the

simulation with integrated CDH experiment libraries is an alter-

native approach of proving Theorem 5.1, as we formalize in the

following.

Theorem 5.2 (Alternative simulation for Theorem 5.1). The simu-
lator depicted in Fig. 4 is a witness for the UC emulation statement in
Theorem 5.1

Proof sketch. The output distribution of the simulator S from

Fig. 4 is indistinguishable from the one of the simulator from Fig. 3

as it is obtained from internal restructuring. S aborts if either the

sSDH or the sCDH experiment class aborts, which occurs iff a cor-

rect solution has been provided to the experiment implementation

or a H1 collision is observed. These cases coincide with the abort

cases in the proof of Theorem 5.1. As the sSDH object outputs

2𝑙2
H1

different challenges and as it is sufficient forZ to provide a

solution to one of these challenges for distinguishing both worlds,

the advantage for solving the sSDH problem needs to be multiplied

by this factor, thus reproducing the bounds from Theorem 5.1. □

Advantages of embedding libraries in the simulation. To clarify, the
approach presented in this section does not allow to prove stronger

security statements. As demonstrated above, it is merely an alter-

native way of presenting security proofs in the UC framework or

other simulation-based frameworks, and it works whenever the un-

derlying cryptographic assumptions are efficiently implementable.

However, we believe that the approach has its merits especially in

the following dimensions.

• Modular security analysis. Slight modifications in the pro-

tocol might require to change the cryptographic assumption.

As long as the public interface does not change, our approach

allows to switch between assumptions by simply calling a

different library. Cryptographers then need to only analyze

this “local” change in the simulation, which prevents them

from re-doing the whole indistinguishability argument.

• Presentation of reduction strategies. In normal game-

based indistinguishability arguments [Sho04], reductions

to cryptographic assumptions are hidden within side-long

proofs. With our approach, the reduction strategy is depicted

in clear code as part of the simulator’s code. This makes

checking of proofs easier not only for readers but also might

make simulation-based proofs more accessible to automated

verification.

In this paper, our motivation is the first dimension. In the upcoming

section, the library-based approach will turn out to be extremely

useful to analyze the various variants of CPace that stem from

(efficiency-wise) optimized implementations on different elliptic

curves.

6 ANALYSIS OF REAL-WORLD CPACE
The currently most efficient way to run CPace is over elliptic curves.

Therefore, from this point onwards, we consider G to be an elliptic

curve constructed over field F𝑞 . From a historical perspective, both

CPace research and implementation first focused on prime order

using python-style notation with self pointer 𝑠 for accessing members in methods and _init_ constructor

def class sCDH:
def _init_(𝑠,𝐺): { 𝑠 .𝐵 ← 𝐺 ; 𝑠 .𝑖 ← 0; 𝑠 .state← fresh; }

def sampleY(s): { if 𝑠 .𝑖 ≤ 2: {𝑠 .𝑖+ = 1; sample 𝑠 .𝑦𝑖 ←R
F𝑝 \ 0; return (𝑠 .𝐵)𝑠.𝑦𝑖 ; } }

def corrupt(s,𝑋): { for 1 ≤ 𝑚 ≤ 𝑠 .𝑖): {if (𝑋 = (𝑠 .𝐵)𝑠.𝑦𝑚): 𝑥 ← 𝑠 .𝑦𝑚 ; 𝑠 .state← corrupt; return x; } }

def DDH(𝑠, 𝐵, 𝑌 , 𝑋, 𝐾):
if ({𝑌,𝑋 }={𝑠 .𝑌1, 𝑠 .𝑌2}) and (𝑠 .state= fresh) and (𝐾 = (𝑠 .𝐵)𝑠.𝑦1 ·𝑠.𝑦2

) : abort("sCDH(𝐵,𝑌1, 𝑌2) solved");

for 1 ≤ 𝑚 ≤ 𝑠 .𝑖: { if (𝑌 = (𝑠 .𝐵)𝑠.𝑦𝑚): return (𝐾 = 𝑋𝑠.𝑦𝑚); } # compute DDH oracle reply from secret exponent of 𝑌

def isValid(𝑋): return (𝑋 ∈ G \ 𝐼G)
def class sSDH: # using python-style notation [] for list containers

def _init_(𝑠 ,sCdhExp): { sample 𝑠 .𝐵 ←
R
G; 𝑠 .𝑠𝑐𝑑ℎ = sCdhExp(𝑠 .𝐵); 𝑠 .records =[]; 𝑠 .guess = "yet no guess"; }

def sampleY(𝑠): { return (𝑠 .𝑠𝑐𝑑ℎ) .sampleY(); }

def isValid(𝑋): return (𝑠 .𝑠𝑐𝑑ℎ).isValid(𝑋);

def sampleH1(𝑠): { sample 𝑟 ←
R
F𝑝 \ 0; if: 𝑟 in 𝑠 .records abort("H1 collision"); else: {𝑠 .records.append((𝑟, (𝑠 .𝐵)𝑟)); return (𝑠 .𝐵)𝑟 ; }}

def corrupt(𝑠,𝐺,𝑌): { if there is (𝑟,𝐺) in 𝑠 .records: return (𝑠 .𝑠𝑐𝑑ℎ) .corrupt(𝑌 1/𝑟
); }

def DDH(𝑠 ,𝐺,𝑌,𝑋, 𝐾):
if there is (𝑟,𝐺) in 𝑠 .records:

match← (𝑠 .𝑠𝑐𝑑ℎ).DDH(𝑠 .𝐵, 𝑌 , 𝑋, 𝐾1/𝑟
);

if match and (guess = "yet no guess"): (guess.𝐺 ,guess.𝑋)← (𝐺,𝑋);
elif match and (guess.𝑋 = 𝑋) and (guess.𝐺 ≠ 𝐺): abort("sSDH problem (𝑌,𝐺,guess.𝐺) solved");

return match;

On first invokation S creates an experiment class instance exp= sSDH(sCDH);

On (NewSession, sid, 𝑃𝑖 , 𝑃 𝑗) from FlePAKE:
(G4) Set 𝑌𝑖 ← exp.sampleY(), store (𝑃𝑖 , 𝑃 𝑗 , 𝑌𝑖 ,⊥)
(G4) send 𝑌𝑖 to A intended to 𝑃 𝑗

On 𝑍 ∗ from A as msg to (sid, 𝑃𝑖):
(G4) if 𝑍

∗
is adversarially generated and exp.isValid(𝑍 ∗)

(G4) send (RegisterTest, sid, 𝑃𝑖) to FlePAKE

Upon 𝑃𝑖 receiving 𝑌𝑗 from 𝑃 𝑗 : retrieve record (𝑃𝑖 , ∗, 𝑧𝑖 , 𝑌𝑖 , ∗)
(G1) if not exp.isValid(𝑌𝑗): return;

(G4) if ∃ records (H1, pw,oc(𝑃𝑖 , 𝑃 𝑗), ℎ), (H2, 𝐾 | | (oc(𝑌𝑖 , 𝑌𝑗), 𝐼𝑆𝐾) such that exp.DDH(ℎ,𝑌𝑖 , 𝑌𝑗 , 𝐾) = 1:

(G4) send (TestPwd, sid, 𝑃𝑖 , pw) to FlePAKE
(G4) send (NewKey, sid, 𝑃𝑖 , 𝐼𝑆𝐾) to FlePAKE and store (𝑃𝑖 , 𝑃 𝑗 , 𝑌𝑖 , 𝐼𝑆𝐾)
(G4) else sample a fresh random 𝐼𝑆𝐾 ′ and send (NewKey, sid, 𝑃𝑖 , 𝐼𝑆𝐾 ′) to FlePAKE # F

lePAKE
will discard 𝐼𝑆𝐾 ′

On H1 (sid | |𝑃𝑖 | |𝑃 𝑗 | |pw)) from A:

(G2) if this is the first such query then

(G2) ℎ ← exp.sampleH1()

(G2) store (H1, pw, 𝑃𝑖 | |𝑃 𝑗 , ℎ)
(G2) lookup (H1, pw, 𝑃𝑖 | |𝑃 𝑗 , ℎ) and reply with ℎ

On receiving (AdaptiveCorruption, sid) from A as msg to 𝑃𝑖 :

Lookup (𝑃𝑖 , 𝑃 𝑗 , 𝑌𝑖 , ∗); send (AdaptiveCorruption, sid, 𝑃𝑖) to FlePAKE, obtain (sid, pw)
(G4) if a message 𝑌𝑖 was already sent to 𝑃 𝑗 , then

(G4) query H1 for (sid | |pw, oc(𝑃𝑖 , 𝑃 𝑗)) and retrieve record (H1, pw, oc(𝑃𝑖 , 𝑃 𝑗), ℎ)
(G4) send (pw,exp.corrupt(ℎ,𝑌𝑖))

On H2 (sid | |𝐾 | |𝑌𝑖 | |𝑌𝑗) from A:

(G4) Lookup (H2, sid | |𝐾 | |𝑌𝑖 | |𝑌𝑗 , ℎ) and send ℎ if it exists; else if this is the first such query:

(G4) if there are no records (𝑃𝑖 , 𝑃 𝑗 , 𝑌𝑖 , ∗) or (𝑃 𝑗 , 𝑃𝑖 , 𝑌𝑗 , ∗), or if 𝑌𝑎 | |𝑌𝑏 ≠ oc(𝑌𝑎, 𝑌𝑏): sample 𝐴← {0, 1}2𝑘 ;
(G4) if ∃ records (𝑃𝑖 , 𝑃 𝑗 , 𝑌𝑖 , 𝐼𝑆𝐾) with 𝐼𝑆𝐾 ≠ ⊥ and (H1, pw, oc(𝑃𝑖 , 𝑃 𝑗), ℎ) such that exp.DDH(ℎ,𝑌𝑖 , 𝑌𝑗 , 𝐾) = 1:

(G5) send (LateTestPwd, sid, 𝑃𝑖 , pw) to FlePAKE. Upon answer 𝐾̂ set 𝐴← 𝐾̂

(G4) if ∃ records (𝑃 𝑗 , 𝑃𝑖 , 𝑌𝑗 , 𝐼𝑆𝐾) with 𝐼𝑆𝐾 ≠ ⊥ and (H1, pw, oc(𝑃𝑖 , 𝑃 𝑗), ℎ) such that exp.DDH(ℎ,𝑌𝑗 , 𝑌𝑖 , 𝐾) = 1:

(G5) send (LateTestPwd, sid, 𝑃 𝑗 , pw) to FlePAKE. Upon answer 𝐾̂ set 𝐴← 𝐾̂

(G4) if no matching H1 records are found set 𝐴← {0, 1}2𝑘
(G4) finally, store (H2, sid | |𝐾 | |𝑌𝑖 | |𝑌𝑗 , 𝐴) and reply with 𝐴

Figure 4: Simulator for “basic” parallel CPace embedding CDH challenges generated by libraries

curves, such as the NIST-P-256 curve [DSS13]. Subsequently signif-

icantly improved performance was shown on Montgomery- and

(twisted-)Edwards curves, notably Curve25519 and Ed448 curves

[Ber06, Ham15b], which both have a small cofactor 𝑐 in their group

order 𝑐 · 𝑝 . These approaches consider also implementation pitfalls,

e.g., by designing the curve such that there are no incentives for im-

plementers to use insecure speed-ups. Thirdly, recently ideal group

abstractions have been presented in order to avoid the complexity

of small cofactors in the group order [Ham15a, dVGT
+
20], while

maintaining all advantages of curves with cofactor.

For smooth integration into each of these different curve ecosys-

tems, CPace needs to be instantiated slightly different regarding,

e.g., computation of the DH generator, group size, multiplication

and sampling algorithms. In this section, we analyze how such

differences impact security. Using our modular approach with as-

sumption libraries called by a simulator, we are able to present

security in terms of differences from our basic CPace analysis in

Section 5 in a concise way.

6.1 CPace without Hashing to the Group
In this subsection we analyze the CPace protocol as depicted in

Fig. 2 and where G is an elliptic curve constructed over some field

F𝑞 . The only difference to simplified CPace analyzed in the previ-

ous section is how parties compute the generators: now the func-

tion H1 hashes onto the field F𝑞 , and generators are computed as

𝐺 ← Map2Point(H1 (𝑠𝑖𝑑 | |oc(𝑃𝑖 , 𝑃 𝑗) | |pw) for a map Map2Point :

F𝑞 → G. This way, the H1 outputs can be considered to form an

alternative encoding of group elements, whereMap2Point decodes

to the group. ScalarMult, ScalarMultVfy and SampleScalar are as

in Section 5.

Security analysis. Security analysis is complicated by this change

in essentially two ways: first, the possibly non-uniform distribution

of Map2Point induces non-uniformity of DH generators computed

by the parties. Second, embedding of trapdoors no longer works

by simply programming elements with known exponents into H1.

Instead, the proof will exploit thatMap2Point is probabilistically

invertible, such that preimages of generators with known expo-

nents can be programmed into H1 instead. Consequently, security

of CPace will be based on theDG −sSDH problem Definition 3.3 in-

stead of the sSDH problem, where the distributionDG corresponds

to the distribution of group elementsMap2Point(ℎ𝑖) obtained for

uniformly sampled field elements ℎ𝑖 ←R
F𝑞 . All these changes

can be captured by replacing library sSDH with a new library for

DG − sSDH, as we demonstrate below.

Theorem 6.1 (Security of CPace with Map2Point). Let 𝑘, 𝑝, 𝑞 ∈ N
with 𝑝 prime and of bit size 𝑘 . Let G an elliptic curve of order 𝑝
over field F𝑞 . Let H1 : {0, 1}∗ → F𝑞,H2 : {0, 1}∗ → {0, 1}𝑘 be two
hash functions and Map2Point : F𝑞 → G probabilistically invertible
with bound 𝑛𝑚𝑎𝑥 . Let DG denote the distribution on G induced by
Map2Point. If the sCDH andDG-sSDH problems are hard in G, then
the CPace protocol depicted in Fig. 2 UC-emulates F

lePAKE
in the

random oracle model with respect to adaptive corruptions and both
hash functions modeled as random oracles. More detailed, it holds
that

|𝑃𝑟 [Real(Z,A,𝐶𝑃𝑎𝑐𝑒)] − 𝑃𝑟 [Ideal(F
lePAKE

,S)|
≤ (𝑙H1

)2/𝑝 + (𝑛max · 𝑙H1
)2/𝑞 + 2𝑙2

H1

Adv𝐷G−sSDH + AdvsCDH

where 𝑙H1
denotes the number of H1 queries made by the adversary

A and simulator S is as in Fig. 4 but using the object distExp (cf.
Fig. 5) instead of the object sSdhExp.

Proof Sketch. We adjust the simulator for “basic” CPace from

Fig. 4 as follows. First, we embed the reduction strategy from Theo-

rem 3.6 into an experiment library that converts sSDH challenges

into DG − sSDH challenges and obtain the class DG_sSDH de-

picted in Fig. 5. The classDG_sSDH uses theMap2PointPreImages

function (passed as a constructor parameter) for implementing the

Map2Point
−1

as defined in Algorithm 1 and an instance of the sSDH

class implementing a sSDH experiment and an instance of the sSDH

class that is assigned to a member variable. Note thatMap2Point
−1

is a rejection sampler for DG by Lemma 3.9 and, correspondingly,

Theorem 3.6 applies. Each time the main body of the simulator from

Fig. 4 makes calls to its exp object, the corresponding method of the

new DG_sSDH object will be executed, which itself translates the

queries into calls to the sSDH object that was passed as constructor

parameter.

Importantly, DG_sSDH provides the same public API as the

sSDH class with the distinction that sampling forH1 returns results

from F𝑞 instead of G. Moreover DG_sSDH aborts if the code of its

sSDH object aborts and upon H1 collisions.

We explain now how the indistinguishability argument of Theo-

rem 5.1 needs to be adjusted in order to work for Theorem 6.1 and

this new simulator. The first difference applies in game G2, where

we must make sure that the distribution of points provided by the

DG_sSDH object is uniform in F𝑞 as was in the previous game. This

is the case due to Corollary 3.10. In gameG3 no change is needed ex-

cept for adjusting the collision probability following the derivation

from Section 3.3 as which is now bound by (𝑛max · 𝑙H1
)2/𝑞 in addi-

tion to the previous ł
2

H1

/𝑝 probability. Apart of these modification

the proof applies without further changes.

□

Actual implementations of Map2Point. The property of proba-
bilistic invertibility is fulfilled for a wide variety of mapping al-

gorithms, specifically those currently suggested in [FHSS
+
19], i.e.

Elligator2 [BHKL13], simplified SWU [FHSS
+
19] and the Shallue-

van de Woestijne method (SvdW) [SvdW06]. The most generic

of these algorithm, SvdW, works for all elliptic curves, while the

simplified SWU and Elligator2 algorithms allow for more efficient

implementations given that the curve fulfills some constraints.

All these mappings have a fixed bound 𝑛max regarding the num-

ber of pre-images and come with a PPT algorithm for calculat-

ing all preimages. For instance, Elligator2 [BHKL13] comes with

a maximum 𝑛max = 2 of two pre-images per point and 𝑛max ≤ 4

for the simplified SWU and SvdW algorithms [FHSS
+
19]. For all

these algorithms, the most complex substep for determining all

pre-images is the calculation of a small pre-determined number

of square roots and inversions in F𝑞 which could be easily imple-

mented in polynomial time with less computational complexity

than one exponentiation operation.

Map-twice-and-add constructions. Some mapping constructions

aim at producing more uniform distributions using a map-twice-

and-add approach, such as presented in [FHSS
+
19] and also adopted

by the ristretto25519 and decaf ecosystems [dVGT
+
20, Ham15a].

Variant CPacemapTwice computes generators as𝐺 ← Map2Point(ℎ)·
Map2Point(ℎ′), where (ℎ,ℎ′) ← H1 (𝑠𝑖𝑑 | |oc(P,P ′) | |pw). Follow-
ing our modular simulation approach, we give the corresponding

experiment librarymapTwice_sSDH in Fig. 11. The library produces

two elements from F𝑞 instead of a single one as before. Again we

make use of the property of probabilistic invertibility which guaran-

tees that the two field elements output by the sampleH1() function
are uniformly distributed in F𝑞 . Here the collision bound ≤ 𝑙2

H1

/𝑝 is

using python-style notation with self pointer 𝑠

def class DG_sSDH:
def _init_(𝑠,Map2PointPreImages, 𝑛max, sSDHExp):

𝑠 .𝑠𝑆𝐷𝐻 = sSDHExp; 𝑠 .𝑟𝑒𝑐𝑜𝑟𝑑𝑠 = [];
𝑠 .𝑛𝑚𝑎𝑥 = 𝑛max; 𝑠 .𝑝𝑟𝑒𝑖𝑚 =Map2PointPreImages;

def sampleY(𝑠): return (𝑠 .𝑠𝑆𝐷𝐻) .sampleY();

def isValid(𝑋): return (𝑠 .𝑠𝑆𝐷𝐻).isValid(𝑋);
def sampleH1(𝑠):

𝐺 ← (𝑠 .𝑠𝑆𝐷𝐻) .sampleH1();

while (1):

sample 𝑟 ←
R
F𝑝 ; preimageList = (𝑠 .𝑝𝑟𝑒𝑖𝑚) (𝐺𝑟);

sample𝑚 ←
R
{0 . . . (𝑠 .𝑛max − 1)};

if len(preimageList) >𝑚:

if 𝑟 = 0: abort("Sampled neutral element.");

ℎ ←preimageList[𝑚];
if ℎ in 𝑠 .𝑟𝑒𝑐𝑜𝑟𝑑𝑠 abort("H1 collision");
𝑠 .𝑟𝑒𝑐𝑜𝑟𝑑𝑠 .append(𝑟,𝐺𝑟 , ℎ);

return ℎ;

def corrupt(𝑠, ℎ, 𝑌):
if there is (𝑟,𝐺, ℎ) in 𝑠 .records:

return (𝑠 .𝑠𝑆𝐷𝐻).corrupt(𝐺,𝑌 1/𝑟
);

def DDH(𝑠 ,ℎ,𝑌, 𝑋, 𝐾):
if there is (𝑟,𝐺, ℎ) in 𝑠 .records:

return (𝑠 .𝑠𝑆𝐷𝐻).DDH(𝐺,𝑌,𝑋, 𝐾1/𝑟
);

Chaining the experiments for CPace on prime order curve,

full (x,y) coordinate, single map execution

sSdhExp = sSDH(sCDH);

distExp = DG_sSDH(Map2PointPreImages, 𝑛max,sSdhExp);

Figure 5: Experiment class definitionDG-sSDH using single
executions ofMap2Point, where H1 hashes to F𝑞 .

maintained at the expense of doubling the computational complex-

ity of the map [Ham20, BCI
+
10b, FHSS

+
19, FT12]. Security holds

under the same assumption set as for “map2point-once” (Theo-

rem 6.1), specificallyMap2Point needs to be probabilistically invert-

ible such that the rejection samplers in Fig. 11 can be implemented

and the simulated H1 outputs become uniform in F𝑞 × F𝑞 .

6.2 Considering curves with small co-factor
In this subsection, we now additionally consider that the elliptic

curve group can be of order 𝑐 · 𝑝 whereMap2Pointmaps to the full

curve, denoted G𝑐 ·𝑝 , but security guarantees could only be given

for the subgroup of order 𝑝 , denoted G𝑝 . Consequently, CPaceco on
curves with co-factor 𝑐 requires all secret exponents to be multiples

of 𝑐 . Hence, CPaceco is CPace depicted in Fig. 2 where ScalarMult :

(𝑋,𝑦) ↦→ (𝑋𝑐 ·𝑦) and ScalarMultVfy is defined accordingly, with

the addition that the latter returns 𝐼 in case of inputs not on the

curve G𝑐 ·𝑝 .

Theorem 6.2 (Security of CPaceco). Let 𝑘, 𝑝, 𝑞, 𝑐 ∈ N, 𝑝, 𝑐 co-
prime with 𝑝 prime. Let G𝑐 ·𝑝 an elliptic curve of order 𝑝 · 𝑐 over
field F𝑞 and G𝑝 ⊂ G𝑝 ·𝑐 a subgroup of order 𝑝 . Let 𝐶𝐶𝑐 : (𝐺) ↦→
((𝐺𝑐)1/𝑐 mod 𝑝) be a cofactor clearing function for 𝑐 , H1 : {0, 1}∗ →
F𝑞,H2 : {0, 1}∗ → {0, 1}𝑘 be two hash functions and Map2Point :

F𝑞 → G𝑐 ·𝑝 probabilistically invertible with bound 𝑛𝑚𝑎𝑥 . Let DG

using python-style notation with self pointer 𝑠

def class cofactorClearer:
"interfaces S to a prime-prder experiment class"

def _init_(𝑠, 𝑐, 𝑝 , primeOrderExpInstance ,𝑝𝑡𝑤𝑖𝑠𝑡):

𝑠 .𝑐 = c; 𝑠 .i= 𝑠 .𝑐 ·integer(1/(𝑠 .𝑐2) mod 𝑝);
𝑠 .it= 𝑠 .𝑐 · integer(1/(𝑠 .𝑐2) mod 𝑝𝑡𝑤𝑖𝑠𝑡);
𝑠 .exp = primeOrderExpInstance;

def sampleY(𝑠): return ((𝑠 .exp).sampleY())𝑠.𝑐 ;
def isValid(𝑋): return (𝑠 .exp) .isValid(𝑋𝑠.𝑖)
def sampleH1(𝑠): return (𝑠 .exp).sampleH1();

def corrupt(𝑠, ℎ, 𝑌): { return (𝑠 .exp) .corrupt(ℎ,𝑌𝑠.i); }
def DDH(𝑠 ,𝐺,𝑌,𝑋, 𝐾):
if 𝑋 ∈ G return (𝑠 .exp) .DDH(𝐺,𝑌 𝑠.i, 𝑋𝑠.i, 𝐾𝑠.i2)
if 𝑋 on twist return (𝑠 .exp).DDH(𝐺,𝑌 𝑠.it, 𝑋𝑠.it, 𝐾𝑠.it2)

sSdhExp = sSDH(sCDH);

ccExp = cofactorClearer(sSdhExp);

ccDistExp = DG_sSDH(Map2PointPreImages, 𝑛max,ccExp);

Figure 6: Cofactor-clearer class definition use for elliptic
curves of order 𝑝 · 𝑐 with a quadratic twist of order 𝑝𝑡𝑤𝑖𝑠𝑡 .
Note that the inverses 𝑠 .𝑖 and 𝑠 .𝑖𝑡 are constructed such that
they are multiples of 𝑐.

denote the distribution on G𝑝 induced by the chained function (𝐶𝐶𝑐 ◦
Map2Point). If the sCDH and DG-sSDH problems are hard in G𝑝 ·𝑐 ,
then CPaceco UC-emulates F

lePAKE
in the random oracle model with

respect to adaptive corruptions and both hash functions modeled as
random oracles. More detailed, it holds that

|𝑃𝑟 [Real(Z,A,CPaceco)] − 𝑃𝑟 [Ideal(FlePAKE,S)|
≤ (𝑛max · 𝑐 · 𝑙H1

)2/𝑞 + 2𝑙2
H1

Adv𝐷G−sSDH + AdvsCDH

where 𝑙H1
denotes the number of H1 queries made by the adversary

A and simulator S is as in Fig. 4 but using class ccDistExp (cf. Fig. 6)
instead of class sSDH.

Proof Sketch. The group G𝑐 ·𝑝 has a point 𝐵1 of order 𝑐 with

𝐵𝑐
𝑖
= 𝐼 where 𝐼 denotes the identity element in G𝑝 ·𝑐 , i.e., there are

𝑐 low-order points 𝐵𝑖
1
, 𝑖 ∈ {1 . . . 𝑐}. For any point 𝑌 ∈ G𝑝 ·𝑐 we can

consider the points𝑌𝑖 = 𝑌 +𝐵𝑖 as alternative ambiguous representa-

tions of the point𝐶𝐶𝑐 (𝑌). For any input point 𝑌 ∈ G𝑝 ·𝑐 , all these 𝑐
alternative representations can be easily calculated using group op-

erations and 𝐵𝑖 . For any of these 𝑐 alternative representations of𝑌 at

most 𝑛max preimages will be returned byMap2PointPreImagesG𝑐 ¤𝑝
since Map2Point is probabilistically invertible on G𝑝 ·𝑐 . If up to

𝑛max preimages exist per point on the full curve, Map2Point is

probabilistically invertible also on G𝑝 and Map2PointPreImagesG
for G𝑝 ·𝑐 can be defined such that it returns all of the preimages of

the 𝑐 ambiguous representations of an input, which are bounded

by 𝑛max · 𝑐 .
As ScalarMultVfy and ScalarMult use exponents that are a mul-

tiples of 𝑐 they are guaranteed to produce a unique result on G𝑝 for

all of the 𝑐 ambiguous representations of a point.

This change is compensated by the simulation by calling an

experiment library using the ccExp class from Fig. 6. (Note that this

class also accepts points on the quadratic twist, a feature that will

become relevant only in the upcoming sections.) The ccExp object

forwards queries to a DG_sSDH object such that all inputs to the

DDH oracle will be in G𝑝 .
Note that without exponents being a multiple of 𝑐 , we would

have had game G3 and G4 distinguishable because without the

factor 𝑐 in the secret scalars of honest parties, 𝑌𝑎 and 𝑌𝑏 could have

nontrivial low-order components, which is noticeable and does

occur in game G4. □

6.3 CPace using single-coordinate
Diffie-Hellman

Some Diffie-Hellman protocols, including CPace, can be imple-

mented also on a group modulo negation, i.e. a group where a

group element 𝑌 and its inverse 𝑌−1
(i.e. the point with 𝐼 = 𝑌 ·𝑌−1

)

are not distinguished and share the same binary representation.

An elliptic curve in Weierstrass representation becomes a group

modulo negation when only using x-coordinates as representa-

tion. We use the notation 𝑌 for such ambiguous encodings and

use 𝑌 ← SC(𝑌) for a function returning the x-coordinate for a

point 𝑌 and (𝑌−1, 𝑌) ← RC(𝑌) for the inverse operation recon-

structing 𝑌 and 𝑌−1
in an undefined order. The major advantage

of using this type of ambiguous encoding is that it can be helpful

in practice for all of the following: reducing code size, reducing

key sizes and network bandwidth, avoiding implementation pit-

falls [Ber06] and restricting invalid curve attacks to the curve’s

quadratic twist. Consequently, many real-world protocols such as

TLS only use this single coordinate for deriving their session key,

as to give implementers the flexibility to take benefit of the above

advantages.

We formalize CPace with single-coordinate DH, CPace
x−only, by

letting ScalarMult(𝑌,𝑦) and ScalarMultVfy(𝑌,𝑦) use the ambigu-

ous encoding 𝑌 .

Theorem 6.3 (Security of CPace
x−only). Assume CPace on a group

G can distinguished from an ideal-world run of F
lePAKE

and S with
at most negligible advantage, where S embeds an experiment object
exp for the sSDH problem. Then CPace

x−only on the corresponding
group modulo negation ˆG can be simulated by an ideal-world simula-
tor ˆS that is obtained by chaining expwithmoduloNegationAdapter,
the adapter class from Fig. 7. The difference in the distinguishing ad-
vantage is bounded by a factor of 2.

Proof Sketch. First note that the functions SC and RC that

implement conversion between group and group modulo negations

are both efficient, as in practice themost complex substep is a square

root in F𝑞 . Secondly, CPace (except for instantiations using a map-

twice-and-add construction) does not need a full group structure

at any point. Instead, only chained exponentiations are used (𝐾 =

𝑌
𝑦𝑏
𝑎 = 𝑌

𝑦𝑎
𝑏

= 𝐺𝑦𝑎 ·𝑦𝑏), which can likewise be implemented on a

group modulo negation. The protocol’s correctness is not affected.

When starting with single-coordinate CPace in the real world,

the same proof strategy applies, however the collision probability

in gameG3 is increased by a factor of 2. In gameG4 no change is re-

quired. Also in games G5 andG6 the only difficulty shows up when

splitting off the code for the full-group versions of the sSDH and

sCDH experiments from the simulator code. We cannot embed the

using python-style notation with self pointer 𝑠

def class moduloNegationAdapter:

"uses the strip- and reconstruct functions SC and RC."

def _init_(𝑠,, baseExperiment):

𝑠 .exp←baseExperiment;𝑠 .records← [];
def sampleY(𝑠):

𝑌 ← ((𝑠 .exp) .sampleY())𝑠.𝑐 ;
𝑠 .records.append(𝑌); return SC(𝑌);

def isValid(𝑋):
(𝑋0, 𝑋1)←RC(𝑋); return (𝑠 .exp) .isValid(𝑋0);

def sampleH1(𝑠): return (𝑠 .exp).sampleH1();

def corrupt(𝑠, ℎ, 𝑌):
(𝑌,𝑌 ∗) ← RC(𝑌); if 𝑌 ∗ in 𝑠 .records: 𝑌 ← 𝑌 ∗;
return (𝑠 .exp) .corrupt(ℎ,𝑌);

def DDH(𝑠 ,𝐺,𝑌,𝑋, 𝐾̂):
(𝑌,𝑌 ∗) ← RC(𝑌); if 𝑌 ∗ in 𝑠 .records: 𝑌 ← 𝑌 ∗;
(𝑋,𝑋 ∗) ← RC(𝑋); (𝐾,𝐾∗) ← RC(𝐾̂);
return (𝑠 .exp.DDH(𝐺,𝑌,𝑋, 𝐾))or(𝑠 .exp.DDH(𝐺,𝑌,𝑋, 𝐾∗))

Chaining the experiments for CPace on prime order curve,

single coordinate, single map execution

sSdhExp = sSDH(sCDH);

distExp = DG_sSDH(Map2PointPreImages, 𝑛max,sSdhExp);

singleCoorExp = moduloNegationAdapter(distExp)

Figure 7: Single-coordinate experiment class definition for
CPace instantiations on groups modulo negation.

challenges as-is but need to reconstruct the sign information in or-

der to serve the API of the full-group experiments. The correspond-

ing strategy is implemented in themoduloNegationAdapter adapter

class from Fig. 7. Note that this strategy never aborts itself but its

incorporated sSDH or sCDH experiments abort upon DDH queries.

As the moduloNegationAdapter adapter queries the DDH at most

two times, the loss of CPace
x−only in comparison to CPace is at

most a factor of two. □

6.4 CPace using twist secure curves
For a curve in Weierstrass form constructed over a field F𝑞 , a coor-
dinate 𝑥 represents either the 𝑥 coordinate of a point on the curve

itself or its so-called quadratic twist. For Diffie-Hellmann proto-

cols where active adversaries are relevant, using single-coordinate

Diffie-Hellman provides the advantage that the adversary may only

insert inputs taken from one of these two curves, thus limiting the

impact of invalid curve attacks if both, the curve and the twist,

are appropriately designed. In this case, the computationally costly

point verification algorithms can be avoided if the co-factor of

G𝑝 ·𝑐 is an integer multiple of the co-factor of the twist G′ and all

exponentiations clear the cofactor by choosing their secret expo-

nents by a multiple of the cofactor 𝑐 . This was first observed by

Bernstein [Ber06] for Curve25519. This property can be employed

also in the context of CPace for making implementations faster

and more resilient against implementation errors regarding the

point verification, specifically if CPace is implemented using scalar

multiplication based on single-coordinate Montgomery ladders.

using python-style notation with self pointer 𝑠

def class sCDH_sTCDH ():

"Accepts 𝑋,𝐾 inputs from G and the twist G’ "
def _init_(𝑠,𝐺):
𝑠 .𝐵 ← 𝐺 ; 𝑠 .𝑖 ← 0; 𝑠 .𝑠1, 𝑠 .𝑠2 ← fresh;

def sampleY(s):

if 𝑠 .𝑖 ≤ 2:

𝑠 .𝑖+ = 1;sample 𝑠 .𝑦𝑖 ←R
F𝑝 \ 0;

𝑠 .𝑌𝑖 ← (𝑠 .𝐵)𝑦𝑖 ; return 𝑠 .𝑌𝑖 ;
def corrupt(s,𝑌):
for 1 ≤ 𝑚 ≤ 𝑠 .𝑖):
if (𝑌 = (𝑠 .𝐵)𝑠.𝑦𝑚):

𝑥 ← 𝑠 .𝑦𝑚 ; 𝑠 .𝑠𝑖 ← corrupt; return x;

def DDH(𝑠, 𝐵, 𝑌 , 𝑋, 𝐾):
if ({𝑌,𝑋 }={𝑠 .𝑌1, 𝑠 .𝑌2})and(𝑠 .𝑠1 = fresh)and(𝑠 .𝑠2 = fresh) . . .

. . . and (𝐾 = (𝑠 .𝐵)𝑠.𝑦1 ·𝑠.𝑦2
):

abort("𝐾 solves sCDH(𝐵,𝑌1, 𝑌2)");

if (𝑌 = 𝑠 .𝑌1):

if(𝑠 .𝑠1 = fresh) and (𝑋 ∈ G′ \ 𝐼G′) and (𝑋𝑠.𝑦1 = 𝐾):

abort("𝑋,𝐾 solve sTCDH(𝐵,𝑌1)");

return (𝑋𝑠.𝑦1 = 𝐾);

if (𝑌 = 𝑠 .𝑌2):

if(𝑠 .𝑠2 = fresh) and (𝑋 ∈ G′ \ 𝐼G′) and (𝑋𝑠.𝑦2 = 𝐾):

abort("𝑋,𝐾 solve sTCDH(𝐵,𝑌2)");

return (𝑋𝑠.𝑦2 = 𝐾);

def isValid(𝑋): return (𝑋 ∈ (G \ 𝐼G)) or (𝑋 ∈ (G′ \ 𝐼G′);

Chaining the experiment objects for case of X25519 and X448

sSdhExp = sSDH(sCDH_sTCDH);

ccExp = cofactorClearer(sSdhExp,𝑐, 𝑝, 𝑝𝑡𝑤𝑖𝑠𝑡);

distExp = DG_sSDH(Map2PointPreImages, 𝑛max,ccExp);

twistSecExp =moduloNegationAdapter(ccExp);

Figure 8: Class combining sCDH and sTCDH experiments

Theorem 6.4 (Security of CPace on twist-secure curves.). Let G𝑝 ·𝑐
be an elliptic curve of order 𝑐 · 𝑝 where 𝑐, 𝑝 coprime with a subgroup
G of prime order 𝑝 over base field 𝐹𝑞 . Let G𝑝′ ·𝑐′ be the quadratic twist
of G𝑝 ·𝑐 of order 𝑐 ′ · 𝑝𝑡𝑤𝑖𝑠𝑡 with a subgroup G′ of order 𝑝𝑡𝑤𝑖𝑠𝑡 . Let 𝑐
be equal to 𝑐 ′ or an integer multiple of 𝑐 ′.

If there is a single-coordinate implementation of CPace on G that
could be distinguished from an ideal-world simulator S from Fig. 4
with negligible advantage, where S embeds an experiment object
exp for the sCDH problem, then a modified CPace implementation
that does not discard received points from G′ \ 𝐼G′ can be simulated
by an ideal-world simulator S′ that is obtained by replacing the
sCDH experiment by the experiment object twistSecExp from figure
8 and the difference in the distinguisher advantages is bounded by
2 · AdvsTCDH.

Proof. The only difference to the proof strategy for Theorem 5.1

consists in the fact that we now need to handle events where the

adversarial strategy is based on injecting points from the twist.

First note that the twist has cofactor 𝑐 ′ and thus 𝑐 ′ low-order
points. As 𝑐 is an integer multiple of 𝑐 ′ the exponentiation by mul-

tiples of 𝑐 maps all low-order points on the twist to the twist’s

identity element and these will be discarded also by the modified

CPace version. In the simulation we additionally need to handle the

case that the adversary provides an input from the twist. We add an

additional game after G0, where we abort if the adversary queries

H2 for 𝑌,𝑋, 𝐾 for a honest 𝑌 = 𝐺𝑦 calculated from a generator𝐺 ,

an adversarial input 𝑋 from the twist G′ such that 𝐾 = 𝑋 𝑦 ∈ G′,
where 𝑦 is the private scalar of one of the honest parties.

This change is distinguishable only if A provided a solution to

the sTCDH problem from Definition 3.7 and the advantage of a

distinguisher of in this additional game is bounded by AdvsTCDH.
In any other case the honest party will return 𝐼𝑆𝐾 values indis-

tinguishable from random values in both, the real world and the

ideal world. As the adversary may choose to attack both honest

parties, the advantage has to be multiplied by two. We incorporate

this change in the simulator by replacing the sCDH object instance

that is embedded by the sSDH experiment class. □

6.5 Chaining the experiment classes
In Appendix F, we describe 3 CPace implementations which com-

bine the single aspects discussed in the previous sections in vari-

ous combinations. The experiment that encodes the assumptions

that apply for the construction that we recommend for use on

twist secure Montgomery curves is specified by the "twistSec-

Exp" object from Fig. 8. Correspondingly the assumption set that

is necessary for proving the security of CPace on the group ab-

straction construction from Appendix F for ristretto25519 and de-

caf448 [Ham15a, dVGT
+
20] is defined by the "coffeeExp" object

from Fig. 11. The assumption set needed for proofs for our recom-

mended construction with short-Weierstrass curves is specified by

the "singleCoorExp" object in figure Fig. 7. A concrete example how

this process is carried out is given in Appendix D.

7 CONCLUSION
We demonstrated that the symmetric PAKE protocol CPace enjoys

strong composable security guarantees under CDH-type assump-

tions, and in the random oracle model. We identify a requirement

we coin probabilistic invertibility on theMap2Point primitive be-

ing employed by CPace for deriving secret generators, such that

the random-oracle idealization can be restricted to modeling con-

ventional hash functions only. AllMap2Pointfunctions currently

considered by the CFRG working group fulfill this new property.

We believe that this is the first work that goes beyond a modeling

of Map2Point as a random oracle for a real-world cryptographic

protocol.

In the process of analyzing CPace we noticed a significant short-

coming of all previously published ideal UC PAKE functionalities.

We presented and used a strengthened functionality that will pro-

vide major advantages when analyzing protocols that use CPace,

and PAKE in general, as a building block.

We presented a flexible and modular approach for carrying out

security proofs in simulation-based models when reducing to as-

sumptions for which experiment algorithms can be efficiently im-

plemented. The approach consists of making the challenges an

integral part of the simulation algorithm. This avoids the unnatural

separation between simulator construction and reduction argu-

ments. We have employed this approach for deriving the exact

changes in the assumption set when fine-tailoring CPace for dif-

ferent elliptic-curve ecosystems such as short Weierstrass curves,

Montgomery curves and idealized group abstractions. We were able

to prove security of many such CPace variants even in conjunction

with adaptive corruption and believe that CPace is the first PAKE

protocol for which security guarantees are proven for such a strong

adversary model.

To conclude, we believe that our techniques can also be em-

ployed for more closely understanding the security properties of

other protocols operating on elliptic curves in conjunction with

Map2Point primitives such as, e.g., oblivious pseudo-random func-

tions (OPRF) that form building blocks of OPAQUE [JKX18] and

strong AuCPace [HL18]. Current analyses model the mapping prim-

itive as a random oracle. With our work as motivating and tech-

nical example, a security proof of more efficient and less com-

plex OPRF constructions based on single-coordinate Montgomery

ladders seems within reach. Secondly, we believe that our proof

strategy for assumptions with efficient experiments can provide ad-

vantages for more flexibly analyzing different variants of a protocol,

and might even open easier paths for employing machine-based

proof strategies in UC.

ACKNOWLEDGMENTS
This work was partly supported by the European Union’s Horizon

2020 Research and Innovation Programme under Grant Agreement

No. 786725 – OLYMPUS.

REFERENCES
[ABB

+
20a] Michel Abdalla, Manuel Barbosa, Tatiana Bradley, Stanislaw Jarecki,

Jonathan Katz, and Jiayu Xu. Universally composable relaxed password

authenticated key exchange. In Daniele Micciancio and Thomas Risten-

part, editors, CRYPTO 2020, Part I, volume 12170 of LNCS, pages 278–307.
Springer, Heidelberg, August 2020.

[ABB
+
20b] Michel Abdalla, Manuel Barbosa, Tatiana Bradley, Stanislaw Jarecki,

Jonathan Katz, and Jiayu Xu. Universally composable relaxed password

authenticated key exchange. Cryptology ePrint Archive, Report 2020/320,

2020. https://eprint.iacr.org/2020/320.

[ABK
+
20] Michel Abdalla, Manuel Barbosa, Jonathan Katz, Julian Loss, and Jiayu

Xu. Algebraic adversaries in the universal composability framework.

Pre-Print, October 2020.

[ABR01] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle diffie-

hellman assumptions and an analysis of DHIES. In David Naccache,

editor, Topics in Cryptology - CT-RSA 2001, The Cryptographer’s Track at
RSA Conference 2001, San Francisco, CA, USA, April 8-12, 2001, Proceedings,
volume 2020 of Lecture Notes in Computer Science, pages 143–158. Springer,
2001.

[AP05] Michel Abdalla and David Pointcheval. Simple password-based encrypted

key exchange protocols. In Alfred Menezes, editor, CT-RSA 2005, volume

3376 of LNCS, pages 191–208. Springer, Heidelberg, February 2005.

[BCI
+
10a] Eric Brier, Jean-Sébastien Coron, Thomas Icart, David Madore, Hugues

Randriam, and Mehdi Tibouchi. Efficient indifferentiable hashing into

ordinary elliptic curves. In Tal Rabin, editor, Advances in Cryptology -
CRYPTO 2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 15-19, 2010. Proceedings, volume 6223 of Lecture Notes in Computer
Science, pages 237–254. Springer, 2010.

[BCI
+
10b] Eric Brier, Jean-Sébastien Coron, Thomas Icart, David Madore, Hugues

Randriam, and Mehdi Tibouchi. Efficient indifferentiable hashing into

ordinary elliptic curves. In Tal Rabin, editor, CRYPTO 2010, volume 6223

of LNCS, pages 237–254. Springer, Heidelberg, August 2010.
[Ber06] Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In

Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors,

PKC 2006, volume 3958 of LNCS, pages 207–228. Springer, Heidelberg,
April 2006.

[BFK09] Jens Bender, Marc Fischlin, and Dennis Kügler. Security analysis of the

PACE key-agreement protocol. In Pierangela Samarati, Moti Yung, Fabio

Martinelli, and Claudio Agostino Ardagna, editors, ISC 2009, volume 5735

of LNCS, pages 33–48. Springer, Heidelberg, September 2009.

[BHKL13] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange.

Elligator: elliptic-curve points indistinguishable from uniform random

strings. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors,

2013 ACM SIGSAC Conference on Computer and Communications Security,
CCS’13, Berlin, Germany, November 4-8, 2013, pages 967–980. ACM, 2013.

[BL19] Daniel J. Bernstein and Tanja Lange. SafeCurves: Choosing safe curves

for elliptic-curve cryptography. Definition of Twist security. (accessed on

15 January 2019), 2019. https://safecurves.cr.yp.to/twist.html.

[BM92] Steven M. Bellovin and Michael Merritt. Encrypted key exchange:

Password-based protocols secure against dictionary attacks. In 1992 IEEE
Symposium on Security and Privacy, pages 72–84. IEEE Computer Society

Press, May 1992.

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key

exchange secure against dictionary attacks. In Bart Preneel, editor, EURO-
CRYPT 2000, volume 1807 of LNCS, pages 139–155. Springer, Heidelberg,
May 2000.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryp-

tographic protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society

Press, October 2001.

[CHK
+
05] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D.

MacKenzie. Universally composable password-based key exchange. In

Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages
404–421. Springer, Heidelberg, May 2005.

[DSS13] Digital Signature Standard (DSS). National Institute of Standards and

Technology (NIST), FIPS PUB 186-4, U.S. Department of Commerce, July

2013. https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf.

[dVGT
+
20] H. de Valence, J. Grigg, G. Tankersley, F. Valsorda, I. Lovecruft, and

M. Hamburg. The ristretto255 and decaf448 groups. Rfc, IRTF, 10 2020.

[ECC18] Elliptic Curve Cryptography. Federal Office for Information Security

(BSI), Technical Guideline BSI TR-03111, Version 2.10, June 2018.

[FHSS
+
19] A. Faz-Hernandez, S. Scott, N. Sullivan, R. Wahby, and C. Wood. Hashing

to elliptic curves, 2019. https://datatracker.ietf.org/doc/draft-irtf-cfrg-

hash-to-curve/.

[FT12] Pierre-Alain Fouque and Mehdi Tibouchi. Indifferentiable hashing to

Barreto-Naehrig curves. In Alejandro Hevia and Gregory Neven, editors,

LATINCRYPT 2012, volume 7533 of LNCS, pages 1–17. Springer, Heidelberg,
October 2012.

[Haa20] Björn Haase. CPace, a balanced composable PAKE, 2020. https://

datatracker.ietf.org/doc/draft-haase-cpace/.

[Ham15a] Mike Hamburg. Decaf: Eliminating cofactors through point compression.

In Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryptol-
ogy - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 16-20, 2015, Proceedings, Part I, volume 9215 of Lecture
Notes in Computer Science, pages 705–723. Springer, 2015.

[Ham15b] Mike Hamburg. Ed448-goldilocks, a new elliptic curve. Cryptology ePrint

Archive, Report 2015/625, 2015. http://eprint.iacr.org/2015/625.

[Ham20] Mike Hamburg. Indifferentiable hashing from elligator 2. Cryptology

ePrint Archive, Report 2020/1513, 2020. https://eprint.iacr.org/2020/1513.

[Hes20] Julia Hesse. Separating symmetric and asymmetric password-

authenticated key exchange. In Clemente Galdi and Vladimir Kolesnikov,

editors, SCN 20, volume 12238 of LNCS, pages 579–599. Springer, Heidel-
berg, September 2020.

[HL18] Björn Haase and Benoît Labrique. AuCPace: Efficient verifier-based PAKE

protocol tailored for the IIoT. Cryptology ePrint Archive, Report 2018/286,

2018. https://eprint.iacr.org/2018/286.

[HL19] Björn Haase and Benoît Labrique. AuCPace: Efficient verifier-based PAKE

protocol tailored for the IIoT. IACR TCHES, 2019(2):1–48, 2019. https:

//tches.iacr.org/index.php/TCHES/article/view/7384.

[HWCD08] HüseyinHisil, Kenneth Koon-HoWong, Gary Carter, and EdwardDawson.

Twisted edwards curves revisited. In Asiacrypt, volume 5350, pages 326–

343. Springer, 2008.

[Jab96] David P. Jablon. Strong password-only authenticated key exchange. Com-
puter Communication Review, 26(5):5–26, 1996.

[JKX18] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE: An asymmet-

ric PAKE protocol secure against pre-computation attacks. In Jesper Buus

Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume

10822 of LNCS, pages 456–486. Springer, Heidelberg, April / May 2018.

[LHT16] A. Langley, M. Hamburg, and S. Turner. Elliptic Curves for Security. RFC

7748, IETF, January 2016.

[LM10] Manfred Lochter and Johannes Merkle. Elliptic Curve Cryptography

(ECC) Brainpool Standard Curves and Curve Generation. RFC 5639, IETF,

March 2010.

[PAC08] Advanced security mechanism for machine readable travel documents

(extended access control (EAC), password authenticated connection es-

tablishment (PACE), and restricted identification (RI)). Federal Office for

Information Security (BSI), BSI-TR-03110, Version 2.0, 2008.

[PW17] David Pointcheval and Guilin Wang. VTBPEKE: Verifier-based two-basis

password exponential key exchange. In Ramesh Karri, Ozgur Sinanoglu,

Ahmad-Reza Sadeghi, and Xun Yi, editors, ASIACCS 17, pages 301–312.

https://eprint.iacr.org/2020/320
https://safecurves.cr.yp.to/twist.html
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/
https://datatracker.ietf.org/doc/draft-haase-cpace/
https://datatracker.ietf.org/doc/draft-haase-cpace/
http://eprint.iacr.org/2015/625
https://eprint.iacr.org/2020/1513
https://eprint.iacr.org/2018/286
https://tches.iacr.org/index.php/TCHES/article/view/7384
https://tches.iacr.org/index.php/TCHES/article/view/7384

ACM Press, April 2017.

[Sho04] Victor Shoup. Sequences of games: a tool for taming complexity in security

proofs. IACR Cryptol. ePrint Arch., 2004:332, 2004.
[SvdW06] Andrew Shallue and Christiaan E. van de Woestijne. Construction of

rational points on elliptic curves over finite fields. In ANTS, volume 4076

of Lecture Notes in Computer Science, pages 510–524. Springer, 2006.

A PROOF OF THEOREM 5.1
We start with the real execution of the CPace protocol with an

adversary A, and gradually modify it, ending up with the ideal

execution F
lePAKE

with a simulator S. The changes will go unno-
ticed by an (adaptively corrupting) environmentZ interacting with

parties and the adversary. Let RealZ (𝐶𝑃𝑎𝑐𝑒,A) be the event that
environmentZ with adversary A and an execution of CPace out-

puts 1 and IdealZ (FlePAKE,S) be the corresponding event in the

ideal execution with functionality F
lePAKE

depicted in Fig. 1. We

assume S to always include the session identifier sid in each stored

record, and omit them in this proof for brevity.

Game G0: The real protocol execution. This is the real world
in which the adversary interacts with real players and may

view, modify and/or drop network messages and adaptively

corrupt parties.

𝑃𝑟 [RealZ (CPace,A)] = 𝑃𝑟 [G0]

Game G1: Introducing the simulator. In this game we move

the whole execution into one machine and call in the simula-

tor S. Note that this implies that S implements the random

oracles H1,H2 and runs the execution with actual passwords

as input. We will change the simulation to work without

passwords in the upcoming games. In this game for any new

input query 𝑠 for H1 (H2) samples a point on the curve (a

random string) respectively. No re-programming operation

is yet needed. The changes are only syntactical and thus

Pr [G0] = Pr [G1]

Game G2: Embedding trapdoors. In this game we start keep-

ing track of secret exponents for generators created from

passwords. S samples a fixed generator 𝐵 ← G. For every
hash query H1 (sid,P,P ′, pw), S samples 𝑟 ← F𝑝 , stores
(H1,P||P ′, pw, 𝑟 , 𝑟−1, 𝐵𝑟) and replies to the query with 𝐵𝑟 .

The only difference is that the simulator now keeps track of

the secret exponents for H1 queries and the distributions of

this and the previous game are perfectly indistinguishable

Pr [G1] = Pr [G2]

Game G3: Abort on collisions of the random oracle H1. The
simulator aborts if a collision occurs in H1, i.e., if S samples

an answer for a fresh H1 query that he already gave before.

Note that without collisions two honest parties will always

output matching (respectively differing) session keys if both,

passwords and party identifiers, match (respectively differ).

Note that authenticating party identifiers in addition to the

password is important for fending off relay attacks. As the

order of the group is 𝑝 ≈ 2
𝑘
andZ can only make a polyno-

mially bounded number 𝑙H1
) of H1 queries, the probability

of aborts is negligible in 𝑘 by the birthday bound. Thus this

and the previous game are indistinguishable.

| Pr [G2] - Pr [G3] | ≤ 𝑙2
H1

/𝑝

Game G4: Introduce F and simulate the protocol messages.
In the real world all session keys will be calculated by using

H2 queries. In the ideal world session keys of honest parties

will not be generated by H2 queries but will be provided

separately by the ideal functionality (with mechanisms in

F for synchronizing H2 outputs and session keys in case

of successful password guesses). Here we prepare this sepa-

ration and use programming operations for the H2 RO for

keeping session key outputs consistent with H2.

Changes to the functionality. In this game we add an ITI F
external to the simulator. F has all interfaces of F

lePAKE

except that we don’t yet limit the number of calls to the

LateTestPwd and TestPwd queries and make the NewKey

interface always relay keys coming from the simulator via

NewKey queries. Also in this game we let F inform the

simulator about the clear-text passwords upon NewSession

events.

Changes to the simulation. Upon receiving an adversarially

generated 𝑌𝑎 ∈ G \ 𝐼G or 𝑌𝑏 ∈ G \ 𝐼G aimed at a party P,
S sends (RegisterTest,P) to F . S simulates protocol mes-

sages 𝑌𝑎 = 𝐵𝑧𝑎 and 𝑌𝑏 = 𝐵𝑧𝑏 on behalf of honest parties

by sampling exponents 𝑧𝑎, 𝑧𝑏 uniformly from (1 · · · (𝑝 − 1)).
Upon an adaptive corruption query of Z for a party out-

puting 𝑌𝑎 (respectively 𝑌𝑏), S converts these to the secret

scalars 𝑦𝑎 (respectively 𝑦𝑏) used by the real-world protocol

as 𝑦𝑎 = 𝑧𝑎 · 𝑟−1
(respectively 𝑦𝑏 = 𝑧𝑏 · 𝑟−1

), where 𝑟−1
has

been looked up in the record (H1, oc(P,P ′), pw, ∗, 𝑟 , 𝑟−1,𝐺)
for the party’s password. (S creates a new such record for

pw if none yet exists.) As 𝑟 ≠ 0 uniformly sampling 𝑦𝑎 (𝑦𝑏)

or 𝑧𝑎 (𝑧𝑏𝑦) is equivalent. In the following we detail how the

simulator produces consistent outputs and answers to H2

queries. While being straightforward, the presentation is

slightly involved since the order of queries and messages

impacts the simulation.

When S needs to issue a key to a party P using password

pw for points 𝑌𝑎 and 𝑌𝑏 , then either 𝑌𝑎 or 𝑌𝑏 will have been

generated on behalf ofP.S looks for a record (H1, oc(P,P ′),
pw, ∗, 𝑟 , 𝑟−1,𝐺) (and creates a H1 entry for pw if no such

record exists). If 𝑌𝑎 was generated for P, then set 𝐾 ′ =

𝑌
𝑧𝑎𝑟
−1

𝑏
, otherwise set 𝐾 ′ = 𝑌𝑧𝑏𝑟

−1

𝑎 .

• Adjust output of P to earlier H2 query: S then checks

whether there is any record (H2, 𝐾 | |oc(𝑌𝑎, 𝑌𝑏), 𝐼𝑆𝐾) such
that 𝐾 = 𝐾 ′. Note that in this case it holds that both,

𝐷𝐷𝐻 (𝐵𝑟 , 𝑌𝑎, 𝑌𝑏 , 𝐾) = 𝐷𝐷𝐻 (𝐵,𝑌𝑎, 𝑌𝑏 , 𝐾𝑟
−1) = 1. In this

case S executes the TestPwd query of F for (pw) and sub-

sequently passes 𝐼𝑆𝐾 to the NewKey query of F . We note

that our simulator does not make use of the reply “cor-

rect/wrong guess” (since there are no more values of the

honest party to simulate after the guess happens), but still

needs to issue TestPwd in order to be able to determine the

attacked party’s output viaNewKey in case of a successful

guess.

• Align keys in case of matching passwords: If no correspond-
ing H2 record is found and both points 𝑌𝑎, 𝑌𝑏 were gener-

ated by honest parties and the passwords of both parties

match and a NewKey query has already been issued to

the other party, then S calls NewKey for P using the key

already passed to P ′.
• In any other case there is no output yet to keep consistent

with. S samples a new random key just as for new H2

queries and passes this key to the NewKey query of F .
UponZ querying H2 (𝐾 | |𝑌𝑎 | |𝑌𝑏) for a yet unqueried input,

• Query not related to any honest output: If neither 𝑌𝑎 nor

𝑌𝑏 were generated by an honest party or 𝑌𝑎 | |𝑌𝑏 ≠ (𝑌𝑎 | | <
| |𝑌𝑏) then sample a new random value and output it as

result for H2.

• Adjust H2 query to key of P: Else if all of (1) 𝑌𝑎 = 𝐵𝑧𝑎

was simulated for honest party P and (2) NewKey was

already delivered to F for P and (3) there is a record

(H1, oc(P,P ′), pw, 𝑟 , 𝑟−1,𝐺) such that 𝐾 = 𝑌
𝑧𝑎𝑟
−1

𝑏
(which

occurs if 𝐷𝐷𝐻 (𝐵𝑟 , 𝑌𝑎, 𝑌𝑏 , 𝐾) = 𝐷𝐷𝐻 (𝐵,𝑌𝑎, 𝑌𝑏 , 𝐾𝑟
−1) = 1)

then:S sends (LateTestPwd,P, pw) to F .S programs F ’s
answer to this query as reply to the H2 query.

• Adjust H2 query to key of P ′: Else if 𝑌𝑏 = 𝐵𝑧𝑏 was simu-

lated for honest party P ′. S proceeds as for honest P but

checks for 𝐾 = 𝑌
𝑧𝑏𝑟
−1

𝑎 .

• Else we conclude that there is no need for adjustment and

the H2 query is answered as in the previous game.

Note that with these changes, S never needs to actually cal-

culate itself a Diffie-Hellman result point 𝐾 , instead it only

makes sure that H2 queries for parties that adhere to the

protocol and keys output to honest parties match. Instead

from this point on, the simulators will only need access to

𝐷𝐷𝐻 (𝐵,𝑌, ·, ·) or 𝐷𝐷𝐻 (𝐵𝑟 , 𝑌 , ·, ·) oracles for a fixed genera-

tor 𝐵 and a honestly generated point 𝑌 as second parameter

which we could implement easily in this game as we have

access to the secret exponents.

Indistinguishability argument. There is no change from the

viewpoint of Z between this and the previous game. The

game only differs in theway how session keys andH2 queries

are output. In both games, both, the output ofH2 queries and

session keys, are uniformly sampled. Just as in the previous

game, session keys output to two honest parties match if P
and P ′ have used same password and differ otherwise.

Finally the session keys output to honest parties with pass-

word pw match H2 queries taken for queries using a Diffie-

Hellman point 𝐾 that would be calculated by parties that

follow the protocol. It follows that

Pr [G3] = Pr [G4]

Game G5: Limit number of password guesses
Changes to the functionality.The number of password guesses

is now limited to one guess per party. I.e. there is one guess

per record ⟨sid,P,P ′, pw, ·⟩.
Changes to the simulation. S looks for CDH tuples in H2

queries w.r.t all recorded exponents 𝑟 in its H1 list. If S
finds a CDH tuple (𝐺,𝑋,𝑌, 𝐾) that meets the conditions of

G4 (where 𝑌 denotes the adversarially-generated message),

S creates a record (guess,𝐺,𝑌). If at this point there is

already a record (guess,𝐺 ′, 𝑌) with 𝐺 ≠ 𝐺 ′, we say that

event multguess happens and let S abort.

Indistinguishability argument. The change is only recogniz-

able if S has to abort. We show that this happens only with

negligible probability if the sSDH assumption holds in G.
We construct an efficient sSDH adversary BsSDH interacting

withZ. Let (𝑌,𝐺1,𝐺2) denote a sSDH challenge. BsSDH em-

beds the challenge in this game as follows: first, BsSDH flips

a coin and sets 𝑌 to be either the message of P or P ′. BsSDH
aborts if the chosen party is corrupted or gets corrupted

at a later stage. Then, BsSDH randomly chooses two out of

all H1 queries made by Z and answer them with 𝐺1 ←
H1 (sid | |oc(P,P ′) | |pw) and 𝐺2 ← H1 (sid | |oc(P,P ′) | |pw′)
(pw and pw

′
are going to be Z’s two password guesses).

BsSDH replaces the check performed by the simulator with

oracle queries 𝐷𝐷𝐻 (𝐺𝑖 , 𝑌 , 𝑌 ′, 𝐾), 𝑖 = 1, 2, where 𝑌 ′ denotes
the (simulated or adversarial) other message. If multguess
occurs, then two CDH solutions were found, namely one for

each 𝐺𝑖 . BsSDH outputs these two solutions. Since w.l.o.g

Z corrupts at most one party and has a view independent

of the coin flipped by BsSDH, BsSDH has to abort only with

probability 1/2. Overall, it follows that 𝑃𝑟 [multguess] ≤
2𝑙2
H1

AdvsSDH, where 𝑙H1
denotes the number of H1 queries

made byZ. We thus have

| Pr [G4] - Pr [G5] |≤ 2𝑙2
H1

AdvsSDH .

Remark A.1. We note that any reduction could make use of
the true password of P ′, since a reduction interfaces withZ
and thus also receives protocol inputs. However, it is unclear
how to leverage this, since multguess implies thatZ makes
at least one incorrect guess. Thus, S needs to turn password
guesses into CDH solutions regardless of whether a guess is
correct or not. Further, we note that a reduction to the strong
CDH assumption seems infeasible here. The reason is that S
needs to detect password guesses in H2 queries, which requires
knowledge of the exponent of the simulated message 𝑌𝑏 . The
reduction however does not have this knowledge due to 𝑌𝑏
being set to the CDH challenge, and thus needs to leverage DDH
oracles w.r.t different generators for detecting both guesses.

Game G6: Random key if passwords mismatch
Changes to the functionality. In case a record is interrupted,

F now outputs a random key (instead of the one given by

the simulator via NewKey).

Changes to the simulation. -
Indistinguishability argument. Assume the output was gen-

erated for an honest P (the other case works analogously).

The output towardsZ differs only in case TestPwd returns

“wrong guess” or LateTestPwd returns a random key. S only

issues these queries if he finds a CDH tuple in H2. In case

of TestPwd (𝑌𝑏 was sent after H2 query), let 𝑌𝑎, 𝑌𝑏 denote

the transcript and 𝐾 the Diffie-Hellman value computed by

P. The environment never submits (𝐾 | |oc(𝑌𝑎, 𝑌𝑏)) to H2, as

otherwise the previous game would abort due to multguess
happening. Thus, the output H2 (𝐾 | |oc(𝑌𝑎, 𝑌𝑏)) of P in G5

is uniformly random from the viewpoint ofZ, and replac-

ing it with a fresh random output chosen by F due to the

interrupted record is perfectly indistinguishable.

In case of LateTestPwd (H2 was queried after P generated

output), the key output to P was the randomly chosen 𝐾

generated by the LateTestPwd interface of F
lePAKE

in the

previous game, which is perfectly indistinguishable from the

randomly chosen one that the NewKey interface of F
lePAKE

outputs directly to P in this game due to the record being

interrupted.

Game G7: Output random keys for honest sessions
In this game, we let the functionality generate parties’ out-

puts in honest sessions. We change the simulation to work

without passwords and without knowledge of the honest

parties outputs.

Changes to the ideal functionality.Wenow add the fullNewKey

interface to F .
Changes to the simulation. Let𝑚 denote the number of H1

queries issued by Z and 𝑟1, . . . 𝑟𝑛 ← F𝑞 the trapdoors em-

bedded in these queries (see G2). Let 𝑧𝑎, 𝑧𝑏 denote the ex-

ponents of simulated messages as of G4. In caseZ queries

H2 (𝐾 | |oc(𝑌𝑎, 𝑌𝑏)), where for some 𝑖 ∈ [𝑚] (𝐵,𝑌𝑎, 𝑌𝑏 , 𝐾𝑟𝑖) is
a CDH tuple (which can be checked by S via 𝐵𝑧𝑎𝑧𝑏 = 𝐾𝑟𝑖),

S aborts.

Indistinguishability argument. First note thatZ can only note

a difference between this and the previous game if it repro-

duces any value 𝐾 or 𝐾 ′ computed by some (honest) party

in a “fresh” and honest session. In particular, this means

that Z cannot corrupt a party nor inject messages (as in

this case S issues TestPwd or LateTestPwd and records get

interrupted or compromised). Let us detail what party P
computes (argument for P ′ is analogously). W.l.o.g we as-

sume that Z queried H1 (sid | |oc(P,P ′) | |pw), where pw is

the password of P, and obtained 𝐵𝑎 as answer. P was simu-

lated with values 𝐵,𝑦𝑎 , and we now implicitly adjust this to

𝐵𝑎, 𝑦𝑎 · 1/𝑎. This lets P compute 𝐾 ← 𝑌
𝑦𝑎1/𝑎
𝑏

= 𝐵𝑦𝑏𝑦𝑎1/𝑎
,

where (𝐵,𝑌𝑎, 𝑌𝑏 , 𝐾𝑎) is a CDH tuple. We stress that 𝑃 com-

putes the same value 𝐾 regardless of whether both parties

use matching or mismatching passwords, since P’s output
only depends on the simulated 𝑌𝑏 and is independent of the

generator used by P ′.
We show that if sCDH holds in G then S never aborts. Con-

sider the following efficient adversary AsCDH. AsCDH ob-

tains an sCDH challenge (𝐵,𝑌𝑎, 𝑌𝑏) and executes the simula-

tion of gameG7 with it. Upon Z querying H2 (𝐾 | |oc(𝑌𝑎, 𝑌𝑏)),
AsCDH needs to detect CDH solutions using his own ora-

cle instead of knowledge of exponents of 𝑌𝑎, 𝑌𝑏 . For this,

AsCDH calls 𝑏 ← DDH(𝐵,𝑌𝑎, 𝑌𝑏 , 𝐾𝑎𝑖) and outputs 𝐾𝑎𝑖 as

sCDH solution if 𝑏 = 1 happens. It follows that

| Pr [G6] - Pr [G7] |≤ AdvsCDH .

Game G8: Remove passwords from simulation.
Changes to the ideal functionality. We remove passwords

from NewSession queries sent from F to S.
Changes to the simulation. As the simulation already is in-

dependent of the password, there are no further changes

required.

Since we are just removing unused values from the output

of F towards S, the output distributions towardsZ of this

and the previous game are indistinguishable. Hence,

𝑃𝑟 [G7] = 𝑃𝑟 [G8] = 𝑃𝑟 [IdealZ (FlePAKE,S)]

This game is identical to the ideal execution since F =

F
lePAKE

, which concludes the proof. The simulator of this

final game is depicted in Fig. 3

B ON SHORTCOMINGS OF UC PAKE
FUNCTIONALITIES

We provide an illustrating example on how a shortcoming in ex-

isting PAKE functionalities from the literature [CHK
+
05, JKX18,

Hes20, ABB
+
20a] impacts their suitability for building higher-level

applications from PAKE. Let us first detail what shortcoming we

are talking about. In PAKE functionalities, the adversary A gets to

determine the session key of honest users in some cases. This makes

sense ifA manages to guess an honest party’s password during an

interaction with said party, in which case A can compute the very

same session key and thus the party’s output is no longer uniformly

random (from the viewpoint of the adversary). But strangely, all

existing PAKE functionalities also allow the adversary to determine

the honest party’s key 𝐾∗ via NewKey queries if (cf. Fig. 1)

either P or P ′ is corrupted.

This contradicts the principle of authenticated key exchange, where

unauthenticated entities (i.e., honest or malicious parties not know-

ing the password) should not be allowed to learn the key computed

by an honest party.

Does this mean all known PAKE protocols are insecure? Most im-

portantly, all PAKE protocols proven w.r.t any of the existing PAKE

functionalities can still be considered secure. On a technical level, the

reason is that these functionalities still provide all guarantees one

would expect from a PAKE against network attackers, as long as

no corruptions occur. Besides that, we are not aware of any actual

UC PAKE security analysis that exploits the above shortcoming

in their simulation, and conjecture that they can be proven secure

without this shortcoming.

Why bother then to fix this? The shortcoming’s effect shows

when a PAKE functionality is used to modularly build other pro-

tocols. Modular protocol analysis requires strong composability

guarantees of security proofs and is one of the main features of the

UC framework. As an example, assume we want to build password-

authenticated secure channels from FpwKE depicted in Fig. 1. Intu-

itively, a password-authenticated secure channel allows two parties

to securely communicate if and only if they hold the same password.

Consider the following password-based channel toy protocol
1 Π𝑠𝑐

depicted in Fig. 9: users call FpwKE to turn their passwords into a

cryptographic key and subsequently encrypt a message𝑚 under

this key using a symmetric cipher.

Intuitively, we would expect protocol Π𝑠𝑐 to implement a secure

password-authenticated channel. Unfortunately, with the short-

coming in existing PAKE functionalities, there is no way to prove

this protocol secure: upon corrupting P ′, the adversary gets to

determine the value 𝐾 send to an honest P. A simulator would

now have to produce a ciphertext 𝑐 that, for any 𝐾 chosen by the

1
This is just a demonstrating example and not a suggestion for a practical protocol,

which would require authenticated encryption [CHK
+
05].

P P ′

On input (Init, pw) On input (Init, pw′)
pw pw

′

FpwKE
𝐾 𝐾 ′

On input (Send,𝑚)

𝑐 ← AES.Enc𝐾 (𝑚) 𝑐
𝑚′ ← AES.Dec𝐾 ′ (𝑐)

Output𝑚′

Figure 9: Toy example of amodular password-authenticated
secure channel protocol with FpwKE as building block, expos-
ing the shortcoming of FpwKE.

CPace
base

is parametrized by a security parameter 𝑘 and oper-

ates on a groupG of order 𝑝 that comes with (1) a scalar-multiply

and (2) a scalar-multiply-and-verify function that responds with

the neutral element 𝐼G for invalid inputs.

Let H1 : {0, 1}∗ → G and H2 : {0, 1}∗ → {0, 1}∗ be two hash

functions. Let SampleScalar() denote an algorithm for random

sampling from F𝑝 \ {0}.
Protocol:

(1) When P receives input (NewSession, 𝑠𝑖𝑑,P,P ′, pw), it
calculates 𝐺 ← H1 (𝑠𝑖𝑑 | |oc(P,P ′) | |pw). It then sam-

ples a fresh nonzero scalar 𝑦 ← SampleScalar() calcu-
lates 𝑌 ← ScalarMult(𝐺,𝑦). It sets up a session record

(𝑠𝑖𝑑,P ′, 𝑦, 𝑌 , fresh) and marks it as fresh and then it

sends a (RemotePoint, 𝑠𝑖𝑑,P, 𝑌) message to P ′.
(2) When P receives message (RemotePoint, 𝑠𝑖𝑑,P ′, 𝑋) and

finds a fresh session record (𝑠𝑖𝑑,P ′, 𝑦, 𝑌 , fresh) it then cal-
culates 𝐾 ← ScalarMultVfy(𝑋,𝑦). If 𝐾 = 𝐼G it aborts. If

𝐾 ≠ 𝐼G , it calculates 𝐼𝑆𝐾 ← H2 (𝑠𝑖𝑑 | |𝐾 | |oc(𝑋,𝑌)), erases
pw, 𝐺 , 𝑦 and 𝐾 from its memory and outputs (𝑠𝑖𝑑, 𝐼𝑆𝐾).
In either case mark the session record as completed.

Figure 10: UC execution of a simplified variant of CPace,
CPace

base
, proven secure in Theorem 5.1.

simulator, decrypts to𝑚 – but without knowing m. Clearly, this

traps the simulator.

Lastly, we note that our argument above is backed up by Canetti

et al. [CHK
+
05], who could only circumvent the above simulation

trap by integrating the shortcoming also into their password-based

channel functionality.

To summarize, it seems necessary to strengthen UC PAKE func-

tionalities in the way we propose in this paper, in order to make

them useful as building blocks for higher level applications.

C INITIATOR-RESPONDER AND PARALLEL
CPACE PROTOCOL VARIANTS

The current CPace specification in [Haa20] describes a protocol

with clear initiator and responder roles, where the responder sends

using python-style notation with self pointer 𝑠

def class mapTwice_sSDH:

def _init_(𝑠,Map2PointPreImages, 𝑛max, sSDHExp):

𝑠 .𝑠𝑆𝐷𝐻 = sSDHExp; 𝑠 .𝑟𝑒𝑐𝑜𝑟𝑑𝑠 = [];
𝑠 .𝑝𝑟𝑒𝑖𝑚 =Map2PointPreImages; 𝑠 .𝑛𝑚𝑎𝑥 = 𝑛max

def sampleY(𝑠): return (𝑠 .𝑠𝑆𝐷𝐻) .sampleY();

def isValid(𝑋): return (𝑠 .𝑠𝑆𝐷𝐻) .isValid(𝑋);
def sampleH1(𝑠):

𝑖 ← 0;

𝐺 ← (𝑠 .𝑠𝑆𝐷𝐻) .sampleH1();
do while (i < 2):

sample 𝑟𝑖 ←R
F𝑝 ;

preimageList = (𝑠 .𝑝𝑟𝑒𝑖𝑚) (𝐺𝑟𝑖);
sample𝑚 ←

R
{0 . . . (𝑠 .𝑛max − 1)};

if len(preimageList) >𝑚:

ℎ𝑖 ←preimageList[𝑚]; 𝑖+ = 1;

ℎ ← (ℎ0, ℎ1); 𝑟 ← (𝑟0 + 𝑟1);
if ℎ in 𝑠 .𝑟𝑒𝑐𝑜𝑟𝑑𝑠 abort("H1 collision");
if 𝑟 = 0: abort("Neutral element returned");

𝑠 .𝑟𝑒𝑐𝑜𝑟𝑑𝑠 .append(𝑟,𝐺𝑟 , ℎ); return ℎ;

def corrupt(𝑠, ℎ, 𝑌):
if there is (𝑟,𝐺, ℎ) in 𝑠 .records:

return (𝑠 .𝑠𝑆𝐷𝐻) .corrupt(𝐺,𝑌 1/𝑟
);

def DDH(𝑠 ,ℎ,𝑌, 𝑋, 𝐾):
if there is (𝑟,𝐺, ℎ) in 𝑠 .records:

return (𝑠 .𝑠𝑆𝐷𝐻).DDH(𝐺,𝑌,𝑋, 𝐾1/𝑟
);

Chaining the experiment objects for ristretto and decaf

sSdh = sSDH(sCDH);

coffeeExp =mapTwice_sSDH(Map2PointPreImages, 𝑛max,sSdh);

Figure 11: Experiment class definition mapTwice_sSDH
where H1 hashes to F𝑞 × F𝑞 .

his reply only upon reception of the initiator message. Astonish-

ingly, we observed that for an analysis of such a protocol in the UC

framework, an ideal PAKE functionality technically needs a richer

structure than the one for a corresponding parallel protocol that
does not enforce ordering. The reason is that the responder party

needs to be activated twice, once for sending the network message

and once for issuing the session key.

In order to avoid this purely technical complexity in our presen-

tation we decided to analyze security of CPace here in the more

complex setting where no ordering is enforced. For the purpose of

the analysis, we thus had to modify the protocol from [Haa20] such

that ordered concatenation (written oc(A,B)) is used for generating

hash function inputs instead of just putting the initiator’s message

first.

We would like to stress that in case that the protocol control flow

guarantees a defined sequence, as is e.g. the case for protocols such

as TLS, there is no need security-wise to enforce use of ordered

concatenation.

D CHAINING CHALLENGE GENERATOR
CLASSES

Two different types of experiments can be distinguished. Firstly,

the sCDH and the sCDH_sTCDH classes (Fig. 4 and Fig. 8) share

the same API and specify two variants of the conventional CDH

problem. Instances will be assigned a base point 𝐵 in their con-

structor call, produce two elements from a prime-order group and

answer DDH queries. Secret exponents will be revealed in case

of corruption events. Also the objects inform the caller on which

objects are accepted by their DDH oracle.

This API is used by the objects representing variants of the

simultaneous Diffie-Hellman assumption. As security of all variants

is ultimately based on the prime-order version of the sSDH problem

all calls fromS will ultimately be converted into a call to an instance

of the sSDH class from Fig. 4. This is implemented by chaining the

different classes.

As root of the chain first an instance of the prime-order sSDH

class is generated which is parametrized by one of the two con-

ventional CDH classes (sCDH or sCDH_sTCDH) by a constructor

parameter. In its constructor the sSDH object will sample a genera-

tor 𝐵 and create an instance of the sCDH or sCDH_sTCDH class,

which will become a member of the sSDH root class. The base point

is passed to this member object in its constructor call.

The challenge generator classes for the simultaneous problem
variants will all produce base points for the simultaneous Diffie-

Hellman problem through their API for producing H1 samples.

However the encoding of the base point varies. In the root class

sSDH a uniformly sampled group element is returned directly. The

derived classes could return the base point also in form of an en-

coding ℎ that needs to be passed to the mapping construction for

decoding.

We describe the chaining approach by using the example of

single-coordinate protocol variants on curves with cofactor and

twist security using a "map-once" primitive (our recommendation

for twist secure Montgomery curves from Appendix F). The corre-

sponding code is found in Fig. 8 below the class definition.

As all Montgomery curves having real-world relevance today

come with twist security, the sSDH root object is instantiated with

an sCDH_sTCDH object and we obtain an "sSdhExp" instance of

the sSDH class. As the curve has a cofactor, "sSdhExp" will be passed

to an instance "ccExp" of the class cofactorClearer and stored there

as a member. "ccExp" makes sure that inputs for all queries, notably

parameters 2,3,4 of the DDH function, will be mapped to the prime-

order subgroup and transformed into calls to "sSdhExp". The "ccExp"

object itself is then passed to the constructor of the distribution

class DG_sSDH which will be given a function reference to the

implementation of the preimage calculator function for the map.

This "distExp" object will returnH1 samples that need to be decoded

using theMap2Point function in order to obtain group elements and

require this encoding in its first operand in itsDDH function. Finally

an instance "twistSecExp" of the moduloNegationAdapter adapter

class is created, having the "distExp" object as a member in its body.

Calls to theDDHmethod of the "twistSecExp" object will receive

the base point ℎ in a form that needs to be passed toMap2Point for

decoding to a group element. The missing coordinate is recon-

structed for the second, third and fourth operand of the DDH func-

tion and for both candidate points calls to the DDH method of the

"distExp" instance will be issued. The latter will convert the base

point query ℎ to a group element and forward the query to the

cofactor clearer. The latter will make sure that queries for points

will have their low-order component cleared and issue a call to

the sSDH root object which itself will forward the query to the

sCDH_sTCDH instance in its body which uses its secret exponents

for giving the response.

E NOTE ON SAMPLING OF SCALARS
The CPace protocol needs an algorithm for sampling scalars 𝑦 for

use as private Diffie-Hellman exponents. Ideally for a (sub-)group

of order 𝑝 , these should be sampled from a uniform distribution

from F𝑝 \ 0. Sometimes, in particular if 𝑝 is very close to a power of

two 𝑝 = 2
𝑙 +𝑝0 with 𝑝0 ≪ 𝑝 , existing Diffie-Hellman libraries draw

scalars from the set {1, . . . , (2𝑙 − 1)} instead or include other struc-

ture in the scalars. Examples include the X25519 Diffie-Hellman pro-

tocol [Ber06] on Curve25519 with it’s so-called scalar-clamping pro-

cedure which has been re-used for the X448 protocol on Curve448.

We observed other libraries to fix some scalar bits to a defined 1

value in order to guarantee for a constant execution time in window-

based scalar multiplication strategy. There are also good reasons for

avoiding any additional calculation involving secret scalars 𝑦, such

as might be required during rejection sampling, since any operation

on𝑦 might put the secret at risk, e.g. due to side-channels. As CPace

aims at being suitable for re-using existing well-tested libraries as-

is, the implications for the protocol security due to non-uniform

sampling of scalars need to be analyzed. Unlike for conventional

Diffie-Hellman protocols, for CPace not only the confidentiality of

ephemeral session keys might be affected but also information on

the passwords could be leaked.

In order to consider this, one would introduce an additional

game G0 b after the real-world setting and only change the scalar-

sampling algorithm. In this game, we replace the possibly slightly

non-uniform distribution of secret scalars 𝑦𝑎 from honest parties

in the real world with a fully uniform distribution. For a group

order 𝑐 · (2𝑙 + 𝑝0) implementations in the real world honest parties

might draw the scalars 𝑦𝑎 and 𝑦𝑏 from {1, . . . , (2𝑙 − 1)} instead of

{1, . . . , (𝑝 − 1)}. Let AdvDUN be the advantage of distinguishing

𝑌 = 𝐵𝑦 derived from a uniform or slightly nonuniform distribution

of secret scalars 𝑦. Let 𝑙1 denote the number of generated public

keys 𝑌𝑎 , 𝑌𝑏 from honest parties and let 𝑙2 the number of adaptive

corruptions that reveal the secret exponents.

| Pr [G0] - Pr [G0 b] | ≤ (𝑝0/𝑝) · (𝑙1 · AdvDUN + 𝑙2)
As a result of our assessment the structure introduced by the

"scalar clamping" defined for X25519 and X448 does not introduce

a critical non-uniformity for CPace.

F RECOMMENDATIONS FOR ACTUAL
INSTANTIATIONS OF CPACE

CPace was designed for suitability with different styles of Diffie-

Hellman protocols on elliptic curves. Our perception is that it is

possible to distinguish three main application scenarios with real-

world relevance.

F.1 Short-Weierstrass
The first elliptic curves being standardized used a short-Weierstrass

form. In practice only prime-order curves became of more wide-

spread relevance. While some applications use point-compression,

historically mostly a full coordinate representation is used for the

network communication, (possibly for patent circumvention rea-

sons that applied at the time). A typical example would be ECC on

NIST-P256 and Brainpool curves [DSS13, ECC18, LM10].

In this ecosystem, we recommend to instantiate CPace using the

following features

• Encode points 𝑌𝑎 and 𝑌𝑏 using full coordinates and use con-

ventional point verification.

• Still, we recommend to actually only use the 𝑥-coordinate

of the Diffie-Hellman result 𝐾 for the session key, as TLS

does so and some libraries use an 𝑥-coordinate-only ladder

internally.

• We recommend to use the nonuniform Encode2Curve al-

gorithms from the Hash2Curve draft, i.e. the "map-once"

primitive, specifically because otherwise single-coordinate

scalar multiplication strategies would not be practical for

CPace. The point addition required by the "map-twice-and-

add" approach would require full group operations. As map-

ping algorithm we recommend simplified SWU [FHSS
+
19]

because according to our analysis this is the least complex

and most efficient variant working for the established curve

set, notably NIST-P256.

• In this ecosystems, implementers should carefully evaluate

the process of scalar sampling chosen in their library, in par-

ticular for the NIST-P256 and Brainpool curves. We observed

that some libraries might not sample scalars sufficiently uni-

formly. Here we recommend rejection sampling.

For this instantiation the assumption set is modeled by the

challenge-generator class "singleCoorExp" in Fig. 7.

F.2 Montgomery curve ladders
In addition to the established Weierstrass ecosystem, recently con-

structions based on Montgomery and (twisted) Edwards curves

emerged. We believe that these designs became especially attractive

as their design already considered typical implementation pitfalls

from the very beginning. The wide-spread use of the prominent

representatives X25519 and X448 [LHT16] resulted in standardiza-

tion for internet protocols and by standardization bodies such as

NIST.

The first implementations for CPace did focus on this type of

Diffie-Hellman primitives. For the twist-secure Curve25519 and

Ed449 we recommend the following configuration.

• Only use the u-coordinate on the Montgomery curve.

• Do not verify the curve equation explicitly, but check the

neutral elements (all elements encoded with zeros), i.e. use

the twist security. This way ScalarMultVfy and ScalarMult

become the same function and X25519(𝑋 ,𝑦) and X448(𝑋,𝑦)

could directly be used for this purpose. Note that checking for

the neutral elements (all zero encoding for X448 and X25519)

is absolutely mandatory for CPace. Here the discussion from

[LHT16] which describes this check as optional does not (!)

apply.

• For the map, we recommend to use non-uniform Elligator2

without co-factor clearing as this spares a field inversion (or

alternatively spares a montgomery ladder implementation

working on projective-coordinate inputs instead of an affine

input.).

As the group orders are very close to a power of two, the clamped

scalar method can be considered suitable also for CPace instanti-

ations. For the construction described in the this paragraph the

assumption set is modeled by the challenge-generator class "twist-

SecExp" from Fig. 8.

F.3 Group abstraction
The speed advantage and the simplicity provided by the efficient and

complete addition formulas available for Montgomery and (twisted)

Edwards curves could only be obtained at the cost that protocols

then need to deal with the co-factors. Not all protocols are, such

as CPace, analyzed regarding this aspect. In order to allow for “the

best of both worlds” projects are emerging which provide prime-

order group abstractions on these curves, such as ristretto25519 and

decaf448 [Ham15a, dVGT
+
20]. As these abstractions work with the

most efficient addition formulas currently known for elliptic curves,

we do not see any incentive or advantage for single-coordinate in-

stantiations for CPace. (In our opinion tightly constrained applica-

tions might rather opt for the Montgomery curve ladders anyway.)

The designers of these abstraction frameworks also include map-

ping algorithms (“batteries included”) and enforce invalid-curve

checks by their API design. Here we recommend the following

parameters for CPace:

• Use the compressed point encoding from the abstraction.

• Use the built-in map-twice-and-add construction that comes

“batteries included” with the abstraction.

• In our opinion, the verification check for the identity ele-

ment should receive some attention. Comparisons should be

carried out using the unambiguous encoding provided by the

abstraction and not using the intermediate representation for-

mat employed internally for the Hisil-Wong-Carter-Dawson

addition formulas [HWCD08].

As the group orders for ristretto25519 and decaf448 are very

close to a power of two, using random-number generator outputs

without rejection sampling can be considered suitable for deriving

secret exponents for CPace. For this instantiation the assumption set

is modeled by the challenge-generator class "coffeeExp" in Fig. 11.

	Abstract
	1 Introduction
	2 PAKE Security Model
	3 Preliminaries
	3.1 Notation
	3.2 Cryptographic assumptions
	3.3 The function Map2Point

	4 The CPace protocol
	5 Security of Simplified CPace
	5.1 Embedding CDH experiment libraries into the simulator

	6 Analysis of Real-World CPace
	6.1 CPace without Hashing to the Group
	6.2 Considering curves with small co-factor
	6.3 CPace using single-coordinate Diffie-Hellman
	6.4 CPace using twist secure curves
	6.5 Chaining the experiment classes

	7 Conclusion
	Acknowledgments
	References
	A Proof of Theorem 5.1
	B On shortcomings of UC PAKE functionalities
	C Initiator-responder and parallel CPace protocol variants
	D Chaining challenge generator classes
	E Note on sampling of scalars
	F Recommendations for actual instantiations of CPace
	F.1 Short-Weierstrass
	F.2 Montgomery curve ladders
	F.3 Group abstraction

