
Recurring Contingent Payment
for Proofs of Retrievability

Aydin Abadi?1 Steven J. Murdoch??1 Thomas Zacharias? ? ?2

1 University College London
2 University of Edinburgh

Abstract. Fair exchange protocols let two mutually distrusted parties
exchange digital data in a way that neither can cheat. At CCS 2017,
Campanelli et al. proposed two blockchain-based protocols for the fair
exchange of digital coins and a certain service, i.e., “proofs of retriev-
ability” (PoR), that take place between a buyer and seller. In this work,
we identify two serious issues of these schemes; namely, (1) a malicious
client can waste the seller’s resources, and (2) real-time leakage of in-
formation to non-participants in the exchange. To rectify the issues, we
propose “recurring contingent PoR payment” (RC-PoR-P). It lets the
fair exchange reoccur while ensuring that the seller’s resources are not
wasted, and the parties’ privacy is preserved. We implemented the RC-
PoR-P. Our cost analysis indicates that the RC-PoR-P is efficient. The
RC-PoR-P is the first of its kind that offers all the above features.

1 Introduction

Fair exchange protocols let two mutually distrusted parties swap digital items
such that either each party gets the other’s item, or neither party does. It cap-
tures various scenarios; for instance, when two parties want to exchange digital
files or to exchange digital items and coins. Fair exchange protocols have been
extensively studied for decades. It was shown that fairness is unachievable with-
out a trusted third party’s aid [17]. With the advent of blockchain technology, it
seemed fair exchange protocols can be designed without having to rely on a sin-
gle trusted third party. Hence, various blockchain-based fair exchange protocols
have been proposed. At CCS 2017, Campanelli et al. [15] proposed two schemes
to facilitate the fair exchange of digital coins and a digital service (between a
buyer and seller), on the blockchain. These two schemes stand out from the rest,
as they are the only ones designed so far to support buying a service, through
exchanging coins for proof that a service has been provided, rather than just
buying a static item, such as a file.

Nevertheless, as we will show in this work, these two schemes in [15] suf-
fer from two serious issues: (1) a malicious client can waste the seller’s resources

? aydin.abadi@ucl.ac.uk
?? s.murdoch@ucl.ac.uk

? ? ? thomas.zacharias@ed.ac.uk

and (2) real-time leakage of information to non-participants of the exchange (e.g.,
proofs’ status, deposit’s actual amount, buyer’s file size, or even the file’s loca-
tion in some situations). When combined, these vulnerabilities allow a malicious
client to discover, with high probability, whether the service has been provided,
without making a payment. We identify two flaws in these schemes that led to
Issue 1; namely, (a) incomplete fairness’ definition and (b) mismatch of security
assumption/requirement between primitives. Also, we identify the improper use
of public blockchain as the primary factor that led to Issue 2. The schemes’ flaws
that lead to these issues are generic. If they are not dealt with appropriately,
then future (blockchain-based) fair exchange protocols may inherit them.

Our Contributions. In this work, we:

1. identify two serious issues that the protocols of Campanelli et al. [15] suffer
from, (1) waste of the seller’s resources, and (2) real-time leakage. We identify
the protocols’ flaws causing these issues. Section 4 explains the issues.

2. formally define and propose a construction called “recurring contingent PoR
payment” (RC-PoR-P) that addresses the above issues. The RC-PoR-P relies
mainly on symmetric-key primitives and smart contracts. It is the first fair
exchange scheme that offers the above features simultaneously. Section 6
presents the RC-PoR-P.

3. implement the RC-PoR-P and make its source code public. Our cost analysis
illustrates that the RC-PoR-P is efficient. When it deals with a 4 GB file, a
verifier can check a proof in 90 milliseconds, and a dispute between the prover
and verifier can be resolved in 0.1 milliseconds. The contracts’ computation
cost is also low, i.e., O(1). Section 7 evaluates the RC-PoR-P.

2 Related Work

In this section, we summarise related work (see Appendix A for a more detailed
survey). Maxwell [38] proposes a fair exchange scheme, called “zero-knowledge
contingent payment” that supports the fair exchange of digital goods and coins.
It is based on Bitcoin’s smart contracts, a hash function, and zero-knowledge
(zk) proofs. After the advancement of the “succinct non-interactive argument
of knowledge” (zk-SNARK) [27] that yields more efficient zk proofs, the scheme
was modified to use zk-SNARKs. Later, Campanelli et al. [15] identified an issue
in the above scheme. The issue lets a malicious buyer receive the item with-
out paying. To address it, the authors propose the “zero-knowledge Contingent
Service Payments” (zkCSP) scheme that also supports contingent payment for
digital services. It is based on Bitcoin smart contracts, hash functions, and wit-
ness indistinguishable proof of knowledge (WIPoK). To improve the efficiency,
they use zk-SNARKs where the buyer generates a public parameter, i.e., CRS,
and the seller performs minimal checks on the CRS. The authors, as the zkCSP’s
concrete instantiations, propose public and private verifiable schemes where the
service is “proofs of retrievability” (PoR) [47]. To date, they are the only ones
designed for the fair exchange of digital coins and a digital service. Shortly, we
will explain their shortcomings undetected in the literature.

Fuchsbauer [23] identifies a flaw in the zkCSP and shows that the seller’s min-
imal check in the zkCSP does not prevent the buyer from successfully cheating.
Later, Nguyen et al. [44] show that by relying on a stronger notion of WI, the
zkCSP remains secure. Tramer et al. [48] propose a fair exchange scheme that
uses trusted hardware and Ethereum smart contracts. Dziembowski et al. [21]
propose FairSwap, a fair exchange scheme using the Ethereum smart contracts
and the notion of proof of misbehaviour [16]. Later, Eckey et al. [22] propose
OPTISWAP that improves FairSwap’s performance. Similar to FairSwap, OP-
TISWAP uses a smart contract and proof of misbehaviour, but it relies on an
interactive dispute resolution protocol. Recently, outsourced fair PoRs letting a
client delegate the verifications to a smart contract were proposed in [3,20]. The
scheme in [3] uses message authentication codes (MACs) and time-lock puzzles.
The one in [20] uses polynomial commitment and involves a high number of ex-
ponentiations. As a result, it imposes higher costs, of proving and verifying, than
the former scheme. The schemes in [3,20] rely on a stronger security assumption
(i.e., the client is fully honest) than the rest of the above work.

3 Preliminaries

3.1 Notation and Assumption

We use λ and ⊥ to denote security parameter and null value respectively. We
use C, S, and Ar to denote the client, server, and arbiter. We let pl be S’s public
price list, o be the amount paid to S for each valid proof, and l be the amount
(misbehaving) C or S pays to Ar for resolving a dispute for each verification,
omax be the maximum amount paid to S for a valid proof, lmax be the maximum
amount to resolve a potential dispute, and z be the total number of verifications
and (o, l, omax, lmax) ∈ pl. We provide a notation table in Appendix B. Similar to
the optimistic fair schemes that aim at efficiency, e.g., in [7,8,10,18], we assume a
trusted third-party arbiter’s existence (e.g., smart contract or secure hardware)
which mostly remains offline, and is invoked only to resolve disputes.

3.2 Pseudorandom Function

Informally, a pseudorandom function (PRF) is a deterministic function that takes
as input a key and some argument and outputs a value indistinguishable from
that of a truly random function with the same domain and range. Pseudorandom
functions have many applications in cryptography as they provide an efficient
and deterministic way to turn input into a value that looks random. Below, we
restate the formal definition of PRF, taken from [35].

Definition 1. Let W : {0, 1}ψ×{0, 1}η → {0, 1}ι be an efficient keyed function.
It is said W is a pseudorandom function if for all probabilistic polynomial-time
distinguishers B, there is a negligible function, µ(.), such that:∣∣∣∣Pr[BW

k̂
(.)(1ψ) = 1]− Pr[Bω(.)(1ψ) = 1]

∣∣∣∣ ≤ µ(ψ)

where the key, k̂
$← {0, 1}ψ, is chosen uniformly at random and ω is chosen

uniformly at random from the set of functions mapping η-bit strings to ι-bit
strings.

3.3 Smart Contract

Beyond offering a decentralised currency, cryptocurrencies (e.g., Bitcoin [43] and
Ethereum [49]) support computations on transactions. In this setting, often a
computation logic is encoded in a computer program, called a “smart contract”.
To date, Ethereum is the most predominant cryptocurrency framework that en-
ables users to define arbitrary smart contracts. In this framework, contract code
is stored on the blockchain and run by all parties maintaining the cryptocur-
rency. The program execution’s correctness is guaranteed by the security of the
underlying blockchain components. To prevent a denial of service attack, the
framework requires a transaction creator to pay a fee, called “gas”.

3.4 Commitment Scheme

A commitment scheme involves two parties, sender and receiver, and includes
two phases: commit and open. In the commit phase, the sender commits to a

message: x as Com(x, r) = Comx, that involves a secret value: r
$← {0, 1}λ. In

the end of the commit phase, the commitment Comx is sent to the receiver. In
the open phase, the sender sends the opening ẍ := (x, r) to the receiver who

verifies its correctness: Ver(Comx, ẍ)
?
= 1 and accepts if the output is 1. A com-

mitment scheme must satisfy two properties: (a) hiding : it is infeasible for an
adversary (i.e., the receiver) to learn any information about the committed mes-
sage x, until the commitment Comx is opened, and (b) binding : it is infeasible
for an adversary (i.e., the sender) to open a commitment Comx to different val-
ues ẍ′ := (x′, r′) than that was used in the commit phase, i.e., infeasible to
find ẍ′, s.t. Ver(Comx, ẍ) = Ver(Comx, ẍ

′) = 1, where ẍ 6= ẍ′. There exist effi-
cient non-interactive commitment schemes both in (a) the standard model, e.g.,
Pedersen scheme [45], and (b) the random oracle model using the well-known
hash-based scheme such that committing is : H(x||r) = Comx and Ver(Comx, ẍ)

requires checking: H(x||r) ?
= Comx, where H : {0, 1}∗ → {0, 1}λ is a collision resis-

tant hash function; i.e., the probability to find x and x′ such that H(x) = H(x′)
is negligible in the security parameter λ.

3.5 Merkle Tree

A Merkle tree scheme introduced by Merkle [39,40], is a data structure often used
for efficiently checking the integrity of an outsourced file. In this setting, there are
two roles involved, a prover P and a verifier V. The Merkle tree scheme includes
three algorithms (MT.genTree, MT.prove, MT.verify). Briefly, the first algorithm
constructs a Merkle tree on file blocks, the second algorithm generates a proof
of a block’s (or set of blocks’) membership, and the third one verifies the proof.

The security of the Merkle tree scheme requires that a computationally bounded
malicious P cannot convince V into accepting an incorrect proof, e.g., a proof
for non-member block. We refer readers to Appendix C for more detail.

3.6 Proofs of Retrievability (PoR)

A PoR scheme considers the case where an honest client wants to outsource the
storage of its file to a potentially malicious server, i.e., an active adversary. It is
a challenge-response interactive protocol, where the server proves to the client
that its file is intact and retrievable. Below, we restate PoR’s formal definition
initially proposed in [33,47]. A PoR scheme comprises five algorithms:

• PoR.keyGen(1λ) → k := (sk, pk). A probabilistic algorithm, run by a client,
C. It takes as input the security parameter 1λ. It outputs private-public
verification key, k := (sk, pk).

• PoR.setup(1λ, u, k) → (u∗, σ, pp). A probabilistic algorithm, run by C. It
takes as input 1λ, a file u, and key k. It encodes u yielding u∗ and generates
metadata, σ. It outputs u∗, σ, and public parameters pp.

• PoR.genQuery(1λ, k, pp) → q. A probabilistic algorithm, run by C. It takes
as input 1λ, key k, and public parameters pp. It outputs a query vector q,
possibly picked uniformly at random.

• PoR.prove(u∗, σ, q, pk, pp) → π. It is run by the server, S. It takes as in-
put the encoded file u∗, metadata σ, query q, public key pk, and public
parameters pp. It outputs a proof, π.

• PoR.verify(π, q, k, pp) → d ∈ {0, 1}. It is run by C. It takes as input π, q,
k, and pp. It outputs 0 if it rejects the proof, or 1 if it accepts the proof.

Informally, a PoR’s soundness requires that if a prover convinces the veri-
fier, then the file is stored by the prover. Note, the above definition is generic,
so certain realisations of this definition may not use all its algorithms and in-
puts/outputs. Appendix D presents the PoR’s formal definition.

4 Previous Work’s Limitations

In this section, we explain the previous schemes’ shortcomings and their flaws
causing such shortcomings. Our focus is on the zkCSP schemes of Campanelli et
al. [15], as they were specifically designed for the exchange of services and coins.

4.1 Issue 1: Waste of Server’s Resources

A malicious client, in each zkCSP scheme, can misbehave to benefit itself and
waste the servers’ resources. Its misbehaviours include: (i) not participating in
the payment although it has been using the service, or (ii) participating in the
payment but making the server fail to pass the verification; for a concrete ex-
ample, we refer readers to Appendix E. As we will show shortly, in the recurring
payment, the client can collect convincing background information about an

honest server. A combination of this information and the above issues lets the
client conclude that it has been served honestly, without paying the server.

The sources of Issue 1 are incomplete fairness definition and mismatch of
security assumptions. In particular, the misbehaviour (i) is allowed because the
zkCSP’s definition (Section 4.1 in [15]) is incomplete (or too weak). It only cap-
tures the moment when the client and server trade the service’s proof for coins,
but it does not capture a crucial property, “resource fairness”. It is vital that this
property is taken into consideration, because in the real world the server invests
resources to serve the client before participating in the fair payment. Hence, in
the exchange of services and coins, it is not fair if the client does not participate
in the payment. The misbehaviour (ii) is allowed because each zkCSP scheme
assumes either party is corrupt, but it uses a service scheme (i.e., PoR) that
is secure against only a malicious server and assumes the client is honest. The
incomplete definition and lack of rigorous security proof, of the zkCSP’s concrete
instantiation, also played vital roles in misbehaviour (ii) remaining undetected.

4.2 Issue 2: Real-time Leakage

The zkCSP protocols leak in real-time, fresh information to the public. The
leakage includes: (a) proofs’ status and (b) deposit amount. First, we focus on the
proofs’ status leakage. In the zkCSP schemes (where a blockchain plays a role in
the verification and payment) it becomes visible in real-time to everyone whether
the service proofs were accepted. This issue remains even if the proofs are not
stored in plaintext in the blockchain, as coins transfer itself reveals the proofs’
status. Thus, the blockchain provides to the public fresh information about the
server’s status that could have not been easily attained otherwise. This leakage
can have serious immediate consequences for both the server and clients, e.g.,
stock value drop [12,30], or opening doors for attackers to exploit such incidents.
For example, this leakage lets a malicious client construct background knowledge
of the server’s current behaviour (towards other clients). Such information can
assist it to wisely exploit Issue 1, in the sense that when it observes that recently
the server has been acting honestly, it refuses to participate in the payment. In
this case, it still has high confidence that the server delivered the service.

As another example, a malicious observer can simply find out that the ser-
vice is suffering from failure and exploit such vulnerability to harm the parties,
e.g., mount social engineering attacks.3 Also, in the zkCSP schemes, the deposit
amount in the contract swiftly leaks information about the client to the public,
as the server’s price list is public. For instance, when the service is the PoR, the
public can learn the approximate file’s size, service type, or sometimes the region
of the outsourced file. The main source of Issue 2 is an improper use of public
blockchain. Briefly, the leakages occur because of the use of public blockchain
for transferring deposits without having any privacy-preserving mechanism in
place. We refer readers to Appendix F for further discussion of Issue 2.

3
A survey conducted by Kaspersky lab in 2018 suggests that 33% of attacks that affect business
clients, of cloud computing servers, are of type social engineering [37].

5 Our Solution’s Overview

In this section, we outline how we address the two issues. In Appendix G, we
explain why naive approaches are not suitable to address these issues.

5.1 Addressing Issue 1

To address Issue 1, first we upgrade PoR to a “PoR with identifiable abort”4

(PoRID) to (a) ensure security against a malicious client and (b) let an arbiter
identify the misbehaving party and resolve disputes. PoRID requires the parties
to post (some of) their messages to a smart contract, to avoid any repudiation is-
sue. Also, the client is required to provide correct inputs, e.g., tags, or challenges;
otherwise, it is identified as a misbehaving party. Then, we upgrade PoRID to
a “recurring contingent PoR payment” (RC-PoR-P) scheme to (a) ensure fair
payment and (b) prevent real-time leakage. To address Issue 1, RC-PoR-P re-
quires (i) the client to deposit its coins before uploading its file to the server,
and (ii) the server is paid by a misbehaving client. Also, RC-PoR-P ensures that
the misbehaving party pays the arbiter.

5.2 Addressing Issue 2

To address Issue 2, first we let the client and server take control of the time
of the information release and agree on the period in which the information
remains hidden, a “private time bubble”. In this period, all messages sent to the
smart contract are encrypted. They raise disputes after this period ends (or the
bubble bursts) and when the data loses its sensitivity.5 But, the client can still
locally check a proof’s validity once it is provided. Second, to hide the actual
deposit amount, we let each party mask its coins, by increasing the actual coins
amount to the maximum amount of coin in the server’s price list. However, this
raises another challenge: how can the mutually distrusted parties claim back their
masking coins after the bubble bursts, while hiding the actual coins amount from
the public in the private bubble? To deal with it, we let the client and server
initially agree on a private statement specifying the deposit details. Later, when
they want to reclaim their coins, they provide the statement to the smart contract
which checks the statement’s validity and if the check passes, it distributes coins
according to the statement’s specification. We will show how they can efficiently
agree on such a statement, by using a “statement agreement protocol” (SAP).

6 Recurring Contingent PoR Payment (RC-PoR-P)

In this section, we present RC-PoR-P. It offers two features (in addition to
addressing the two issues), it (a) does not use zk proofs although either client

4
It was inspired by the notion of secure multi-party computation with identifiable abort [32].

5
The concept of delayed information release has already been used by researchers, e.g., in smart
metering in [31] or in the real world through the declassification approach.

or server can be malicious, and (b) has a low arbiter-side cost. As we will show,
the latter also enables a smart contract to efficiently play the arbiter’s role.

Avoiding the use of zero-knowledge proofs: PoRs often use tags (e.g., MACs)
or a Merkle tree’s root, as metadata, for the verification. Most PoRs assume that
the client is honest. When it is also considered corrupt, if tags are used, using zk
proofs is an obvious approach for the client to prove that it correctly generated
the tags (e.g., in [6]). But, this imposes significant overheads. We observed that
using a Merkle tree would benefit our protocol from a couple of perspectives; it
(i) removes the need for zk proofs and (ii) supports “proof of misbehaviour”. If a
Merkle tree is used, then the server can efficiently check the metadata by simply
rebuilding this tree on the file with low costs and without using zk proofs.

Low arbiter-side cost: In a Merkle tree-based PoR, the number of proofs
(or paths) are linear with the number of blocks that are probed, say φ. In this
scheme, the verifier checks all proofs and rejects them if one of them is invalid.
We observed that if it is used in the RC-PoR-P, then once the client rejects a
proof, it can send only that single invalid proof as a proof of misbehaviour to
the arbiter.6 This technique significantly reduces the arbiter’s computation cost,
i.e., from φ log2(n) to log2(n), where n is the number of file blocks.

In the rest of this section, we first present a modified Merkle tree-based PoR.
Then, we upgrade it to the PoRID and after that build the RC-PoR-P upon it.

6.1 Modified Merkle tree-based PoR

In this section, we first present a modified version of the standard Merkle tree-
based PoR, and then explain the applied modifications. At a high level, the client
encodes its file using an error-correcting code, splits the result into blocks, and
builds a Merkle tree on the blocks. It locally stores the tree’s root. It sends the
blocks to the server which rebuilds the tree. At the verification time, the client
sends a PRF’s key to the server which derives a number of blocks’ indices showing
which blocks are probed. The server for each probed block generates a proof.
It sends all proofs to the client which checks them. If it accepts all proofs, it
concludes that its file is retrievable. But, if it rejects some proofs, it stores only
one index of the blocks whose proofs were rejected. Below, we present the PoR.

1. Client-side Setup. PoR.setup(1λ, u)
(a) Uses an error-correcting code, to encode the file: u. Let u′ be the encoded

file. It splits u′ into blocks as follows, u∗ = u
′
0||0, ..., u

′
m||m.

(b) Constructs a Merkle tree on u∗’s blocks, i.e., MT.genTree(u∗). Let σ be
the root of the tree, and φ be the number of blocks that will be probed.
It sets public parameters as pp := (σ, φ,m, ζ), where ζ := (ψ, η, ι) is a
PRF’s description, as it was defined in Section 3. It sends pp and u∗ to S.

2. Client-side Query Generation. PoR.genQuery(1λ, pp).

• Picks a key k̂ for PRF. It sends k̂ to S.
3. Server-side Proof Generation. PoR.prove(u∗, k̂, pp)

6
This idea is akin to the proof of misbehaviour proposed in [16].

(a) Derives φ pseudorandom indices from k̂ as follows.

∀i, 1 ≤ i ≤ φ : qi = PRF(k̂, i) mod m+ 1. Let q = [q1, ..., qφ].

(b) For each random index qi, generates a proof, πq
i

= MT.prove(u∗, qi). The
final result is π = [(u∗q

i
, πq

i
)]qi∈q, where i-th element in π corresponds

to qi, and the probed block is u∗q
i
. It sends π to C.

4. Client-side Proof Verification. PoR.verify(π, q, pp)

(a) If |π| = |q| = 1, then set φ = 1. This step is only for the case where
single proof and query is provided (e.g., in the proof of misbehaviour).

(b) Checks if the server sent all required proofs, by parsing each element of
π as: parse(u∗q

i
) = u

′
q
i
||qi , and checking if its index qi equals to q’s i-th

element. If all checks pass, it takes the next step. Otherwise, it outputs
d = [0, i], where i is the index of π’s element that did not pass the check.

(c) Checks if every path in π is valid, by calling MT.verify(u∗q
i
, πq

i
, σ). If all

checks pass, it outputs d = [1,⊥]; otherwise, it outputs d : [0, i], where
i refers to the index of the element in π that does not pass the check.

Theorem 1 (informal). The above PoR scheme is sound if Merkle tree and
pseudorandom function PRF are secure.

We refer readers to Appendix J for the theorem’s formal statement and proof.
This PoR differs from the standard Merkle tree-based PoR from two perspectives;
First, in step 4, the client also outputs one of the rejected proofs’ indices. This
will let a third party, given that index (and vectors of proofs and challenges),
efficiently verify that the server did not pass the verification. Second, in step
2, instead of sending φ challenges, we let the client send only a key of the PRF

to the server which can derive a set of challenges from it. This will lead to a
decrease in (the client’s communication and a smart contract’s storage) costs.

6.2 PoRID Scheme

Most PoRs are secure against a malicious server and assume the client is honest.
Although this assumption may suffice in theory, it may not hold in the real world,
when there are monetary incentives (e.g., service payment) tempting a client to
misbehave. In this section, we present PoRID that addresses this limitation.

PoRID Model’s Overview. The PoRID model is built upon the PoR (pre-
sented in Section 3.6). However, the PoRID offers two additional properties;
namely, (1) inputs well-formedness: a malicious client cannot persuade a server
to serve it on ill-structured inputs, and (2) detectable abort : a corrupt party is
identified by a trusted third-party arbiter. In the PoRID, four parties are in-
volved: a client, server, arbiter, and standard smart contract. In Appendix H,
we present our PoRID’s formal definition.

PoRID Protocol. In the PoRID, at the setup C encodes its file u and generates
public parameters and metadata. It sends these parameters and metadata to
the smart contract. It sends the encoded file to S which efficiently checks the
correctness of the parameters and metadata. It agrees to serve if the checks pass.
At the verification time, C sends a query to the smart contract. S checks the
query and generates proofs, if the check passes. The prove and verify algorithms
are similar to those in the PoR with a difference that S sends the proofs to the
contract. In case of a dispute, C or S invokes the arbiter that checks the query
and proofs to identify a misbehaving party. Below, we present the PoRID.

1. Client-side Setup. PoRID.setup(1λ, u)

(a) Calls PoR.setup(1λ, u)→ (u∗, pp). Recall, pp := (σ, φ,m, ζ).
(b) Sends the public parameter pp to the smart contract and sends u∗ to S.

2. Server-side Setup. PoRID.serve(u∗, pp)

(a) rebuilds the Merkle tree on u∗ and checks if the result root equals σ ∈ pp.
(b) checks |u∗| = m and φ ≤ m.

If the checks pass, it outputs a = 1. Otherwise, it outputs a = 0 and halts.
3. Client-side Query Generation. PoRID.genQuery(1λ, pp)

(a) Calls PoR.genQuery(1λ, pp)→ k̂.

(b) Sends k̂ to the smart contract.

4. Server-side Query Verification. PoRID.checkQuery(k̂, pp)

(a) Checks if k̂ is not empty, i.e., k̂ 6= ⊥, and is in the key’s universe.
(b) If the checks pass, it outputs b = 1; otherwise, it outputs b = 0 and halts.

5. Server-side Service Proof Generation. PoRID.prove(u∗, k̂, pp).

(a) Calls PoR.prove(u∗, k̂, pp)→ π, to generate a proof vector, π.
(b) Sends π to the smart contract.

6. Client-side Proof Verification. PoRID.verify(π, k̂, pp)

• Calls PoR.verify(π, k̂, pp)→ d, to verify the proof. If d[0] = 1, it returns
d = 1; otherwise, it returns d = 0.

7. Arbiter-side Identification. PoRID.identify(π, q, pp)

It is invoked by C or S, in the case of a dispute. Let q := (k̂, i). If C invokes
it, then i is an invalid proof’s index. If S invokes it, then i = ⊥.

(a) Checks if k̂ is well-structured by calling PoRID.checkQuery(k̂, pp)→ b.
• if b = 0, it outputs I = C and halts.
• if b = 1 and i = ⊥, it halts.
• if b = 1 and i 6= ⊥, it takes the next step.

(b) Generates the probed block’s index, i.e., qi = PRF(k̂, i) mod m+ 1.
(c) Verifies i-th proof, by setting π̂ = π[i], q̂ = qi and calling PoR.verify(π̂,

q̂, pp)→ d′. If d′[0] = 0, it outputs I = S. Otherwise, it outputs I = ⊥.

Theorem 2 (informal). The PoRID satisfies the soundness, detectable abort,
and inputs well-formedness, if the PoR is sound and the blockchain is secure.

We provide the above theorem’s formal statement and proof in Appendix K.

6.3 Recurring Contingent PoR Payment (RC-PoR-P) Protocol

As stated in Section 5, the RC-PoR-P relies on the SAP that lets the server and
client provably agree on private statements efficiently. In the RC-PoR-P, SAP
will let a party (i) reclaim its masking coins or (ii) prove it has an agreement
with its counter-party on secret parameters, after the private bubble bursts. In
this section, we first present the SAP and then the RC-PoR-P.

Statement Agreement Protocol (SAP). Informally, a SAP is secure if it
meets four properties: (1) neither party can persuade a third-party verifier that
it has agreed with its counter-party on a different statement than the one both
parties initially agreed on, (2) after they agree on a statement, an honest party
can (almost) always prove to have the agreement to the verifier, (3) the privacy
of the statement is preserved (from the public before the proving phase), and
(4) after both parties reach an agreement, neither can later deny it. The SAP
uses a smart contract and commitment scheme. To agree on a private statement
x with S, C picks a random value r and uses it to commit to x. It sends the
commitment to the smart contract and the commitment’s opening (i.e., x and r)
to S that checks if the opening matches the commitment and if so, it commits to
the statement using the same random value. It sends the result to the contract.
Later, for a party to prove to the contract (i.e., the verifier) that it has agreed
on x with the other party, it sends the commitment’s opening to the verifier
which checks if the opening matches both commitments and accepts if they do.
Below, we present the SAP. It assumes that each party R ∈ {C,S} already has
a blockchain public address, adrR.

1. Initiate. SAP.init(1λ, adrC, adrS , x)
The following steps are taken by C.
(a) Deploys a smart contract that explicitly states both parties’ addresses,

adrC and adrS . Let adrSAP be the deployed contract’s address.
(b) Picks a random value r, and commits to the statement, Com(x, r) = gC.
(c) Sends adrSAP and ẍ := (x, r) to S, and gC to the contract.

2. Agreement. SAP.agree(x, r, gC, adrC, adrSAP)
The following steps are taken by S.
(a) Checks if gC was sent from adrC, and checks Ver(gC, ẍ) = 1.
(b) If the checks pass, it sets b = 1, computes Com(x, r) = gS , and sends gS

to the contract. Otherwise, it sets b = 0 and gS = ⊥.
3. Prove. For either C or S to prove, it sends ẍ := (x, r) to the smart contract.
4. Verify. SAP.verify(ẍ, gC, gS , adrC, adrS)

The following steps are taken by the smart contract.
(a) Ensures gC and gS were sent from adrC and adrS respectively.
(b) Ensures Ver(gC, ẍ) = Ver(gS , ẍ) = 1.
(c) Outputs d = 1, if the checks, in steps 4a and 4b, pass. It outputs d = 0,

otherwise.

In Appendix L, we discuss the SAP’s security and explain why naive solutions
are not suitable.

RC-PoR-P Model’s Overview. The RC-PoR-P model is built upon the
PoRID, but it captures fair payment and privacy too. Informally, the RC-PoR-P
is secure if it meets three properties: (1) security against a malicious server : for
each verification, S cannot make C or the arbiter receive an incorrect amount
regardless of whether it convinces C that it stored the file, (2) security against a
malicious client : for each verification, a malicious C cannot provide: (2.a) valid
metadata and query but makes S or the arbiter receive an incorrect amount, or
(2.b) invalid metadata or query but convinces S to accept either of them, or (2.c)
invalid query but persuades the arbiter to accept it, or makes them withdraw
an incorrect amount, and (3) privacy : no information about the file’s content
and the proof’s status is leaked, during the private time bubble. We present the
RC-PoR-P’s formal model in Appendix I.

RC-PoR-P Protocol. Below we present the RC-PoR-P’s outline and then its
detailed description. In this protocol, initially C and S use the SAP to agree
on two private statements, one includes the payment’s detail, and another one
specifies an encryption secret key and a pad’s length, used to encode private
messages sent to a smart contract. C deploys a smart contract SC specifying
public parameters, e.g., the total amount of masked coin each party deposits,
and the private time bubble’s length: z+J, where z is the total number of billing
cycles, and J is a waiting time. Each party deposits its masked coin in SC.
C encodes the file and generates metadata. It sends the metadata’s encryption

to SC and the encoded file to S that decrypts the ciphertext, checks the result,
and declares that it wants to serve, if the check passes. At the end of each billing
cycle, C sends an encrypted query to SC. S decrypts it and checks the result’s
correctness. If it rejects it, it locally stores that cycle’s index and generates
dummy proofs. Otherwise, it generates actual proofs. In either case, S encodes
the proofs, and sends the result to SC. C decodes and locally verifies them. If it
accepts them, C concludes that the file is retrievable. Otherwise, C locally stores
that cycle’s index and detail of one of the invalid proofs (in the same cycle).

During the dispute resolution time, S or C sends to the arbiter the detail
of invalid values in SC and the statement, containing the decoding parameters,
and its proof. The arbiter checks the statement’s validity. If the check passes,
it decodes the specified values. The arbiter checks all claims. Next, it informs
SC about how many times each party misbehaved (and unnecessarily invoked
it). In the next phase, to distribute the coins, either S or C sends to SC: (a)
“pay” message, (b) the statement specifying the payment’s detail, and (c) the
statement’s proof. The contract verifies the statement and if approves, distributes
the coins according to the statement’s detail, and the number of times each party
misbehaved. Below, we present the RC-PoR-P.

1. Key Generation. RCPoRP.keyGen(1λ)

(a) C picks a fresh key k̄. It sets parameter padπ: the number of dummy
values used to pad encrypted proofs. Let sk′ := (padπ, k̄) and k :=
(sk′, pk′), where pk′ := (adrC, adrS).

2. Client-side Initiation. RCPoRP.cInit(1λ, u, k, z, pl)
(a) Calls PoRID.setup(1λ, u)→ (u∗, pp) to encode u. It sets qp := (sk′, pp).
(b) Sets cp := (o, omax, l, lmax, z), coin

∗
C = z · (omax + lmax) and pS = z · lmax,

given the price list pl, where coin∗C and pS are the total number of masked
coins C and S should deposit. Section 3.1 defines the parameters.

(c) Calls SAP.init(1λ, adrC, adrS , qp)→ (rqp, gqp, adrSAP1
) and SAP.init(1λ,

adrC, adrS , cp) → (rcp, gcp, adrSAP2
) to initiate agreements on qp and cp

with S. Let Tqp := (ẍqp, gqp) and Tcp := (ẍcp, gcp), s.t. ẍqp := (qp, rqp) and
ẍcp := (cp, rcp) are the openings of gqp and gcp. Let T := {Tqp, Tcp}.

(d) Sets a smart contract, SC, that explicitly specifies parameters z, coin∗C,
pS , adrSAP1

, adrSAP2
, pk′, Time : {T0, ..., T2, G1,1, ..., Gz,2, J, K1, ..., K6, L},

and [yC, y
′
C, yS , y

′
S]. The vector’s elements value is 0. It deploys SC. Let

adrSC be the address of the deployed SC and y : [yC, y
′
C, yS , y

′
S , adrSC].

(e) Deposits coin∗C coins in the contract. It sends u∗, z, ẍqp, and ẍcp (along
with adrSC) to S. Let T0 be the time that the above process finishes.

3. Server-side Initiation. RCPoRP.sInit(u∗, z, T, pS ,y)

(a) Checks the parameters in T (e.g., qp and cp) and in SC (e.g., pS ,y) and
ensures sufficient amount has been deposited by C.

(b) Calls SAP.agree(qp, rqp, gqp, adrC, adrSAP1
)→ (g′qp, b1) and SAP.agree(cp,

rcp, gcp, adrC, adrSAP2
)→ (g′cp, b2), to check and agree on qp and cp.

(c) If b1 = 0 or b2 = 0, sets a = 0. Otherwise, it calls PoRID.serve(u∗, pp)→
a. It sends a and coin∗S = pS coins to SC at time T1 (if a = 0, coin∗S = ⊥).

S and C can withdraw their coins at time T2, if S sends a = 0 or fewer coins
than pS to SC. To withdraw, S or C sends “pay” to RCPoRP.pay(.) at T2.
Billing-cycles Onset . C and S engage in phases 4-6, at the end of every
j-th billing cycle, where 1 ≤ j ≤ z. Each j-th cycle includes two time points,
Gj,1 and Gj,2, where Gj,2 > Gj,1, and G1,1 > T2.

4. Client-side Query Generation. RCPoRP.genQuery(1λ, Tqp)

(a) Calls PoRID.genQuery(1λ, pp)→ k̂j to generate a query, where pp ∈ Tqp.
(b) Sends encrypted query k̂∗j = Enc(k̄, k̂j) to SC at Gj,1.

5. Server-side Proof Generation. RCPoRP.prove(u∗, k̂∗j , Tqp)

(a) Constructs an empty vector, mS = ⊥, if j = 1.

(b) Decrypts the query, k̂j = Dec(k̄, k̂∗j), where k̄ ∈ Tqp.
(c) Calls PoRID.checkQuery(k̂j, pp)→ bj to check the query’s correctness.

• if the check passes, it calls PoRID.prove(u∗, k̂j, pp)→ πj, to generate
proofs. It encrypts them, ∀i, 1 ≤ i ≤ |πj| : Enc(k̄,πj[i]) = π′j[i]. Let
π′j contain the encrypted proofs. It pads every encrypted proof in π′j
with padπ ∈ Tqp random values, picked from the encryption’s output
range U . Let π∗j be the result. It sends π∗j to SC at Gj,2.
• otherwise, it appends j to mS , generates dummy proofs π′j, whose

elements are randomly picked from U , pads the result as above, and
sends the final result, π∗j , to SC at Gj,2.

6. Client-side Proof Verification. RCPoRP.verify(π∗j , k̂
∗
j , Tqp)

(a) Constructs an empty vector, mC = ⊥, if j = 1.

(b) Removes the pads from π∗j yielding π′j. It decrypts π∗j as: Dec(k̄, π′j) = πj

and runs PoRID.verify(πj, k̂j, pp)→ dj, where k̂j = Dec(k̄, k̂∗j).

• if πj passes the verification, i.e., dj[0] = 1, then C concludes that the
service for this verification has been delivered successfully.

• otherwise, it sets i = dj[1] and appends vector [j, i] to mC. Recall,
dj[1] refers to a rejected proof’s index in proof vector πj.

7. Dispute Resolution. RCPoRP.resolve(mC,mS , z,π
∗, q∗, Tqp)

(a) The arbiter sets yC, y
′
C, yS and y′S initially to 0, before time K1 > Gz,2 +J.

(b) S sends mS and ẍqp to the arbiter, at K1.
(c) The arbiter after receiving mS , takes the following steps, at time K2.

i. checks ẍqp’s validity, by calling the SAP’s verification which returns
d. If d = 0, it discards mS and does not take steps 7(c)ii and 7(c)iii.
Otherwise, it proceeds to the next step.

ii. removes from mS any element that is duplicated or is not in the
range [1, z]. It constructs an empty vector, v.

iii. for every element j ∈mS : decrypts the related query k̂∗j ∈ q∗ as k̂j =

Dec(k̄, k̂∗j); and checks the query, by calling PoRID.checkQuery(k̂j,
pp) → bj. If bj = 0, it increments yC by 1 and appends j to v.
Otherwise, it increments y′S by 1. Let K3 be the time the checks are
complete.

(d) C sends mC and ẍqp to the arbiter, at time K4.
(e) The arbiter after receiving mC, takes the following steps, at time K5.

i. checks ẍqp’s validity, by calling the SAP’s verification which returns
d′. If d′ = 0, it discards mC, and does not take steps 7(e)ii-7(e)iii.
Otherwise, it proceeds to the next step.

ii. ensures each vector m ∈ mC is well-formed. Specifically, it checks
there exist no m,m′ ∈ mC such that m[0] = m′[0]. If such vectors
exist, it deletes the redundant ones from mC. It also removes any
vector m from mC if m[0] is not in the range [1, z], or if m[0] ∈ v.

iii. for every vector m ∈mC:
• retrieves a rejected proof’s detail, by setting j = m[0] and i =
m[1]. Recall, i is a rejected proof’s index in the proofs, πj.

• decrypts the related query k̂∗j ∈ q∗ as k̂j = Dec(k̄, k̂∗j).
• removes the pads from i-th encoded proof. Let π′j[i] be the result.

It decrypts the encrypted proof, Dec(k̄,π′j[i])) = πj[i].
• generates a fresh vector: π′′j , such that its i-th element equals
πj[i] (i.e., π′′j [i] = πj[i] and |π′′j | = |πj|) and the rest of its
elements are dummy values.

• sets q := (k̂j, i) and calls PoRID.identify(π′′j , q, pp) → Ij. If
Ij = S, it increments yS by 1. If Ij = ⊥, it increments y′C by 1.

(f) The arbiter at time K6 sends [yC, yS , y
′
C, y
′
S] to SC, that adds them to y.

8. Coin Transfer. RCPoRP.pay(y, Tcp, a, pS , coin
∗
C, coin

∗
S)

(a) If SC receives “pay” at time T2, where a = 0 or coins∗S < pS , it sends
coin∗C coins to C and coin∗S coins to S.

(b) If SC receives “pay” and ẍcp ∈ Tcp at time L > K6, it checks ẍcp’s validity
by calling the SAP’s verification which returns d′′. SC proceeds to the
next step if d′′ = 1.

(c) SC distributes the coins to the parties as follows:
• coinC = coin∗C − o · (z − yS)− l · (yC + y′C) coins to C.
• coinS = coin∗S + o · (z − yS)− l · (yS + y′S) coins to S.
• coinAr = l · (yS + yC + y′S + y′C) coins to the arbiter.

Theorem 3 (informal). The RC-PoR-P protocol is secure if the PoRID, SAP,
blockchain, and encryption scheme are secure.

We present the above theorem’s formal statement and proof in Appendix M.
Moreover, in Appendix O we provide several extensions and remarks on the RC-
PoR-P, such as (i) how S and C even during the private time bubble can promise
to a third party the amount they own in the contract, or (ii) how they can send
proofs directly to each other, without running into any deniability issue.

Delegating the Arbiter’s Role to a Smart Contract. In the RC-PoR-P,
due to the efficiency of the arbiter-side algorithm, we can delegate the arbiter’s
role to the smart contract, SC. To this end, the RC-PoR-P requires slight amend-
ments, e.g., to the amount of deposit. In Appendix N, we explain how we can
construct the RC-PoR-P’s new variant.

7 Evaluation

In this section, we provide the RC-PoR-P’s brief analysis and compare it with
the (i) zero-knowledge contingent (publicly verifiable) PoR payment in [15], and
(ii) fair PoR payment scheme in [3]. Tables 1 and 2 summarises the RC-PoR-
P’s asymptotic and concrete costs, while Table 3 compares the three schemes.
To conduct the concrete cost study, we have implemented the RC-PoR-P. The
protocol’s off-chain and on-chain source code is in [1] and [2] respectively. We
used random files whose size is in the range [64 MB, 4 GB] and set a file block
to 128 bits. This results in the number of file blocks in the range [222, 228].

Table 1: The RC-PoR-P’s complexity (in big O), for z verifications. φ: the number of
probed blocks, z′: the max number of complaints, m: the number of file blocks, ||u∗||:
the file bit-size, and ||π∗||: the number of elements in the encoded proof.

Phase Party Computation Cost Communication Cost

Client and Server Init. Client m ||u∗||
(i.e., outsourcing: 2 and 3)

Server m 1

Client zφ log2(m) z log2(||u∗||)
Server zφ log2(m) z||π∗j ||
Arbiter z′ log2(m) 1

The rest of phases (i.e., 4- 8)

Smart Contract 1 -

Table 2: The RC-PoR-P off-chain run-time (in seconds) and on-chain cost, for z veri-
fications. z′: the max number of complaints, and m: the number of a file blocks.

Off-chain cost On-chain cost
Phase

m : 222 m : 225 m : 228 Ether US Dollar

Client-side Init. 23.1 185.8 1596.6 123 · 10−5 3.42

Server-side Init. 20.9 144.6 1548.8 9 · 10−5 0.22

Client-side Query Gen. - - - 6 · 10−5 · z 0.17 · z
Server-side Proof Gen. 18.4 · z 106.8 · z 1320.7 · z - -
Client-side Proof Ver. 0.09 · z 0.16 · z 0.24 · z - -

Arbiter-side Dispute Res. 2 · 10−5 · z′ 8 · 10−5 · z′ 10−4 · z′ 10−4 0.27

Coin Transfer - - - 6 · 10−5 0.17

Table 3: Contingent PoRs’ complexity (in big O) and property comparison. m: the
number of the file blocks, T : a time parameter, and φ: the number of probed blocks.

Computation Complexity Proof Malicious Offers
Protocols Operation

Initiate Solve Puzzle Prove Verify Size Client Server Privacy

Exp. z Tz − −
[3]

Add./Mul. m+ zφ z zφ zφ
1 × X ×

Exp. m − zφ zφ

Add./Mul. − − zφ zφ

Hash m − 1 1
[15]

ZK proof − − zφ zφ

1 × X ×

Hash m − zφ log2(m) zφ log2(m)
RC-PoR-P

Sym. enc. − − zφ log2(m) zφ log2(m)
φ log2(m) X X X

Briefly, the initiation phase in the RC-PoR-P is more efficient than the one
in [3,15]. Specifically, in the RC-PoR-P, this phase requires O(m) hash function
invocations taking at most 1596.6 seconds for a 4-GB file (or 228 blocks). But,
this phase requires O(m) exponentiations in [15], and requires O(m+ zφ) addi-
tion/multiplication and O(z) exponentiations in [3]. The prove and verify in the
RC-PoR-P is faster than the scheme in [15]. Specifically, in the RC-PoR-P, these
phases require S, C, and the arbiter to invoke at most O(zφ log2(m)) symmetric
key encryption and hash function. The prove, verify, and resolve take S, C, and
the arbiter 1320.7 · z, 0.24 · z, and 10−4 · z′ seconds respectively. Nevertheless,
in [15], the prove and verify require S and C to do O(zφ) exponentiations. In
[3], these two phases have a better complexity than those in the RC-PoR-P.
But, in [3], S continuously performs exponentiations for solving puzzles until
all z verifications are complete. Such very costly operations are not needed in
the RC-PoR-P. The schemes in [3,15] have a better proof size complexity than
the RC-PoR-P has. Furthermore, the RC-PoR-P offers (i) security against ma-
licious S and C, and (ii) privacy, unlike the schemes in [3,15] that cannot offer
them. Thus, the RC-PoR-P is computationally more efficient and offers stronger
security than those in [3,15]. In Appendix P, we provide a full analysis.

8 Conclusion

Fair exchange protocols are interesting solutions to various real-world problems.
At CCS 2017, Campanelli et al. proposed two schemes for the fair exchange of
digital coins and a certain service, i.e., proofs of retrievability. To date, these
schemes are the only ones designed to support a digital service. In this work, we
identified two serious issues of these schemes; namely, (1) waste of the seller’s
resources, and (2) real-time leakage. We also identified flaws in these protocols’
design and definition. To rectify these issues, we proposed “recurring contingent
PoR payment” (RC-PoR-P) that remains secure even if the fair exchange reoc-
curs. We implemented the RC-PoR-P. Our analysis indicates that the RC-PoR-P
is more efficient than the state of the art, while offering stronger security. Future
research can investigate the design of protocols for the fair exchange of coins
and other vital (verifiable) services, e.g., verifiable computation [26], verifiable
searchable encryption [41], or verifiable private information retrieval [50].

Acknowledgments

Aydin Abadi is supported by REPHRAIN: The National Research Centre on
Privacy, Harm Reduction and Adversarial Influence Online, under UKRI grant
EP/V011189/1. Steven J. Murdoch is supported by The Royal Society under
grant UF160505.

References

1. Abadi, A.: Off-chain source code of “recurring contingent proofs of retrievability
payment” (RC-PoR-P) (2021), https://github.com/AydinAbadi/RC-S-P/blob/

main/RC-PoR-P-Source-cod/RC-PoR-P.cpp

2. Abadi, A.: On-chain source code of “recurring contingent proofs of retrievability
payment” (RC-PoR-P) (2021), https://github.com/AydinAbadi/RC-S-P/blob/

main/RC-PoR-P-Source-cod/RC-PoR-P-Smart-Contract.sol

3. Abadi, A., Kiayias, A.: Multi-instance publicly verifiable time-lock puzzle and its
applications. In: , FC (2021)

4. Amazon: Amazon s3 pricing (2021), https://aws.amazon.com/s3/pricing/
5. Androulaki, E., Karame, G., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating

user privacy in bitcoin. In: FC (2013)
6. Armknecht, F., Bohli, J.M., Karame, G.O., Liu, Z., Reuter, C.A.: Outsourced

proofs of retrievability. In: CCS (2010)
7. Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange. In:

CCS (1997)
8. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures

(extended abstract). In: EUROCRYPT (1998)
9. Ateniese, G., Burns, R.C., Curtmola, R., Herring, J., Kissner, L., Peterson, Z.N.J.,

Song, D.X.: Provable data possession at untrusted stores. In: CCS (2007)
10. Bao, F., Deng, R.H., Mao, W.: Efficient and practical fair exchange protocols with

off-line TTP. In: S&P (1998)

https://github.com/AydinAbadi/RC-S-P/blob/main/RC-PoR-P-Source-cod/RC-PoR-P.cpp
https://github.com/AydinAbadi/RC-S-P/blob/main/RC-PoR-P-Source-cod/RC-PoR-P.cpp
https://github.com/AydinAbadi/RC-S-P/blob/main/RC-PoR-P-Source-cod/RC-PoR-P-Smart-Contract.sol
https://github.com/AydinAbadi/RC-S-P/blob/main/RC-PoR-P-Source-cod/RC-PoR-P-Smart-Contract.sol
https://aws.amazon.com/s3/pricing/

11. Barber, S., Boyen, X., Shi, E., Uzun, E.: Bitter to better - how to make bitcoin a
better currency. In: FC (2012)

12. Bary, E.: Zoom stock falls after service outage (2020), https://www.marketwatch.
com/story/zoom-stock-falls-amid-service-outage-2020-08-24

13. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. In: S&P (2014)

14. Boneh, D., Naor, M.: Timed commitments. In: CRYPTO (2000)
15. Campanelli, M., Gennaro, R., Goldfeder, S., Nizzardo, L.: Zero-knowledge contin-

gent payments revisited: Attacks and payments for services. In: CCS (2017)
16. Canetti, R., Riva, B., Rothblum, G.N.: Practical delegation of computation using

multiple servers. In: CCS (2011)
17. Cleve, R.: Limits on the security of coin flips when half the processors are faulty

(extended abstract). In: STOC (1986)
18. Dong, C., Chen, L., Camenisch, J., Russello, G.: Fair private set intersection with

a semi-trusted arbiter. In: DBSec (2013)
19. Dropbox: Choose the right dropbox for you (2021), https://www.dropbox.com/

plans?tab=personal

20. Du, Y., Duan, H., Zhou, A., Wang, C., Au, M.H., Wang, Q.: Enabling secure and
efficient decentralized storage auditing with blockchain. TDSC (2021)

21. Dziembowski, S., Eckey, L., Faust, S.: Fairswap: How to fairly exchange digital
goods. In: CCS (2018)

22. Eckey, L., Faust, S., Schlosser, B.: Optiswap: Fast optimistic fair exchange. In:
ASIA CCS (2020)

23. Fuchsbauer, G.: WI is not enough: Zero-knowledge contingent (service) payments
revisited. In: CCS (2019)

24. Garay, J.A., Jakobsson, M.: Timed release of standard digital signatures. In: FC
(2002)

25. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Analysis
and applications. In: EUROCRYPT (2015)

26. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In: CRYPTO (2010)

27. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct nizks without pcps. In: EUROCRYPT (2013)

28. GoogleOne: Upgrade to a plan that works for you (2021), https://one.google.
com/about/plans?hl=en_GB

29. Halevi, S., Harnik, D., Pinkas, B., Shulman-Peleg, A.: Proofs of ownership in remote
storage systems. In: CCS (2011)

30. Haselton, T.: Slack service goes down for more than three hours (2021), https:
//www.cnbc.com/2021/01/04/slack-outage-on-first-monday-of-2021.html

31. Hu, C., Cheng, X., Tian, Z., Yu, J., Lv, W.: Achieving privacy preservation and
billing via delayed information release. IEEE/ACM Transactions on Networking
(2021)

32. Ishai, Y., Ostrovsky, R., Zikas, V.: Secure multi-party computation with identifiable
abort. In: CRYPTO (2014)

33. Juels, A., Jr., B.S.K.: Pors: Proofs of retrievability for large files. In: CCS (2007)
34. Kalodner, H.A., Goldfeder, S., Chen, X., Weinberg, S.M., Felten, E.W.: Arbitrum:

Scalable, private smart contracts. In: USENIX Security (2018)
35. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and

Hall/CRC Press (2007)
36. Kosba, A.E., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: The blockchain

model of cryptography and privacy-preserving smart contracts. In: S&P (2016)

https://www.marketwatch.com/story/zoom-stock-falls-amid-service-outage-2020-08-24
https://www.marketwatch.com/story/zoom-stock-falls-amid-service-outage-2020-08-24
https://www.dropbox.com/plans?tab=personal
https://www.dropbox.com/plans?tab=personal
https://one.google.com/about/plans?hl=en_GB
https://one.google.com/about/plans?hl=en_GB
https://www.cnbc.com/2021/01/04/slack-outage-on-first-monday-of-2021.html
https://www.cnbc.com/2021/01/04/slack-outage-on-first-monday-of-2021.html

37. Lab, K.: Understanding security of the cloud: from adoption benefits to
threats and concerns. Kaspersky daily (2018), https://www.kaspersky.com/blog/
understanding-security-of-the-cloud

38. Maxwell, G.: Zero knowledge contingent payment (2011)
39. Merkle, R.C.: Protocols for public key cryptosystems. In: S&P (1980)
40. Merkle, R.C.: A certified digital signature. In: CRYPTO (1989)
41. Miao, Y., Tong, Q., Deng, R., Choo, K.R., Liu, X., Li, H.: Verifiable searchable

encryption framework against insider keyword-guessing attack in cloud storage.
IEEE Transactions on Cloud Computing (2020)

42. Miller, A., Juels, A., Shi, E., Parno, B., Katz, J.: Permacoin: Repurposing bitcoin
work for data preservation. In: S&P’14

43. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Tech. rep. (2019)
44. Nguyen, K., Ambrona, M., Abe, M.: WI is almost enough: Contingent payment all

over again. In: CCS (2020)
45. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret

sharing. In: CRYPTO (1991)
46. Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In: PASSAT

(2011)
47. Shacham, H., Waters, B.: Compact proofs of retrievability. In: ASIACRYPT (2008)
48. Tramèr, F., Zhang, F., Lin, H., Hubaux, J., Juels, A., Shi, E.: Sealed-glass proofs:

Using transparent enclaves to prove and sell knowledge. In: EuroS&P (2017)
49. Wood, G., et al.: Ethereum: A secure decentralised generalised transaction ledger.

Ethereum project yellow paper (2014)
50. Zhang, L.F., Safavi-Naini, R.: Verifiable multi-server private information retrieval.

In: ACNS (2014)

https://www.kaspersky.com/blog/understanding-security-of-the-cloud
https://www.kaspersky.com/blog/understanding-security-of-the-cloud

A Survey of Related Work

As stated in the introduction, blockchain technology and in particular smart con-
tracts have the potentials to replace the third party in fair exchange protocols.
Ethereum is the most predominant generic smart contract platform. Although
the third-party’s role can be directly encoded/programmed in an Ethereum
smart contract, it would not be efficient. Moreover, Bitcoin, as the most popu-
lar cryptocurrency, supports smart contracts with very limited functionalities.
Therefore, the third party’s full role cannot be directly encoded in a contract on
the Bitcoin blockchain.

A.1 Zero-knowledge Contingent Payment

For the first time in [38] it was shown how to construct a fair exchange proto-
col, called “zero-knowledge contingent payment”, that utilises Bitcoin’s smart
contract capabilities. The protocol allows a fair exchange of digital goods and
payments over Bitcoin’s network. Its main security requirement is that a seller
is paid if and only if a buyer learns a correct secret. The protocol uses a fea-
ture of Bitcoin’s scripting language, called “hash-lock transaction”. This type of
transaction lets one create a payment transaction that specifies a hash value y
and allows anyone that can provide its preimage k, i.e H(k) = y, to claim the
amount of coin specified in the transaction. The contingent payment protocol
in [38] works as follows. The seller first picks a secret key, k, of a symmetric-
key encryption and uses it to encrypt the secret information, s. This yields a
ciphertext, c. It also computes the key’s hash, y = H(k). The seller sends c, y,
and a (zero-knowledge) proof to the buyer, where the proof asserts that c is the
encryption of s under key k and H(k) = y.

After the buyer verifies and accepts the proof, it sends a transaction to the
blockchain that pays the seller a fixed amount of coin if the seller provides,
to the blockchain, a value k such that H(k) = y. Next, the seller sends k to
the blockchain and receives the coins. Now, the buyer can read the blockchain
and learn k which allows it to decrypt c, and extract the secret, s. Later, after
the advancement of the “succinct non-interactive argument of knowledge” (zk-
SNARK) [27], that results in a more efficient implementation of zero-knowledge
proofs, the contingent payment protocol was modified to use zk-SNARK. How-
ever, all zk-SNARKs require a trusted third party for a trusted setup, i.e., to
generate a “common reference string” (CRS), which means there would be a
need for the involvement of an additional third party in those protocols that use
them, including the contingent payment protocol. As such involvement is unde-
sirable, the contingent payment protocol, that uses zk-SNARK, lets the buyer
play the role of the third party and generate the parameter.

A.2 Zero-knowledge Contingent Service Payment

Later, Campanelli et al. [15] identify a serious security issue of the above contin-
gent payment (that uses zk-SNARK and lets a buyer pick a CRS). In particular,

the authors show that a malicious buyer (which generates the CRS) can construct
the CRS in a way that lets it learn the secret from the seller’s proof without
paying the seller. Campanelli et al. propose a set of fixes; namely, (a) jointly com-
puting the CRS using a secure two-party computation, (b) allowing the seller to
check the well-formedness of the buyer’s CRS, or (c) using a new scheme called
“zero-knowledge Contingent Service Payments” (zkCSP). The latter solution is
a more efficient approach than the other two and offers an additional interesting
feature; namely, supporting contingent payment for digital (verifiable) services.
In short, zkCSP works as follows. Let v(.) be the verification algorithm for a
certain service and s be the service’s proof, where if the proof is valid it holds
that v(s) = 1. The parties agree on two claw-free hash functions, e.g., H1(.) and
H2(.). The seller picks a random value, r. Then, it computes either y = H1(r) if
it knows s such that v(s) = 1, or y = H2(r) otherwise. The seller also generates
a witness indistinguishable proof of knowledge (WIPoK), π, using a compound
sigma protocol to prove that it knows either the preimage of y = H1(r) if it knows
a valid s, i.e., v(s) = 1, or the preimage of y = H2(r). Note, due to the witness
indistinguishability of π and the flaw-freeness of the hash functions, the verifier
cannot tell which statement the prover is proving.

The seller sends the proof along with y to the buyer which first ensures π
is valid. Then, if the check passes, the buyer sends to the blockchain a hash-
lock transaction that would send n coins to the party that can provide r to the
blockchain such that y = H1(r). After a seller provides a valid r to the blockchain
it gets paid, accordingly the buyer concludes that it has been served honestly
by the seller, as the seller demonstrated the knowledge of the service proof, s.
Otherwise (if the seller does not provide a valid r) it would not get paid and
the buyer learns nothing about s. To improve the efficiency of the above zkCSP
and to make it practical, the authors suggest using SNARKs in the setting that
the buyer generates the CRS but the seller initially performs minimal efficient
checks. Also, as concrete instantiations of the zkCSP, the authors propose two
schemes in which the service is “proof of retrievability” (PoR) [47]. One of the
schemes relies on a publicly verifiable PoR and the other one relies on a privately
verifiable one. In these schemes, the buyer uploads its data to a server and pays
if and only if the server provides valid proof that asserts the buyer’s data is
retrievable.

A.3 Known Zero-knowledge Contingent (Service) Payment’s Flaw
in the Literature

Fuchsbauer [23] identifies a flaw in the above zkCSP. The author shows that the
minimal efficient check that the seller performs in the zkCSP is not sufficient,
because it does not prevent the buyer from cheating and learning the secret.
He highlights that the use of computationally expensive verification on the CRS
is inevitable to address the issue. Very recently, Nguyen et al. [44] show that
by relying on a slightly stronger notion of WI (i.e., trapdoor subversion witness
indistinguishability), the zkCSP can remain secure and would not be susceptible
to the issues Fuchsbauer pointed out. Moreover, they propose an efficient scheme

that relies on an interactive ZK proof system which is based on garbled circuits
and oblivious transfer. However, the above two issues, we highlighted in Section
4, are not identified and addressed in [23,44].

A.4 Using Ethereum Smart Contracts in Contingent Payment

Tramer et al. [48] propose a fair exchange scheme that uses a combination of
trusted hardware, i.e., Intel SGX, and Ethereum smart contracts. Interestingly,
unlike the common assumption that secure hardware maintains private states,
this scheme relies on weaker security assumptions, i.e., it only relies on the
integrity of SGX’s computation and the authenticity of a message it sends. At
a high level, in this scheme, the buyer and seller agree on a smart contract and
then the buyer deposits a fixed amount of coin in the smart contract. Then,
the seller sends its messages (that contains proofs) to SGX which verifies the
messages’ correctness and then sends its verdict to the smart contract. Next, the
contract distributes the deposit according to the SGX’s verdicts. The scheme in
addition to achieving fair exchange wants to ensure that after the parties’ initial
interaction and after the seller makes an offer, the buyer cannot abort without
paying the seller. To this end, in the scheme, the contract needs to validate SGX’s
signature (or in general attestation). However, as the authors state, in practice
the signature scheme used in SGX (i.e., EPID signature) is not supported by
standard Ethereum contracts. Therefore, the suggested technique, to ensure the
buyer cannot abort, remains only of theoretical interest. Also, in the protocol
SGX is always involved, regardless of the parties’ behaviour.

Later, Dziembowski et al. [21] propose FairSwap, an efficient protocol for a
fair exchange of digital goods (i.e., files) and coins. It is mainly based on the
Ethereum smart contracts and the notion of proof of misbehaviour [16]. Briefly,
a proof of misbehaviour scheme is usually based on a Merkle tree; in this scheme,
proving that a party has misbehaved is much cheaper than proving it has behaved
honestly. FairSwap offers two main features: (a) imposes a low computation cost
to a smart contract, and (b) avoids using zero-knowledge proofs. At a high
level, FairSwap works as follows. First, the seller and buyer agree on a smart
contract. Then, the seller picks a key k (for symmetric-key encryption), encrypts
the secret (i.e., file) under k, and sends the ciphertext to the buyer. The seller
also commits to k and sends the commitment to the smart contract. Next, the
buyer verifies the correctness of the buyer’s messages and if approved, it sends
a fixed amount of coin to the smart contract. After that, the seller reveals the
opening of the commitment, that contains k, to the smart contract. This allows
the buyer to read from the contract and learn k with which it can decrypt the
ciphertext, extract the secret, and then verify the secret’s correctness. In the case
where the buyer rejects the secret, it can send a short proof (of misbehaviour) to
the contract which performs an efficient verification and distributes the deposit
according to the verification’s result.

Very recently, Eckey et al. [22] propose OPTISWAP that improves FairSwap’s
performance. It also ensures a malicious seller cannot force the buyer to sub-
mit a large transaction to the blockchain, which ultimately imposes transaction

costs to the buyer, i.e., the grieving attack. Similar to FairSwap, OPTISWAP
uses a smart contract and proof of misbehaviour. Nevertheless, to achieve a
better efficiency (than FairSwap), OPTISWAP uses an interactive dispute res-
olution protocol, previously proposed and used in [34]. The interactive phase
is a challenge-response procedure between the two parties and lets an honest
buyer efficiently generate proof of misbehaviour. After computing the proof, the
buyer sends it to the contract which verifies the proof and distributes the deposit
according to the verification result. To prevent the grieving attack, the proto-
col requires the seller to deposit coins to the contract as well, which allows the
contract to compensate an honest buyer which reports the seller’s misbehaviour.

We highlight that the protocols in [21,22,48] have been designed and are suit-
able for a fair exchange of digital items, e.g., file, and digital coins. Nevertheless,
they are not suitable for verifiable services, e.g., PoR. If they are directly used
for verifiable services, then they would suffer from the two issues we stated in
Section 4 (i.e., a malicious client can waste an honest server’s resources and lack
of privacy). For instance, if they are naively used for PoR, then a malicious client
(as a buyer) can simply avoid engaging in the payment protocol with the server
(as a seller), even though the server has honestly maintained the buyer’s data.
This means the client can waste the server’s resources. This issue would not be
fully addressed by simply forcing the client to deposit coins at the point where it
outsources its data. Because, the client can encode its data in a way that makes
the server compute an invalid proof, that ultimately allows the client to with-
draw its deposit and avoid paying the server. Moreover, the amount of deposit
leaks non-trivial information about the secret (or the file in the PoR context) in
real-time to the public.

Very recently, outsourced (fair) PoR schemes that allow a client to delegate
the verifications to a smart contract have been proposed in [3,20]. The scheme
in [3] uses message authentication code (MAC) and time-lock puzzle that results
in low cost in the proof generation and verification phases while the one in [20]
is based on polynomial commitment and involves a high number of modular
exponentiations that lead to higher proof generation and verification cost than
the former scheme. The schemes in [3,20] do not address the above privacy issue
either and rely on a stronger security assumption than the rest of the work
studied in this section, as these two protocols assume the client is fully honest
while the rest assume either party can be corrupt.

B Notations

We summarise our notations in Table 4.

Table 4: Notation Table.
Setting Symbol Description

G
e
n
e
r
ic

z Number of verifications

λ Security parameter

PRF Pseudorandom function

ζ PRF’s description

Pr Probability

Com Commitment’s commit

Ver Commitment’s verify

µ Negligible function

H Hash function

MT Merkle tree

sk, pk Secret and public keys

u File

u∗ Encoded file

σ Metadata

e e := (σ, ωσ)

pp Public parameter

q, k̂ Query

π Proof vector

C Client

S Server

Ar Arbiter

SC Smart contract

M Metadata gen. function

Q Query ver. function

m Number of blocks, m = |u∗|

Setting Symbol Description

G
e
n
e
r
ic

||u∗|| Bit size of u∗

j Verification index, 1 ≤ j ≤ z
adr Address

φ Number of challenged blocks

R
C
-P

o
R
-P

rqp, rcp Random values

ẍcp ẍcp := (cp, rcp)

ẍqp ẍqp := (qp, rqp)

coin∗C, coin
∗
S Encoded coins deposited by C and S

enc Encode/decode functions enc := (E,D)

mC,mS Complaints of C and S
padπ, padq Number of elements used to pad π and q

yC, yS Number of times C and S misbehave

y′C, y
′
S Number of times Ar is unnecessarily invoked

cp Coin secret parameters

Tcp Coin encoding token

qp Query/proof secret parameters

Tqp Query/proof encoding token

T T := (Tcp, Tqp)

gC, gS Commitments computed by C and S
pl Price list: {(o, l), ..., (o′′, l′′)}
o Coins S receives for a valid proof

l Coins Ar must get for resolving a dispute

lmax Max(l, ..., l′′)

omax Max(o, ..., o′′)

pS Total coins S should deposit

C Merkle Tree

In the setting where a Merkle tree is used to remotely check a file, the file is split
into blocks and the tree is built on top of the file blocks. Usually, for the sake of
simplicity, it is assumed the number of blocks, m, is a power of 2. The height of
the tree, constructed on m blocks, is log2(m). The Merkle tree scheme includes
three algorithms (MT.genTree, MT.prove, MT.verify) as follows:

• The algorithm that constructs a Merkle tree, MT.genTree, is run by V. It
takes file blocks, u := u1, ..., um, as input. Then, it groups the blocks in pairs.
Next, a collision-resistant hash function, H(.), is used to hash each pair. After
that, the hash values are grouped in pairs and each pair is further hashed,
and this process is repeated until only a single hash value, called “root”,
remains. This yields a tree with the leaves corresponding to the blocks of
the input file and the root corresponding to the last remaining hash value.
V locally stores the root, and sends the file and tree to P.

• The proving algorithm, MT.prove, is run by P. It takes a block index, i, and
a tree as inputs. It outputs a vector proof, of log2(m) elements. The proof
asserts the membership of i-th block in the tree, and consists of all the sibling
nodes on a path from the i-th block to the root of the Merkle tree (including
i-th block). The proof is given to V.

• The verification algorithm, MT.verify, is run by V. It takes as input i-th
block, a proof and tree’s root. It checks if the i-th block corresponds to the
root. If the verification passes, it outputs 1; otherwise, it outputs 0.

The Merkle tree-based scheme has two properties: correctness and security.
Informally, the correctness requires that if both parties run the algorithms cor-
rectly, then a proof is always accepted by V. The security requires that a com-
putationally bounded malicious P cannot convince V into accepting an incorrect
proof, e.g., proof for non-member block. The security relies on the assumption
that it is computationally infeasible to find the hash function’s collision.

D PoR’s Definition

A PoR scheme has two properties: correctness and soundness. Correctness re-
quires that the verification algorithm accepts proofs generated by an honest
verifier; formally, PoR requires that for any key k, any file u ∈ {0, 1}∗, and any
pair (u∗, σ) output by PoR.setup(1λ, u, k), and any query q, the verifier accepts
when it interacts with an honest prover. Soundness requires that if a prover con-
vinces the verifier (with high probability) then the file is stored by the prover.
This is formalized via the notion of an extractor algorithm, that is able to ex-
tract the file in interaction with the adversary using a polynomial number of
rounds. Before we define soundness, we restate the experiment, defined in [47],
that takes place between an environment E and adversary A. In this experiment,
A plays the role of a corrupt party and E simulates an honest party’s role.

1. E executes PoR.keyGen(1λ) algorithm and provides public key, pk, to A.
2. A can pick arbitrary file u, and uses it to make queries to E who runs

PoR.setup(1λ, u, k)→ (u∗, σ, pp) and returns the output to A. Also, upon re-
ceiving the output of PoR.setup(1λ, u, k),A can ask E to run PoR.genQuery(1λ

, k, pp)→ q and give the output to it. A can locally run PoR.prove(u∗, σ, q,
pk, pp)→ π to get its outputs as well.

3. A can request from E the execution of PoR.verify(π, q, k, pp) for any u
used to query PoR.setup(.). Accordingly, E informs A about the verification
output. The adversary can send to E a polynomial number of queries. Finally,
A outputs metadata σ returned from a setup query and the description of a
prover, Â, for any file it has already chosen above.

It is said that a cheating prover, Âε, is ε-admissible if it convincingly answers ε
fraction of verification challenges (for a certain file). Informally, a PoR scheme

supports extractability, if there is an extractor algorithm Ext(k, σ, Âε), that takes
as input the key k, metadata σ, and the description of the machine implementing

the prover’s role Âε and outputs the file, u. The extractor has the ability to
reset the adversary to the beginning of the challenge phase and repeat this step
polynomially many times for the purpose of extraction, i.e., the extractor can
rewind Âε. Therefore, the above experiment, with regards to an ε-admissible
adversary, can be written as ExpAPoR presented below:

ExpAPoR(1λ) :

PoR.keyGen(1λ)→ k := (sk, pk)

A(1λ, pk)→ u

PoR.setup(1λ, u, k)→ (u∗, σ, pp)
A(u∗, σ, pp)→ state

PoR.genQuery(1λ, k, pp)→ q((
A(q, state)→ π)
 (PoR.verify(π, q, k, pp)

))
→ Âε

Definition 2 (ε-soundness). A PoR scheme is ε-sound if there exists an extraction
algorithm Ext(.) such that, for every adversary A who plays experiment ExpAPoR and
outputs an ε-admissible cheating prover Âε for a file u, the extraction algorithm recov-
ers u from Âε, given honest party’s private key, public parameters, metadata and the
description of Âε, except with a negligible probability in the security parameter λ:

Pr
[
Ext(k, pp, σ, Âε) 6= u : ExpAPoR

]
≤ µ(λ).

In contrast to the PoR definition in [33,47] where PoR.genQuery(.) is implicit, in the
above definition we have explicitly defined PoR.genQuery(.), as it plays an important
role in this paper. Also, there are PoR protocols, e.g., in [42], that do not involve
PoR.keyGen(.). Instead, a set of public parameters/keys (e.g., file size or a root of Merkle
tree) are output by PoR.setup(.). To make the PoR definition generic to capture both
cases, we have explicitly included the public parameters pp in the algorithms’ definitions
too.

E Further Discussion of Issue 1

In this section, we provide a concrete example of how a malicious client can make the
server provide an invalid proof in the zkCSP in [15]. Recall, the zkCSP schemes offer
privately and publicly verifiable PoR [47] as digital (verifiable) services. Without loss
of generality, we will focus on the privately verifiable one. The idea is that the client
can generate a tag of the file block in a way that the server cannot generate a valid
proof when that block is probed (in the verification phase). In this PoR scheme, at the
setup, the malicious client instead of honestly generating a tag σi on a file block mi as
σi = ri +α ·mi, it generates an invalid tag as: σ′

i = ri +α ·m′
i, where ri and α are two

random values and mi 6= m′
i. In this case, given the file blocks {m1, ...,mi, ...,mn} and

a set of maliciously generated tag that includes σ′
i, the honest server cannot pass the

verification when block mi is probed. Hence, in the zkCSP, it would not get paid. In
this case, the client will not be detected, as neither the zkCSP nor the PoR offers any
mechanism to let the server check the correctness of each tag.

F Further Discussion of Issue 2

In this section, we elaborate on the two types of information leakages from which the
schemes in [15] suffer.

F.1 Proofs’ Status Leakage

In the traditional setting, the client and server directly interact with each other to verify
and prove the integrity of agreed-upon services, e.g., PoR. In this case, the verification’s
result is only apparent to the two parties. Nevertheless, in the blockchain era, where
a blockchain plays a role in the verification and payment phases, e.g., in the zkCSP
schemes, it becomes visible in real-time to everyone whether the verification (proof)
has been accepted, that reflects if the server has successfully delivered the agreed-upon
service or failed to do so, i.e., violation of “service level agreement” (SLA). This issue
remains even if the service proofs are not stored in plaintext in the blockchain, as
coins transfer itself reveals the proofs’ status. Therefore, in this setting, the blockchain
provides to the public first-hand up-to-date information about the servers’ status that
could have not been easily attained otherwise.

This leakage can have serious immediate consequences for both the server and
(business) clients, e.g., stock value drop [12,30], or opening doors for attackers to exploit
such incidents. As an example, observing the proof’s verification outputs (when a
server deals with multiple clients) allows a malicious client to immediately construct
comprehensive background knowledge of the server’s current behaviour and status,
e.g., the server has been acting honestly. Such auxiliary information can assist the
malicious client to more wisely exploit the above deposit issue (that can avoid sending
the deposit). For instance, when the server always acts honestly towards its clients, the
malicious client refuses to send the deposit and still has high confidence that the server
delivered the service. As another example, in the case of PoR, a malicious observer can
simply find out that the service is suffering from (hardware or software) failure and
exploit such vulnerability to harm the parties, e.g., mount social engineering attacks
on clients or penetrate to the server. A survey conducted by Kaspersky lab (in 2018)
suggests that 33% of attacks that affect business clients of cloud computing servers are
of type social engineering [37] which is a high rate. Given real-time evidence of servers’
failure, attackers as a part of social engineering can provide more convincing evidence
to their victims. This ultimately increases the attackers’ chance of success. 7

F.2 Deposit’s Amount Leakage

The amount of deposit placed in the contract, swiftly leaks non-trivial information
about the client to the public. In the case of PoR, an observer can learn the approxi-
mate size of outsourced file, service type, or in certain cases even the region of clients’
outsourced file, by comparing the amount of deposit with the service provider’s price
list, which is usually publicly available, e.g., in [4,19,28]. For instance, at the time of
writing this paper, the “Amazon S3 One Zone - Infrequent Access” monthly price is
$0.0208 per GB if the data is stored in “South America (Sao Paulo)” [4]. Interestingly,

7
An adversary can target a large set of people a subset of which is likely to be the cloud’s clients
(akin to the phishing attack), or it can target specific cloud’s clients by using the techniques used
to link the blockchain’s addresses to certain parties [5,11,46].

that region has a unique price. Hence, if the client deposits about $208 in cryptocur-
rency in the contract, then the public knows that the client has outsourced about 10000
GB data, using Amazon S3 One Zone and its data location is Sao Paulo.

G Strawman Solutions for the Two Issues

In this section, we discuss why naive solutions are not suitable to address the two
issues that we highlighted in Section 4, i.e., (1) a malicious client can waste the seller’s
resources, and (2) real-time information leakage.

To address Issue 1, one may slightly adjust each zkCSP protocol such that it would
require the client to deposit coins long before the server provides the (ZK) proof to
it, with the hope that the client cannot avoid depositing after the server provides
proofs. Nevertheless, this would not work, as the client after accepting the proofs,
needs to send a confirmation message/transaction to the contract. In this setting, a
malicious client can avoid doing so or make the server compute invalid (PoR) proofs,
that ultimately allows the client to get its deposit back. Alternatively, one may let
a smart contract perform the verification on the client’s behalf, such that the client
deposits its coins in the contract when it starts using the service. Then, the server
sends its proof to the contract which performs the verification and pays the server
if the proof is accepted. Even though this approach would address (only) Issue 1,
it imposes a high cost and defeats the purpose of the zkCSP’s design. Because the
contract has to always be involved to run the verification algorithm that has to be a
publicly verifiable one, which usually imposes a high (computation or communication)
cost. To address Issue 2, one may use privacy-preserving cryptocurrency frameworks,
e.g., Zerocash [13] or Hawk [36]. Although such frameworks partially address this issue
(i.e., they can hide deposit amount but not proofs’ status), they impose an additional
high cost to their users, as each transaction involves a generic (zk) proofs system
that are computationally expensive. Moreover, one might want to let the server pick a
fresh address for each verifier/verification, to preserve its pseudonymity with the hope
that an observer cannot link clients to a server (so issues 1 and 2 can be addressed).
However, for this to work, we have to assume that multiple service providers use the
same protocol on the blockchain and all of them are pseudonymous. This is a strong
assumption and may not be always feasible.

H Verifiable PoR with Identifiable Abort (PoRID)
Definition

A protocol that realises only the PoR’s definition, would be merely secure against a
malicious server and assumes the client is honest. Although this assumption would
suffice in certain settings and has been used before (e.g., in [3,33,47]), it is rather
strong and not suitable for real-world settings, especially when there are monetary
incentives (e.g., service payment) that encourage a client to misbehave. Therefore, we
enhance the PoR’s definition to allow (a) either party to be malicious and (b) a trusted
third party, arbiter, to identify a corrupt party. We call an upgraded verifiable service
scheme with these features “verifiable service with identifiable abort” (PoRID), inspired
by the notion of secure multi-party computation with identifiable abort [32]. Below,
we present a formal generic definition of the PoRID which is generic and suitable for
any PoR scheme.

Definition 3 (PoRID Scheme). A PoR with identifiable abort PoRID :=
(PoRID.keyGen, PoRID.setup, PoRID.serve, PoRID.genQuery, PoRID.checkQuery,
PoRID.prove, PoRID.verify, PoRID.identify) involves four entities; namely, client,
server, arbiter, and bulletin board (e.g., smart contract). It consists of eight algorithms
defined below.

• PoRID.keyGen(1λ) → k := (sk, pk). A probabilistic algorithm run by the client, C.
It takes as input the security parameter 1λ. It outputs a secret/public verification
key pair k. It sends pk to the bulletin board.

• PoRID.setup(1λ, u, k,M)→ (u∗, e, pp). It is run by C. It takes as input the security
parameter 1λ, file u, key pair k, and metadata generator deterministic function M .
It encodes u, that results u∗. It outputs u∗, public parameters pp, and e := (σ,wσ),
where σ = M(u∗, k, pp) is metadata and wσ is a proof asserting the metadata is
well-structured. It sends the output (i.e., u∗, e, pp) to the bulletin board.

• PoRID.serve(u∗, e, pk, pp)→ a ∈ {0, 1}. It is run by the server, S. It takes as input
the encoded file u∗, the pair e := (σ,wσ), public key pk, and public parameters pp.
If the metadata is well-formed (i.e., the proof wσ is accepted), it outputs a = 1.
Otherwise, it outputs a = 0. The output is sent to the board.

• PoRID.genQuery(1λ, Q, pp) → q. A probabilistic algorithm run by C. It takes as
input the security parameter 1λ, a deterministic function Q that ensures queries
are well-structured, and public parameters pp. It generates a query vector q, and
ensures it is well-structured, i.e., Q(q, pp) = 1. It sends q to the board.

• PoRID.checkQuery(q, pk, pp) → b ∈ {0, 1}. It is run by S. It takes as input the
query q, public key pk, and public parameters pp. It checks if the query is well
structured. If the check is passed, it outputs b = 1. Otherwise, it outputs b = 0.

• PoRID.prove(u∗, σ, q, pk, pp)→ π. It is run by S. It takes as input the encoded file
u∗, metadata σ, query q, public key pk, and public parameters pp. It outputs a
proof π. It sends π to the board.

• PoRID.verify(π, q, k, pp)→ d ∈ {0, 1}. It is run by C. It takes as input the proof π,
queries q, key pair k, and public parameters pp. If the proof is accepted, it outputs
d = 1; otherwise, it outputs d = 0.

• PoRID.identify(π, q, k, pp) → I ∈ {C,S,⊥}. It is run by a third party arbiter. It
takes as input the proof π, query q, key pair k, and public parameters pp. It checks
the query q. If it is not well-structured, it outputs I = C; otherwise, if proof π is
rejected, it outputs I = S. Otherwise, if q and π are accepted, it outputs I = ⊥.

The definition of PoRID (unlike PoR) includes two additional algorithms: (i) al-
gorithm M(.) that generates metadata (or tags), and (ii) algorithm Q(.) that checks
whether queries (or challenges) are well-structured.8 A PoRID scheme has four main
properties; namely, it is (a) correct, (b) sound, (c) inputs of clients are well-formed,
and (d) a corrupt party can be identified by an arbiter, i.e., detectable abort. Below,
we formally define each of them. Correctness requires that the verification algorithm
always accepts a proof generated by an honest prover and both parties are identified
as honest. We formally state it below.

Definition 4 (PoRID Correctness). A PoR with identifiable abort scheme is cor-
rect for functions M and Q, if the key generation algorithm produces keys
PoRID.keyGen(1λ)→ k := (sk, pk) such that for any file u, if PoRID.setup(1λ, u, k,M)

8
In the original definition of the PoR scheme, M(.) is implicit; however, Q(.) is not needed because
the scheme assumes the client is fully honest, which is not the case in the PoRID.

→ (u∗, e, pp), PoRID.serve(u∗, e, pk, pp)→ a, PoRID.genQuery(1λ, Q, pp) → q,
PoRID.checkQuery (q, pk, pp)→ b, PoRID.prove(u∗, σ, q, pk, pp)→ π, and
PoRID.verify(π, q, k, pp) → d, then PoRID.identify(π, q, k, pp) → I = ⊥ ∧ a =
1 ∧ b = 1 ∧ d = 1.

Informally, the PoRID’s soundness (similar to PoR) requires that if a prover con-
vinces the verifier, then the file is stored by the prover (with high probability). We
formally state it below.

Definition 5 (PoRID Soundness). A PoRID is sound for functions M and Q, if
for any probabilistic polynomial time adversary A, there exists a negligible function µ(·)
and an extraction algorithm Ext(.), such that for any security parameter λ:

Pr

Ext(k, pp, e, Âε) 6= u

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

PoRID.keyGen(1λ)→ k := (sk, pk)
A(1λ, pk)→ u
PoRID.setup(1λ, u, k,M)→ (u∗, e, pp)
A(u∗, e, pp)→ state
PoRID.genQuery(1λ, Q, pp)→ q((
A(q, state)→ π)

(PoRID.verify(π, q, k, pp)
))
→ Âε

≤ µ(λ).

A PoRID has well-formed inputs, if a malicious client cannot persuade a server to
serve it on ill-structured inputs (i.e., to accept incorrect metadata or query). Below,
we state the property formally.

Definition 6 (PoRID Inputs Well-formedness). A PoRID has well-formed inputs
for functions M and Q, if for any probabilistic polynomial time adversary A, there exists
a negligible function µ(·), such that for any security parameter λ:

Pr

(M(u∗, k, pp) 6= σ
∧ a = 1) ∨
(Q(q, pp) 6= 1 ∧
b = 1)

∣∣∣∣∣∣∣∣
A(1λ,M,Q)→ (u∗, k := (sk, pk), e := (σ,wσ), pp)
PoRID.serve(u∗, e, pk, pp)→ a
A(1λ, Q, pp)→ q
PoRID.checkQuery(q, pk, pp)→ b

 ≤ µ(λ).

It is further required that a malicious party be identified by an honest third party,
arbiter. This ensures that in the case of dispute (or false accusation) a malicious party
can be pinpointed. A PoRID supports detectable abort if a corrupt party can escape
from being identified, by the arbiter, with only negligible probability. Formally:

Definition 7 (PoRID Detectable Abort). A PoRID supports detectable abort for
functions M and Q, if the following hold:

1. For any PPT adversary A1 there exist a negligible function µ1(·) and an extraction
algorithm Ext(.), such that for any security parameter λ:

Pr

I 6= S ∧
Ext(k, pp, e, Âε) 6= u

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

PoRID.keyGen(1λ)→ k := (sk, pk)
A1(1λ, pk)→ u
PoRID.setup(1λ, u, k,M)→ (u∗, e, pp)
A1(u∗, e, pp)→ state
PoRID.genQuery(1λ, Q, pp)→ q((
A1(q, state)→ π)

(PoRID.verify(π, q, k, pp)
))
→ Âε

PoRID.identify(π, q, k, pp)→ I

≤ µ1(λ).

2. For any PPT adversary A2 there exists a negligible function µ2(·) such that for
any security parameter λ:

Pr

 b = 0 ∧ I 6= C

∣∣∣∣∣∣∣∣∣∣∣∣

A2(1λ,M,Q)→ (u∗, k := (sk, pk), e := (σ,wσ), pp)
PoRID.serve(u∗, e, pk, pp)→ a
A2(1λ, Q, pp)→ q
PoRID.checkQuery(q, pk, pp)→ b
PoRID.prove(u∗, σ, q, pk, pp)→ π
PoRID.identify(π, q, k, pp)→ I

 ≤ µ2(λ).

I Recurring Contingent PoR Payment (RC-PoR-P)
Definition

Although the PoRID scheme offers two appealing features, it is not sufficient to address
all the issues we identified in Section 4. In particular, it does not take the privacy of
service input and proofs’ status into consideration and does not take into account
a secure and fair payment (so it cannot deal with the issue related to wasting the
server’s resources). Thus, we present an upgraded PoRID’s definition that takes the
above points into account. We call the enhanced PoRID, “recurring contingent PoR
payment” (RC-PoR-P). Below, we present the RC-PoR-P’s formal definition.

Definition 8 (RC-PoR-P Scheme). A recurring contingent PoR payment scheme
RC-PoR-P = (RCSP.keyGen, RCSP.cInit, RCSP.sInit, RCSP.genQuery, RCSP.prove,
RCSP.verify, RCSP.resolve, RCSP.pay) involves four parties; namely, client, server, ar-
biter and smart contract (which represents a bulletin board), and consists of eight al-
gorithms defined as follows.

• RCPoRP.keyGen(1λ)→ k. A probabilistic algorithm run by the client, C. It takes as
input security parameter 1λ. It outputs k that contains a secret and public verifica-
tion key pair k := (sk, pk) and a set of secret and public parameters, k′ := (sk′, pk′).
It sends pk and pk′ to the smart contract.

• RCPoRP.cInit(1λ, u,k,M, z, pl, enc) → (u∗, e, T, pS ,y, coin
∗
C). It is run by C. It

takes as input 1λ, a file u, key pair k := (k, k′), metadata generator function
M , the total number of verifications z, and price list pl containing pairs of ac-
tual amount of coin for each valid service proof and the amount for covering each
potential dispute resolution’s cost. It also takes as input encoding/decoding func-
tions enc := (E,D) used to encode/decode the queries/proofs. It encodes u, that
yields u∗. It sets pp as (possibly) input dependent parameters, e.g., file size. It
computes metadata σ = M(u∗, k, pp) and a proof wσ asserting the metadata is
well-structured. It sets the value of pS to the total coins the server should deposit.
It picks a private price pair (o, l) ∈ pl. It sets coin secret parameters cp that include
(o, l) and parameters of pl, e.g., its maximum values. It constructs coin encoding
token Tcp containing cp and cp’s witness, gcp. It constructs encoding token Tqp that
contains secret parameters qp including pp, (a representation of σ) and parameters
(in sk′) that will be used to encode the queries/proofs. Tqp contains qp’s witness,
gqp. Given a valid value and its witness anyone can check if they match. It sets a
vector of parameters y that includes binary vectors [yC,yS ,y

′
C,y

′
S] each of which

is set to 0 and its length is z. Note y may contain other public parameters (e.g.,
the contract’s address). It outputs u∗, e := (σ,wσ), T := (Tcp, Tqp), pS, y, and the
encoded coins amount coin∗C (that contains o and l coins in an encoded form). The
client sends u∗, z, e, Tcp \{gcp} and Tqp \{gqp} to the server and sends gcp, gqp, pS,
and y, and coin∗C coins to the contract.

• RCPoRP.sInit(u∗, e, pk, z, T, pS ,y, enc) → (coin∗S , a). It is run by the server, S.
It takes as input the encoded file u∗, metadata-proof pair e := (σ,wσ), public
key pk (read from the contract), the total number of verifications z, and T :=
(Tcp, Tqp) (where {gcp, gqp} are read from the smart contract). Also, it reads pS,
and y from the smart contract and takes as input the encoding/decoding functions
enc := (E,D). It verifies the validity of e and T elements. Also, it checks elements
of y and ensures each element of yC,yS ,y

′
C,y

′
S ∈ y have been set to 0. If all checks

are successful, then it encodes the amount of its coins that yields coin∗S; and it sets
a = 1. Otherwise, it sets coin∗S = ⊥ and a = 0. It outputs coin∗S and a. The smart
contract is given coin∗S coins and a.

• RCPoRP.genQuery(1λ, Q, Tqp, enc)→ c∗j . A probabilistic algorithm run by C. It takes
as input 1λ, deterministic function Q that ensures queries are well-structured,
encoding token Tqp and enc := (E,D). It computes a query vector qj and en-
sures it is well-structured, i.e., Q(qj , pp) = 1. It outputs the encoding of the query,
c∗j = E(qj , Tqp), and sends the output to the contract.

• RCPoRP.prove(u∗, σ, c∗j , pk, Tqp, enc) → (bj ,mS,j , π
∗
j). It is run by S. It takes as

input the encoded file u∗, metadata σ, encoded query pair c∗j , public key pk, the
encoding token Tqp, and enc := (E,D). It checks the validity of decoded query pair
qj = D(c∗j , Tqp). If it is rejected, then it sets bj = 0 and constructs a complaint
mS,j. Otherwise, it sets bj = 1 and mS,j = ⊥. It outputs bj ,mS,j, and encoded
proof π∗j = E(πj , Tqp). Note, πj may contain dummy values if bj = 0. The smart
contract is given π∗j .

• RCPoRP.verify(π∗j , c
∗
j , k, Tqp, enc) → (dj ,mC,j). A deterministic algorithm run by

C. It takes as input the encoded proof π∗j , query vector qj ∈ c∗j , key pair k, the
encoding token Tqp and enc := (E,D). If the decoded proof πj = D(π∗j , Tqp) is
rejected, it outputs dj = 0 and a complaint mC,j. Otherwise, it outputs dj = 1 and
mC,j = ⊥.

• RCPoRP.resolve(mC,mS , z,π
∗, c∗, pk, Tqp, enc) → y. It is run by the arbiter, Ar.

It takes as input the client’s complaints mC, the server’s complaints mS, the total

number of verifications z, all encoded proofs π∗, all encoded query pairs c∗, pub-
lic key pk, encoding token Tqp, and enc := (E,D). It verifies the token, decoded
queries, and proofs. It reads the binary vectors [yC,yS ,y

′
C,y

′
S] from the smart con-

tract. It updates yE by setting an element of it to one, i.e., yE,j = 1, if party
E ∈ {C,S} has misbehaved in the j-th verification (i.e., provided invalid query or
service proof). It also updates y′

E (by setting an element of it to one) if party E
has provided a complain that does not allow it to identify a misbehaved party, in
the j-th verification, i.e., when the arbiter is unnecessarily invoked.

• RCPoRP.pay(y, Tcp, a, pS , coin
∗
C, coin

∗
S) → (coinC, coinS , coinAr). It is run by the

smart contract. It takes as input the binary vectors [yC,yS ,y
′
C,y

′
S] ∈ y that indicate

which party misbehaved, or sent an invalid complaint in each verification, coins’
token Tcp := {cp, gcp}, the output of the checks that server-side initiation algorithm
performed a, the total coins the server should deposit pS, and the total coins amount
the client and server deposited, i.e., coin∗C and coin∗S respectively. If a = 1 and
coin∗S = pS, then it verifies the validity of Tcp. If Tcp is rejected, then it aborts.
If it is accepted, then it constructs vector coinI, where I ∈ {C,S,Ar}; It sends
coinI,j ∈ coinI coins to party I for each j-th verification. Otherwise (i.e., a = 0
or coin∗S 6= pS) it sends coin∗C and coin∗S coins to C and S respectively.

In the definition, algorithms RCPoRP.genQuery(.), RCPoRP.prove(.), RCPoRP.verify(.)
and RCPoRP.resolve(.) implicitly take a, coin∗S , pS as other inputs and execute only if
a = 1 and coin∗S = pS ; however, for the sake of simplicity we avoided explicitly stating
it in the definition.

A recurring contingent PoR payment (RC-PoR-P) scheme satisfies correctness and
security. At a high level, correctness requires that by the end of the protocol’s execu-
tion (that involves honest client and server) the client receives all z valid proofs (of
retrievability) while the server gets paid for the proofs, without the involvement of the
arbiter. More specifically, it requires that the server accepts an honest client’s encoded
data and query while the honest client accepts the server’s valid proofs (and no one
is identified as misbehaving party). Also, the honest client gets back all its deposited
coins minus the service payment, the honest server gets back all its deposited coins
plus the service payment and the arbiter receives nothing. Below, we formally define
the correctness.

Definition 9 (RC-PoR-P Correctness). A recurring contingent PoR payment scheme
is correct for functions M,Q,E, and D, if for any price list pl, the key generation algo-
rithm produces keys RCPoRP.keyGen(1λ)→ k, such that for any file u, if RCPoRP.cInit(1λ,
u,k,M, z, pl, enc)→ (u∗, e, T, pS ,y, coin

∗
C), RCPoRP.sInit(u∗, e, pk, z, T, pS ,y, enc)→

(coin∗S , a), ∀j ∈ [z] :
(
RCPoRP.genQuery(1λ, Q, Tqp, enc) → c∗j , RCPoRP.prove(u∗, σ, c∗j ,

pk, Tqp, enc)→ (bj ,mS,j , π
∗
j), RCPoRP.verify(π∗j , c

∗
j , k, Tqp, enc)→ (dj ,mC,j)

)
,

RCPoRP.resolve(mC,mS , z,π
∗, c∗, pk, Tqp, enc) → y, RCPoRP.pay(y, Tcp, a, pS , coin

∗
C,

coin∗S) → (coinC, coinS , coinAr), then (a = 1) ∧ (
z∧
j=1

bj =
z∧
j=1

dj = 1) ∧ (yC = yS =

y′
C = y′

S = 0)∧(
z∑
j=1

coinC,j = coin∗C−o ·z)∧(
z∑
j=1

coinS,j = coin∗S+o ·z)∧(
z∑
j=1

coinAr,j =

0), where yC,yS ,y
′
C,y

′
S ∈ y.

A RC-PoR-P scheme is said to be secure if it satisfies three main properties: (1)
security against a malicious server, (2) security against a malicious client, and (3)
privacy. Now, we formally define each of them. Intuitively, Property 1 states that at

the end of the protocol’s execution the server which (1.a) convinced the client that
it has stored the file, cannot make the client to receive an incorrect amount of coin
(i.e., its deposit minus the service payment), or make the arbiter receive an incorrect
amount of coin, if it unnecessarily invokes the arbiter, or (1.b) did not convince the
client, cannot make the client to receive an incorrect amount of coin (i.e., full deposit
for that verification) or makes the arbiter receive an incorrect amount of coin (i.e.,
anything other than l). Below, we formalize this intuition.

Definition 10 (Security Against Malicious Server). A RC-S-P is secure against
a malicious server for functions M,Q,E, and D, if for any price list pl, every j (where
1 ≤ j ≤ z), and any PPT adversary A, there exist a negligible function µ(·), and
extraction algorithm Ext(.), such that for any security parameter λ and experiment
ExpA,j,pl1 :

ExpA,j,pl1 (In := (1λ,M,Q,E,D, z)) :
RCPoRP.keyGen(1λ)→ k
A(1λ, pk)→ u
RCPoRP.cInit(1λ, u,k,M, z, pl, enc)→ (u∗, e, T, pS ,y, coin

∗
C)

A(u∗, e, pk, z, T, pS ,y, enc)→ (coin∗S , a, state)
RCPoRP.genQuery(1λ, Q, Tqp, enc)→ c∗j((
A(c∗j , state, a)→ (bj ,mS,j , π

∗
j)
)

RCPoRP.verify(π∗j , c
∗
j , k, Tqp, enc)→ (dj ,mC,j)

)
→ Aε

RCPoRP.resolve(mC,mS , z,π
∗, c∗, pk, Tqp, enc)→ y

RCPoRP.pay(y, Tcp, a, pS , coin
∗
C, coin

∗
S)→ (coinC, coinS , coinAr)

it holds:

Pr

(
Ext(k, pp, e, Âε) = u ∧

(coinC,j 6= coin∗C
z
− o) ∨

(coinAr,j 6= l ∧ y′S,j = 1)
)
∨(

Ext(k, pp, e, Âε) 6= u ∧
(yS,j = 0 ∨ coinC,j 6=
coin∗C
z
∨ coinAr,j 6= l)

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ExpA,j,pl1 (In)

≤ µ(λ)

where mC,j ∈mC,mS,j ∈mS , y′S,j ∈ y′
S ∈ y, yS,j ∈ yS ∈ y, and pp ∈ Tqp.

Informally, Property 2 (i.e., security against a malicious client) requires that for
each j-th verification, a malicious client with a negligible probability wins if it provides
either (2.a) valid metadata and query but either makes the server receive an incorrect
amount of coin (something other than its deposit plus the service payment), or makes
the arbiter withdraw an incorrect amount of coin if it unnecessarily invokes the arbiter
or (2.b) invalid metadata or query but convinces the server to accept either of them
(i.e., the invalid metadata or query), or (2.c) invalid query but persuades the arbiter to

accept it, or makes them withdraw an incorrect amount of coin (i.e., coinS,j 6= coin∗S
z

+o
or coinAr,j 6= l coins). Below, we formally state this property.

Definition 11 (Security Against Malicious Client). A RC-PoR-P is secure against
a malicious client for functions M,Q,E, and D, if for every j (where 1 ≤ j ≤ z), and
any probabilistic polynomial time adversary A, there exists a negligible function µ(·),
such that for any security parameter λ and experiment ExpA,j2 :

ExpA,j2 (In := (1λ,M,Q,E,D, z)) :
A(1λ)→ (u∗, z,k, e, T, pl, pS , coin

∗
C, enc,y, enc, pk)

RCPoRP.sInit(u∗, e, pk, z, T, pS ,y, enc)→ (coin∗S , a)
A(coin∗S , a, 1

λ, k,Q, Tqp, enc)→ c∗j
RCPoRP.prove(u∗, σ, c∗j , pk, Tqp, enc)→ (bj ,mS,j , π

∗
j)

A(π∗j , c
∗
j , k, Tqp, enc)→ (dj ,mS,j)

RCPoRP.resolve(mC,mS , z,π
∗, c∗, pk, Tqp, enc)→ y

RCPoRP.pay(y, Tcp, a, pS , coin
∗
C, coin

∗
S)→ (coinC, coinS , coinAr)

it holds:

Pr

(
(M(u∗, k, pp) = σ ∧
Q(qj , pp) = 1) ∧
(coinS,j 6= coin∗S

z
+ o ∨

coinAr,j 6= l ∧ y′C,j = 1)
)
∨(

M(u∗, k, pp) 6= σ ∧ a = 1
)
∨(

Q(qj , pp) 6= 1 ∧ (bj = 1 ∨

yC,j = 0 ∨ coinS,j 6= coin∗S
z

+ o

∨coinAr,j 6= l)
)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ExpA,j2 (In)

≤ µ(λ)

where qj ∈ D(c∗j , tqp), D ∈ enc, σ ∈ e, y′C,j ∈ y′
C ∈ y, yC,j ∈ yC ∈ y, and pp ∈ Tqp.

In the above definition, an honest server either does not deposit (e.g., when a = 0)
or if it deposits (i.e., agrees to serve) ultimately receives its deposit plus the service
payment (with a high probability). Informally, Property 3 (i.e., privacy) requires that
the privacy of (3.a) the service input, i.e., outsourced file, and (3. b) the proof’s status
during the private time bubble are preserved. Below, we formally define this property.

Definition 12 (Privacy). A RC-PoR-P preserves privacy for functions M,Q,E, and
D, if for any price list pl, the following hold:

1. For any PPT adversary A1 there exists a negligible function µ(·), such that for any
security parameter λ and experiment ExpA1,pl

3 :

ExpA1,pl
3 (In := (1λ,M,Q,E,D)) :

RCPoRP.keyGen(1λ)→ k
A1(1λ, pk)→ (u0, u1)

β
$← {0, 1}

RCPoRP.cInit(1λ, uβ,k,M, z, pl, enc)→ (u∗β, e, T, pS ,y, coin
∗
C)

RCPoRP.sInit(u∗β, e, pk, z, T, pS ,y, enc)→ (coin∗S , a)
∀j ∈ [z] :(
RCPoRP.genQuery(1λ, Q, Tqp, enc)→ c∗j

RCPoRP.prove(u∗β, σ, c
∗
j , pk, Tqp, enc)→ (bj ,mS,j , π

∗
j)

RCPoRP.verify(π∗j , c
∗
j , k, Tqp, enc)→ (dj ,mC,j)

)
it holds:

Pr

[
A1(c∗, coin∗S , coin

∗
C, gcp,

gqp,π
∗, pl, a)→ β

∣∣∣∣ExpA1,pl
3 (In)

]
≤ 1

2
+ µ(λ).

2. For any PPT adversaries A2 and A3 there exists a negligible function µ(·) such
that for any security parameter λ and experiment ExpA2,pl

4 :

ExpA2,pl
4 (In := (1λ,M,Q,E,D)) :

RCPoRP.keyGen(1λ)→ k
A2(1λ, pk)→ u
RCPoRP.cInit(1λ, u,k,M, z, pl, enc)→ (u∗, e, T, pS ,y, coin

∗
C)

RCPoRP.sInit(u∗, e, pk, z, T, pS ,y, enc)→ (coin∗S , a)
∀j ∈ [z] :(
A2(1λ, k,Q, Tqp, enc)→ c∗j

RCPoRP.prove(u∗, σ, c∗j , pk, Tqp, enc)→ (bj ,mS,j , π
∗
j)

RCPoRP.verify(π∗j , c
∗
j , k, Tqp, enc)→ (dj ,mC,j)

)
it holds:

Pr

[
A3(c∗, coin∗S , coin

∗
C, gcp,

gqp,π
∗, pl, a)→ (dj , j)

∣∣∣∣ExpA2,pl
4 (In)

]
≤ Pr′ + µ(λ)

where c∗ = [c∗1 , ..., c
∗
z],π

∗ = [π∗1 , ..., π
∗
z], and Pr′ is defined as follows. Let qj ∈

D(c∗j , Tqp) and pp ∈ Tqp. We define the events Con(1)
0,j : Q(qj , pp) 6= 1, Con(2)

0,j :
bj = 0, Con(1)

1,j : Q(qj , pp) = 1, and Con(2)
1,j : bj = 1. For i ∈ {0, 1} and j ∈ [z], we

define

Pri,j := Pr
[(
Con(1)

i,j ∧ Con(2)
i,j

)∣∣∣ExpA2,pl
4 (In)

]
.

Then, we have Pr′ := Max{Pr0,1, P r1,1, ..., P r0,z, P r1,z}.

Note, in the above definition, for each j-th verification, adversary A2 with probabil-
ity Pr0,j produces an invalid query and with probability Pr1,j produces a valid query.
It is required that the privacy holds regardless of the queries and proofs status, i.e.,
whether they are valid or invalid, as long as they are correctly encoded and provided.
In the above definitions, the private time bubble is a time period from the point when

RCPoRP.keyGen(.) is executed up to the time when RCPoRP.resolve(.) is run. In other
words, the privacy holds up to the point where RCPoRP.resolve(.) is run. That is why
the latter algorithm is excluded from the experiments in Definition 12. Now, we state
the RC-PoR-P’s main security theorem.

Definition 13 (RC-PoR-P Security). A RC-PoR-P scheme is secure if it satisfies
security against a malicious server, security against a malicious client, and preserves
privacy, w.r.t. Definitions 10-12.

J Proof of Modified Merkle tree-based PoR

Below, we prove Theorem 1, i.e., the security of the PoR in section 6.1.

Theorem 1. The PoR scheme, presented in Section 6.1, is ε-sound, w.r.t. Definitions
2, if Merkle tree and pseudorandom function PRF are secure.

Proof. As stated above, the proposed PoR differs from the standard Merkle tree-based
PoR from a couple of perspectives. However, the changes do not affect the security
and soundness of the proposed PoR. Its security proof is similar to the existing Merkle
tree-based PoR schemes, e.g., [29,33,42]. Alternatively, our protocol can be proven
based on the security analysis of the PoR schemes that use MACs or BLS signatures,
e.g., [47]. In this case, the extractor design (in the Merkle tree-based PoR) would be
simpler because it does not need to extract blocks from a linear combination of MACs
or signatures, as the blocks are included in proofs, i.e., they are part of the Merkle tree
proofs. Intuitively, in either case, the extractor interacts with any adversarial prover
that passes a non-negligible ε fraction of audits. It initialises an empty array. Then it
challenges a subset of file blocks and asks the prover to generate a proof. If the received
proof passes the verification, then it adds the related block (in the proof) to the array.
It then rewinds the prover and challenges a fresh set of blocks, and repeats the process
many times. Since the prover has a good chance of passing the audit, it is easy to show
that the extractor can eventually extract a large fraction of the entire file, as it is shown
in [47]. Due to the security of the Merkle tree, the retrieved values are the valid and
correct file blocks and due to the security of the pseudorandom function, the challenges
(or the function’s outputs) are not predictable. After collecting a sufficient number of
blocks, the extractor can use the error-correcting code to decode and recover the entire
file blocks, given the retrieved ones.

K Proof of PoRID

In this section, we prove the security of the PoRID.

Theorem 2. The PoRID protocol satisfies the ε-soundness, inputs well-formedness,
and detectable abort properties, w.r.t. Definitions 5, 6, and 7, if the PoR is ε-sound
and the blockchain is secure.

Proof. The ε-soundness of the PoRID stems from the security of the PoR scheme, i.e.,
ε-soundness. Specifically, in the PoRID the (honest) client makes black-box calls to the
algorithms of the PoR, to ensure the soundness. In the PoRID no additional message
is provided to the adversary/server. It receives the same messages as it receives in the

PoR. The latter scheme’s soundness ensures that an extractor can recover the entire
file interacting with a corrupt server which passes ε fraction of challenges. On the
other hand, the inputs well-formedness holds for the following reasons. The metadata
generation algorithm, i.e., the Merkle tree algorithm that builds a tree and computes a
root, is deterministic and involves only public parameters. Thus, given the tree’s leaves
(i.e., file blocks), its parameters, and the root, anyone can reconstruct it, check if it
yields the same root, and verify the tree’s parameters. Also, a query contains a single
random key, k̂, whose correctness can be checked deterministically, i.e., by checking k̂ 6=
⊥ and k̂ ∈ {0, 1}ψ. The detectable abort property holds as long as the soundness and
inputs well-formedness hold and the blockchain is secure. The reason is that algorithm
PoRID.identify(.), which ensures detectable abort, is a wrapper function that makes
black-box calls to algorithms PoRID.checkQuery(.) and PoR.verify(.), where the former
ensures input, i.e., query, well-formedness, and the latter ensures soundness.

The (blockchain’s) signature security ensures if a proof (or a transaction in general)
is signed correctly, then it cannot be repudiated by the signer later, this guarantees the
signer is held accountable for a rejected proof it provided. Moreover, a malicious party
cannot frame an honest party for proving an ill-formed or no proof. In particular, to do
that, it has to either (a) forge the honest party’s signature, so it can send an ill-formed
proof on its behalf, or (b) fork the blockchain so the chain comprising the accepting
proof is discarded. In the former case, the adversary’s probability of success is negligible
as long as the signature is secure. The adversary has the same success probability in the
latter case; because it has to generate a long enough chain that excludes the accepting
proof which has a negligible success probability, under the assumption that the hash
power of the adversary is lower than those of honest miners and due to the blockchain’s
liveness property an honestly generated transaction will eventually appear on an honest
miner’s chain [25].

L Further Discussion of the SAP

In this section, first we outline why the SAP satisfies all four security properties set
out in Section 6.3 and then discuss why naive solutions are not suitable replacements
of the SAP. After that, we highlight that the SAP’s verification phase can be locally
performed with low costs.

L.1 SAP’s Security Analysis

Intuitively, the SAP meets Property 1 due to the binding property of the commit-
ment scheme. Property 2 is satisfied due to the security of the blockchain and smart
contract; namely, due to blockchain’s liveness property an honestly generated transac-
tion, containing the opening, eventually gets into chains of honest miners, and due to
the security and correctness of smart contracts a valid opening is always accepted by
the contract. Property 3 is met due to the hiding property of the commitment, while
Property 4 is satisfied due to the signature scheme’s security.

L.2 Unsuitability of Naive Solutions

As a replacement of the SAP, one may let each party sign the statement and send
it to the other party, so later each party can send both signatures to the contract

which verifies them. However, this would not work, as the party who first receives the
other party’s signature may refuse to send its own signature, that prevents the other
party from proving that it has agreed on the statement with its counter-party, i.e.,
cannot satisfy Property 2. Alternatively, one may want to use a protocol for a fair
exchange of digital signature (or fair contract signing) such as those in [14,24]. In this
case, after both parties have the other party’s signature, they can sign the statement
themselves and send the two signatures to the contract which first checks the validity
of both signatures. Although this satisfies the four security requirements, it yields two
main efficiency and practical issues; namely, it (a) imposes very high computation
costs, as protocols for a fair exchange of signatures involve generic zero-knowledge
proofs and require a high number of modular exponentiations, and (b) is impractical
because protocols for the fair exchange of signatures support only certain signature
schemes (e.g., RSA, Rabin, or Schnorr) that are not directly supported by the most
predominant smart contract framework, Ethereum, that only supports Elliptic Curve
Digital Signature Algorithm (EDCSA).

L.3 Off-chain Verification in the SAP

The SAP’s verification algorithm can be executed off-chain. In particular, given state-
ment ẍ, anyone can read (gC, gS , adrC, adrS) from the SAP smart contract and locally
run SAP.verify(ẍ, gC, gS , adrC, adrS) to check the statement’s correctness. This relieves
the verifier from the transaction and smart contract’s execution costs.

M Security Analysis of RC-PoR-P

In this section, we analyse the security of the RC-PoR-P. We start by presenting the
protocol’s primary security theorem.

Theorem 3. The RC-PoR-P protocol is secure, w.r.t. Definition 13, if the PoRID,
SAP, and blockchain are secure and the encryption scheme is semantically secure.

To prove the above theorem, we show that the RC-PoR-P satisfies all security
properties defined in Section I. We first prove that the RC-PoR-P meets the security
against a malicious server.

Lemma 1. If the SAP and blockchain are secure and the PoRID scheme supports
correctness, soundness, and detectable abort, then the RC-PoR-P is secure against a
malicious server, w.r.t. Definition 10.

Proof. First, we focus on event
(
Ext(k, pp, e, Âε) = u ∧

(
(coinC,j 6= coin∗C

z
− o) ∨

(coinAr,j 6= l ∧ y′S,j = 1)
))

that captures the case where the server provides an

accepting proof (and as a result the file is extractable), but makes an honest client

withdraw an incorrect amount of coin, i.e., coinC,j 6= coin∗C
z
− o, or it makes the arbiter

withdraw an incorrect amount of coin, i.e., coinAr,j 6= l, if it unnecessarily invokes the
arbiter, i.e., y′S,j = 1. Since the server’s proof is valid, an honest client accepts it and
does not raise a dispute. But, the server could make the client withdraw an incorrect
amount, if it manages to either convince the arbiter that the client has misbehaved,
by making the arbiter output yC,j = 1 through the dispute resolution phase, or submit

to the contract (in the coin transfer phase) an accepting statement ẍ′cp other than
what was agreed in the initiation phase, i.e., ẍ′cp 6= ẍcp, so it can change the payment’s
parameters, or send a message on the client’s behalf to unnecessarily invoke the arbiter.

Nevertheless, it cannot falsely accuse the client of misbehaviour. Because, due to
the security of the SAP, it cannot convince the arbiter to accept a different decryption
key (that will be used to decrypt queries) other than what was agreed with the client in
the initiation phase. In particular, it cannot persuade the arbiter to accept ẍ′qp, where
ẍ′qp 6= ẍqp, except with a negligible probability, µ(λ). This ensures that the honest
client’s queries are accessed by the arbiter with a high probability. Furthermore, if the
adversary provides a valid statement, i.e., ẍqp, then due to the PoRID’s correctness,
algorithm PoRID.identify(.) outputs Ij = ⊥. Therefore, due to the security of the
SAP and correctness of the PoRID, the following holds yC,j = yS,j = 0. Furthermore,
because of the SAP’s security, the server cannot change the payment’s parameters
by convincing the contract to accept any statement ẍ′cp other than what was agreed
initially between the client and server, except with a negligible probability, µ(λ). Also,
due to the (blockchain) signature’s security, the adversary cannot send a message on
behalf of the client, to unnecessarily invoke the arbiter and make it output y′C,j = 1,
except with a negligible probability µ(λ); so with a high probability y′C,j = 0. Recall, in
the protocol, the total amount the client should receive after z verifications is coin∗C −
o ·(z−yS)− l ·(yC+y′C). Since we focus on the j-th verification, the amount that should
be credited to the client for that verification is:

coinC,j =
coin∗C
z
− o · (1− yS,j)− l · (yC,j + y′C,j) (1)

Since it holds that yC,j = yS,j = y′C,j = 0, the client is credited
coin∗C
z
− o coins

for the j-th verification, with a high probability. Furthermore, as stated above, if the
adversary invokes the arbiter, the arbiter with a high probability outputs Ij = ⊥ that
yields y′S,j = 1. Recall, in the RC-PoR-P, the total amount the arbiter should receive
for z verifications is l · (yS + yC + y′S + y′C), so for the j-th the credited amount is:

coinAr,j = l · (yS,j + yC,j + y′S,j + y′C,j) (2)

As shown above yC,j = yS,j = y′C,j = 0 and y′S,j = 1, which means l coins is
credited to the arbiter for the j-th verification if it is unnecessarily invoked by the
adversary. In this case, for the server to make the arbiter withdraw other than that
amount, it has to send to the smart contract (in the coin transfer phase) an accepting
statement ẍ′cp other than what was agreed in the initiation phase, i.e., ẍ′cp 6= ẍcp, so it
can change the payment’s parameters. Nevertheless, as stated above, it cannot succeed
with a probability significantly greater than µ(λ).

We now move on to event
((

Ext(k, pp, e, Âε) 6= u
)
∧
(
yS,j = 0 ∨ coinC,j 6=

coin∗C
z

∨ coinAr,j 6= l
))

which captures the case where the server provides an invalid

proof (and the file cannot be extracted) but it either convinces the client to accept the
proof, or persuades the arbiter to accept it or makes the client or arbiter withdraw

incorrect amount of coin, i.e., coinC,j 6= coin∗C
z

or coinAr,j 6= l respectively. Due to the
soundness of the PoRID, the probability that the adversary can convince an honest
client to accept invalid proof is negligible, µ(λ). Therefore, the client outputs dj = 0
with a high probability and raises a dispute. Furthermore, the server may try to make
the arbiter keep yS,j = 0. For the adversary to succeed, it has to make the arbiter
identify the client as the misbehaving party, and output yC,j = 1. In this case, according

to the RC-PoR-P protocol, the client’s complaint (for the j-th verification) would not
be processed by the arbiter. This allows yS,j to remain 0. But, as we argued above, the
probability that the adversary makes the arbiter recognise the client as misbehaving
is at most µ(λ). So, with a high probability yS,j = 1 and yC,j = 0, after the arbiter is
invoked by the client or server. It also holds that y′C,j = y′S,j = 0, because the arbiter
has already identified a misbehaving party. Moreover, due to the SAP’s security, the
probability that the adversary succeeds in changing the payment’s parameters to make
the client or arbiter withdraw an incorrect amount of coin is negligible too. Therefore,

according to Equations 1 and 2, the client and arbiter are credited
coin∗C
z

and l coins
for the j-th verification respectively.

Next, we provide a lemma which formally states that the RC-PoR-P is secure
against a malicious client. Then, we prove this lemma.

Lemma 2. If the SAP and blockchain are secure and the PoRID supports correctness,
inputs well-formedness, and detectable abort, then the RC-PoR-P is secure against a
malicious client, w.r.t. Definition 11.

Proof. We first consider event
((
M(u∗, k, pp) = σ ∧ Q(qj , pp) = 1

)
∧
(

(coinS,j 6=
coin∗S
z

+ o) ∨ (coinAr,j 6= l ∧ y′C,j = 1)
))

. It captures the case where the client provides

accepting metadata (i.e., a correct Merkle tree’s root) and query but makes the server

withdraw incorrect amount of coin, i.e., coinS,j 6= coin∗S
z

+ o, or makes the arbiter
withdraw an incorrect amount of coin, i.e. coinAr,j 6= l, if it unnecessarily invokes
the arbiter, i.e., y′C,j = 1. Since the metadata and queries are valid and correctly
structured, an honest server accepts them and does not raise a dispute, so yC,j = 0.
However, the client could make the server withdraw an incorrect amount of coin if
it manages to either persuade the arbiter to recognise the server as the misbehaving
party, i.e., makes the arbiter output yS,j = 1, or submit to the contract an accepting
statement ẍ′cp other than what was agreed at the initiation phase, i.e., ẍcp, or send
a message on the server’s behalf to unnecessarily invoke the arbiter. Nevertheless, it
cannot falsely accuse the server of misbehaviour. Because, due to the SAP’s security,
it cannot convince the arbiter to accept different decryption key and pads’ detail, by
providing a different accepting statement ẍ′qp than what was initially agreed with the
server (i.e., ẍ′qp 6= ẍqp), except with a negligible probability, µ(λ). This ensures the
arbiter is given the honest server’s messages, with a high probability. Therefore, with
a high probability yS,j = 0. Also, if the adversary provides a valid statement, i.e.,
ẍqp, then due to the correctness of the PoRID, algorithm PoRID.identify(.) outputs
Ij = ⊥. So, due to the SAP’s security and PoRID’s correctness, it holds yC,j = yS,j = 0,
with a high probability. Moreover, it holds that y′S = 0 because the honest server
never invokes the arbiter when the client’s queries are well-structured and due to the
(blockchain) signature’s security, the client cannot send a message on the server’s behalf
to unnecessarily invoke the arbiter. Note, due to the SAP’s security, the client cannot
change the payment’s parameters by convincing the contract to accept any statement
ẍ′cp other than what was initially agreed between the client and server (i.e., ẍ′cp 6= ẍcp),
except with a negligible probability, µ(λ). According to the RC-PoR-P protocol, the
total coins the server should receive after z verifications is coin∗S+o·(z−yS)−l·(yS+y′S).
Since we focus on the j-th verification, the amount of coins that should be credited to
the server for the j-th verification is:

coinS,j =
coin∗S
z

+ o · (1− yS,j)− l · (yS,j + y′S,j) (3)

Thus, given yS,j = y′S,j = 0, the server is credited
coin∗S
z

+o coins for the j-th verifi-
cation, with a high probability. Furthermore, as stated above, if the adversary invokes
the arbiter, the arbiter with a high probability outputs Ij = ⊥ which yields y′C,j = 1.
Hence, according to Equation 2, the arbiter for the j-th verification is credited l coins,
with a high probability. As previously stated, due to the SAP’s security, the client
cannot make the arbiter withdraw an incorrect amount by changing the payment’s
parameters and persuading the contract to accept any statement ẍ′cp other than what
was agreed between the client and server, except with a negligible probability µ(λ).

Now we turn our attention to
(
M(u∗, k, pp) 6= σ ∧ a = 1

)
which captures the

case where the server accepts ill-formed metadata. However, due to the PoRID’s inputs
well-formedness, the probability that the event happens is negligible, µ(λ); therefore,
with a high probability a = 0. In this case, the server does not raise any dispute, instead

it avoids serving the client. Now, we move on to
(

(Q(qj , pp) 6= 1) ∧ (bj = 1 ∨ yC,j =

0∨coinS,j 6= coin∗S
z

+o ∨coinAr,j 6= l)
)

which considers the case where the client provides

an invalid query, but either convinces the server or arbiter to accept it, or makes

the server or arbiter withdraw an incorrect amount of coin, i.e., coinS,j 6= coin∗S
z

+ o
or coinAr,j 6= l respectively. However, due to the PoRID’s inputs well-formedness,
the probability that the server outputs bj = 1 is negligible, µ(λ). Note, when the
honest server rejects the query and raises a dispute, the arbiter checks the query and
sets yC,j = 1. After that, due to the RC-PoR-P design, the client cannot make the
arbiter set yC,j = 0 (unless it manages to modify the blockchain’s content later, but
its probability of success is negligible due to the security of blockchain). As already
stated, the client cannot make the arbiter recognise the honest server as a misbehaving
party with a probability significantly greater than µ(λ). That means, with a high
probability yS,j = 0. Furthermore, since the arbiter has identified a misbehaving party,
it holds y′C,j = y′S,j = 0. The adversary may still try to make them withdraw an
incorrect amount. To this end, in the coin transfer phase, it has to send a different
accepting statement than what was initially agreed with the server. But, due to the
SAP’s security, its success probability is µ(λ). Hence, according to Equations 3 and

2 the server and arbiter are credited
coin∗S
z

+ o and l coins respectively for the j-th
verification, with a high probability.

Prior to proving the RC-PoR-P’s privacy, we provide a lemma that will be used in
the privacy’s proof. Informally, the lemma states that encoded coins leak no information
about the actual amount of coins (o, l), agreed between the client and server.

Lemma 3. Let β
$← {0, 1}, the price list be pl : {(o0, l0), (o1, l1)}, and the encoded

amount of coin be coin∗C = z · (Max(oβ, o1−β) +Max(lβ, l1−β)) and coin∗S = z ·
(Max(lβ, l1−β)). Then, given pl, z, coin∗C, and coin∗S, an adversary A cannot tell the
value of β with a probability significantly greater than 1

2
(where the probability is taken

over the choice of β and the randomness of A).

Proof. As it is evident, the list and z contain no information about β. Also, since z is

a public value, it holds that coin′∗
C =

coin∗C
z

= Max(oβ, o1−β) +Max(lβ, l1−β). It is not
hard to see coin′∗

C is a function of the maximum value of (o0, o1), and the maximum
value of (l0, l1). It is also independent of β. Therefore (given pl, z, and coin′∗

C) the
adversary learns nothing about β, unless it guesses the value, with success probability
1
2
. The same also holds for coin∗S .

Lemma 4. If the SAP is secure and the encryption scheme is semantically secure,
then the RC-PoR-P is privacy-preserving, w.r.t. Definition 12.

Proof. We start with case 1, i.e., the privacy of service input (or the file). Due to the
SAP’s privacy, that stems from the hiding property of the commitment scheme, given
the commitments gqp and gcp, (stored in the blockchain as a result of running the SAP)
the adversary learns no information about the committed values (e.g., o, l, padπ, padq,
and k̄), except with a negligible probability, µ(λ). Moreover, given price list pl, encoded
amount coin∗C = z · (omax + lmax) and coin∗S = z · lmax, the adversary learns nothing
about the actual price that was agreed between the server and client, i.e., (o, l), for
each verification, due to Lemma 3.

Next, we analyse the privacy of padded encrypted proof vector π∗. We focus on the
vector π∗j (where π∗j ∈ π∗), that is a padded encrypted proof for j-th verification. Let
πj,0 and πj,1 be plaintext proofs, for j-th verification, related to files u0 and u1, where
the files are picked by the adversary, w.r.t. Definition 12 in which the environment picks

β
$← {0, 1}. Let us assume all proofs have the same size (which will be relaxed shortly).

If we assume πj,β is only encrypted (but not padded), then given the ciphertext, due
to the semantical security of the encryption, an adversary cannot tell if the ciphertext
corresponds to πj,0 or πj,1 (accordingly to u0 or u1) with a probability significantly
greater than 1

2
+ µ(λ). However, the above assumption, that all proofs have the same,

can be relaxed with the use of a pad. In particular, since each encrypted proof is
padded to the proofs’ maximum size and the pad’s elements are picked randomly from
the encryption’s ciphertext range, the adversary cannot tell with a probability greater
than 1

2
+µ(λ) if the padded encrypted proof corresponds to πj,0 or πj,1. Furthermore,

because each query k̂∗j is an output of semantically secure symmetric-key encryption
and has a fixed size, it leaks noting to the adversary. Also, the value of a is independent
of u0 or u1, and only depends on whether the metadata is well-formed, so it leaks
nothing about the file uβ, β, the encrypted query, and encoded proofs. Hence, the
adversary cannot tell with a probability significantly greater than 1

2
+ µ(λ) which file

of its choice has been used as the server input.
Now we move on to case 2, i.e., the privacy of proof’s status. We know that each

encoded query-proof pair has a fixed size and contains random elements of U ; therefore,
they leak no information except with a negligible probability, µ(λ). Recall, in the
experiment for each j-th verification, an invalid query-proof pair is computed with
probability Pr0,j and a valid query-proof pair is generated with probability Pr1,j . So,
an adversary can correctly guess a query’s status with a probability at most Pr′ +
µ(λ), where Pr′ := Max{Pr0,1, P r1,1, ..., P r0,z, P r1,z}. Also, the encoded amount and
commitments (i.e., coin∗S , coin∗C, gcp, and gqp) are independent of the status of the
queries or proofs. Hence, the adversary cannot tell a proof’s status with a probability
significantly greater than Pr′ + µ(λ).

N Protocol for RC-PoR-P without Arbiter’s Involvement

As we highlighted in Section 6.3, in the RC-PoR-P, due to the efficiency of the arbiter-
side algorithm, i.e., RCSPoR.resolve(.), we can delegate the arbiter’s role to the smart
contract, SC. In this case, the involvement of the single third party arbiter is not needed
anymore. To this end, we need to adjust the protocol, primarily from two perspectives.
First, the way a party pays to resolve a dispute would change, that ultimately affects
the amounts of coin each party receives in the coin distribution phase. Recall, in the

protocol, the party which raises a dispute does not pay the arbiter when it sends to
it the dispute query. Instead, loosely speaking, the arbiter is paid later, in the coin
distribution phase, by a misbehaving party.

In contrast, when the arbiter’s role is played by a smart contract, the party which
raises a dispute and sends the dispute query to the contract (due to the nature of the
smart contracts’ platform) has to pay the contract before the contract processes its
query. This means an honest party which sends a complaint to the contract needs to
be compensated (by the corrupt party) for the amount of coin it sent to the contract
to resolve the dispute. Therefore, the amount of coin each party receives in the coin
distribution phase would change, compare to the original RC-PoR-P. Second, there
would be no need to keep track of the number of times a party unnecessarily raises a
dispute, as it pays the contract when it sends a query before the contract processes its
claim.

Now, we elaborate on how the original RC-PoR-P is adjusted. Briefly, Phases 1-6
remain unchanged, with an exception. Namely, in step 2d, only two counters yC and
yS are created, instead of four counters; accordingly, in the same step, vector y is now
y : [yC, yS , adrSC], so counters y′C and y′S are excluded from this vector. At a high level,
the changes applied to Phase 7 are as follows: the parties send their complaints to
SC now, SC does not maintain y′C and y′S anymore, SC takes the related steps (on
the arbiter’s behalf), and it reads its internal state (instead of receiving it from the
arbiter). Moreover, the main adjustment to Phase 8 is that the amount of coin each
party receives changes. For the sake of clarity, we present the modified version of phases
7 and 8, below.

7. Dispute Resolution. RCPoRP.resolve(mC,mS , z,π
∗, q∗, Tqp)

(a) S sends mS and ẍqp to SC, at time K1, where K1 > Gz,2 + J

(b) SC upon receiving mS takes the below steps, at time K2.
i. checks ẍqp’s validity, by calling the SAP’s verification which returns d. If
d = 0, SC discards S’s complaint, mS , and does not take steps 7(c)ii and
7(c)iii. Otherwise, it proceeds to the next step.

ii. Removes from mS any element that is duplicated or is not in the range
[1, z]. It also constructs an empty vector v.

iii. For every element j ∈mS :
• decrypts the related query k̂∗j ∈ q∗ as k̂j = Dec(k̄, k̂∗j).

• checks the query, by calling PoRID.checkQuery(k̂j , pp)→ bj . If bj = 0,
it increments yC by 1 and appends j to v.

Let K3 be the time SC finishes the above checks.
(c) C sends mC and ẍqp to SC, at time K4.
(d) SC upon receiving mC, takes the following steps, at time K5.

i. checks the validity of statement ẍqp, by calling the SAP’s verification which
returns d′. If d′ = 0, SC discards the C’s complaint, mC, and does not take
steps 7(e)ii-7(e)iii. Otherwise, it proceeds to the next step.

ii. ensures each vector m ∈mC is well-formed. In particular, it verifies there
exist no two vectors: m,m′ ∈mC such that m[0] = m′[0]. If such vectors
exist, it deletes the redundant ones from mC. Also, it removes any vector
m from mC if m[0] is not in the range [1, z] or if m[0] ∈ v.

iii. For every vector m ∈mC:
• retrieves a rejected proof’s detail, by setting j = m[0] and i = m[1].
• decrypts the related query k̂∗j ∈ q∗ as k̂j = Dec(k̄, k̂∗j).

• removes the pads only from i-th padded encrypted proof. Let π′
j [i] be

the result. Next, it decrypts the encrypted proof, Dec(k̄,π′
j [i])) = πj [i]

• generates a fresh vector: π′′
j , such that its i-th element equals πj [i]

(i.e., π′′
j [i] = πj [i] and |π′′

j | = |πj |) and the rest of its elements are
dummy.

• sets sets q := (k̂j , i) and calls PoRID.identify(π′′
j , q, pp)→ Ij . If Ij =

S, then it increments yS by 1. Otherwise, it does nothing.

Let K6 be the time that SC finishes all the above checks.

8. Coin Transfer. RCPoRP.pay(y, Tcp, a, pS , coin
∗
C, coin

∗
S)

(a) If SC receives “pay” message at time T2, where a = 0 or coins∗S < pS , then
it sends coin∗C coins to C and coin∗S coins to S. Otherwise (i.e., they reach an
agreement), they take the following step.

(b) If SC receives “pay” message and statement ẍcp ∈ Tcp to SC at time L > K6,
it checks the validity of the statement by calling the SAP’s verification which
returns d′′. SC only proceeds to the next step if d′′ = 1.

(c) SC distributes the coins to the parties as follows:

• coin∗C − o · (z − yS) + l · (yS − yC) coins to C.
• coin∗S + o · (z − yS) + l · (yC − yS) coins to S.

O Remarks on the RC-PoR-P

Remark 1. The client or server even during the private time bubble can promise to a
third party the amount of coin it owns in the smart contract, SC. In this section, we
briefly explain how the RC-PoR-P can support it if the protocol is slightly adjusted.
For the sake of simplicity, we assume S will receive coinS coins after the bubble bursts
and wants to promise ˆcoinS coins (where ˆcoinS ≤ coinS) to the third party D within
this bubble. First, S proves to D that it will receive coinS coins after the bubble bursts.
To do that, it sends the RC-PoR-P’s transcripts (that includes the existing proofs and
queries) to D, which can verify S’s claim, as they are publicly verifiable.

If D is convinced, then S and D invoke a new instance of the SAP and insert the
value ˆcoinS into the SAP’s private statement. Invoking the SAP results in a new smart
contract, e.g., SCSAP3

. Next, if both parties agree on the parameters of the SCSAP3
,

then S sends the address of the SCSAP3
to the RC-PoR-P’s contract, i.e., SC. At this

point, D can check whether S has inserted a correct address into SC. If the check
passes, it can conclude that it will receive the agreed amount. When the bubble bursts,
SC transfers the C’s share to C as before. But, SC distributes the S’s coins if S or
D sends to it a valid proof for the above (new) private statement (in addition to the
proofs required in Phase 8 of the original RC-PoR-P). Upon receiving that proof, SC
invokes SCSAP3

to check the validity of the proof. If the check passes, then SC sends
ˆcoinS to D and coinS− ˆcoinS to S. As it is evident, this approach leaks no information

about the amount (including ˆcoinS) during the bubble to the public, due to the SAP’s
security. The above idea can be further extended to support multiple third parties.

Remark 2. In the protocol, the pads are added after the actual values are encrypted.
This is done to save computation cost. Otherwise (if the pads are added prior to the
encryption), then the pads would have to be encrypted too, which imposes additional
computation cost.

Remark 3. The reason in step 7(e)iii π′′
i is constructed is to let SC make black-box use

of PoRID.identify(.). Alternatively, SC could decrypt all proofs in Enc(k̄,πi) and pass
them to PoRID.identify(.). However, this approach would impose a high cost, as all
proofs have to be decrypted.

Remark 4. In the protocol, for the sake of simplicity, it is assumed that the cost im-
posed by a malicious C to the arbiter (to resolve a dispute) is the same as the cost
imposed by a malicious S. To relax the assumption, we can simply introduce another
parameter l′. We let l and l′ be the amount of coin malicious C and S must pay to
the arbiter respectively. In this case, (a) in step 2b, C appends l′ to cp and (b) in
the coin transfer phase, the amounts of coin each party receives would be as follow:
coin∗C − o · (z − yS)− l · (yC + y′C) coins to C, coin∗S + o · (z − yS)− l′ · (yS + y′S) coins
to S, and l · (yC + y′C) + l′ · (yS + y′S) coins to the arbiter.

Remark 5. As stated previously, the proofs are sent to the contract to avoid running
into the deniability issue, i.e., a malicious C wrongly claims that S never sent a proof
or a malicious S claims that it sent its proof to C. But, in the case where the proof size
is large and posting it to the smart contract imposes a high cost, the parties can use
the following technique to directly communicate with each other to send and receive
the proof. S sends a signed proof directly to C which needs to send back to S a signed
acknowledgment stating that it received the proof, within a fixed period. If S does not
receive a valid acknowledgment on time, it sends the signed proof to the arbiter. Also,
if C does not receive the proof on time, it needs to let the arbiter know about it. In
this case, if the arbiter has already received the proof, it sends the proof to C which
allows C to perform the rest of the computation. On the other hand, if the arbiter does
not have the proof, it asks S to send to it C’s acknowledgment. If S provides a valid
acknowledgment, then the arbiter considers C as a misbehaving party; otherwise (if S
could not provide the acknowledgment), it considers S as a misbehaving one. But, if
both S and C behave honestly in sending and receiving the proof, then they do not need
to invoke the arbiter for this matter and the proof is never stored on the blockchain.

P Full Evaluation

In this section, we provide a full analysis of the RC-PoR-P. Tables 5 depicts the pro-
tocol’s runtime. Morevoer, we compare the RC-PoR-P with the (i) zero-knowledge
contingent (publicly verifiable) PoR payment in [15] and (ii) fair PoR payment scheme
in [3]. To conduct a concrete cost study, we have implemented the RC-PoR-P. The
protocol’s off-chain and on-chain parts have been implemented in C++ and Solidity
respectively. To carry out the off-chain experiment, we used a server with dual Intel
Xeon Gold 5118, 2.30 GHz CPU and 256 GB RAM. To conduct the on-chain experi-
ment, we used a MacBook Pro laptop with quad-core Intel core i5, 2 GHz CPU and
16 GB RAM that interacts with the Ethereum private blockchain. We did not take
advantage of parallelisation, although our protocol is highly parallelisable. We ran the
experiment on average 10 times. In the experiment, we used the SHA-2 hash function
and set its output’s length and the security parameter to 128 bits. We used random
files whose size are in the range [64 MB, 4 GB]. We set the size of every block to 128
bits, similar to the scheme in [47]. This results in the number of file blocks in the range
[222, 228]. Since in the experiment we used relatively large file sizes, to lower on-chain

transaction costs, we let S send the proofs directly to C, by using the technique ex-
plained in Appendix O. The prototype implementation utilises the Cryptopp9 library
for cryptographic primitives and the GMP10 library for arbitrary precision arithmetics.
The protocol’s off-chain and on-chain source code is publicly available in [1] and [2]
respectively.

Table 5: RC-PoR-P off-chain run-time (in seconds), for z verifications. z′ : the max
number of complaints, and m: the number of blocks.

Off-chain cost
Phase

m : 222 m : 223 m : 224 m : 225 m : 226 m : 227 m : 228

Client-side Init. 23.1 45.5 89.7 185.8 413 732.1 1596.6

Server-side Init. 20.9 36.5 73.2 144.6 395.4 728.8 1548.8

Client-side Query Gen. - - - - - - -
Server-side Proof Gen. 18.4z 30.4z 57.4z 106.8z 376.1z 703.1z 1320.7z

Client-side Proof Ver. 0.09z 0.11z 0.12 · z 0.16z 0.18z 0.21z 0.24z

Arbiter-side Dispute Res. 2 · 10−5z′ 4 · 10−5z′ 8 · 10−5z′ 8 · 10−5z′ 9 · 10−5 · z′ 9 · 10−5z′ 10−4z′

Computation Cost. In our analysis, the cost of erasure-coding a file is not taken
into consideration, as it is identical in all PoR schemes. We first analyse the computa-
tion cost of the RC-PoR-P. C’s cost is as follows. In the client-side initiation phase (i.e.,

Phase 2), C’s cost in step 2a involves m ·
log2(m)∑
i=1

1
2i

invocations of a hash function to

construct a Merkle tree on the encoded file, u∗. So its complexity in this step is O(m).
Also, its total cost in steps 2c includes two invocations of the hash function when it calls
SAP.init(.) twice, one for qp and the other for cp. Therefore, C’s total complexity in this
phase is O(m), which is a one-off cost. In this phase, C’s off-chain run-time increases
gradually (i.e., 23.1, 45.5, ..., 1596.6 seconds) when the number of file blocks increases
(i.e., 222, 223, ..., 228 blocks). This phase also costs it 123 · 10−5 ether, which stems from
the SC and SAP contracts’ deployment and initiation. In the client-side query gener-
ation phase (i.e., Phase 4), in step 4a, C calls PoRID.genQuery(.) that involves picking
a random key for the PRF. In step 4b, C uses the symmetric-key encryption to encrypt
that single key. Note, C’s off-chain run-time in this phase is negligibly small. This phase
also costs it 6 · 10−5 · z ether for sending a transaction to SC. In the client-side proof
verification phase (i.e., Phase 6), in step 6b, C for each verification decrypts and ver-
ifies the proofs (i.e., the Merkle tree paths) which mainly involves φ · (log2(m) + 1)
invocations of the symmetric key encryption and φ · log2(m) invocations of the hash
function. So, C’s total complexity in Phase 6 is O(z · φ · log2(m)). Also, C’s off-chain
run-time in this phase is very low and gradually grows (i.e., 0.09 · z, 0.11 · z, ..., 0.24 · z
seconds) when the number of file blocks increases.

Now, we analyse S’s computation cost. In the server-side initiation phase (i.e.,
Phase 3), in step 3b, S calls SAP.agree(.) twice, to check and agree on parameters
of cp and qp, that results in four invocations of the hash function. Also, in step 3c,

9
https://cryptopp.com

10
https://gmplib.org

S calls PoRID.serve(.) that requires it to construct a Merkle tree on the file. This
results in O(m) invocations of the hash function. So, S’s total complexity to check
and agree on the protocol’s parameters is O(m). S’s off-chain run-time in this phase
increases gently (i.e., 8.9, 16.5, ..., 548.8 seconds) when the number of blocks grows.
This phase also costs it 9 · 10−5 ether for sending transactions to the smart contracts.
In the server-side proof generation phase (i.e., Phase 5), in step 5b, S decrypts a single
value for each verification. Also, in step 5c, checks a query’s correctness that imposes
a negligible computation cost. In the same step, it generates and encrypts proofs that
require φ · log2(m) invocations of the hash function (to generate Merkle tree’s paths)
and φ · (log2(m) + 1) invocations of symmetric key encryption, for each verification.
Therefore, S’s total complexity in Phase 5 is O(z · φ · log2(m)). In this phase, S’s
off-chain run-time slowly grows (i.e., 20.4 · z, 36.5 · z, ..., 1596.6 · z seconds) when the
number of the file blocks increases.

Next, we analyse an arbiter’s cost in the RC-PoR-P in the dispute resolution phase
(i.e., Phase 7). Note, if both C and S behave honestly, then the arbiter is not invoked,
accordingly it performs no computation. Therefore, we consider the case where one of
the parties complains about its counter-party’s behaviour. First, we evaluate the ar-
biter’s cost when it is invoked by an honest S. In step 7(c)i, the arbiter invokes the hash
function twice to check the correctness of the statement, ẍqp. In step 7(c)iii, it decrypts
|vS | queries, where |vS | is the total number of verifications that S has complained about
and |vS | ≤ z. Note, in the same step the arbiter calls PoRID.checkQuery(.) to check the
queries; however, its cost is negligibly small. Now, we evaluate the arbiter’s cost when
it is invoked by an honest C. In step 7(e)i, the arbiter invokes the hash function twice to
check the correctness of the statement, ẍqp, sent by C. Also, in step 7(e)iii, it decrypts
|vC| queries, where |vC| is the total number of verifications that C complained about.
In the same step, the arbiter also invokes the hash function |vC| · log2(m) times and the
symmetric key encryption |vC| · (log2(m) + 1) times in total, to process C’s complaints.
Thus, the arbiter’s cost, in Phase 7 is at mostO(z′·log2(m)), where z′ = Max(|vC|, |vS |)
and z′ ≤ z. Note that due to the use of the proof of misbehaviour in the protocol, the
arbiter’s computation cost is about 1

φ
= 1

460
of its computation cost in the absence of

such technique where it has to check all φ proofs for each verification. The arbiter’s
off-chain run-time is very low and increases gently (i.e., 2·10−5 ·z′, 4·10−5 ·z′, ..., 10−4 ·z′
seconds) when the number of the file blocks increases. This phase also imposes 10−4

ether to the arbiter as a result of sending its inputs to SC. The smart contract per-
forms computations only in the coin transfer phase (i.e., Phase 8) that involves two
invocations of the hash function, in step 8b, to check the correctness of the statement,
ẍcp. So its computation complexity is constant, O(1). This phase imposes 6 ·10−5 ether
to the party that calls RCPoRP.pay(.).

Communication Cost. Since in the above analysis we have taken into account the
gas cost that also covers the cost of transacting with the contracts, below we focus
on the off-chain communication costs. We first analyse the C’s communication cost.
In the client-side initiation phase (i.e., Phase 2), in step 2e, it sends u∗, z, ẍqp, and
ẍcp to S, where (a) ẍqp contains padding information whose size is negligible, the
symmetric-key encryption’s key of size 128-bit and a random value of size 128-bit, and
(b) ẍcp contains five small-sized values, and a random value of size 128-bit. Therefore,
C’s communication cost in the initiation phase is ||u∗|| + 384 bits or O(||u∗||). In the
dispute resolution phase (i.e., Phase 7), C’s communication cost in step 7d is low;
because, in this step, it sends statement ẍqp and its complaint mC to the arbiter, such

that ẍqp contains (a) padding information whose size is at most a few bits and (b) the
symmetric-key encryption’s key whose size is 128 bits. Moreover, mC contains at most
z invalid paths of the Merkle tree. Thus, C’s total communication cost (excluding the
initiation phase) is z · log2(||u∗||) + 128 bits or O(z · log2(||u∗||)).

Now, we analyse S’s communication cost. In the server-side proof generation phase
(i.e., Phase 5), S in step 5c, for each verification sends out a proof vector π∗j . Therefore,
its complexity for z verifications is O(z · ||π∗j ||). Next, we provide a concrete communi-
cation cost of S, for each verification, in Phase 5, where the size of encoded file u∗ is
4 GB (or 228 blocks). In general, a proof (or path) in a Merkle tree, has log2(m) + 1
elements, where m is the number of leaf nodes. Therefore, for the above u∗, a proof
would contain log2(228) + 1 = 29 elements. If we set the hash function output’s length
to 128 bits, then a proof’s total bit-size would be 3712. Also, if we set the number of
challenged blocks to 460, then the total size of proofs (related to the challenged blocks)
would be about 214×103 bytes11. So, in Phase 5, for z verifications its cost is 214×103 ·z
bytes. S’s communication cost in the dispute resolution phase (i.e., Phase 7) is low.
Because it sends ẍqp and its complaint mS to the arbiter, where ẍqp contains padding
information whose size is negligible and the symmetric-key encryption’s key, whose size
is at most 128 bits. Also, mS contains at most z negligible size indices, where each
index is at most a few bits. Thus, S’s total communication cost is O(z · ||π∗j ||). The
arbiter’s communication cost is constant, as it only sends a transaction containing four
values to SC in step 7f, in the dispute resolution phase (i.e., Phase 7).

Comparison. The fair PoR scheme in [3] assumes that the client is fully trusted.
This protocol mainly uses a time-lock puzzle scheme, efficient MAC-based PoR, and
a smart contract. In the initiation phase, the client generates z puzzles that involve z
modular exponentiations. In the same phase, the client generates m permanent MACs
and zφ disposable MACs. In this scheme, generating each MAC involves a couple of
modular multiplication and additions. Therefore, the initiation phase involves O(m)
modular exponentiations and O(m+ zφ) modular additions and multiplications. Once
the puzzles are given to S, it needs to continuously solve different puzzles until all
z verifications end. This means S performs the exponentiations even between two
consecutive verifications where no challenges have been sent to it. This requires S to
perform O(Tz) exponentiations and z modular additions and multiplications, where T
is a time parameter in this scheme. Also, for z verification, S needs to perform O(zφ)
multiplications and additions to generate z proofs. Likewise, a verifier (i.e., a smart
contract) performs O(zφ) multiplications and additions to verify all proofs.

Now we turn our attention to the scheme in [15]. As we showed in Section 4,
this scheme is not secure against a malicious client. It is based on BLS signatures,
(compound) zero-knowledge proofs, and hash functions. In the initiation phase, C needs
to generate a signature for each file block which involves O(m) exponentiations and
O(m) hash function invocations. For S to generate z proofs, it requires (i) O(zφ)
exponentiations to combine the signatures, (ii) O(1) invocations of the hash function,
and (iii) O(zφ) invocations of the zero-knowledge proof. The scheme imposes the same
computation complexity to the verifier as it does to the prover. Since both schemes in
[3] and [15] use homomorphic tags, the proofs for each verification can be combined
which results in constant proof size, i.e., O(1). Moreover, the above two schemes do

11
As shown in [9], to ensure 99% of file blocks is retrievable, it would be sufficient to set the number
of challenged blocks to 460.

not address the privacy issue we highlighted in Section 4. On the other hand, the RC-
PoR-P is secure against a malicious client (as well as a malicious server) and addresses
the privacy issue. Similar to the other two schemes, its initiation complexity is O(m);
however, unlike the other two schemes, it does not require any modular exponentiations.
Instead, it involves only invocations of hash function which imposes a much lower
overhead. Moreover, unlike the other two schemes that have O(zφ) complexity in the
prove and verify phases, RC-PoR-P’s complexity, in theory, is slightly higher, i.e., it
is O(zφ log2(m)). However, the extra factor: log2(m) is not very high in practice. For
instance, for a 4-GB file (or 228 blocks), log2(m) is only 28. The RC-PoR-P’s prove
and verify algorithms, similar to the ones [3], involve only symmetric key operations;
in contrast, the ones in [15] require asymmetric key operations. Furthermore, the proof
size (for each verification) complexity is larger than the other two schemes; nevertheless,
each message length in RC-PoR-P is much shorter than the one in [15], i.e., 128-bit vs
2048-bit. Thus, overall RC-PoR-P is computationally more efficient than [15,3] while
offering stronger security guarantees.12

12
Note, Campanelli et al. in [15] provide an implementation of zkCSP for publicly and privately
verifiable PoRs. However, we have been informed by Campanelli that the total size of the out-
sourced file used in their experiment is at most 256 bits, which is small in the context of PoR
where a large file is often outsourced to a remote server. Therefore, we could not compare their
protocols’ run-time with RC-PoR-P’s run-time when a large file is outsourced.

	Recurring Contingent Payment for Proofs of Retrievability

