
Computing Discrete Logarithms?

Robert Granger1 and Antoine Joux2

1 Surrey Centre for Cyber Security, University of Surrey, United Kingdom
2 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

1 Introduction

Let G be a multiplicatively-written finite cyclic group, let g ∈ G be a generator and
let h ∈ G. The discrete logarithm problem (DLP) for (G, g, h) is the computational
problem of determining an integer x such that h = gx. Note that the integer x is
uniquely determined modulo the group order. Just as for the continuous logarithm
function, one also writes x = logg h and refers to x as the discrete logarithm of h to
the base g.

The DLP has been central to public key cryptography ever since its inception by
Diffie and Hellman in 1976 [15], and its study can be traced at least as far back as
1801, when discrete logarithms featured in Gauß’ Disquisitiones Arithmeticae, re-
ferred to there as indices with respect to a primitive root modulo a prime [23, art. 57–
60]. Indeed, the multiplicative group F×p of the field Fp of integers modulo a prime p
is perhaps the most natural example of a group in which the DLP can be posed –
which is presumably why Diffie and Hellman used this setting for their famous key
agreement protocol – and it is still believed to be hard for well-chosen primes.

In general, if the DLP is hard in a particular group then one can instantiate nu-
merous important cryptographic protocols. So the issue at hand is: how hard is it to
compute discrete logarithms in various groups? In this chapter we shall describe some
cryptographically relevant DLPs and present some of the key ideas and constructions
behind the most efficient algorithms known that solve them. Since the topic encom-
passes such a large volume of literature, for the finite field DLP we limit ourselves
to a selection of results reflecting recent advances in fixed characteristic finite fields.
We start by briefly recalling the so-called generic algorithms, which do not exploit
any representational properties of group elements and may thus be applied to any
finite cyclic group, and then recall the more sophisticated approach known as the in-
dex calculus method, which may be applied whenever the representation of elements
of a group can be imbued with a suitable notion of smoothness. In §2 we introduce
elliptic curves and pairings over finite fields and consider various discrete logarithm
algorithms. Then in §3 we consider some groups in which the DLP is easier than
for the strongest elliptic curves, including some families of weak curves. In §4 we
focus on discrete logarithm algorithms for XTR and algebraic tori when defined over
extension fields, and finally in §5 we present some of the key insights behind the
breakthroughs between 2012 and 2014 that led to the downfall of finite fields of fixed
characteristic in cryptography.

First, we introduce some useful notation for describing the running time of dis-
crete logarithm algorithms (or equivalently the complexity or hardness of the DLP),
? This material will be published in revised form in Computational Cryptography edited by Joppe W.

Bos and Martijn Stam and published by Cambridge University Press. See www.cambridge.org/
9781108795937.



which has become customary. Let N be the order of a group G. We define

LN(α, c) := exp
(
(c + o(1))(log N)α(log log N)1−α) ,

where α ∈ [0, 1], c > 0 and log denotes the natural logarithm. When there is no am-
biguity we often omit the subscript N, and sometimes write L(α) to mean L(α, c) for
some c > 0. Observe that L(0) = (log N)c+o(1), which therefore represents polynomial
time, while L(1) = Nc+o(1) represents exponential time. If an algorithm has a running
time of L(α) for some 0 < α < 1 it is said to be of subexponential complexity.

1.1 Generic algorithms

In the context of the DLP a generic algorithm is one that applies in the generic group
model, in which elements have a randomly selected unique encoding and one can
only perform group operations and check for equality of elements (by comparing the
encodings), see [79]. In this context it was shown by Shoup [79] and Nechaev [67]
that the DLP has an exponential running time Ω(

√
N) if N is prime. This result im-

plies that a subexponential algorithm must exploit a suitable group representation.
We now describe the main examples of generic algorithms for the DLP in any finite
cyclic group G, given a generator g and a target element h, where |G| = N.

First, if N is composite and its prime factorisation is known, then one can apply
the Pohlig-Hellman algorithm [71], which reduces the DLP in G to DLPs in prime
order subgroups. In particular, let N = pe1

1 ·. . .·p
er
r . By the Chinese remainder theorem

it is sufficient to solve the DLP in each of the subgroups of order Z/pei
i Z for i =

1, . . . , r, and one can project the DLP into each of them by powering g and h by the
respective cofactors N/pei

i . Let xi = logg h (mod pei
i ). If ei = 1 then one needs only

to solve a DLP in a prime order subgroup. If ei > 1 then the digits of the pi-ary
expansion of xi can be computed sequentially, starting from the least significant digit
via projecting and applying a Hensel lifting approach, each time solving a DLP in
a subgroup of order pi. For this reason, groups of large prime order, or those whose
order possesses a large prime factor, are used in practice.

Moving on to algorithms for solving the DLP, we start with the time-memory
trade-off known as the Baby-Step-Giant-Step method (BSGS), attributed to Shanks.
Let M = d

√
Ne. One first computes a table

{
( j, g j) | j ∈ {0 . . . M−1}

}
(the baby steps)

and sorts it according to the second component. Letting k = g−M, one then computes
h, hk, hk2, . . . (the giant steps) until a collision hki = g j is found, at which point one
knows that logg h = iM+ j. The algorithm requires O(

√
N) storage and O(

√
N) group

operations. Its precise bit complexity depends on the cost of group operations and on
the implementation of the search for collisions.

An alternative approach is Pollard’s rho method [72]. It requires some heuris-
tic assumptions but preserves the expected O(

√
N) running time, while reducing the

storage requirement to O(1). The heuristic can be removed at the cost of introducing
an extra logarithm factor in the runtime [37]. The core idea is to define pseudoran-
dom sequences (ai), (bi) in Z/NZ and (xi) ∈ G such that xi = gaihbi . To construct the
sequence, we iterate a function f : G → G that allows the tracking of the exponent
and behaves in a pseudo-random fashion. A typical choice is to partition G as a dis-
joint union G = G1 ∪G2 ∪G3 and then define f by setting f (x) = x2 when x ∈ G1,
f (x) = gx when x ∈ G2 and f (x) = hx when x ∈ G3.

2



Once f is defined, we construct the sequence (xi) iteratively, starting from a ran-
dom x0 and computing xi+1 = f (xi). Eventually, since G is finite, one must have
x j = x j for some i , j. For such a collision one has logg h =

a j−ai
bi−b j

, provided the
denominator is invertible modulo N. In fact, the sequence is ultimately periodic and
one has x j = x j+` for some `, j0 > 0 and every j ≥ j0. In this context, one uses a
cycle-finding algorithm to find a collision, for instance Floyd’s cycle-finding algo-
rithm which discovers a collision of the form xi = x2i.

Because of its ultimate periodicity, the sequence (xi) has a tail and a cycle, de-
picted in Figure 1. This is why Pollard called it the ‘ρ’ method. For a random function
f the expected length of the tail and the cycle is

√
πN/8 and therefore the expected

time to solve the DLP is
√
πN/2. For concrete choices of f , a similar behavior is

seen in practice and because of the assumption, the algorithm is heuristic. Due to the
negligible storage requirements, the rho method is usually preferred over the BSGS
method. For large computations with generic algorithms, the method of choice is
often parallel collision search as introduced in [84].

x0

Cycle

Tail

Fig. 1. Illustration of the shape of Pollard’s rho sequences

1.2 The index calculus method

The index calculus method (ICM) – meaning, rather opaquely, a ‘method for calcu-
lating the index’ – is an approach to solving DLPs that can be far more efficient than
generic methods, depending on the group and element representation under consid-
eration, as well as the ingenuity of the mathematician. However, the basic template
is the basis for all subexponential algorithms and so the use of the definite article is
probably justified. The method was first published by Kraitchik in the 1920’s in the
context of the DLP in prime fields [52, 53], and has been independently discovered
many times since, see [56, 62, 69] and the references therein.

We now describe the two stages of the ICM for (G, g, h) abstractly, i.e., without
reference to a particular group. First, one must choose a subset F ⊆ G known as the
factor base, such that 〈F 〉 = G, and to which g is usually adjoined if it is not already
in F . Informally, the first stage of the ICM is finding the logarithms of all elements
in F ; this stage is usually divided into two parts, namely, relation generation and
linear algebra. The second stage is the individual logarithm stage, i.e., expressing an
arbitrary element over F so as to infer its discrete logarithm.

More formally, let A = Z/NZ and consider the surjective group homomorphism

φ : A|F | → G , (e f ) f∈F 7→
∏
f∈F

f e f .

3



The aforementioned steps are as follows.

– Relation generation: Find vectors (e f ) f∈F in ker φ, known as relations, which
thus generate a subset R ⊆ ker φ.

– Linear algebra: Compute a non-zero element (x f ) f∈F ∈ R⊥, i.e., one satisfying∑
f∈F x f e f = 0 for all (e f ) f∈F ∈ R. Taking the logarithm of the multiplicative

relations, we see that the vector of logarithms of the elements of F (in any basis)
form a solution. Assuming that the set of equations is large enough, one does not
expect any other solutions.

– Individual logarithm: Find a preimage (e f ) f∈F ∈ φ
−1(h); it then follows that

logg h =
∑

f∈F e f logg f .

Provided that sufficiently many linearly independent relations have been found,
the discrete logarithms of elements of F can be computed, up to a non-zero scalar
multiple, which can be normalised by insisting that logg g = 1.

In order to apply the ICM to a particular group and element representation, one
needs to be able to define a suitable factor base. In order to do this one usually re-
quires a natural notion of norm, primes and consequently smoothness, or the ability
to impose analogues of these algebraically. An example of the former will be seen
in §5, while an example of the latter will be seen in §4.

2 Elliptic curves

2.1 Elliptic curves of finite fields: a quick summary

An elliptic curve is a mathematical object which can be presented through several
complementary points of view. When used for cryptographic purposes, the main fo-
cus is usually on elliptic curves over finite fields and one often focuses on the follow-
ing definition.

Definition 1. An Elliptic curve in Weierstrass form is a smooth projective curve given
by an homogeneous equation:

Y2Z + a1XYZ + a3YZ2 = X3 + a2X2Z + a4XZ2 + a6Z3.

When the coefficients (a1, a2, a3, a4, a6) belong to Fq, we say that the curve is defined
over Fq.

Let p denote the characteristic of Fq. As soon as p ≥ 5, it is possible via a linear
change of coordinates to change the equation into a reduced Weierstrass equation:

Y2Z = X3 + aXZ2 + bZ3.

Most of the time, we consider elliptic curves given by such a reduced equation.
Let us briefly recall that the projective plane consists of all classes of non-zero triples
(X,Y,Z) obtained from the equivalence relation that identifies (X,Y,Z) and (X′,Y ′,Z′)
whenever there exists an invertible (i.e., non-zero in the case of Fq) value λ such that
X = λX′, Y = λY ′ and Z = λZ′. The equivalence class associated to (X,Y,Z) is
usually denoted by (X : Y : Z).

A projective point with Z = 0 is said to lie at infinity. On the Weierstrass equation,
we see that Z = 0 implies X = 0. As a consequence, there is a single point at infinity

4



on the elliptic curve defined by that equation, the point with class (0 : 1 : 0). It is
simply called the point at infinity on E and written OE . All other points have Z , 0;
using the equivalence, they can be written as (x : y : 1).

The pair (x, y) then satisfy the affine equation:

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 or y2 = x3 + ax + b.

It is a frequent practice to describe an elliptic curve by such an affine equation, to-
gether which the implicit convention that the curve also contains the point OE at
infinity.

The use of the projective form formalises the meaning of OE , it can also by useful
for faster computations. Indeed, it may avoid the need to compute inverses while
adding points.

Main invariant. For the curve to be smooth, it should not have any singular points.
This can be tested on a reduced Weierstrass equation by computing the discriminant:

∆ = −16(4a3 + 27b2).

The curve is smooth, if and only if, ∆ , 0.
Moreover, the reduced Weierstrass form allows many distinct but isomorphic

curve equations. To see that, it suffices to consider changes of variables of the form
(x, y) = (u2x′, u3y′). The change transforms the equation

y2 = x3 + ax + b

into
y′2 = x′3 + a′x′ + b′,

where a′ = a/u4 and b′ = b/u6.
The j-invariant of the curve is a simple way to classify isomorphic curves. It is

given by:

j = −1728 ·
64a3

∆
.

Two isomorphic curves have the same j-invariant, furthermore, over an alge-
braically closed field, two curves with the same j-invariant are isomorphic. However,
over finite fields, the situation is more complex. Indeed, from the above formulae we
see that u2 = a′b/ab′ and we need to distinguish the case where u2 is a quadratic
residue or not, in the considered finite field.

In the first, u itself exists in the same field and the two curves are isomorphic. In
the second, u belongs to a quadratic extension and the curves are said to be quadratic
twists. Note that when a = a′ = 0 or b = b′ = 0, the situation is more complex since
we can only compute u4 or u6 rather than u2.

To distinguish quadratic twists over a finite field Fq, one also computes the so-
called minimal polynomial of Frobenius X2 − tX + q. This is equivalent to point
counting and the number of points defined over Fq is q + 1 − t (including the point
at infinity). Two isomorphic curves have the same number of points and when going
from a curve to a quadratic twist, the parameter t changes its sign.

Since point counting can be done efficiently using the Schoof–Elkies–Atkin
method (SEA), introduced by Schoof in [75], we can always assume that t is known.
This makes elliptic curves quite useful for discrete logarithm based cryptosystem
where it is essential to know the cardinality of the group being used.

5



Lines and the group law The main interest of elliptic curves, especially for cryp-
tography, is that they can be equipped with a group law (denoted additively) whose
neutral element is the point at infinity. This law can be defined geometrically as fol-
lows. Take an elliptic curve given by a reduced Weierstrass equation and consider the
intersection of an arbitrary line with the curve. Three cases are to be considered: the
line at infinity with equation Z = 0, a vertical line with equation x = x0 and finally
other lines with equation y = λx + µ.

In the first case, substituting Z by 0 in the projective equation of E, we find x3 = 0.
As a consequence, the intersection is reduced to the point OE with multiplicity 3. For
a vertical line, the affine equation becomes y2 = x3

0 + ax0 + b. When the right-hand
side is 0 we get as intersection a double point (x0, 0). When it is a quadratic residue,

the intersection is formed of the two points
(
x0,±

√
x3

0 + ax0 + b
)
. When it is a non-

residue, the line doesn’t meet the curve on affine points. However, by considering
points over a quadratic field extension, we recover the two points of intersection.
Furthermore, considering the projective equation of the same line, i.e., X = x0Z, we
see that a vertical line also meets the curve at OE .

Finally, for a line y = λx +µ, replacing y by this expression in the curve equation,
we obtain:

x3 − λ2 x2 + (a − 2λµ) x + (b − µ2) = 0.

Counting roots with multiplicities, this polynomial can have 0, 1 or 3 roots. Over a
well-chosen field extension, we can always find three roots (counting multiplicities).
Let x1, x2 and x3 denote these (not necessarily distinct) roots. For each xi, we get an
intersection point (xi, λxi + µ).

As a consequence, we see that any line intersects the curve E three times (count-
ing multiplicities and intersection with OE). The group law on E can be created from
the simple rule that the sum of such three points of intersection is always OE .

From the line at infinity, we find that 3OE is zero, it is therefore natural to choose
OE as the neutral element for the group law. Then, considering a vertical line that
meets the curve at (x0, y0) and (x0,−y0). Since, (x0, y0) + (x0,−y0) + OE = OE , we see
that points that are symmetric about the x-axis are opposites. We thus denote by −P
the reflection of P about the x-axis.

Finally, consider a line meeting the curve at P, Q and R, implying that P+Q+R =

OE . We can deduce that the sum P+Q is equal to −R. From this, we recover the usual
addition formulae on an elliptic curve.

More precisely, if P and Q are symmetric about the x-axis, their sum is OE .
Otherwise, we compute the slope λ of the line through P and Q. If the points are
equal, the line is tangent to the curve and:

λ =
2yP

3x2
P + a

.

If they are distinct, we have:

λ =
yP − yQ

xP − xQ
.

We then find that xP+Q = λ2 − (xP + xQ) and that yP+Q = −(yP + λ (xP+Q − xP)).

6



Divisors, functions and pairings In truth, this idea of considering the intersection
of the curve with a line is a particular case of a more general construction. To explain
the more general viewpoint, we need to introduce two essential mathematical objects
called divisors and functions of the curve.

Divisors of E. A divisor on the curve E is simply a mapping from the set of points on
the curve to the integers of Z that is non-zero only on finitely many points. A frequent
representation consists in listing the points where the mapping is non-zero together
with the value at each of these points. With this representation a divisor D is written
as a formal finite sum:

D =

nD∑
i=1

ei(Pi).

Given a divisor D in the above form, we define its degree as deg D =
∑nD

i=1 ei. We
also define the support of D as the set of points appearing with a non-zero coefficient
in D. The set of divisors can be naturally given a group structure where the addition
of two divisors is defined as the sum of the underlying mappings. When considering
this group law, we can see that deg is a group homomorphism to Z. Thus, its kernel
called the set of degree-0 divisors is also a group.

Functions and function field of a curve. The concept of functions on a curve will
generalise the idea of a line. Given an elliptic curve E and its (reduced) Weierstrass
equation, we proceed in two steps. First, we consider the ring of bivariate polynomials
in X and Y modulo the curve equation Y2 − (X3 + a X + b). For example, in that ring,
Y2 and X3 + aX + b are representations of the same element. This ring is an integral
domain and we can then build its field of fractions. This field is called the function
field of the curve. Informally, we are thus considering rational fractions in X and Y
modulo the curve’s equation.

Let f /g be a fraction representing an element of the function field. Then, for any
point P of E, we can compute the value f (P) by replacing in f the variables X and
Y by the values of the coordinates of P. In the same way, we can compute g(P).
Finally, when g(P) is non-zero, the evaluation of f /g at P is defined as f (P)/g(P).
Moreover, if f1/g1 and f2/g2 represent the same element of the function field and if,
in addition, g1(P) , 0 and g2(P) , 0, then ( f1/g1)(P) = ( f2/g2)(P). Indeed, when
f1/g1 and f2/g2 represent the same function, then f1g2 − f2g1 is a multiple of the
curve equation. Thus, the value of f1g2 − f2g1 at P is 0, which implies the equality
of evaluations of f1/g1 and f2/g2 at P. Furthermore, this allows us to define f /g at
every point P on E. If g(P) , 0, we use the value f (P)/g(P) as before. Otherwise,
when g(P) = 0, we consider f (P). More precisely, if g(P) = 0 and f (P) , 0 we say
that ( f /g)(P) = ∞. In the final case where both g(P) = 0 and f (P) = 0, it is always
possible to find F and G such that f /g = F/G and (F(P),G(P)) , (0, 0). We can
then use F/G to define the value at P. This definition is valid since (when defined)
the value is independent of the choice of representative of the function.

When ( f /g)(P) = 0, we say that P is a zero of f /g and when ( f /g)(P) = ∞, we
say that P is a pole of f /g. It is also possible to define multiplicities of zeroes and
poles.

Evaluation of a function at a point can easily be generalised into an evaluation on
a divisor in the following way. If D is given as D =

∑
i ei(Pi) and F is an element of

7



the function field, with no zero or pole in the support of D, we define F(D) by the
following formula;

F(D) =
∏

i

F(Pi)ei ,

i.e., as the product (with multiplicities) of evaluations on all points in the support of
D.

Principal divisors and the group law. To every non zero function F in the function
field, we can associate a divisor Div(F) that regroups the information on its zeroes
and poles. In the following equation that defines Div(F), the notation ZF stands for
the set of its zeroes and PF for the set of poles. Furthermore, when P is a zero or a
pole, mP denotes its multiplicity. We now define the divisor of F as:

Div(F) =
∑

P∈ZF

mP(P) −
∑

P∈PF

mP(P).

Note that for all λ ∈ F×p we have Div(λF) = Div(F). Indeed, multiplication by
a non-zero constant does not change the zeroes or poles of a function. Furthermore,
Div(1) is the zero divisor (empty in our notation), Div(FG) = Div(F) + Div(G) and
Div(1/F) = −Div(F). Thus, the Div operator is a morphism for the multiplicative
group of the function field to the additive group of divisors. Divisors in the image
of Div are called principal divisors. In addition, it can be shown that the degree of a
principal divisor is zero.

As a consequence, principal divisors form a subgroup of degree-0 divisors and we
can form the quotient group. This yields back the group law for the elliptic curve. The
most relevant property is that for every degree-0 divisor D, there exists a unique point
P and function F (up to equivalence) such that D can be written as (P)−(OE)+Div(F).
It is thus possible to label the elements of the above quotient group by points of E,
which equips E with the group law.

Conversely, this correspondence can be used to test whether a given divisor is
principal. We first check that the degree is 0 then evaluate the expression given the
divisor on the curve. More precisely, for D =

∑
i ei(Pi), we compute v(D) =

∑
i eiPi.

A degree-0 divisor D is principal, if and only if, v(D) is the point at infinity OE .
Furthermore, if D is a principal divisor, there exists a unique (up to multiplication

by a constant) function F such that Div(F) = D.

Weil’s pairing. The Weil pairing is a non-degenerate, antisymmetric, bilinear func-
tion from the n-torsion subgroup E[n] of the curve E to the n-th roots of unity in
Fp. We recall that the n-torsion E[n] is the set of all points P defined over the alge-
braic closure Fp such that nP = OE . When n is coprime to p, we know that E[n] is
isomorphic to the group (Z/nZ)2.

Let P and Q be two n-torsion points. We denote by DP the divisor DP = (P)−(OE)
and by DQ the divisor (Q) − (OE). We see that nDP and nDQ are principal. Let FP

and FQ be functions such that Div(FP) = nDP and Div(FQ) = nDQ. The Weil pairing
en(P,Q) is then defined as FP(DQ)/FQ(DP).

When P and Q are defined over a small degree extension of Fp, there exists an
efficient algorithm due to Miller [66] that quickly computes this value en(P,Q). Due
to this efficiency, the Weil pairing (and its cousin the Tate pairing [18]) have been
used to construct a large variety of, so-called, pairing-based cryptographic protocols.

8



The main parameter that governs the concrete use of a pairing is the embedding
degree. Given a curve E with cardinality NE over Fp and q a prime divisor of NE ,
there is a cyclic subgroup of order q defined over Fp. The embedding degree of this
subgroup is the smallest integer k such that Fpk contains a primitive q-th root of unity.
It gives the smallest field Fpk in which one can compute a non-degenerate pairing
involving points of order q.

2.2 Discrete logarithm algorithms for families of weak curves

Supersingular and low-embedding degree curves The pairings we just described
can be used as a tool to transport the discrete logarithm problem on an elliptic curve
to a discrete logarithm problem in a finite field. This is the MOV method, introduced
by Menezes, Okamoto and Vanstone [63]. It initially used the Weil pairing but can
also rely on the Tate pairing [18].

The idea, in order to solve Q = nP in a cyclic group of order q is to find a third
point R, also of order q such that eq(P,R) , 1. Then, by linearity of the pairing, we
have eq(Q,R) = eq(P,R)n. This moves the discrete logarithm to the group of q-th
roots of unity in the finite field Fpk , where k is the embedding degree.

Due to the sub-exponential algorithms for computing discrete logarithms in F×
pk

(discussed briefly in §4 when p is of cryptographic size), this gives a better than
generic algorithm as long as k remains small.

An especially weak case for which the MOV method was initially proposed is
the case of supersingular curves that have cardinality p + 1 and embedding degree 2
since p + 1 divides p2 − 1.

Descent and cover methods The discrete logarithm techniques that follow only ap-
ply (to this day) to curves defined over a finite field Fpk , where the extension degree
k has small factors. In particular, we currently do not know how to use them for
curves defined over prime fields Fp . Similarly, after studying state-of-the-art meth-
ods together with various speed-ups, [19] concludes that logarithms on curves over
prime degree extension fields cannot be computed faster than by generic methods for
cryptographic sizes.

Gaudry-Hess-Smart (GHS) method. This method, described in [22, 64, 20, 36], con-
sists of finding a so-called cover of the curve E defined over Fpk by a curve H of
genus g > 1 defined over the smaller field Fp. More precisely, a cover is a surjective
map from H to E expressed by rational functions on H. It is particularly useful when
the genus g is not too large, ideally when g = k. The existence of the cover can be
used to transport the discrete logarithm problem from E to the Jacobian of H, where
it becomes easier. It turns that the conditions permitting the existence of a cover are
such that the most studied and more vulnerable cases are for k = 2 and k = 3.

Gaudry-Semaev method. This method developed in [77, 21] is an index calculus tech-
nique that remains in the curve E (the general method of [21] is summarised in §4.2).
Its basic idea is to write arbitrary points on the curve as a sum of a small number of
points with abcissa in the small field Fp. This is done by solving multivariate systems
of polynomial equations in k variables, with a degree growing exponentially with k.
Again, this is only achievable for small values of k.

9



Combining both, Joux-Vitse method. For certain curves with k = 6, the situation is
especially bad. As shown in [45], it is possible to combine both attacks. First moving
the discrete logarithm to the Jacobian of a genus 3 curve of Fp2 , where a variant of
Gaudry-Semaev method can be used. Discrete logarithms can then be computed for
these specific curves, even for cryptographically meaningful group sizes.

Diem’s asymptotic analysis. In two articles [13, 14], Diem showed that el-
liptic curve discrete logarithms over finite fields Fqn can be solved asymp-
totically faster than by generic methods. In [13], he achieves an asymptotic
complexity of the form exp(O(max(log q, n2))) and in [14], he improves it to
exp(O(max(log q, n log(q)1/2, n3/2))). As far as we know, Diem’s methods have not
been used in any large size computation. The main obstruction seems to be the need
to solve algebraic systems of equations of large degrees and number of variables,
which are not practically accessible with current algebraic methods.

3 Some group descriptions with easier discrete logarithms

3.1 Addition modulo an integer

A basic theorem in group theory is that every cyclic group of order N is isomorphic
to its structure group (Z/NZ,+). Moreover, in this group representation, solving the
discrete logarithm problem is trivial. Indeed, since the group law is additive, the dis-
crete logarithm problem is, given a generator of the group, i.e., a number x coprime
with N and a value y to find n such that y = nx (mod N). This implies n = y x−1

(mod N), where x−1 is obtained from Euclid’s extended GCD algorithm.
A classical question that arises when presenting discrete logarithm based cryp-

tography to pure mathematicians is related to the remark. Why should the discrete
logarithm problem be considered to be hard since it is so easy in the (isomorphic)
structure group? In fact, computing discrete logarithms is simply a way to explicitly
describe the isomorphism between a cyclic group and the corresponding (Z/NZ,+).
Furthermore, solving the problem not only requires an explicit expression but also an
efficiently computable one.

3.2 Matrix groups

Since the discrete logarithm problem can be defined for any cyclic group, it is quite
natural to consider the subgroup of the square matrices over some finite field Fp

generated by an invertible matrix G. In particular, this was suggested in [70].
This problem was studied by Menezes and Wu in [65]. It turns out that it can

be reduced to discrete logarithms in finite fields. Furthermore, the matrix computa-
tions are more expensive for the participants than the corresponding computations in
finite fields. As a consequence, this particular instantiation of the discrete logarithm
problem does not provide any specific advantage.

We briefly describe here the main idea of the construction. Let A and B be two
n by n matrices over Fp. We want to find ` such that B = A` knowing that such an
integer exists.

We first consider the characteristic polynomial pA of A. In general, the complete
form of the attack depends on the factorisation of pA. However, the attack is easier to

10



describe when pA is an irreducible polynomial of degree n. For simplicity of exposi-
tion, we limit ourselves to that case. In that case, pA has n distinct conjuguate roots
in Fpn and these roots are eigenvalues of A. Let α denote one of these eigenvalues,
the others can be written as αpi

with i in [1 . . . n − 1].
As a consequence, A can be diagonalised by writting A = C−1ADC where AD is

a diagonal matrix whose entries are the values αpi
with i in [0 . . . n − 1]. We see that

B = C−1A`DC, thus BD = CBC−1 is diagonal with entries α` pi
. Taking the logarithm

of the first entry α` relative to α in Fpn is thus enough to completely recover `.

3.3 Particularly bad curves

Singular curves A first example of bad curves covers a degenerate case, the case
of curves with a zero discriminant. These curves have a singular point and are not
valid elliptic curves. However, they can be obtained by reducing modulo a prime
p an elliptic curve E with rational coefficients. In that case, we say that E has bad
reduction at p.

In this situation, there is a singular point on the curve and we denote by Ens the
set of regular points. It is interesting to know that on this set, the usual geometric
construction of an elliptic curve group law still works and yields a group law on Ens .

We can distinguish two main cases. In the first one, the curve E is given by y2 = x3

(possibly after a change of variable) in the second by y2 = x3 + Ax2 with A , 0. In
both cases, the point (0, 0) is singular on E and the set Ens consists of all the other
points.

In the first case, i.e., on y2 = x3, every point of Ens can be written as (`2, `3),
with ` , 0. Moreover, given P = (xP, yP) the corresponding value is simply given by
`P = yp/xP. Let P and Q be the two points corresponding to the values `P and `Q.
The slope of the line through P and Q is:

λ =
yQ − yP

xQ − xP
=
`2

Q + `P`Q + `2
P

`Q + `P
.

Let R = (xR, yR) be the third point of intersection with E. We find that xR = λ2− (xP +

xQ) and yR = λ(xR − xP) + yp. Developing the expressions we can write:

xR =
`2

P`
2
Q

`2
Q + 2 `P`Q + `2

P

=

(
`P`Q

`P + `Q

)2

,

and

yR = −

(
`P`Q

`P + `Q

)3

.

Thus, the sum of P and Q corresponds to the values `P+Q =
`P`Q
`P+`Q

. We can remark
that:

1
`P+Q

=
1
`P

+
1
`Q
.

Adding the natural convention that the point at infinity has an infinite associated
value (with inverse 0), we see that addition on Ens boils down to addition in Fp. The
group isomorphism to the structure group is explicit and efficient to compute and the
discrete logarithm is thus easy.

11



For the second case, i.e. the curve y2 = x3 + Ax2, we start by writing A = α2. This
leads to two subcases depending on whether A is a square in Fp or not. In the first
case, we turn point addition into multiplication in F×p , while in the second it becomes
multiplication in the subgroup of order p + 1 of the quadratic extension F×

p2 .

As before, we express the points of the curve Ens as functions of a parameter `P

given by the following formula:

`P =
yP + α xP

yP − α xP
,

with the convention that it is equal to 1 for the point at infinity. The coordinates xP

and yP can be recovered from `P by computing:

xP =
4α2`p

(`P − 1)2 and yP =
4α3`p(`P + 1)

(`P − 1)3 .

Finally, we can check that `P+Q = `P`Q. Thus, the discrete logarithm is transported
to the multiplicative group of a finite field Fp or Fp2 . As a consequence, the discrete
logarithm becomes much easier than on (general) elliptic curves.

Anomalous curves An elliptic curve over a prime field Fp is said to be anomalous
when its trace is equal to 1 or equivalently its cardinality is equal to p. On such
curves, the discrete logarithm problem becomes easy. In fact, two distinct methods
have been proposed to explain this fact. The first one by Semaev [76] defines an
additive pairing sending a point P to an element of Fp by defining the function fP with
divisor p(P) − p(O) (which is unique up to a multiplicative constant) and evaluating
the ratio of the function fP and its x-derivative at another (fixed) point.

The second approach by Smart [80] considers an arbitrary lift of the curve and
the point P to the p-adic numbers and uses a multiplication by p and a p-adic elliptic
logarithm. All of these computations can be done with low p-adic precision.

For simplicity, we present here a heuristic version of the second method that
bypasses the use of p-adic elliptic logarithms. As usual given the curve E defined
modulo p and two non-zero points P and Q we want to solve the equation Q = nP
(mod p). Indeed, since p is prime, any non-zero point is a generator of E.

We start by considering an arbitrary Weirstrass equation modulo p2 that reduces
to the equation of E modulo p. We denote by E2 this lifted curve modulo p2. Each
point of E, including the point at infinity, can be lifted to E2 in p distinct ways via
Hensel’s Lemma. Thus E2 contains p2 points with coordinates modulo p2. Further-
more, the usual group law contruction can be applied to E2. We thus get an abelian
group with order p2. Its structure is either (Z/pZ)2 or Z/p2Z. Heuristically, for a
random lifting, we expect Z/p2Z to occur more frequently.

Let us now assume that E2 with the elliptic curve addition is a cyclic group of
order p2. The reduction modulo p of points is a surjective group homomorphism to
E, whose kernel is formed of the p-distinct lifting of the point at infinity. We denote
by rE this reduction. The kernel of rE is thus a subgroup of order p.

Let P2 and Q2 be two arbitrary liftings of P and Q. This implies that rE(Q2 −

nP2) = Q − nP = 0. Thus Q2 − nP2 is a lift of the point at infinity OE . As a conse-
quence, p(Q2 − nP2) is zero on E2. Thus, (pQ2) = n(pP2). In addition, pP2 and pQ2
are in the kernel of rE .

12



To see how this leads to a recovery of n, let us study the structure of the kernel
of rE , i.e., of the subgroup formed by all lifts of the point at infinity. To do this, it
is useful to consider a weighted projective description of the Weirstrass equation,
where the variables X, Y and Z respectively have weights 2, 3 and 1. The Weierstrass
equation then has total weight 6 and can be written as:

Y2 + a1XYZ + a3YZ3 = X3 + a2X2Z2 + a4XZ4 + a6Z6.

Note that each ai corresponds here to the Zi term.
In this weighted notation, (X,Y,Z) and (X′,Y ′,Z′) represent the same point if and

only if there exists an invertible element λ modulo p2 such that X′ = λ2X, Y ′ = λ3Y
and Z′ = λZ.

The liftings of the point at infinity are the triple where Z is a multiple of p. Up to
equivalence, they can all be written as (1, 1, `p). The point (1, 1, 0) is the zero of the
group law. For all the other points of this form, we can put them into the equivalent
form (`−2, `−3, p).

If we further assume that a1 = 0, which can be achieved by using a reduced
Weierstrass form for E2, the situation is equivalent to considering the point (`−2, `−3)
on the singular curve of equation y2 = x3.As we saw previously, the logarithm can be
obtained by just mapping this point to the slope, we previously called `, in the finite
field.

4 Discrete logarithms for XTR and algebraic tori

The Diffie-Hellman key exchange protocol [15] and El Gamal encryption and sig-
natures [16] were formulated in the multiplicative group of a prime field Fp. While
the fastest algorithms for solving the DLP in F×p are subexponential (for details we
refer the reader to the survey article [31]), given a subgroup of prime order l, the
fastest known discrete logarithm algorithms that operate purely within the subgroup
are generic. As Schnorr observed, one can therefore base protocols in the subgroup
in order to speed up exponentiations, and obtain shorter signatures for example, pro-
vided that the complexity of both attacks is above the required security threshold [74].

However, other than by using the discrete logarithm of a subgroup element rela-
tive to a generator, for prime fields there does not seem to be a way to reduce the size
of the representation of elements: each requires dlog2 pe bits. One way to overcome
this representational (and operational) inefficiency is to instead consider subgroups
of the multiplicative group of extension fields, i.e., F×pn . This idea is the basis of the
entirety of Chapter 10, so presently we only briefly mention a couple of important
examples.

The cryptosystem LUC [81], developed by Smith and Skinner in 1995, represents
elements of the order p + 1 subgroup of F×

p2 by their trace from Fp2 to Fp. As a
result, just one element of Fp is needed to represent an element, thus providing the
optimal compression factor of 2 for the full subgroup. Building upon this idea, in
1999, Brouwer, Pellikaan and Verheul described a compression method for elements
of the order p2 − p + 1 subgroup of F×

p6 , again using the trace function, but this time
to Fp2 [9]. This reduces the representation to just two elements of Fp, providing the
optimal compression factor of 3 for the full subgroup. Very soon afterwards, Lenstra

13



and Verheul developed the cryptosystem XTR3, extending the compression method
in [9] by developing a more efficient exponentiation for the trace representation than
is available in the usual field representation [59, 57].

Observe that for both LUC and XTR, the relevant subgroups do not embed into
a proper subfield of Fpn , for n = 2 and n = 6 respectively. Indeed, they are the so-
called cyclotomic subgroups of F×pn , which have order Φn(p) where Φn(x) is the n-th
cyclotomic polynomial, defined by

Φn(x) :=
∏

1≤k≤n, gcd(k,n)=1

(x − ζk
n),

and ζn is a primitive (complex) n-th root of unity. Note that the degree of Φn(x) is
simply φ(n), where φ(·) is the Euler totient function. Furthermore, since

xn − 1 =
∏
d|n

Φd(x), (1)

for each d|n the subgroup of F×pn of orderΦd(p) embeds into Fpd . Hence, for d < n one
can solve the DLP in the order Φd(p) subgroup of F×pn by applying subexponential
algorithms to F×

pd , rather than to F×pn . So the subgroup of orderΦn(p) may be regarded
as the ‘cryptographically strongest’ subgroup of F×pn , and this subgroup is always used
in cryptographic applications4.

Interestingly, the first listed author of this chapter was informed in 2005 by the
second listed editor of this book that the real purpose of XTR was to stimulate re-
search into the DLP in finite fields of small extension degree, and possibly in the cy-
clotomic subgroups [82], which was confirmed by Lenstra when the conversation was
raised in 2013 [55]. For the former possibility, generally referred to as the medium
prime case, research has progressed steadily, with several Lpn(1/3, c) algorithms be-
ing developed with generally decreasing c [4, 3, 46, 1]. These algorithms are mainly
motivated by pairing-based cryptography. On the other hand, the latter possibility
would seem at first to not be possible, thanks to the argument of the previous para-
graph. Let Gp,n denote the subgroup of F×pn of order Φn(p). If there were a hypotheti-
cal non-generic algorithm for solving the DLP in Gp,n which was more efficient than
solving the DLP via the embedding into Fpn , then by solving it there and also in Fpd

for each d | n, d < n, by (1) and the Chinese remainder theorem5, one would have
solved the DLP in Fpn more efficiently than was thought possible. It has been argued
that with such a security reduction one can be confident in the DLP security of Gp,n,
as it is equivalent to the DLP security of Fpn , which is well studied.

However, this reduction can be viewed in another way: to attack the DLP in Fpn

one can try to invent algorithms for attacking the DLP Gp,n directly. Indeed, this is
what Granger and Vercauteren did in 2005 [28], as we explain shortly.

3 XTR, pronounced ‘X-T-R’, is the phonetic pronunciation of the acronym ECSTR, which stands for
Efficient Compact Subgroup Trace Representation.

4 Only if Φn(p) ≤ n, which is never the case for cryptographic applications, may this subgroup embed
into a proper subfield of Fpn [58].

5 One may ignore the cryptographically small GCD’s of such factors, as they can be computed with
generic methods.

14



4.1 Algebraic tori, rationality and compression

In their original paper Lenstra and Verheul proposed to allow the base field for XTR
to itself be an extension field, so henceforth we allow the base field to be Fq where q
is a prime power pm with m ≥ 1.

In 2003 Rubin and Silverberg proposed torus-based cryptography, based on the
observation that Gq,n can be identified with the Fq-rational points on the algebraic
torus Tn of dimension φ(n), which has some cryptographically exploitable proper-
ties [73]. As well as showing that one can interpret LUC and XTR in terms of quo-
tients of the algebraic tori T2 and T6 by certain actions of the symmetric groups S 2
and S 3 respectively, they observed that whenever Tn is rational, i.e., there exists a
rational map to φ(n)-dimensional affine space, one can compress (almost all of) its
elements by a factor of n/φ(n) relative to the Fqn representation and use this smaller
representation for communications. Tn is known to be rational if n is the product of
at most two prime powers, and is conjectured to be rational for all n [85, 51], al-
though no other examples are currently known. Were this conjecture to be proven
then one could obtain arbitrarily large compression factors for elements of the cy-
clotomic subgroup of F×qn . The rationality of T2 gives a simple analogue to LUC,
while the rationality of T6 gives an analogue to XTR, with an advantage that in these
analogues one can freely multiply elements, unlike in LUC and XTR.

We now formally define the algebraic torus.

Definition 2. Let k = Fq and L = Fqn . The torus Tn is the intersection of the kernels
of the norm maps NL/F , for all subfields k ⊂ F ( L:

Tn(k) :=
⋂

k⊂F(L

Ker[NL/F].

The following lemma provides two useful properties of Tn [73].

Lemma 1. 1. Tn(Fq) � Gq,n, and thus #Tn(Fq) = Φn(q);
2. If h ∈ Tn(Fq) is an element of prime order not dividing n, then h does not lie in a

proper subfield of Fqn/Fq.

4.2 Gaudry’s algorithm

The attack of Granger and Vercauteren [28] may be seen as a version of an algorithm
due to Gaudry, which is a general index calculus algorithm that may be applied to any
abelian variety once a computationally convenient element representation and group
law have been specified [21]. We briefly recall it here. Let A/Fq be an abelian variety
of dimension d on which we would like to solve the DLP. We assume that except for
a negligible proportion of elements, there is an explicit embedding of A into affine
space of dimension d + d′, i.e., an element P ∈ A defined over Fq can be represented
as

P = (x1, . . . , xd, y1, . . . , yd′),

where xi, yi ∈ Fq. Since A has dimension d, we assume that for any x1, . . . , xd ∈ Fq

there are only finitely many y1, . . . , yd′ ∈ Fq such that the corresponding P is on A.
For the factor base, or more appropriately the decomposition base, let

F := {(x1, 0, . . . , 0, y1, . . . , yd′) ∈ A : x1, yi ∈ Fq},

15



which one may assume is an absolutely irreducible curve whose closure under the
group law is not a strict abelian subvariety of A; for otherwise, a random linear
change of variables can be applied to the xi-coordinates until these two properties
hold. Hence, one may assume that |F | ≈ q.

Let P ∈ A and let Q ∈ 〈P〉, with the group operation written additively. In order
to find logP Q we construct linear combinations R = aP + bQ with a, b uniformly
random integers modulo the group order and attempt to express R as a sum of d
elements of F , i.e.,

R = aP + bQ = P1 + · · · + Pd, (2)

where Pi ∈ F , since this will heuristically occur with probability ≈ 1/d! as q → ∞.
When this occurs, we call (2) a relation. One can then proceed with the usual index
calculus method. The crux of this method is how to test whether a random element of
A decomposes over F . Since A is an abelian variety and therefore an algebraic group,
one can express the right hand side of (2) as

P1 + · · · + Pd = (φ1(P1, . . . , Pd), . . . , φd+d′(P1, . . . , Pd)),

where φ1, . . . , φd+d′ are rational functions of the coordinates used. By setting this ex-
pression equal to R one obtains a set of equations, which together with the equations
arising from membership of A or F results in a system that will generically be of
dimension zero, whose solutions can be found by a Gröbner basis computation, or
sometimes by faster methods, depending on A and its element and group law repre-
sentation.

4.3 The Granger-Vercauteren attack

The algorithm of Granger and Vercauteren uses the affine representation of elements
of an algebraic torus, and the group law induced in this representation by field multi-
plication, i.e., the usual group law. The key insight of the work is that for a Tn which
possesses a rational parameterisation, only φ(n) elements of a factor base need to be
added in order to generate a random element of the group with constant probabil-
ity. In comparison with using the field representation and defining the decomposition
base to be the set of monic linear polynomials, for example, the probability of gen-
erating a relation is 1/φ(n)! rather than 1/n!. Therefore, it is the very compression
which made torus-based cryptography attractive, that enables a significant speed up
to be made when computing discrete logarithms. We now describe the algorithm for
T2 and T6 respectively. In the following we assume q is odd.

Algorithm for T2(Fqn) ⊂ F×
q2n . By the discussion in §4 the prime order sub-

group would be in T2n(Fq) ( T2(Fqn), but since we exploit the rationality of T2
rather than T2n, we work with T2(Fqn), or more precisely the dimension n variety
(ResFqn/FqT2)(Fq), where Res denotes the Weil restriction of scalars (see [73]).

Let Fqn � Fq[t]/( f (t)) with f (t) ∈ Fq[t] an irreducible monic polynomial of de-
gree n. We shall use the polynomial basis {1, t, . . . , tn−1}. For a non-square δ ∈ Fqn \Fq,
let Fq2n = Fqn[γ]/(γ2 − δ), with basis {1, γ}. From Definition 2 we have

T2(Fqn) = {(x, y) ∈ Fqn × Fqn : x2 − δy2 = 1}.

16



Rather than use two elements of Fqn to represent each point, as the torus T2 is one-
dimensional and rational, one can use the following affine representation:

T2(Fqn) =

{
z − γ
z + γ

: z ∈ Fqn

}
∪ {O}, (3)

where O is the point at infinity. Note that for g = g0 + g1γ ∈ T2(Fqn) in the Fq2n

representation, the corresponding affine representation is z = −(1 + g0)/g1 if g1 , 0,
while −1 and 1 map to z = 0 and z = O respectively. Since T2(Fqn) has qn+1 elements,
this representation is optimal: note that this map is really from T2(Fqn) to P1(Fqn).

We define the decomposition base as follows:

F =

{
a − γ
a + γ

: a ∈ Fq

}
⊂ T2(Fqn),

which contains precisely q elements since the above map is a birational isomorphism
from T2 to A1. Now let P be a generator and Q ∈ 〈P〉. To find relations we test
whether for random integers a, b modulo the group order, R = aP + bQ decomposes
as a sum of n points in F , i.e.,

R = P1 + · · · + Pn, (4)

with P1, . . . , Pn ∈ F . In the affine representation this becomes

r − γ
r + γ

=

n∏
i=1

(
ai − γ

ai + γ

)
,

where the ai ∈ Fq are unknowns and r ∈ Fqm is the affine representation of R. As the
right hand side is symmetric in the ai we may expand it in terms of the elementary
symmetric polynomials σi(a1, . . . , an) of the ai:

r − γ
r + γ

=
σn − σn−1γ + · · · + (−1)nγn

σn + σn−1γ + · · · + γn .

Reducing modulo the defining polynomial of γ, we obtain:

r − γ
r + γ

=
b0(σ1, . . . , σn) − b1(σ1, . . . , σn)γ
b0(σ1, . . . , σn) + b1(σ1, . . . , σn)γ

,

where b0, b1 are linear in the σi and have coefficients in Fqn . Reducing the right hand
side to the affine representation (3) we obtain the equation

b0(σ1, . . . , σn) − b1(σ1, . . . , σn)r = 0.

Since the σi are in Fq, by expressing this equation on the polynomial basis of Fqn

we obtain n linear equations over Fq in the n unknowns σi. If there is a solution
(σ1, . . . , σn)T to this linear system, we see whether it corresponds to a solution of (4)
by checking whether the following polynomial splits completely over Fq:

p(x) := xn − σ1xn−1 + σ2xn−2 − · · · + (−1)nσn.

Whenever it does, the roots a1, . . . , an will be the affine representations of elements
of F which sum to R, i.e., we have found a relation.

17



In terms of complexity, when n! ≈ q the full algorithm runs in time Lqn(1/2, c) for
some c > 0. Experiments in the computer algebra system Magma [6] reported in [28]
demonstrated that it would be faster than Pollard’s rho in a (at the time standard) 160
bit subgroup, when q2n was between 400 and 1000 bits, thus indicating its efficacy
for some practical parameters.

Algorithm for T6(Fqn) ⊂ F×
q6n . As we saw before, the prime order subgroup would

be in T6n(Fq) ⊂ T6(Fqn), but since we exploit the rationality of T6 and not T6n we
shall work with T6(Fqn), or rather its Weil restriction (ResFqn/FqT6)(Fq). The central
difference between this algorithm and the T2 algorithm is that for the present case the
equations to be solved in the decomposition step are no longer linear.

Let Fqn � Fq[t]/( f (t)), with f (t) an irreducible polynomial of degree n, and use
the polynomial basis {1, t, t2, . . . , tn−1}. For the birational map from T6(Fqn) toA2(Fqn)
we use the specifications for CEILIDH, the compression mechanism described by
Rubin and Silverberg [73]. Assume that qn ≡ 2 or 5 mod 9, and for (r, q) = 1 let ζr

denote a primitive r-th root of unity in Fqn . Let x = ζ3 and let y = ζ9 + ζ−1
9 . Then

x2 + x + 1 = 0 and y3 − 3y + 1 = 0. Furthermore let Fq3n = Fqn(y) and Fq6n = Fq3n(x).
The bases we use are {1, y, y2 − 2} for the degree three extension and {1, x} for the
degree two extension. Let V( f ) be the zero set of f (α1, α2) = 1 − α2

1 − α
2
2 + α1α2 in

A2(Fqn). The following are inverse birational maps:

– ψ : A2(Fqn) \ V( f )
∼
−−→ T6(Fqn) \ {1, x2}, defined by

ψ(α1, α2) =
1 + α1y + α2(y2 − 2) + (1 − α2

1 − α
2
2 + α1α2)x

1 + α1y + α2(y2 − 2) + (1 − α2
1 − α

2
2 + α1α2)x2

, (5)

– ρ : T6(Fqn) \ {1, x2}
∼
−−→ A2(Fqn) \ V( f ), which is defined as follows: for β =

β1 + β2x, with β1, β2 ∈ Fq3n , let (1 + β1)/β2 = u1 + u2y + u3(y2 − 2), then ρ(β) =

(u2/u1, u3/u1).

We define the decomposition base as follows:

F =

{
1 + (at)y + (1 − (at)2)x
1 + (at)y + (1 − (at)2)x2 : a ∈ Fq

}
which clearly contains q elements. Note that we use ψ(at, 0) rather than ψ(a, 0) since
the latter would map to the strict subvariety T6(Fq). Since (ResFqn/FqT6)(Fq) is 2n-
dimensional, to find relations we need to solve

R = P1 + · · · + P2n , (6)

with P1, . . . , P2n ∈ F . Assuming that R is expressed in affine form, i.e., R = ψ(r1, r2),
we obtain

1 + r1y + r2(y2 − 2) + (1 − r2
1 − r2

2 + r1r2)x

1 + r1y + r2(y2 − 2) + (1 − r2
1 − r2

2 + r1r2)x2
=

2n∏
i=1

(
1 + (ait)y + (1 − (ait)2)x
1 + (ait)y + (1 − (ait)2)x2

)
.

Upon expanding the product of the numerators and denominators, the right hand side
becomes

b0 + b1y + b2(y2 − 2) +
(
c0 + c1y + c2(y2 − 2)

)
x

b0 + b1y + b2(y2 − 2) +
(
c0 + c1y + c2(y2 − 2)

)
x2 (7)

18



with bi, ci polynomials over Fqn of degree 4n in a1, . . . , a2n. In general, these poly-
nomials have a large number of terms and are thus slow to compute with. How-
ever, as before by construction these polynomials are symmetric in the a1, . . . , a2n,
so one can rewrite the bi and ci in terms of the 2n elementary symmetric polynomi-
als σ j(a1, . . . , a2n) for j = 1, . . . , 2n. This dramatically reduces the degree and size
of these polynomials: in particular they become quadratic and as a consequence the
number of terms is much lower, being bounded by 4n +

(
2n
2

)
+ 1.

To generate a system of quadratic equations, we use the embedding of T6(Fqn)
into T2(Fq3n) and consider the Weil restriction of the following equality:

b0 + b1y + b2(y2 − 2)
c0 + c1y + c2(y2 − 2)

=
1 + r1y + r2(y2 − 2)
1 − r2

1 − r2
2 + r1r2

.

This leads to 3 quadratic equations over Fqn or equivalently, to 3n quadratic equations
over Fq in the 2n unknowns σ1, . . . , σ2n. Observe that amongst these equations there
must be at least n dependencies arising from the fact that we used the embedding into
T2 rather than T6.

The properties of such systems, which have the same structure but differ only
by the coefficients of R, were investigated using the Magma implementation of the
F4 algorithm [17]. It was found that: the ideal generated is zero-dimensional; the
Gröbner basis with respect to the lexicographic ordering satisfies the so-called Shape
Lemma, i.e., the basis is of the form:

σ1 − g1(σ2n), σ2 − g2(σ2n), . . . , σ2n−1 − g2n−1(σ2n), g2n(σ2n) ,

where gi(σ2n) is a univariate polynomial in σ2n for each i; and in all cases it holds
that deg(g2n) = 3n, rather than the bound of 22n that one would expect from Bezout’s
theorem.

Provided that n is not prohibitively large, such systems can be solved in a reason-
able time. To test if a random point R decomposes over F , one computes the roots of
g2n(σ2n) in Fq, and then substitutes these in the other gi to find the values of the other
σi. For each such solution we then test if the polynomial

p(x) := x2n − σ1x2n−1 + σ2x2n−2 − · · · + (−1)2nσ2n

splits completely over Fq. Whenever it does, the roots ai for i = 1, . . . , 2n lead to a
relation of the form (6).

In terms of complexity, when n! ≈ q the full algorithm runs in time Lqn(1/2, c′)
for some c′ > 0. In terms of experimental results, Table 2 of [28] gave expected
running times for attacking T6(Fqn), for n = 1, . . . , 5. In particular, it showed that in
the group T30(Fq) – which can be embedded into T6(Fq5) – discrete logarithms are
easier than previously expected. Indeed, this group was proposed in [83] and [58]
for cryptographic use and keys of length 960 bits were recommended, i.e., , with
q ≈ 232. The experiments showed that even with a Magma implementation it would
be feasible to compute discrete logarithms in T30(Fq) with q ≈ 220, and the attack for
q ≈ 232 would be about 1000 times faster than Pollard’s rho, albeit with a far larger
memory constraint. In light of this attack, the security offered by the DLP in finite
fields of the form Fq30 needed to be reassessed.

19



5 Discrete logarithms in finite fields of fixed characteristic

Progress in cryptanalytic algorithms, just as in science more generally, usually
evolves by small increments but with occasional revolutionary steps forward [54].
One example of such a step forward could arguably be the rapid development of
efficient algorithms for solving the DLP in finite fields of fixed characteristic, that
took place from late 2012 to mid 2014, thanks to the present authors and their col-
laborators. Between these times, the fastest algorithm for solving this problem went
from having complexity L(1/3) to being quasi-polynomial [25, 39, 26, 2, 30, 33, 32],
rendering such fields entirely unsuitable for discrete logarithm-based cryptography,
including pairing-based cryptography over small characteristic supersingular curves.
These events constitute a perfect example of Prof. Lenstra’s (perhaps jocular, but
no doubt in part quite serious) contention that no problem based on number theory
should ever be considered truly secure, even if it has remained impenetrable for sev-
eral decades6.

Since 2014, there have been many surveys of the state-of-art in discrete logarithm
algorithms for finite fields [41, 43, 31]. Therefore, in the present section we focus
only on the key ideas behind the fixed characteristic breakthroughs, to give a flavour
of what was behind them, as well as the central results.

5.1 Key insights

If one performs the basic index calculus method as described in §1.2, in Fqn for fixed
q and n→ ∞, then by using a theorem due to Odlyzko [69] and Lovorn [61], the dis-
tribution of smooth polynomials naturally leads to an L(1/2) complexity algorithm.
It may therefore have been assumed for some years that this is the best complexity
that can be achieved.

A key avenue to improving these index calculus algorithms is to find an approach
that generates the relations faster. A first idea, is to create relations between elements
with smaller norms, in order to increase the smoothness probability and also reduce
the size of the factor base. This is the basis of Coppersmith’s celebrated 1984 algo-
rithm [10, 11] and all subsequent L(1/3) algorithms for larger characteristic. These al-
gorithms become heuristic because the considered relations involve equality between
elements which are neither independent nor uniformly distributed. A long standing
open problem is to find a way to lift these heuristics.

Alternatively, it turned out that the lack of independence can be used to speed-
up index calculus for certain fields. This was first described by Joux in 2012 [38],
building upon Joux and Lercier’s medium prime function field sieve method [40].

This gives the hope to be able to generate field equations between elements that
have better than expected smoothness properties. This idea is more subtle than one
might assume in retrospect, seeing the breakthroughs it led to. Indeed, before these
breakthroughs, this possibility does not even seem to have ever been considered.
Most likely because from a complexity analysis perspective it seemed essential that
the expected smoothness properties of generated elements hold.

It is an instantiation of this second idea that initiated the aforementioned progress
in this area. The technique was discovered independently and at approximately the

6 This perspective is attributed to Prof. Lenstra by the first listed author, he having worked with him
for four years and having discussed such matters a few times; any error in attribution is entirely his.

20



same time by the present authors, in two different but essentially isomorphic ap-
proaches. In particular, it was shown how to produce a family of polynomials of high
degree that are smooth by construction, and which thus lead to useful relations, in
contrast to uniformly generated polynomials of the same degree, which have only an
exponentially small probability of being smooth. The family of polynomials and its
exploitation lay the foundation for two independent and theoretically distinct quasi-
polynomial algorithms: the first due to Barbulescu, Gaudry, Joux, Thomé in 2013 [2]
and the second due to Granger, Kleinjung and Zumbrägel in 2014 [32].

In terms of historical development, the approach of the BGJT quasi-polynomial
algorithm grew naturally from Joux’s 2013 paper [39], which is an extension of the
previously mentioned method of [38] for medium characteristic. On the other hand,
the GKZ quasi-polynomial algorithm grew from observations in [30] and the tech-
niques of [25], which combined independent observations with a specialisation of the
field representation in [40], which was itself motivated by the Granger-Vercauteren
algorithm [28].

5.2 Polynomial-time relation generation

In order to give a flavour of the ideas behind the breakthrough techniques, we now
describe the polynomial time relation generation methods published by Göloğlu,
Granger, McGuire and Zumbrägel [25], and Joux [39], both in February 2013.

Both methods start with a family of finite fields Fpn in which the DLP is to be
solved, with p fixed and n → ∞. Each of these is embedded into a corresponding
field of the form FQ = Fqkn , with k ≥ 2 fixed and n ≈ q, by setting q = p` with
` = dlogp ne, increasing the extension degree by a factor of kdlogp ne, which does not
significantly impact the complexity of the resulting algorithms.

The GGMZ method Let Fpn ↪→ Fqkn be the target field and let Fqk be represented
arbitrarily. In order to represent Fqkn , the GGMZ method uses an extremely unbal-
anced version of the field representation employed in the Joux-Lercier function field
sieve [40]. In particular, let f = Xq and g =

h0
h1

for some h0, h1 ∈ Fqk [X] of low
degree7 ≤ dh, so that there exists a monic irreducible I ∈ Fqk [X] of degree n such that
h1(Xq)X − h0(Xq) ≡ 0 (mod I). For such h0, h1, I we define Fqkn := Fqk [X]/(I).

Let x be a root of I in Fqkn and let y = f (x) = xq. Then by construction we have
x = g(y) =

h0(y)
h1(y) , giving an isomorphism between two representations of Fqkn , namely

Fqk (x) and Fqk (y). The factor base is as simple as could be expected, consisting of
h1(xq) and all linear polynomials on the x-side; the y-side factor base is unnecessary
since for all d ∈ Fqk one has (y + d) = (x + d1/q)q.

For a, b, c ∈ Fqk , consider elements of Fqkn of the form xy + ay + bx + c. Using the
above field isomorphisms we have the following identity:

xq+1 + axq + bx + c = 1
h1(y)

(
yh0(y) + ayh1(y) + bh0(y) + ch1(y)

)
. (8)

A key observation is that the l.h.s. of Eq. (8) has a very special form, and provably
splits completely over Fqk with probability ≈ 1/q3, which is exponentially higher

7 In [25] h1 was not specified and was thus implicitly 1; h1 was introduced in [30] in order to increase
the number of representable extension degrees.

21



than the probability that a uniformly random polynomial of the same degree splits
completely over Fqk , which is ≈ 1/(q + 1)!. Indeed, for k ≥ 3 consider the polynomial
Xq+1 + aXq + bX + c. For ab , c and aq , b, this polynomial may be transformed (up
to a scalar) into

FB(X) = X
q+1

+ BX + B , with B =
(b − aq)q+1

(c − ab)q ,

via X = c−ab
b−aq X − a. Observe that the original polynomial splits completely over Fqk

whenever FB splits completely over Fqk and we have a valid transformation from X
to X. The following theorem provides the precise number of B ∈ Fqk for which FB(X)
splits completely over Fqk .

Theorem 1. (Bluher [5]) The number of elements B ∈ F×
qk s.t. the polynomial

FB(X) ∈ Fqk [X] splits completely over Fqk equals

qk−1 − 1
q2 − 1

if k is odd ,
qk−1 − q
q2 − 1

if k is even .

By using the expression for B in terms of a, b, c one can generate triples (a, b, c) for
which the l.h.s. of Eq. (8) always splits over Fqk . In particular, firstly compute the set
B of all B ∈ Fqk for which FB splits over Fqk . Then for any a, b , aq and B ∈ B there
is a uniquely determined c for which the l.h.s. splits. By Theorem 1, there are ≈ q3k−3

such triples, giving the aforementioned probability 1/q3. For such triples, whenever
the r.h.s. of Eq. (8) splits, one obtains a relation amongst the factor base elements.

This just leaves the case k = 2, for which there are no such FB. However, the set
of triples for which the l.h.s. splits non-trivially can be shown to be{

(a, aq, c) | a ∈ Fq2 and c ∈ Fq, c , aq+1}.
So for k ≥ 2, assuming the r.h.s. splits with probability 1/(dh + 1)!, there will be
sufficiently many relations when q2k−3 > (dh + 1)!. Then for fixed dh and q → ∞
the cost of computing the logarithms of all of the factor base elements is heuristically
O(q2k+1) operations in Z/(qkn−1)Z as one can use sparse (weight q) linear algebra
techniques; for fixed k this complexity is polynomial in log Q = q1+o(1), as claimed.

Joux’s method Joux’s method [39] also applies to fields of the form FQ = Fqkn (with
k = 2 being used for the exposition and initial examples), but the crucial degree n
extension is built in a slightly different, but analogous manner. In particular, we have
FQ = Fqk (x) = Fqk [X]/(I), where I | h1(X)Xq − h0(X) for some h0, h1 ∈ Fqk [X] of low
degree ≤ dh. This leads to the field equation xq =

h0(x)
h1(x) . The factor base consists of

h1(x) and all linear polynomials in x.
Joux’s method starts with the identity∏

µ∈Fq

(X − µ) = Xq − X.

If one substitutes X by αX+β
γX+δ with α, β, γ, δ ∈ Fqk and αδ − βγ , 0, multiplying by

(γX + δ)q+1 gives

(γX+δ)
∏
µ∈Fq

(
(αX+β) − µ(γX+δ)

)
= (αX+β)q(γX+δ) − (αX+β)(γX+δ)q. (9)

22



Observe that the r.h.s. of Eq. (9) has the same monomial degrees as the l.h.s. of
Eq. (8), and automatically splits completely over Fqk by virtue of the l.h.s. of Eq. (9).
Applying the field equation xq =

h0(x)
h1(x) to the r.h.s. of Eq. (9) produces

1
h1(x) (α

qh0(x) + βqh1(x))(γx + δ) − (αx + β)(γqh0(x) + δqh1(x)),

and if this degree dh+1 polynomial also splits over Fqk then one has a relation amongst
factor base elements.

In order to count the number of distinct splitting polynomials that one can obtain
in this manner, first observe that the total number of (α, β, γ, δ)-transformations is
|PGL2(Fqk )| = q3k − qk. Second, observe that two transformations will give the same
relation (up to multiplication by a scalar in F×

qk ) if there exists an element of PGL2(Fq)
which when multiplied by the first transformation gives the second. Hence the to-
tal number of distinct transformations is ≈ q3k−3, just as we found for the GGMZ
method. From a practical perspective, in order to avoid repetitions one should com-
pute a set of coset representatives for the quotient PGL2(Fqk )/PGL2(Fq); by contrast
the GGMZ method already achieves this implicitly.

5.3 L(1/4 + o(1)) and quasi-polynomial algorithms

The two methods just described mean that the first stage of index calculus is (at least
heuristically) solvable in polynomial time. So the remaining problem is to compute
individual logarithms. However, due to the extension degree being n = O(q) and the
factor base being only polynomial in the size of the field, this is now much harder
than before. In particular, if one uses the usual descent method from [40] then the
elimination of an element - i.e., expressing it as a product of elements of lower degree,
modulo the field polynomial – becomes harder as the degree becomes smaller, with
degree two eliminations being the bottleneck. However, with independent and distinct
methods GGMZ [25] and Joux [39] showed how to eliminate degree two elements
efficiently. For reasons of space we refer the reader to the original papers for their
expositions (or to the survey article [31]), and note that these methods spawned the
building blocks of the individual logarithm stages of the two aforementioned quasi-
polynomial algorithms.

In [39] Joux also gave a new elimination method which relies on solving mul-
tivariate bilinear quadratic systems via Gröbner basis computations, whose cost in-
creases with the degree. Balancing the costs of the Gröbner basis descent and the clas-
sical descent (whose cost decreases with the degree) results in a heuristic L(1/4+o(1))
algorithm, which was the first algorithm to break the long-standing L(1/3) barrier.
This can be tweaked for fields of the present form to obtain an L(1/4) algorithm [26].

Soon afterwards in June 2013, Barbulescu, Gaudry, Joux and Thomé announced
an algorithm for solving the DLP [2] in the fields Fqkn with k ≥ 2 fixed and n ≤ q + d
with d very small, which for n ≈ q has heuristic quasi-polynomial time complexity

(log qkn)O(log log qkn) = exp(O((log log qkn)2)). (10)

Since (10) is smaller than L(α) for any α > 0, this constituted a very significant
breakthrough for the DLP in finite fields of fixed characteristic. Moreover, when the
cardinality of the base field Fqk can be written as qk = Lqkn(α), the algorithm results

23



in complexity L(α), thus providing an improvement over the original function field
sieve algorithms whenever α < 1/3. As for the L(1/4) method, this algorithm relies
on unproven heuristics. Moreover, it is an asymptotic improvement whose cross-over
point with previous techniques is too high to make it usable in record computations.

In February 2014 Granger, Kleinjung and Zumbrägel developed an alternative
quasi-polynomial algorithm for fields of essentially the same form. Just as the BGJT
elimination step may be viewed as a generalisation of Joux’s degree two elimination
method, the GKZ elimination step depends on the degree two elimination method
of GGMZ (albeit combined with another crucial but simple idea). Thanks to the al-
gebraic nature of the elimination method, the only assumption required for the algo-
rithm to be rigorously proven to work is one regarding the existence of a suitable field
representation. In particular, the following theorems were proven in [32].

Theorem 2. Given a prime power q > 61 that is not a power of 4, an integer k ≥
18, coprime polynomials h0, h1 ∈ Fqk [X] of degree at most two and an irreducible
degree n factor I of h1Xq − h0, the DLP in Fqkn � Fqk [X]/(I) can be solved in expected
time

qlog2 n+O(k).

That the degree of h0, h1 is at most two is essential to eliminating smoothness heuris-
tics, since this ensures that the cofactor of the r.h.s. of Eq. (8) has degree at most
one, and is thus automatically 1-smooth. This theorem is reproved by a slightly eas-
ier approach that gives better parameters for q and k in [24]. A simple application
of Kummer theory shows that such h1, h0 exist when n = q − 1, which gives the
following easy corollary when m = ik(pi − 1).

Theorem 3. For every prime p there exist infinitely many explicit extension fields
Fpm in which the DLP can be solved in expected quasi-polynomial time

exp
(
(1/ log 2 + o(1))(log m)2).

In practice it is very easy to find polynomials h0, h1 for general extension de-
grees as per Theorem 2, and heuristically it would appear to be all but guaranteed.
However, proving their existence seems to be a hard problem. The idea of using an
alternative field representation arising from torsion points of elliptic curves to obviate
this issue is a very natural one. Such a field representation was initially introduced by
Couveignes and Lercier in [12]. At least three teams of researchers have developed
this idea [60, 50, 44] in order to build an analogue of the GKZ algorithm using this
alternative field representation. As of the time of writing, the work of Kleinjung and
Wesolowski [50] is the only one containing a full proof. Previously, only an L(1/2)
complexity had been proven rigorously for arbitrary extension degrees, so this is a
very significant theoretical result. More precisely, [50] proved:

Theorem 4. Given any prime number p and any positicve integer n, the discrete
logarithm problem in the group Fpn can be solved in expected time (pn)2 log2(n)+O(1).

5.4 Practical impact

From the perspective of mathematical cryptology, rigorously proving the correctness
of new DLP algorithms is of central theoretical interest. However, in terms of real

24



Table 1. Large-scale discrete logarithm computations in finite fields of small or medium characteristic.
Details of uncited results can be found in the number theory mailing list [68]

bitlength charact. Kummer who/when running time

127 2 no Coppersmith 1984 [10] L(1/3 , 1.526..1.587)
401 2 no Gordon, McCurley 1992 [27] L(1/3 , 1.526..1.587)
521 2 no Joux, Lercier 2001 L(1/3 , 1.526)
607 2 no Thomé 2002 L(1/3 , 1.526..1.587)
613 2 no Joux, Lercier 2005 L(1/3 , 1.526)
556 medium yes Joux, Lercier 2006 [40] L(1/3 , 1.442)
676 3 no Hayashi et al. 2010 [35] L(1/3 , 1.442)
923 3 no Hayashi et al. 2012 [34] L(1/3 , 1.442)

1175 medium yes Joux 24 Dec 2012 L(1/3 , 1.260)
619 2 no CARAMEL 29 Dec 2012 L(1/3 , 1.526)

1425 medium yes Joux 6 Jan 2013 L(1/3 , 1.260)
1778 2 yes Joux 11 Feb 2013 L(1/4 + o(1))
1971 2 yes GGMZ 19 Feb 2013 L(1/3 , 0.763)
4080 2 yes Joux 22 Mar 2013 L(1/4 + o(1))

809 2 no CARAMEL 6 Apr 2013 L(1/3 , 1.526)
6120 2 yes GGMZ 11 Apr 2013 L(1/4)
3164 2 yes GGMZ May 2013 L(1/3 , 0.763)
6168 2 yes Joux 21 May 2013 L(1/4 + o(1))
1303 3 no AMOR 27 Jan 2014 L(1/4 + o(1))
4404 2 no GKZ 30 Jan 2014 L(1/4 + o(1))
9234 2 yes GKZ 31 Jan 2014 L(1/4 + o(1))
1551 3 no AMOR 26 Feb 2014 L(1/4 + o(1))
3796 3 no Joux, Pierrot 15 Sep 2014 L(0 + o(1))
1279 2 no Kleinjung 17 Oct 2014 L(0 + o(1))
4841 3 no ACCMORR, 18 Jul 2016 L(0 + o(1))

30750 2 yes GKLWZ, 10 July 2019 L(0 + o(1))

world cryptographic impact, what matters far more is how practical the algorithms
are and whether they can be used to solve previously unsolvable DLP instances.
Furthermore, as is well known to practitioners and computational number theorists,
carrying out large-scale implementations often leads to new theoretical insights that
can, in turn, result in superior algorithms. Hence, the value of practical considerations
should not be overlooked.

Shortly after GGMZ and Joux discovered their methods, a period of intense com-
petition began, both in theory [25, 39, 26, 2, 30, 33, 42, 32] as already alluded to, and
in practice, see Table 1. As one can see these computational records dwarfed those
that had been set previously, leading small characteristic pairing-based cryptogra-
phy to be entirely eschewed by the cryptographic community. Without doubt, this
‘academic arms race’ accelerated and stretched the development of the new discrete
logarithm algorithms, and as such were scientifically extremely beneficial.

As of the time of writing the largest such (publicly known) DLP computa-
tion was completed in the field F230750 , by Granger, Kleinjung, Lenstra, Wesolowski
and Zumbrägel; this was announced in July 2019 and required approximately 2900
core years [29]. The main purpose of the computation was to test the GKZ quasi-
polynomial descent method at scale for the first time, in order to assess its reach when
the number of core hours expended is comparable to the number expended during the
largest DLP computations in prime fields and integer factorisation efforts. At the time

25



of the announcement [29] the record for the former was in a field of bitlength 768, set
in June 2016 [49]; the current record is in a field of bitlength 795, announced in De-
cember 2019 [7]. For the latter, at the time of the announcement [29] the record was
the factorisation of a 768-bit RSA challenge modulus, set in December 2009 [47].
Also in December 2019, the factorisation of a 795-bit RSA challenge modulus was
announced [7], which was swiftly improved upon in February 2020 by the solving of
an 829-bit RSA challenge [8]. For Mersenne numbers, an implementation of Copper-
smith’s factorisation factory idea resulted in January 2015 in the factorisation of the
17 remaining unfactored moduli of the form 2n − 1 with 1007 ≤ n ≤ 1199 [48].

In terms of remaining hard open problems in the area of finite field discrete log-
arithms, there are two central – and natural – ones. The first challenging problem
is to find a classical polynomial time algorithm for fixed characteristic DLPs, ei-
ther heuristic or rigorous. The second, probably far more challenging problem is to
develop quasi-polynomial classical algorithms for medium and large characteristic
fields. As there is far less structure for prime fields in particular, it seems that funda-
mentally new ideas will be required.

6 Conclusion

As is well known, the DLP and the integer factorisation problem can be solved in
polynomial time using a sufficiently large quantum computer [78]. At present, such
computers are not available, despite a wide-spread worry or excitement that they
might come soon. To be ready when this occurs, a large part of the cryptographic
community is currently working on post-quantum secure alternatives. However, the
flexibility of discrete logarithms for constructing cryptographic protocols is currently
unsurpassed. As a consequence, it remains essential to study the security of discrete
logarithms against classical computers. New sporadic breakthroughs could possibily
occur and would likely also affect factoring and the RSA cryptosystem.

Acknowledgements

This work has been supported in part by the European Union’s H2020 Programme
under grant agreement number ERC-669891.

26



Bibliography

[1] R. Barbulescu and S Duquesne. Updating Key Size Estimations for Pairings. J.
Cryptology, 32:1298–1336, 2019.

[2] Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, and Emmanuel Thomé. A
heuristic quasi-polynomial algorithm for discrete logarithm in finite fields of
small characteristic. In Advances in Cryptology—EUROCRYPT 2014, volume
8441 of LNCS, pages 1–16. Springer, 2014.

[3] Razvan Barbulescu, Pierrick Gaudry, and Thorsten Kleinjung. The Tower Num-
ber Field Sieve. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryp-
tology – ASIACRYPT 2015, pages 31–55, Berlin, Heidelberg, 2015. Springer
Berlin Heidelberg.

[4] Razvan Barbulescu and Cécile Pierrot. The multiple number field sieve for
medium- and high-characteristic finite fields. LMS Journal of Computation and
Mathematics, 17(A):230–246, 2014.

[5] Antonia W. Bluher. On xq+1 + ax + b. Finite Fields and Their Applications,
10(3):285–305, 2004.

[6] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra sys-
tem. I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Com-
putational algebra and number theory (London, 1993).

[7] Fabrice Boudot, Pierrick Gaudry, Aurore Guillevic, Nadia Heninger, Thomé
Emmanuel, and Paul Zimmermann. 795-bit factoring and discrete logarithms.
NMBRTHRY list, 02/12/2019.

[8] Fabrice Boudot, Pierrick Gaudry, Aurore Guillevic, Nadia Heninger, Thomé
Emmanuel, and Paul Zimmermann. Factorization of RSA-250. NMBRTHRY
list, 28/02/2020.

[9] A. E. Brouwer, R. Pellikaan, and E. R. Verheul. Doing More with Fewer Bits. In
Kwok-Yan Lam, Eiji Okamoto, and Chaoping Xing, editors, Advances in Cryp-
tology - ASIACRYPT’99, pages 321–332, Berlin, Heidelberg, 1999. Springer
Berlin Heidelberg.

[10] Don Coppersmith. Evaluating Logarithms in GF(2n). In Proceedings of the
Sixteenth Annual ACM Symposium on Theory of Computing, STOC ’84, pages
201–207, New York, NY, USA, 1984. ACM.

[11] Don Coppersmith. Fast Evaluation of Logarithms in Fields of Characteristic
Two. IEEE Trans. Inf. Theor., 30(4):587–594, 1984.

[12] Jean Marc Couveignes and Reynald Lercier. Elliptic periods for finite fields.
Finite Fields and Their Applications, 15(1):1–22, 2009.

[13] Claus Diem. On the discrete logarithm problem in elliptic curves. Compositio
Mathematica, 147(1):75 – 104, 2011.

[14] Claus Diem. On the discrete logarithm problem in elliptic curves II. Algebra
Number Theory, 7(6):1281–1323, 2013.

[15] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22:644–654, 1976.

[16] T. Elgamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31(4):469–472, 1985.



[17] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F4).
J. Pure Appl. Algebra, 139 (1-3):61–88, 1999.

[18] G. Frey and H. Ruck. A remark considering m-divisibility in the divisor class
group of curves. Mathematics of Computation, 1994.

[19] Steven D. Galbraith and Shishay W. Gebregiyorgis. Summation Polynomial Al-
gorithms for Elliptic Curves in Characteristic Two. In Willi Meier and Debdeep
Mukhopadhyay, editors, Progress in Cryptology – INDOCRYPT 2014, pages
409–427, Cham, 2014. Springer International Publishing.

[20] Steven D. Galbraith, Florian Hess, and Nigel P. Smart. Extending the GHS
Weil Descent Attack. In Lars R. Knudsen, editor, Advances in Cryptology—
EUROCRYPT 2002, volume 2332 of LNCS, pages 29–44. Springer Verlag,
April 28–May 2, 2002.

[21] Pierrick Gaudry. Index Calculus for Abelian Varieties of Small Dimen-
sion and the Elliptic Curve Discrete Logarithm Problem. J. Symb. Comput.,
44(12):1690–1702, December 2009.

[22] Pierrick Gaudry, Florian Hess, and Nigel P. Smart. Constructive and Destructive
Facets of Weil Descent on Elliptic Curves. J. Cryptology, 15(1):19–46, 2002.

[23] Carl F. Gauss. Disquisitiones Arithmeticae. Translated by Arthur A. Clarke.
Yale University Press, 1965.

[24] Faruk Göloglu and Antoine Joux. A simplified approach to rigorous degree 2
elimination in discrete logarithm algorithms. Math. Comput., 88(319):2485–
2496, 2019.

[25] Faruk Göloğlu, Robert Granger, Gary McGuire, and Jens Zumbrägel. On
the Function Field Sieve and the Impact of Higher Splitting Probabilities -
Application to Discrete Logarithms in F21971 and F23164 . In Ran Canetti and
Juan A. Garay, editors, Advances in Cryptology—CRYPTO 2013, volume 8043
of LNCS, pages 109–128. Springer, 2013.

[26] Faruk Göloğlu, Robert Granger, Gary McGuire, and Jens Zumbrägel. Solving
a 6120-bit DLP on a Desktop Computer. In Selected Areas in Cryptography—
SAC 2013, volume 8282 of LNCS, pages 136–152. Springer, 2014.

[27] Daniel M. Gordon and Kevin S. McCurley. Massively Parallel Computation of
Discrete Logarithms. In Ernest F. Brickell, editor, Advances in Cryptology —
CRYPTO’ 92, pages 312–323, Berlin, Heidelberg, 1993. Springer Berlin Hei-
delberg.

[28] R. Granger and F. Vercauteren. On the Discrete Logarithm Problem on Alge-
braic Tori. In Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005,
pages 66–85, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[29] Robert Granger, Thorsten Kleinjung, Arjen K. Lenstra, Benjamin Wesolowski,
and Jens Zumbrägel. Discrete Logarithms in GF(230750). NMBRTHRY list,
10/07/2019.

[30] Robert Granger, Thorsten Kleinjung, and Jens Zumbrägel. Breaking ’128-bit
Secure’ Supersingular Binary Curves - (Or How to Solve Discrete Logarithms
in F24·1223 and F212·367). In Advances in Cryptology—CRYPTO 2014, volume 8617
of LNCS, pages 126–145. Springer, 2014.

[31] Robert Granger, Thorsten Kleinjung, and Jens Zumbrägel. Indiscreet logarithms
in finite fields of small characteristic. Advances in Mathematics of Communi-
cations, 12(2):263–286, 2018.

28



[32] Robert Granger, Thorsten Kleinjung, and Jens Zumbrägel. On the discrete log-
arithm problem in finite fields of fixed characteristic. Transactions of the Amer-
ican Mathematical Society, 370:3129–3145, 2018.

[33] Robert Granger, Thorsten Kleinjung, and Jens Zumbrägel. On the Powers of 2.
Available from eprint.iacr.org/2014/300, 29th Apr 2014.

[34] Takuya Hayashi, Takeshi Shimoyama, Naoyuki Shinohara, and Tsuyoshi Tak-
agi. Breaking Pairing-Based Cryptosystems Using η T Pairing over GF(397).
In Xiaoyun Wang and Kazue Sako, editors, Advances in Cryptology - ASI-
ACRYPT 2012 - 18th International Conference on the Theory and Application
of Cryptology and Information Security, Beijing, China, December 2-6, 2012.
Proceedings, volume 7658 of Lecture Notes in Computer Science, pages 43–60.
Springer, 2012.

[35] Takuya Hayashi, Naoyuki Shinohara, Lihua Wang, Shin’ichiro Matsuo,
Masaaki Shirase, and Tsuyoshi Takagi. Solving a 676-Bit Discrete Logarithm
Problem in GF(36n). In Phong Q. Nguyen and David Pointcheval, editors, Pub-
lic Key Cryptography – PKC 2010, pages 351–367, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[36] Florian Hess. The GHS Attack Revisited. In Eli Biham, editor, Advances
in Cryptology—EUROCRYPT 2003, volume 2656 of LNCS, pages 374–387.
Springer Verlag, May 4–8, 2003.

[37] Jeremy Horwitz and Ramarathnam Venkatesan. Random Cayley Digraphs and
the Discrete Logarithm. In Claus Fieker and David R. Kohel, editors, Algorith-
mic Number Theory, pages 416–430, Berlin, Heidelberg, 2002. Springer Berlin
Heidelberg.

[38] Antoine Joux. Faster Index Calculus for the Medium Prime Case. Application
to 1175-bit and 1425-bit Finite Fields. In Thomas Johansson and Phong Q.
Nguyen, editors, Advances in Cryptology—EUROCRYPT 2013, volume 7881
of LNCS, pages 177–193. Springer, 2013.

[39] Antoine Joux. A New Index Calculus Algorithm with Complexity L(1/4 +

o(1)) in Small Characteristic. In Tanja Lange, Kristin Lauter, and Petr Lisonĕk,
editors, Selected Areas in Cryptography—SAC 2013, volume 8282 of LNCS,
pages 355–379. Springer, 2014.

[40] Antoine Joux and Reynald Lercier. The Function Field Sieve in the Medium
Prime Case. In Serge Vaudenay, editor, Advances in Cryptology - EUROCRYPT
2006, pages 254–270, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[41] Antoine Joux, Andrew Odlyzko, and Cécile Pierrot. The Past, Evolving Present,
and Future of the Discrete Logarithm, pages 5–36. Springer International Pub-
lishing, Cham, 2014.

[42] Antoine Joux and Cécile Pierrot. Improving the Polynomial time Precompu-
tation of Frobenius Representation Discrete Logarithm Algorithms. In Palash
Sarkar and Tetsu Iwata, editors, Advances in Cryptology – ASIACRYPT 2014,
pages 378–397, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[43] Antoine Joux and Cécile Pierrot. Technical history of discrete logarithms
in small characteristic finite fields - The road from subexponential to quasi-
polynomial complexity. Des. Codes Cryptogr., 78(1):73–85, 2016.

[44] Antoine Joux and Cécile Pierrot. Algorithmic aspects of elliptic bases
in finite field discrete logarithm algorithms. Preprint. Available from:
https://eprint.iacr.org/2019/782, 2019.

29



[45] Antoine Joux and Vanessa Vitse. Cover and Decomposition Index Calculus on
Elliptic Curves Made Practical - Application to a Previously Unreachable Curve
over Fp6 . In David Pointcheval and Thomas Johansson, editors, Advances in
Cryptology—EUROCRYPT 2012, volume 7237 of LNCS, pages 9–26. Springer
Verlag, April 15–19, 2012.

[46] Taechan Kim and Razvan Barbulescu. Extended Tower Number Field Sieve:
A New Complexity for the Medium Prime Case. In Matthew Robshaw and
Jonathan Katz, editors, Advances in Cryptology – CRYPTO 2016, pages 543–
571, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[47] Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K. Lenstra, Emmanuel
Thomé, Joppe W. Bos, Pierrick Gaudry, Alexander Kruppa, Peter L. Mont-
gomery, Dag Arne Osvik, Herman te Riele, Andrey Timofeev, and Paul Zim-
mermann. Factorization of a 768-Bit RSA Modulus. In Tal Rabin, editor,
Advances in Cryptology – CRYPTO 2010, pages 333–350, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

[48] Thorsten Kleinjung, Joppe W. Bos, and Arjen K. Lenstra. Mersenne Factoriza-
tion Factory. In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology
– ASIACRYPT 2014, pages 358–377, Berlin, Heidelberg, 2014. Springer Berlin
Heidelberg.

[49] Thorsten Kleinjung, Claus Diem, Arjen K. Lenstra, Christine Priplata, and
Colin Stahlke. Computation of a 768-Bit Prime Field Discrete Logarithm. In
Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptol-
ogy – EUROCRYPT 2017, pages 185–201, Cham, 2017. Springer International
Publishing.

[50] Thorsten Kleinjung and Benjamin Wesolowski. Discrete logarithms in quasi-
polynomial time in finite fields of fixed characteristic. To appear in Journal of
the American Mathematical Society.

[51] A. A. Klyachko. On the Rationality of Tori with Cyclic Splitting Field (Rus-
sian). Arithmetic and Geometry of Varieties, pages 73–78, 1988.

[52] Maurice Kraitchik. Théorie des nombres, volume 1. Paris: Gauthier-Villars,
1922.

[53] Maurice Kraitchik. Recherches sur la théorie des nombres, volume 1. Paris:
Gauthier-Villars, 1924.

[54] Thomas S. Kuhn. The Structure of Scientific Revolutions, 3rd ed. University of
Chicago Press, 1996.

[55] Personal communication between Robert Granger and Arjen K. Lenstra., 2013.
[56] A. K. Lenstra and H. W. Lenstra Jr. Algorithms in number theory. Technical

Report 87-008, University of Chicago, 1987.
[57] A. K. Lenstra and E. R. Verheul. An Overview of the XTR Public Key System.

In Public Key Cryptography and Computational Number Theory, pages 151–
180. Verlages Walter de Gruyter, 2001.

[58] Arjen K. Lenstra. Using cyclotomic polynomials to construct efficient dis-
crete logarithm cryptosystems over finite fields. In Vijay Varadharajan, Josef
Pieprzyk, and Yi Mu, editors, Information Security and Privacy, pages 126–
138, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

[59] Arjen K. Lenstra and Eric R. Verheul. The XTR Public Key System. In Mihir
Bellare, editor, Advances in Cryptology — CRYPTO 2000, pages 1–19, Berlin,
Heidelberg, 2000. Springer Berlin Heidelberg.

30



[60] Guido Lido. Discrete logarithm over finite fields of small characteristic. Mas-
ter’s thesis, Universita di Pisa, 2016.

[61] R. Lovorn. Rigorous Subexponential Algorithms for Discrete Logarithms over
Finite Fields. Ph. D. thesis, University of Georgia, 1992.

[62] Kevin S. McCurley. The discrete logarithm problem. In Cryptology and compu-
tational number theory, Proc. Symp. in Applied Mathematics, volume 42, pages
49–74. American Mathematical Society, 1990.

[63] A. Menezes, T. Okamoto, and S. Vanstone. Reducing elliptic curve loga-
rithms to logarithms in a finite field. IEEE Transaction on Information Theory,
39:1639–1646, 1993.

[64] Alfred Menezes and Minghua Qu. Analysis of the Weil Descent Attack of
Gaudry, Hess and Smart. In David Naccache, editor, CT-RSA 2001, volume
2020 of LNCS, pages 308–318. Springer Verlag, April 8–12, 2001.

[65] Alfred Menezes and Yihong Wu. The Discrete Logarithm Problem in GL(n, q).
Ars Comb., 47, 1997.

[66] Victor S. Miller. The Weil Pairing, and Its Efficient Calculation. J. Cryptology,
17(4):235–261, September 2004.

[67] V. I. Nechaev. On the complexity of a deterministic algorithm for a discrete
logarithm. Mat. Zametki, 55:91–101, 1994.

[68] NumberTheoryList: https://listserv.nodak.edu/cgi-bin/wa.exe?A0=NMBRTHRY.
[69] A. M. Odlyzko. Discrete logarithms in finite fields and their cryptographic

significance. In Thomas Beth, Norbert Cot, and Ingemar Ingemarsson, editors,
Advances in Cryptology, pages 224–314, Berlin, Heidelberg, 1985. Springer
Berlin Heidelberg.

[70] R.W.K. Odoni, V. Varadharajan, and P.W. Sanders. Public key distribution in
matrix rings. Electronics Letters, 20(9):386 – 387, 1984.

[71] Stephen C. Pohlig and Martin E. Hellman. An improved algorithm for comput-
ing logarithms over gf(p) and its cryptographic significance (corresp.). IEEE
Trans. Inf. Theory, 24(1):106–110, 1978.

[72] John M. Pollard. Monte Carlo Methods for Index Computation (mod p). Math-
ematics of Computation, 32:918–924, 1978.

[73] Karl Rubin and Alice Silverberg. Torus-Based Cryptography. In Dan Boneh,
editor, Advances in Cryptology - CRYPTO 2003, pages 349–365, Berlin, Hei-
delberg, 2003. Springer Berlin Heidelberg.

[74] C. P. Schnorr. Efficient signature generation by smart cards. J. Cryptology,
4:161–174, 1991.

[75] RenÃ© Schoof. Counting points on elliptic curves over finite fields. Journal
de thÃ©orie des nombres de Bordeaux, 7(1):219–254, 1995.

[76] I. A. Semaev. Evaluation of discrete logarithms in a group of p-torsion points
of an elliptic curve in characteristic p. Math. Comp., 67(221):353–356, 1998.

[77] Igor Semaev. Summation polynomials and the discrete logarithm problem on
elliptic curves. Cryptology ePrint Archive, Report 2004/031, 2004.

[78] Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization and Dis-
crete Logarithms on a Quantum Computer. SIAM J. Comput., 26(5):1484–1509,
October 1997.

[79] Victor Shoup. Lower Bounds for Discrete Logarithms and Related Problems.
In Walter Fumy, editor, Advances in Cryptology — EUROCRYPT ’97, pages
256–266, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

31



[80] Nigel P. Smart. The Discrete Logarithm Problem on Elliptic Curves of Trace
One. J. Cryptology, 12(3):193–196, 1999.

[81] Peter Smith and Christopher Skinner. A public-key cryptosystem and a digital
signature system based on the lucas function analogue to discrete logarithms.
In Josef Pieprzyk and Reihanah Safavi-Naini, editors, Advances in Cryptology
— ASIACRYPT’94, pages 355–364, Berlin, Heidelberg, 1995. Springer Berlin
Heidelberg.

[82] Personal communication between Robert Granger and Martijn Stam, 2005.
[83] Marten van Dijk, Robert Granger, Dan Page, Karl Rubin, Alice Silverberg, Mar-

tijn Stam, and David Woodruff. Practical Cryptography in High Dimensional
Tori. In Ronald Cramer, editor, Advances in Cryptology – EUROCRYPT 2005,
pages 234–250, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[84] Paul C. van Oorschot and Michael J. Wiener. Parallel Collision Search with
Cryptanalytic Applications. J. Cryptology, 12(1):1–28, 1999.

[85] V. E. Voskresenskiı̆. Algebraic Groups and Their Birational Invariants. Trans-
lations of Mathematical Monographs, 179, American Mathematical Society,
1998.

32


