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Abstract—Recent years have seen a strong uptick in both
the prevalence and real-world consequences of false information
spread through online platforms. At the same time, encrypted
messaging systems such as WhatsApp, Signal, and Telegram, are
rapidly gaining popularity as users seek increased privacy in
their digital lives. The challenge we address is how to combat
the viral spread of misinformation without compromising privacy.
Our FACTS system tracks user complaints on messages oblivi-
ously, only revealing the message’s contents and originator once
sufficiently many complaints have been lodged. Our system is
private, meaning it does not reveal anything about the senders or
contents of messages which have received few or no complaints;
secure, meaning there is no way for a malicious user to evade the
system or gain an outsized impact over the complaint system;
and scalable, as we demonstrate excellent practical efficiency
for up to millions of complaints per day. Our main technical
contribution is a new collaborative counting Bloom filter, a simple
construction with difficult probabilistic analysis, which may have
independent interest as a privacy-preserving randomized count
sketch data structure. Compared to prior work on message
flagging and tracing in end-to-end encrypted messaging, our
novel contribution is the addition of a high threshold of multiple
complaints that are needed before a message is audited or flagged.
We present and carefully analyze the probabilistic performance
of our data structure, provide a precise security definition and
proof, and then measure the accuracy and scalability of our
scheme via experimentation.

I. INTRODUCTION

The proliferation of fake and misleading information online
has had significant impact on political discourse [23] and has
resulted in violence [34]. Large services like Facebook and
YouTube have begun to remove or label content that they know
to be fraudulent or misleading [1], [2], through a combination
of a manual process of reviewing posts/videos and automated
machine learning techniques.

However, on end-to-end encrypted messaging services
(EEMS), like Signal, WhatsApp, Telegram, etc., where so-
called “fake news” is also shared, such review is impossible.
At no point do the providers see the plain-text, unencrypted
contents of messages transmitted through their systems and

thus cannot identify and remove offending material. Such
platforms must instead rely on their users to identify and report
malicious content. Even then, identifying and removing users
who repeatedly post misleading and dangerous content may
still be difficult because some platforms, like Signal, also hide
the path the message took, so identifying and addressing the
original source of the misinformation may not be possible.

Tyagi et al. [39] introduced a first approach for overcoming
this challenge and allow EEMS to effectively traceback an
offending message to find the originator based on a user
complaint. The traceback procedure also assures that all other
messages remain private and that innocent parties cannot be
blamed for originating the offending messages.

While innovative, there are two notable shortcomings of
Tyagi et al.’s traceback scheme. First, it requires extensive
“housekeeping” on the part of the platform that scales as the
number of messages in the system. Second, a single, possibly
malicious, complaint can trigger a traceback and thus reveal
the message contents as well as the history of prior recipients,
which is counter to the goals of EEMS to maintain the privacy
of users communicating through this system. One malicious
user (e.g., a government agent) can reveal the source of a
piece of information (e.g., a leak) that they have received,
violating the privacy of the sender (e.g., the leaker) by issuing
a single complaint to the EEMS. While it may be possible to
apply manual review to these complaints, the scale of possible
complaints could make this impractical.

In this paper, we aim to resolve this conflict between privacy
and ability to identify misinformation in EEMSs by first
observing that “fake news” messages are, by definition, viral
and are thus received, and likely complained about, by a large
number of users. Private messages, such as leaks, on the other
hand, are likely to be targeted and are thus only received by
a small number of users; indeed, any message received by
only a few users is inherently less impactful overall and more
likely deserving of privacy protections. This leads to a more
nuanced approach for identifying fake news: apply a threshold
approach to complaint management, whereby only viral fake
news would overcome the threshold and trigger an audit.

Counting the number of complaints in a private manner
is a non-trivial problem if the privacy of the EEMS’ clients
is to be maintained prior to the threshold being reached,
even given available cryptographic solutions. For example, a
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homomorphic encryption solution (e.g., [25]) would enable
the checking and updating of counts for each message, but the
access patterns of clients checking and updating counters could
reveal how many complaints a message receives even if the
threshold is not reached. Oblivious RAM (ORAM) (e.g. [20],
[36]) could be used to protect the access patterns, but have high
computational overheads and usually assume clients may share
secrets and are not malicious. Pricate Information Retrieval
(PIR) does not assume clients are trusted, but has different
scalability challenges and does not address the problem of
obliviously updating without revealing which message is being
complained about.

We propose a different approach we call a Fuzzy Anony-
mous Complaint Tally System (FACTS). FACTS maintains an
(approximate) counter of complaints for each message, while
also ensuring that, until a threshold is exceeded, the status of
these counters is kept private from the server and all users who
have not received the message. FACTS builds on top of any
end-to-end encrypted messaging platform, incurring only small
overhead for message origination and forwarding. In particular,
FACTS maintains the communication pattern of the underlying
messaging system, requiring no new communication or secrets
between users even for issuing complaints.

To avoid the high overheads of existing solutions, FACTS
uses a novel oblivious data structure we call a collaborative
counting Bloom filter (CCBF). This data structure allows us
to obliviously increment and query approximate counters on
millions of messages while only requiring 12MB of storage.
Moreover, incrementing a counter only requires flipping one
bit on the server and only uses the minimal communication
of log |T | bits to address a single bit in the server-stored bit
vector T . While the resulting counters are only approximate,
we show experimentally and analytically that we are able
to enforce the threshold on complaints with good accuracy,
namely, below 10% error in theory, and below 3% in most
realistic deployment scenarios.

The contributions of this paper are as follows:
• We develop a collaborative counting Bloom filter, a new

oblivious data structure for counting occurrences of a
large number of distinct items.

• We use this data structure to instantiate a provably-
secure system, FACTS, for privacy-preserving source
identification of fake news in EEMSs.

• Finally, we perform experiments to show the accuracy and
overhead of FACTS in realistic deployment scenarios.

A. Setting and Goals

FACTS is built on top of an end-to-end encrypted messaging
system (EEMS). For this work, we focus on the setting of
server-based EEMSs with a server S that enables (authenti-
cated) encrypted communication between the system users.
Examples of such EEMSs include Signal and WhatsApp,
among many others.

To make sure that FACTS is compatible with existing
encrypted messaging systems, we make the following perfor-
mance requirements:

1) Messaging costs: Originating and forwarding messages
should incur little computational overhead for both users
and the server over the standard procedure in the en-
crypted messaging system,

2) Server storage: The storage overhead of the server
should be small (i.e., a single table not exceeding a few
MBs),

3) User costs and requirements: Issuing complaints re-
quires a small amount of communication and com-
putation from the complaining user, and no cost to
other users. Moreover, complaints can not require direct
communication between users or require the users to
have any apriori shared secrets that are not known to
the server.

4) Complaint throughput: Issuing complaints may be
slower than standard forwarding of messages, but the
system must be able to handle millions of complaints
per day.

To ensure privacy of messages and complaints, FACTS
requires that complaints remain hidden from the server (and
colluding clients) until a threshold of complaints is reached.
Additionally, FACTS ensures integrity of the complaint pro-
cess ensuring correctness of complaint counts and the identity
of the revealed originator once the threshold is reached. Specif-
ically, FACTS satisfies the following security guarantees:

1) Message privacy: All messages remain end-to-end en-
crypted and private from the server and non-receiving
clients until a threshold of complaints is reached and
an audit is issued. Moreover, even after the audit, only
information about the audited message is revealed.

2) Originator integrity: Once a threshold of complaints
is reached on a message, FACTS will only identify
information about the true originator of the message.
In particular, no innocent party can be framed as the
originator.

3) Complaint privacy: The server and any colluding
clients who have not received a message x should have
no information about the number of complaints on x.
In particular, the server should not be able to tell what
message is being complained about.

4) Complaint integrity: A set of malicious clients should
not be able to alter the number of complaints on any
message x. Specifically, they cannot block or delay com-
plaints, and cannot (significantly) increase the number of
complaints on a message x except through the legitimate
complaint process.

B. Building FACTS

Recall that our goal is to enable privacy-preserving counters
to tally complaints on each message m. This suggests an
immediate solution where the server stores an encrypted
counter for each message, and clients interact with the server
to increment the counter and check the threshold. While
implementing such counters is certainly possible using ho-
momorphic encryption [16] or standard secure computation
techniques [4], [19], [42] , the problem is that the access
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pattern of clients’ updates to counters leaks information to the
server by revealing the complaint histogram. This suggests a
further modification to store the counters inside an oblivious
RAM (ORAM) [20] to hide such access patterns from the
client. However, in our setting this would require a multi-client
ORAM [7], [22], [29] which incurs significant performance
penalties including at least O(log n) communication overhead
when there are n distinct messages. Moreover, this would
require direct communication between clients to maintain their
ORAM state, and additionally, no security against malicious
clients.

In FACTS, we take a different approach. Instead of relying
on encryption to hide the counters from the server, we hide
the counters in plain sight by mixing together the counters for
all the messages in a way oblivious to the server. To make
this possible, we relax the functionality of FACTS to only
enforce approximate, rather than exact, thresholds. That is,
the threshold will be triggered on a message x after (1± ε)t
complaints for a small error ε. Making this relaxation allows
us to use a sketch-based approach for counting the complaints.

To achieve this functionality obliviously, we develop a col-
laborative counting Bloom filter (CCBD). This data structure
consists (roughly) of a collection of Bloom filters, one for each
message, where the Bloom filters corresponding to different
messages are mixed together to hide them from the server.
Specifically, the server stores a table of s bits. A random subset
of v bits (Vx) is assigned to each message x at origination;
these bits will be used for tracking complaints about this
message (for intuition, one can think of these bits as forming
a Bloom filter for storing the set of complaints about the
message). We stress that the server has no information about
which bits correspond to which messages.

To complain about a message x, a user who has received
x can find the corresponding bit locations, and will (attempt
to) flip one of the bits from 0 to 1. However, allowing users
to flip any bit they choose, would allow malicious users to
significantly accelerate complaints for a message they wish to
disclose. To prevent this behavior, we restrict each client to
only be able to flip (i.e., complain on) a small (of size u)
set of locations UC . Thus, to complain about a message m,
a client first identifies the set Vx of bits corresponding to x.
Then, she checks how many of these bits have already been
set to 1, and if this exceeds a specified threshold, notifies the
server to trigger an audit. If the threshold for x is not yet
exceeded, the client sees whether any of the 0 bits in Vx are
in her set UC , and if there are any such bits, she flips one of
them (chosen at random) from 0 to 1. Otherwise, the user still
flips a random bit in their set Ux, so the server cannot discern
anything about the message being complained on. We prove in
Section IV that the actual number of complaints necessary to
trigger an audit can be calculated with high precision allowing
us to (approximately) enforce the desired threshold.

C. Limitations of FACTS

In order to present FACTS, it is also important to recognize
what our system does not do.

First, unlike some prior work [15], [27], FACTS does not
attempt to automatically detect misinformation. Instead, it
relies on users reporting it when they see it. This reliance
on users has inherent benefits and limitations. While our
system is not subject to the kinds of machine-generated false
positives that can arise from, e.g., hash collisions [5], our
model is inherently vulnerable to any sufficiently large group
of dishonest users, who could trigger an audit on a benign
message. This is why we suggest the possibility of a manual
human review process on message contents before the service
provider would take any action on an audited message; see
Section VIII.

Second, due to the approximate nature of FACTS, it works
most effectively for relatively large thresholds, say in the
hundreds and above. For our application to fake news de-
tection, this is reasonable as such messages are likely to
garner a large number of complaints, and indeed this was
our main motivation for this paper. We leave as interesting
possible future work to implement a system supporting smaller
thresholds, even as small as 2, efficiently.

One additional functionality limitation is that, as is true with
any application using Bloom filters, the CCBF data structure
can fill up once too many complaints have been registered.
To deal with this issue it is necessary to periodically reset the
counters and refresh the CCBF data structure. We refer to each
such refresh period as an epoch, and in the remainder of the
paper only present algorithms for a single epoch.

Finally, on the security side, an important limitation is that
FACTS reveals meta-data on who issues complaints (but not
what message they complain on). It is important to consider
what is revealed by this meta-data. By observing the timing of
messages and complaints, the server can make some inferences
about what messages users are sending and complaining about.
For example, suppose that the server sees that A sends a
message to B, and then B issues a complaint. Then, it may be
reasonable for the server to assume that A has sent the message
which B complained about, even though this is not directly
leaked by our system. Nonetheless, our definition guarantees
that the server cannot be certain that this is indeed the case. We
note that the messaging meta-data is already a byproduct of
the underlying EEMS platform. FACTS only adds complaint
meta-data to this leakage; see Section VIII for some further
discussion.

D. Paper Layout

The remainder of the paper is organized as follows. In Sec-
tion II, we introduce some of the notation we use throughout
the paper. Then, in Section III we describe the syntax and
functionality of FACTS. In Section IV we present and analyze
our main building block, the CCBF data structure. Then, in
Section V, we show how to use a CCBF to instantiate FACTS.
We demonstrate the accuracy and performance through exper-
imental evaluation in Section VI and then prove the security
of FACTS in Section VII. Finally, we describe some variants
of FACTS and directions for future work in Section VIII and
present related work in Section IX.
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II. PRELIMINARIES

We use [n] to denote the set 1, . . . , n. We write x← X to
indicate that the value x is sampled uniformly at random from
the set X . We use λ to denote a statistical security parameter
and κ to denote a computational security parameter. We also
assume the existence of a hash function H : {0, 1}∗ → {0, 1}∗
which is modeled as a random oracle. We let poly(·) denote a
polynomial function and negl(·) denote a negligible function.

III. FUZZY ANONYMOUS COMPLAINT TALLY SYSTEM
(FACTS)

In this section, we present the syntax for FACTS and
describe how FACTS is used. We show how to instantiate
FACTS in Section V.
Assumptions: We assume that each user A has a unique
identifier IDA, and that the server can authenticate these IDs.
(We will abuse notation to use A to represent the user and also
the id IDA). We also assume that the server has an identifier
IDS (we will denote this by S) that can be authenticated by
all users.

Additionally, we assume that the underlying end-to-
end encrypted messaging system (EEMS) offers methods
send(A,B, x) and receive(A,B, x) for sending and verifying
a message x sent from user A to user B. Moreover, we assume
that this communication is encrypted and authenticated. In
particular, receive verifies that the received message was sent
by A and was not modified in transit. Importantly, we do not
assume that this platform is anonymous, instead assuming that
the full messaging history i.e., who sent a message to whom
and the size of that message, is available to the server.
Syntax: FACTS is a tuple of protocols FACTS =
(Setup,SendMsg,RcvMsg,Complain,Audit). The first is
used to set up FACTS, the next two are used to send and
verify messages, while the last two methods are used to issue
complaints and audit received messages.
• Setup(c): This takes as input the total number of users

and initiates the FACTS scheme for c users.
• SendMsg(A,B, tagx, x): This method is used by a user
A to send a message x to another user B. This may be
a new message originated by A (indicated by tagx =⊥)
or a forward of a previously received message.

• RcvMsg(A,B, tagx, x): This algorithm is run by B upon
receiving a message (tagx, x) from A.
This algorithm checks whether tagx is indeed a valid tag
generated by A on message x. If this is the case, then B
accepts the message, otherwise he rejects the message.

• Complain(C, tagx, x): This protocol is run by a user C
to complain about a received message (tagx, x).

• Audit(C, tagx, x): This protocol issues an audit of a
message x revealing (tagx, x) to S. This will be called
by C when the number of complaints on m exceeds a
pre-defined threshold (with high probability).

Usage: The following workflow demonstrates the standard
usage of FACTS. To originate a new message x, a user
A runs the SendMsg protocol with the server S to create

metadata tagx. SendMsg then sends this metadata and the
message (tagx, x) to the receiving user B using the messaging
platforms send method. Upon receiving a message (tagx, x),
B first locally runs RcvMsg(A,B, tagx, x) to verify that the
received message and tag are valid, if this fails he ignores the
message. To forward a received message (tagx, x), a user A
runs SendMsg with the server S to produce metadata tag′x; A
then discards this metadata, and the original message (tagx, x)
is sent instead using the messaging platform’s send method.1

If a user B receives a message (tagx, x) that it considers
“fake”, he can use the Complain protocol to issue a new
complaint on this message. After issuing a complaint, B
checks whether the threshold of complaints on x has been
reached. If so, he calls Audit to trigger an audit on the message
(tagx, x), revealing x and the originator of x to the server S.

IV. COLLABORATIVE COUNTING BLOOM FILTER

Our system records complaints in a special data structure
which we call a collaborative counting Bloom filter, or CCBF.
This data structure shares some of the same basic functionality
as a counting Bloom filter [13], [32] or count-min sketch [9],
which is to insert elements and compute the (approximate)
frequency of a given element.

Our CCBF differs from a usual count-min sketch in that
each update operation is accompanied by a user id, and each
user can only perform a single update for a given element.
This can be thought of as a strict generalization of the normal
count-min sketch operations, where the latter may be simulated
by our CCBF by choosing a unique user id for each update.

The actual data structure for the CCBF is also far simpler
than the 2D array of integers used for a count-min sketch;
instead, we store only a single length-s bit vector T . As a
result, our CCBF will have the following desirable properties:
• The bit-length of T scales linearly with the total number

of insertions.
• Each witness operation (insertion) changes exactly one

bit in the underlying bit vector from 0 to 1.
• The CCBF is item-oblivious, meaning that after observing

an interactive update protocol, the adversary learns which
user id made the update, but not which item was updated.

The downside to our CCBF is a far lower accuracy of the
count operation in general compared to count-min sketches.
However, we will show that, for careful parameter choices,
the count operation is highly accurate within a certain range,
which is precisely what is needed for the current application.

A. CCBF Construction

The CCBF consists of a single size-s bit vector T and two
operations:
• Increment(x,C): Increases the count by 1 for item x

according to user id C.
• TestCount(x, t): Returns true if the number of increments

performed so far for item x is probably greater than or
equal to t.

1We note that since the underlying messaging scheme is encrypted, the
actual ciphertext sent will not be the same as the ciphertext received.
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Note that TestCount is probabilistic, in the sense that it
may return false when the actual count is greater than t, or
true when the actual count is less than t. Our construction
guarantees the correctness probability is always at least 1

2 ,
and our tail bounds below show the correctness probability
quickly goes towards 1 when the actual count is much smaller
or larger than t.

The performance and accuracy of the CCBF is governed
by three integer parameters s, u, and v, with u, v ≤ s, which
must be set at construction time. The first, s, is the fixed size
of the table T . Each user i is randomly assigned a static set of
exactly u locations in the T ; i.e., a uniformly random subset
of {0, 1, 2, . . . , s − 1}, which we call the user set. Similarly,
each possible item x is assigned a random set of exactly v bit
vector locations, which we call the item set.

The two CCBF operations can be implemented by a single
server and any number of clients. The protocols are simple and
straightforward, save for the calculation of the tipping point τ
which we present in the next subsection.

In these protocols, the size-s bit vector T is considered
public or world-readable; it is known by all parties at all times.
In reality, the server who actually stores T may send it to the
client periodically, or whenever a client initiates a Increment or
TestCount protocol. However, the bit vector T is only writable
by the server.

The Increment(x,C) protocol, outlined in Algorithm 1,
involves the User attempting to set a single bit from 0 to 1
within the item set for x. However, the user is only allowed
to write locations within their own user set. So, if there are
no 0 bits in the intersection of these two index sets, the user
instead changes any other arbitrary 0 bit in its own user set in
order to maintain item obliviousness.

Algorithm 1 Increment(x,C)

1) User and server separately compute the list of u user
locations for user C, UC ⊆ {0, . . . , s− 1}.

2) User computes list of v item locations for item x, Vx ⊆
{0, . . . , s− 1}

3) User checks each location in UC in the table T to
compute a list SC = {i ∈ UC | T [i] = 0} of settable
locations for user C

4) If SC = ∅, then the user cannot proceed and calls abort.
5) Else if SC ∩ Vx 6= ∅, user picks a uniformly random

index i← SC ∩ Vx and sends index i to server.
6) Else user picks a random index i← SC and sends index

i to server.
7) Server checks that received index i is in the user set UC

and that T [i] = 0, then sets T [i] to 1.

Since the bit vector T is considered world-readable, the
only communication here is the single index i from client to
server over an authenticated channel. In reality, to avoid race
conditions, the server will actually send the table entry values
T [i] for all i ∈ UC to the user first and lock the state of the
global bit vector T until receiving the single index response
back from the user.

The TestCount(x, t) protocol is not interactive as it only
requires reading the entries of T . The precise computation of
the tipping point τ is detailed in the next section. Note that this
computation depends only on the total number of bits set in
the bit vector T as well as the parameters s, u, v; therefore the
computation of τ is independent of the item x and could for
example be performed once by the server and saved without
violating item obliviousness.

This protocol is detailed in Algorithm 2.

Algorithm 2 TestCount(x, t)

1) Use parameters s, u, v and current value of m total
number of bits set in T , to compute the tipping point τ .

2) Compute list of v item locations for item x, Vx ⊆
{0, . . . , s− 1}

3) Check how many bits of T are set for indices in Vx.
Return true if and only if this count is greater than or
equal to τ .

B. Calculating the tipping point

The key to correctness of the TestCount protocol is a
calculation of the tipping point τ , which is the expected
number of 1 bits within any item set, if that item has been
incremented t times. We now derive an algorithm to compute
this expected value exactly, in O(tv) time and O(v) space.

Let s be the total size of the table T and m ≤ s be the
total number of calls to Increment so far. That is, m equals
the number of 1 bits in T . Recall that u, v ≤ s are the number
of table entries per user and per item, respectively.

We first derive the probability that two subsets of the s slots
have given-size intersection. Next we derive a recursive for-
mula for τ using these intersection probabilities. The nearest
integer to τ can then be efficiently computed using a simple
dynamic programming strategy.

Intersection probabilities
For the remainder, we use Knuth’s notation nk to denote

the falling factorial, defined by

nk =
n!

(n− k)!
= n · (n− 1) · (n− 2) · · · (n− k + 1).

Lemma 1. Let k, a, b, s be non-negative integers with k ≤
b ≤ a ≤ s, and suppose S and T are two subsets of a size-s
set with |S| = a and |T | = b, each chosen independently and
uniformly over all subsets with those sizes. Then

Pr(|S ∩ T | = k) =
ak · bk · (s− a)

b−k

sb · k!
. (1)

Proof. The number of ways to choose S and T with a size-k
intersection, divided by the total number of ways to choose
two size-a and size-b sets, equals(

s
k

)
·
(
s−k
a−k
)
·
(
s−a
b−k
)(

s
a

)
·
(
s
b

) .

This simplifies to (1).

5



Because the numerator and denominator are each products
of b + k single-precision integers, the value of (1) can be
computed in O(b) time to full accuracy in machine floating-
point precision.

Furthermore, equation (1) has the convenient property that,
after altering any value a, b, or k by ±1, we can update the
probability with only O(1) additional computation. So, for
example, one can compute the probabilities for every k ≤ b
in the same total time O(b).
Recurrence for number of unfilled message slots

Fix an arbitrary item x, and let w ≤ v denote the number of
0 bits of T within x’s item set. Let k ≤ m denote the number
of Increment operations performed on item x performed so
far.

First, for convenience define pw to be the probability that
an arbitrary user is able to write to one of the w remaining
unfilled slots for the message. From Lemma 1, we have

pw = 1− (s− u)
w

sw
, (2)

which can be computed in O(w) time. In fact, we pre-compute
all possible values of pw with 0 ≤ w ≤ v in O(v) total time.

Now consider the random variable for the number of 0 bits
within x’s item set after k Increment’s on x, if the item set
originally had w 0 bits. Define Rw,k to be the expected value
of this random variable, which can be calculated recursively
as follows.

If w = 0, then the slots are all filled, and if k = 0 then
there are no more Increment’s, so the number of unfilled
slots remains at w. Otherwise, the first Increment will fill an
additional slot with probability pw, leaving w − 1 remaining
unfilled slots, and otherwise will leave w remaining unfilled
slots. This implies the following recurrence relation:

Rw,k =


0, w = 0

w, k = 0

pwRw−1,k−1 + (1− pw)Rw,k−1, w, k ≥ 1

All values of Rw,t with 0 ≤ w ≤ v can be computed in
O(tv) time and O(v) space, using a straightforward dynamic
programming strategy.
Computing the tipping point

We now show how to compute the tipping point value
τ , which is the expected number of filled item slots after t
Increments on that item, by summing the Rw,t values over all
possible values of w based on the number of other calls to
Increment m.

To this end, define qw to be the probability that w ≤ v slots
for a given item are unfilled after m total calls to Increment
for other items. Because other calls to Increment are for other
unrelated items, each one goes to a uniformly-random unfilled
slot over the entire size-s table T . Therefore qw is the same
as the probability of a size-m set and a size-v set having
intersection size exactly v − w. From Lemma 1, this is

qw =
mv−w · vv−w · (s−m)

w

sv · (v − w)!
.

We can pre-compute all values of qw for 0 ≤ w ≤ v in total
time O(v).

After pre-computing the values of pw, Rw,t, and qw, we can
finally express the tipping point τ as a linear combination

τ = v −
v∑

w=0

qwRw,t, (3)

rounded to the nearest integer.
In total, the computation requires O(tv) time and O(v)

space.

C. Tail Bounds

Next, we prove lower and upper bounds on the probability
of filling a single additional item slot during an Increment
operation, Lemmas 2 and 3 respectively.

Lemma 2. Let x be an item such that at most τ of x’s item
slots are filled. If the CCBF parameters s, u, v satisfy v ≥
7.042652τ and u ≥ 0.5184846 sτ , then the probability that a
call to Increment(x,C) fills in one more of x’s item slots is
at least 0.956414.

Lemma 3. Let x be any item. If the CCBF parameters s, u, v
satisfy 371 ≤ v ≤ 0.00386s and u ≤ 3.65151 sv , then the
probability that a call to Increment(x,C) fills in one more of
x’s item slots is at most 0.974876.

Now we use the probability upper bound to prove an upper
bound on the tipping point τ .

Lemma 4. Let s, u, v be CCBF parameters that satisfy the
conditions of Lemma 3, and suppose m, t are integers such
that s ≥ 96m and v ≤ 7.409t. Then the tipping point τ , for
threshold t and with m total set bits in the table T , is at most
1.0520553t.

We can now state our main theorems on the accuracy of the
CCBF data structure. Consider a call to the predicate function
TestCount(x, t), which attempts to determine whether the
number of prior Increment calls with the same item x is at
least t. Our exact computation of the tipping point r(t) shows
that this function always returns the correct answer with at
least 50% probability. But of course, so would a random coin
flip!

Let k be the actual number of calls to Increment(x,C)
that have occurred. Then two kinds of errors can occur: a
false positive if TestCount(x, t) returns true but k < t, and
a false negative if TestCount(x, t) returns false when k ≥ t.
Intuitively, both errors occur with higher likelihood when the
true count k is close to t. Our main theorem captures and
quantifies this intuition, saying that, ignoring low-order terms,
TestCount is accurate to within a 10% margin of error with
high probability.

Theorem 1. Let n be an upper bound on the total number of
calls to Increment, and t be a desired threshold for TestCount.
Suppose the parameters s, u, v for a CCBF data structure
satisfy the conditions of Lemma 2, and furthermore that
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v ≤ 8t. If the actual number of calls to Increment(x,C) is at
most t− 2.1

√
λt, then the probability TestCount(x, t) gives a

false positive is at most 2−λ.

Theorem 2. Let n be an upper bound on the total number of
calls to Increment, and t be a desired threshold for TestCount.
Suppose the parameters s, u, v for a CCBF data structure
satisfy the conditions of Lemmas 2 and 4. If the actual number
of calls to Increment(x,C) is at least

1.1t+ .4λ+ .7
√
λt, (4)

then the probability TestCount(x, t) gives a false negative is
at most 2−λ.

We can easily summarize the various conditions on the
parameters as follows:

Corollary 1. Let n be a limit on the total number of
calls to Increment, and t be a desired threshold satisfying
50 ≤ t ≤ n

20 . Then by setting the parameters of a CCBF
according to s = 96n, v = 7.409t, and u = 47.31nt , any call
to TestCount(x, t) will satisfy the high accuracy assurances
of Theorems 1 and 2.

V. INSTANTIATING FACTS

We are now ready to present our construction of FACTS.
This construction is based on the collaborative counting Bloom
filter (CCBF) data structure presented in Section IV to obliv-
iously count the number of complaints on each message. It
uses an underlying EEMS for sending end-to-end encrypted
messages between users.

Setup: The setup procedure for FACTS first sets up the
underlying end-to-end encrypted messaging system (EEMS).
For simplicity, we assume that there is a fixed number c of
users using the system. Setup generates all necessary keys
for the server S and all c users and distributes the keys. We
note that if the messaging system is already setup, FACTS
can simply leverage this for communication. Additionally, the
server initializes an empty CCBF data structure.

Sending and receiving messages: We now describe how
FACTS originates, forwards, and verifies messages. We start
our description with an auxiliary protocol Originate(A, x)
between a user A and the server S to originate a new message
x. This protocol is used to create an origination tag tagx
containing information about the message and originator. This
tag binds the originator’s identity A to the message x to
enable recovery upon an audit, while keeping A private from
receiving users, and keeping the message x private from the
server S.

Roughly, this protocol works by having S produce a signa-
ture on (a hash of) the message together with the originator’s
identity. Due to the use of the hash, S produces this signature
without learning anything about the message, while the fact
that S includes the originator’s identity in this signature
prevents a malicious originator from including the wrong
identity in the message. Moreover, since the tag is bound to

the message, this prevents a replay attack where an adversary
reuses tags across messages to change the identity of the
originator.

Algorithm 3 Originate(A, x)

1) To originate a message x, the originator A chooses a
random salt r ← {0, 1}λ, computes a salted hash h =
H(r||x), and sends h to S.

2) S computes an encryption of the sender’s identity, e←
EncPKS

(A), and produces signature σ = SigSKS
(h||e).

S sends the tuple (e, σ) to A.
3) A outputs tagm = (r, e, σ).

Next, we describe the SendMsg protocol which makes use
of the Originate protocol to send a message x between clients
A and B while preserving (encrypted) information about the
originator of x. x can either be a newly originated message
or a forward of a previously received message. In either case,
SendMsg runs the Originate protocol to produce a new tag
tag′x on the message x. In the case of a new message, tag′x is
sent along with the message, while in the case of a forward,
it is discarded and the message is forwarded along with its
original tag instead.

Algorithm 4 SendMsg(A,B, tagx, x)

1) If tagx =⊥, then x is a new message A wants to
originate. A runs tagx ← Originate(A, x).

2) If tagx 6=⊥ x is a message that A wants to forward. A
runs tag′x ← Originate(A, x) and discards the output.

3) A sends (tagx, x) to B using the E2E messaging plat-
form’s send protocol.

RcvMsg is a non-interactive algorithm that allows a receiv-
ing user to verify the tag, tagx, affiliated with a message x.
Specifically, the receiver B verifies the server’s signature in-
cluded in tagx to make sure that the tag indeed corresponds to
x and that the originator id has not been modified. Importantly,
B can perform this verification without learning the identity
of the originator since the tag contains an encryption of this
identity (this ciphertext is what is verified by B).

Algorithm 5 RcvMsg(A,B, tagx, x)

1) Parse tagx as tagx = (r, e, σ)
2) Compute h = H(r||x)
3) Run VerPKS

(σ, (h||e)) to check that σ is a valid sig-
nature by the server on (h||e). If not, then discard the
received message.

Complaints and Audit: We now describe how FACTS allows
users to complain about received messages and to trigger an
audit once enough complaints are registered on a message. For
these methods we make extensive use of a CCBF data structure
for (approximately) counting complaints and detecting when
a threshold of complaints has been reached.
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The Complain protocol is used by a receiving user to issue
a complaint on a received message (tagx, x). We assume that
prior to issuing a complaint the user verifies that tagx is
valid using the RcvMsg protocol, and thus will only consider
the case of valid tags. To issue a complaint on (tagx, x),
the user C calls CCBF.Increment(tagx, C). As described in
Section IV, this runs a protocol with the server in which the
user (eventually) sends the location of a bit to flip to 1 to
increment the CCBF count for the message x. To prevent
malicious adversaries from flooding FACTS with complaints,
we enforce a limit of L complaints per user per epoch. Note
that since the server knows the identities of complaining users,
he can easily enforce this restriction.

Two important observations are in order here. First, we use
tagx rather than the message x as the item to increment in the
CCBF. The reason for this is that the tag is unpredictable to
an adversary who has not received the message x through
FACTS (even if A knows x). Second, we note that the
CCBF.Increment procedure is inherently sequential. It requires
that the CCBF table T be locked for the duration of the
Increment call to prevent race condition and to maintain
obliviousness (see Section IV for discussion). This means that
only one user can run this procedure at a time. Thus, we focus
on making this procedure as cheap as possible to minimize
the impact of this bottleneck. In case multiple clients call
Complain at overlapping times, the server can queue these
complaints and process them one at a time.

Algorithm 6 Complain(C, tagx, x)

1) Parse tagx as tagx = (r, e, σ)
2) Call CCBF.Increment(C, tagx)

The Audit protocol checks whether a threshold of com-
plaints has been reached for a given message x and, if so,
triggers an audit of this message. This protocol works by
using the CCBF.TestCount protocol to check whether the
threshold t of complaints has been reached on this message.
If this returns True, then the user simply sends (tagx, x) to
the server who first checks the validity of the tag, and then if
it’s valid, decrypts the corresponding part of the tag to recover
the identity of the message originator.

An important observation is that the CCBF.TestCount op-
eration is read-only and thus does not need to block. Thus,
unlike the Complain command, many clients can execute the
Audit command in parallel.

Algorithm 7 Audit(C, tagx, x)

1) Parse tagx as tagx = (r, e, σ)
2) Call CCBF.TestCount(tagx, t).
3) If TestCount returns True, x sends (tagx, x) to S
4) S verifies that the tag is valid by checking the σ is a

valid signature on h||e where h = H(r||x).
5) If so, S recovers the identity (A) of the originator by

computing A = DecSKS
(e).

We note that Audit allows the server to learn the message
x and the originator A. We do not specify what the server
does upon learning this information, as that is specific to a
particular use of FACTS. One possible option is for the server
to review x to see if it is truly a malicious message, and if
so, block the user A from sending further messages. However,
this decision is orthogonal to the FACTS scheme and we do
not prescribe a particular action here.

VI. EXPERIMENTAL EVALUATIONS

In this section, we empirically evaluate the accuracy and
performance of FACTS. We perform two sets of experiments.
The first, measures the error in terms of number of complaints
above or below the threshold as a function of the total
number of complaints. The second, measures the performance
overhead for messaging and complaint as a function of the
threshold.

A. Experimental parameters
For our experiments, we set the maximum number of

complaints per epoch n = 1, 000, 000. If we consider an epoch
of one day, this results in approximately 11.6 complaints per
second. To understand accuracy and efficiency of FACTS, we
measure them for a range of thresholds 100 ≤ t ≤ 1000.
With these fixed, we set the remaining parameters according
to Corollary 1. In particular, we set the server’s storage s =
96n = 12MB. The user set size u varies from (approximately)
47,000 to 470,000 bits, while the message set size v goes from
(approximately) 740 to 7400.

B. Accuracy and stability
To measure the accuracy of FACTS, we observe the actual

number of complaints necessary to cause an audit on a
single message as a function of the background noise (i.e.,
total complaints on other messages). We calculate both the
mean and the standard deviation of this value to capture the
accuracy and stability of the complaint mechanism. To get a
statistically meaningful estimate of these, our experiments run
1000 iterations of each parameter configuration.

The results of our experiments are presented in Figure 1.
The left side of this figure shows the mean number of
complaints to trigger an audit for a given threshold t. As can
be seen from the error bars, the absolute errors in number of
complaints is quite small, with a maximum deviation of about
10 complaints at a threshold of 1000. Not surprisingly, we see
that this error increases as the background noise increases, but
the mean number of complaints remains remarkably steady
at the desired value. The right side of Figure 1 shows the
relative standard deviation of the number of complaints as
a function of background noise. From this graph we can
see that the relative error is only a few percent, with a
maximum relative error of about 3.5%. Not surprisingly, the
threshold 100 measurement incurs the highest relative error
because the noise is a much higher ratio when compared to
the threshold. These experiments suggest that FACTS achieves
good accuracy for a wide variety of threshold and background
noise.
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Fig. 1: The (left) Mean and (right) Relative Standard Deviation of Experimental Explicit Threshold vs. The Number of
Background Complaints.

C. Performance overhead

Our next set of experiments measures the performance
overhead of FACTS as a function of the threshold to start
an audit. Specifically, we measure the overhead of sending a
message using FACTS, and the cost of issuing a complaint.
We note that for the message sending cost, we do not measure
the cost of the EEMS communication, instead only measuring
the added overhead due to FACTS.

For these experiments, we implemented both the client and
server using the Rust programming language. We used SHA-
3 for a hash function, and for encryption and signatures we
used a popular Rust library’s implementation of OpenSSL’s
ChaCha20-Poly1305 protocol and Ed25519 respectively. To
instantiate the CCBF, we used a simple library that allows
memory to be bit addressed, rather than byte addressed, which
gains us a quick, compact way to store the CCBF data
structure.

To simulate network overhead, we implemented a simple
web server and client, which communicated over a (simulated)
8 Mbps network with a latency of 80ms, using TLS 1.3.
Since we are only measuring the overheads of FACTS over
the underlying EEMS, our measurements did not include the
time to send the message over the EEMS, nor the time to
establish the TLS connection. All experiments were run on a
4.7Ghz Intel Core i7 with 16GB of RAM, with a sample size
of 100 for each metric. As in the accuracy experiments, we
set n = 1, 000, 000 and threshold varying from 100 to 1000,
with the remaining parameters determined by Corollary 1.

For our measurement of message origination we looked at
the cost of originating and sending a message of size 2MB.
Creating and sending such a message with the encrypted
hash and identity took 98ms, which indicates that the major
bottleneck in this process is the 80ms network latency. We

Fig. 2: Complaint overhead as a function of threshold

see then that when a user wishes to forward a message, they
will still call Originate(A, x), but then forward the original
message whereas in an EEMS this would just require a
forward. Thus, the overhead of FACTS on a forward is slightly
less than 100ms.

Figure 2 shows our measurements of the time to issue a
complaint as a function of the audit threshold. The time for this
is dominated by the time to retrieve the user set (i.e., the bits
that the user can write) from the server. Since the size of this
set u = O(n/t), this time grows inversely with the threshold
t. Thus, as the threshold increases, the total complaint time
decreases very quickly going down to essentially just the
network latency when t = 1000.

These experiments show that both the (added) cost of
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sending messages and the cost of complaints (for sufficiently
large t) are dominated by the networking costs. Thus, as long
as the latency of the network is reasonable, FACTS can scale
to millions of complaints per day.

VII. SECURITY OF FACTS

In this section we analyze the security of FACTS. We
provide security definitions capturing the privacy and integrity
guarantees provided by FACTS and prove that our protocols
described in Section V achieve these definitions.

A. Adversary Model

We consider two different types of adversaries against
FACTS. The first is an honest-but-curious server S. Such a
server may also collude with some of the users. However, all
such users, as well as the server, will follow the protocol.
This adversary class models what the FACTS server learns
in running the system, so we want to limit what the server
learns. However, we have to assume that the server acts
honestly, as a malicious server can fully break the integrity and
availability of FACTS. For example, since the server produces
the signatures binding originators to messages, a malicious
adversary with knowledge of this key could arbitrarily assign
originators by forging this signature.

We also consider a second type of adversary controlling
a group of malicious users who do not collude with the
server. Such users may want to violate the confidentiality
of FACTS by learning extra information about messages or
complaints, beyond what they learn through the messages
they validly receive. Or, they may want to break the integrity
of the complaint and audit mechanism of FACTS to blame
innocent parties for audited messages, or to delay or speed-
up the auditing of targeted messages. This models an external
adversary, say a malicious company or government, who may
want to distribute fake information without being audited or
may want to block certain information or users from the
system.

B. Privacy

We begin by looking at the privacy guarantees provided by
FACTS.

Privacy vs. Server: We first give a definition for privacy
against a semi-honest server who may also collude with some
semi-honest users. In this setting we aim to argue that unless
a message is audited or is received by an adversarial user,
the server learns no information about the message or the
complaints on the message. In particular, the server should
not be able to tell whether any message is a new message
or a forward and how many, if any, complaints this message
may have. In fact, the only thing that the server learns is the
metadata of who is sending messages to whom and who is
issuing complaints, but not anything more.

Specifically, we propose a real-or-random style definition to
capture privacy against the server. This definition captures the
fact that the view of the server (and colluding users) until a
message is audited or received by a colluding user just consist

of random values, and thus is independent of the messages
and complaints.

Concretely, we define the following game between an ad-
versary A controlling the server (and possibly some colluding
users) and a challenger.
Gameserver-privacyEEMS (A):
1) The challenger runs Setup(c) to set up the EEMS with

c clients. He hands all keys corresponding to corrupted
parties to A

2) A chooses a sequence of messages
((send, A0, B0, tagx0

, x0), . . . , (send, A`, B`, tagx`
, x`))

2,
and a sequence of complaints
((complain, C0, tagxc

0
, xc0), . . . , (complain, C`′ , tagxc

`′
)

and interleaves them arbitrarily. We require that none
of the sending users (Ai), receiving users (Bi), or
complainers (Ci) are controlled by A.

3) The challenger chooses b← {0, 1} and does the follow-
ing:

a) If b = 0, Run the SendMsg and Complain
protocols with inputs supplied by A, giving A the
resulting server view.

b) If b = 1,
• for each SendMsg command, choose r ←
{0, 1}λ and send this to S. Choose x′ ←
{0, 1}|x|+|tagx| and send x′ from Ai to Bi using
EEMS.send.

• The challenger maintains a set USED ⊆ [s]3.
For each Complain command, the challenger
chooses ind ← [s] \ USED, sends ind from ui
to S, and adds ind to USED.

4) A outputs a bit b′

5) We say that A has advantage

Advserver-privacyEEMS (A) = |Pr[b = b′]− 1/2|.

Definition 1 (Privacy vs. Server). A FACTS scheme is private
against a semi-honest server if the adversary has a negligible
advantage in the game above Advserver-privacyEEMS (A) ≤ negl(λ)

Theorem 3. FACTS is private against a semi-honest server

Proof sketch. First, consider the server’s view on a SendMsg
command. This view consists of a message h = H(r||m)
for r ← {0, 1}λ and the leakage from EEMS.send, i.e., the
identities A and B, as well as |(tagx, x)|. Since the challenger
uses the same sender, receiver, and message length, the only
thing left to prove is that h is indistinguishable from random.
Since r is chosen uniformly at random, and H is a random
oracle, H(r||m) is uniformly random to A unless A queries
H(r||m). However, since A makes at most poly(λ) queries
to H , the probability that he makes this query is at most
poly(λ)/2λ ≤ negl(λ).

Next, we consider the Complain commands. The server’s
view on a complaint consists of the complainer’s ID C and

2We note that since S ∈ A, A can produce valid-looking tags for each of
these messages by producing the necessary signatures.

3Recall that s is the size of the CCBF bit vector T
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an index in the CCBF to flip to 1. In a real execution of
Complain, this index is chosen at random from the set SC∩Vx
where SC = {i ∈ UC | T [i] = 0} and Vx is the list of item
locations for x.4 However, since UC and Vx are chosen at
random, we can equivalently sample a random 0-index in the
bit vector T and then choose UC and Vx conditioned on them
containing this location. Hence the location sent to the server
is uniformly random unless A makes the corresponding H
query, which only happens with negl(λ) probability.

The above theorem states that, beyond the meta-data of
who sent a message to whom and who has sent complaints
and when, FACTS reveals no information about messages and
complaints to a semi-honest server until an audit occurs (or a
malicious user receives a message). Moreover, the view of the
server is completely random when conditioned on the meta-
data. Now, suppose that a message x is audited (or is received
by an adversary-controlled user). When this happens, the
adversary learns the tag and message (tagx, x). This enables
A to learn the identity of the originator (by decrypting it from
tagx) and to learn the entire history of this message, i.e.,
the transmission and complaint history of x. However, since
the server’s view of all other messages is indistinguishable
from independent random strings (modulo the meta-data), the
adversary does not learn anything more about these messages
as a result of an audit on x.

Privacy vs. Users We now proceed to analyze security of
our protocol against (possibly malicious) users that are not
colluding with the server. This models the case of a third party
adversary that tries to learn information about the messages
and complaints in FACTS. Here, we no longer assume that a
message x is never received by a malicious user and thus
we cannot use a real-or-random style definition as before.
Instead, we argue that a user cannot distinguish a new message
from a forwarded message unless another corrupted user has
previously seen that message. This also shows that a malicious
user cannot learn the identity of the message originator. Since
users do not receive any communication on complaints, we
only consider message privacy here.

Concretely, we define the following game between an ad-
versary A controlling a set of users, and a challenger.

Gameuser-privacyEEMS (A):
1) The challenger runs Setup(c) to set up the EEMS with

c users and gives all key material for the corrupted users
to A. Let B ∈ A be a user controlled by the adversary.

2) A chooses messages x, x′ s.t. |x| = |x′| and honest users
O,A /∈ A

3) The challenger chooses b | {0, 1} and does the follow-
ing:

a) If b = 0, the challenger runs SendMsg(O,A,⊥
, x′) and SendMsg(A,B,⊥, x) with A receiving
the view of B.

4Technically, the item used in the CCBF is the tag tagx, but we use x here
for ease of notation.

b) If b = 1, the challenger runs SendMsg(O,A,⊥
, x) and SendMsg(A,B, tagx, x) (where tagx is
the tag received by A from O).

4) A outputs a bit b′

5) We say that A has advantage

Advuser-privacyEEMS (A) = |Pr[b = b′]− 1/2|.

Definition 2 (User privacy). A FACTS scheme achieves privacy
against malicious users if the adversary has a negligible
advantage in the game above Advuser-privacyEEMS (A) ≤ negl(κ)

Theorem 4. FACTS achieves privacy against malicious
clients.

Proof sketch. The view of B on an execution of
SendMsg(·, B, tagx, x) consists of the received message and
tag (tagx, x) where tagx = (r, e, σ). Since e is a semantically
secure encryption of the identity of the originator, A cannot
distinguish between the case when e = Enc(A) (when b = 0)
and the case when e = Enc(O) (when b = 1) except with
advantage negligible in κ. Additionally, since tagx is generated
identically both when b = 0 and b = 1 except for this change
in e, this means that tagx does not help A distinguish between
these two cases.

C. Integrity

We now turn to the integrity guarantees provided by FACTS.
We aim for a few different notions of integrity to show that
malicious users cannot interfere with the complaint and audit
process. First, no adversary controlling a subset of the users
should be able to frame an honest user as the originator
of an audited message he did not originate. Second, an
adversary controlling a subset of the users should not be able
to significantly delay the audit of a malicious message. In
particular, such an adversary should not be able to prevent a
malicious message sent by one of his users from being audited.
Finally, an adversary controlling a small set of users should
not be able to significantly speed up the auditing of a targeted
message. In particular, such an adversary should not be able
to cause an audit without complaints from some honest users.

We begin by defining the following game between a chal-
lenger and an adversary A controlling a subset of the users to
capture the inability of an adversary to forge a valid tag that
it has not seen before.
GameunforgeabilityEEMS (A):
1) The challenger runs Setup(c) to set up the EEMS with

c clients and gives all key material for the corrupted
clients to A.

2) A requests SendMsg operations on messages of its
choice both from honest and corrupted clients. (A is
given the view of corrupted clients in all these executions
consisting of (tagx, x).)

3) A outputs a tag, message pair (tagy, y)
4) We say that A WINS if tagy is a valid tag for message

y with originator O /∈ A, and there has not been a prior
command SendMsg(O, ·,⊥, y).

11



Definition 3 (No framing). We say that a FACTS scheme
disallows framing if for any PPT A, A WINS in the above
game with probability at most negl(κ).

Theorem 5. The FACTS scheme is unforgeable.

Proof sketch. A valid tag tagy with originator O consists of
tagy = (r, e, σ) where r is a random seed s.t. H(r||y) = h,
e = EncPKS

(O), and σ = SigSKS
(h||e). Thus, to frame O,

A needs to produce a valid signature on h||Enc(O). A can
observe tags from polynomially many messages originated by
Ø, but except with probability negligible in λ none of them
will have the same value h. Thus, by the unforgeability of
Sig, A cannot produce the necessary signature except with
probability negligible in κ.

Next, we give a definition that captures the ability of an
adversary controlling a subset of the clients to delay the audit
of a particular message. Our goal is to show that the adversary
cannot protect a malicious message from being audited.

Specifically, we define the following game,

Gameno−delayEEMS (A):
1) The challenger runs Setup to set up the EEMS with

c clients and gives all key material for the corrupted
clients to A.

2) A issues a single SendMsg(A,B, x) command with
A ∈ A to produce tagx

3) A outputs a list of Complain commands with at most n
total complaints, of which at least ` are complaints on
tagx.

4) The challenger runs the specified complaint commands,
and then runs Audit(A, tagx, x)

5) We say that A WINS if this audit is not successful (i.e.,
the audit threshold is not reached).

Definition 4 (No delay). We say that a FACTS scheme is `-
audit delay resilient for integer ` < n if for any PPT A, A
WINS in the above game with probability at most negl(λ).

Theorem 6. The FACTS scheme is `-audit delay resilient for
any ` ≥ 1.1t+ .4λ+ .7

√
λt.

Proof sketch. This follows immediately from Theorem 2

Next, we define the following game to capture the ability
of a small number of malicious users to cause the audit of
some message. Importantly, this definition also captures the
case where malicious users try to audit an honest message (on
which there are no complaints by honest users). Specifically,
the following game is between an adversary A corrupting at
most ` users and a challenger

Gameno−speedupEEMS (A):
1) The challenger runs Setup to set up the EEMS with

c clients and gives all key material for the ` corrupted
clients to A.

2) The challenger runs a single SendMsg(A,B, x) com-
mand for A /∈ A and B ∈ A.

3) A may issue at most L Complain commands per each
user he controls.5

4) The challenger runs the specified Complain commands,
and then runs Audit(·, tagx, x).

5) We say that A WINS if this audit is successful.

Definition 5 (No speed up). We say that a FACTS scheme is
`-party audit speed-up resilient if for any PPT A controlling
at most ` users, A WINS in the above game with probability
at most negl(λ).

Theorem 7. The FACTS scheme is `-party audit speed-up
resilient for ` ≤ (t− 2.1

√
λt)/L.

Proof sketch. This follows immediately from Theorem 1
because each user ∈ A makes at most L complaints.

VIII. ALTERNATIVE FACTS

In this section we describe several optimizations or enhance-
ments to the basic FACTS protocol.

Throttling complaints. The FACTS system and underlying
CCBF data structure assume a global limit n on the number
of complaints per epoch, but do not require any per-user limit
besides the natural limit of u, the size of the user set.

However, there is some potential for abuse by users who
issue many complaints in a single epoch: they may attempt
to “attack” another known message by issuing multiple com-
plaints that set bits in that message’s user set; they may collude
with others and attempt to go over the total per-epoch limit of
n complaints; or they may simply attempt a denial-of-service
attack to prevent other complaints from being issued.

An simple solution to these problems is to apply a limit
� u on the maximum number of complaints per user per
epoch. This is easy for the server to apply, since users are
authenticated during the Complain protocol. More nuanced
limits based on a user’s reputation or longevity on the platform
could also be applied.

Users with a small “quota” of allowed complaints per
epoch could even be encouraged to participate initially in
the complaint process by forwarding questionable content
to a trusted reputable user on the system, who would then
presumably apply their own judgment and possible issue a
complaint in turn. This idea is aligned with many existing
content moderation settings on (unencrypted) social media
platforms.

Regional complaint servers. The most significant perfor-
mance bottleneck in FACTS is the necessary global lock on
the table T while a single user is waiting to download their
user set UC and reply with their complaint index. Even though
the communication size is quite small for practical settings, the
inherent latency across global communications networks may
impose a challenge.

For example, if many complaining users have a round-
trip latency of more than 200ms, then the global complaint
rate among all users cannot be higher than 5 complaints per

5Recall that FACTS enforces a limit of L complaints per user per epoch.
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second, or some 432,000 complaints per day, regardless of any
parameter settings or chosen epoch length.

One possible solution for a large-scale platform facing this
issue would be to allow multiple local complaint servers,
each with their own CCBF table T , to independently operate
and accumulate complaints per messages. This makes sense,
as most targeted misinformation content is local to a given
country or region, and it would still be possible for each
regional server to share audited message information with
others in order to prevent spread of viral false content between
regions.

Third-party audits. While many messaging and social
media platforms currently employ their own “in-house” teams
for content moderation, there have been some attempts at
separating the role of the server from that of auditor.

From a protocol standpoint, we can imagine a separate
Server and Auditor: the former is semi-honest, handles the
encrypted messaging system and maintains the public CCBF
table T . The Auditor is fully honest and non-colluding, but
computationally limited; intuitively, the third-party Auditor
should only be involved once a messaged has passed the
desired threshold of complaints.

The FACTS system supports this option easily with the
need for any additional cryptographic setup during origination.
Because the CCBF table T is globally shared among all users
as well as the Auditor, any complaining user who computes
TestCount on their own to see that the probabilistic threshold
has been surpassed, can then forward their complaint (i.e., the
opened message) directly to the Auditor. Being fully honest,
the Auditor may hold a copy of the decryption key from
origination and use this to determine what kind of action
may be necessary (such as suspending the originating user’s
account, flagging the message, etc.).

While it doesn’t appear idea imposes any additional inter-
esting challenges from a cryptographic standpoint, it could be
useful for some kinds of messaging platforms.

Hiding message metadata. Our FACTS system is certainly
no more private than the underlying EEMS which is being
used to actually pass messages between users. In our analysis,
we explicitly assumed that the EEMS leaks metadata on the
sender and recipient of each message, but not the contents.

However, some existing EEMS attempt to also obscure this
metadata in transmitting messages, so that the server does
not learn both sender and recipient of any message. This can
trivially be accomplished by foregoing a central server and
doing peer-to-peer communication (note that FACTS may still
be useful as a central complaint repository); or using more
sophisticated cryptography to hide metadata [6], [10], [37].

Of particular interest for us is the recently deployed sealed
sender mechanism on the popular Signal platform [28]. The
goal in this case is to obscure the sender, but not the recipient,
from the server handling the actual message transmission. We
note that this concept plays particularly well with FACTS, as
the additional leakage in our protocol of the identity of each
complaining user, can be presumably correlated via timings

with the receipt of some message, but this is exactly what is
revealed under sealed sender already! Both systems thus work
to still hide message sender and originator identities (at least
until an audit is performed).

However, note that recent work [30] has shown that some
timing attacks are still possible under sealed sender, and the
same attacks would apply just as well to FACTS. But the
solutions proposed in [30] might also be deployed alongside
FACTS to prevent such leakage; we leave the investigation of
this question for future work.

IX. RELATED WORK

Message Franking: The most common approach today for
reporting malicious messages in encrypted messaging systems
is message franking [11], [21], [38]. Message franking allows
a recipient to prove the identity of the sender of a malicious
message. However, message franking is focused on identifying
the last sender of a message, whereas we are interested in iden-
tifying the originator. Moreover, message franking does not
provide any threshold-type guarantees to prevent unmasking
of senders given only one (or a few) complaints.
Oblivious RAM (ORAM): Oblivious Random-Access Mem-
ory (ORAM) [18], [20], [33] allows a client to obliviously
access encrypted memory stored on a server without leaking
the access pattern to the server. The standard ORAM definition
assumes a single user with full control over the database.
While some important progress has been made on multi-client
ORAM protocols [7], [22], [29], these solutions are still not
scalable to millions of malicious users as would be needed for
our application.
Oblivious Counters and Oblivious Data-Structures: Like
CCBF, oblivious counters [17], [25] build counters that can
be stored and incremented without revealing the value of the
counter. However, these techniques focus on exact counting,
and do not provide efficient ways for storing large numbers
of counters, as needed for our applications. More generally,
oblivious data-structures, e.g. [26], [35], [41] construct higher-
level data structures such as heaps, trees, etc. to enable obliv-
ious operations over encrypted data. However, these largely
focus on higher-level applications and do not provide the
compression achieved by CCBF.
Privacy-Preserving Sketching: CCBF can be viewed as
a small data structure (a sketch) for storing the counts of
complaints on a large set of messages. There has indeed been
a lot of recent interest (e.g., [3], [8], [12], [14], [24], [31],
[40]) in private sketching algorithms for cardinality estimation,
frequency measurement, and other approximations. However,
these works generally focus on a multi-party setting, with
multiple parties running secure computation to evaluate the
statistic in question. Since our goal was to restrict ourselves
to user-server communication only, such techniques do not
seem applicable to our setting.
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APPENDIX

We now complete the proofs of lemmas and theorems in
Section IV-C.

We start with the following standard way to approximate
numbers near 1 with exponentials.

Lemma 5. For any real constant α > 0, and any real x with
0 < x ≤ α, we have

exp
(
− 1
α ln 1

1−α · x
)
≤ 1− x < exp(−x).

We also re-state this straightforward consequence of the
Hoeffding/Chernoff bound on the sum of random variables:

Lemma 6. Let X1, . . . , Xn be independent Poisson trials, and
write Y =

∑
iXi for their sum. If E[Y ] = µ, then for any

δ > 0, each of Pr(Y ≥ µ + δ) and Pr(Y ≤ µ − δ) are at
most exp(−2δ2/n).

We now recall and prove the building-block lemmas from
Section IV-C.

Lemma 2. Let x be an item such that at most τ of x’s item
slots are filled. If the CCBF parameters s, u, v satisfy v ≥
7.042652τ and u ≥ 0.5184846 sτ , then the probability that a
call to Increment(x,C) fills in one more of x’s item slots is
at least 0.956414.

Proof. From (2), we know this probability is exactly pw =
1− (s−u)w

sw , where w = v − τ is the number of unfilled slots
remaining. Using Lemma 5 we have (s−u)w

sw ≤
(
1− u

s

)w ≤
exp(−uw/s), which means that

pw ≥ 1− exp
(
−u(v−τ)s

)
= 1− exp

(
−uτs ·

(
v
τ − 1

))
.

Applying the two lower bounds on uτ
s and v

τ from the lemma
statement yields the claimed result.

Lemma 3. Let x be any item. If the CCBF parameters s, u, v
satisfy 371 ≤ v ≤ 0.00386s and u ≤ 3.65151 sv , then the
probability that a call to Increment(x,C) fills in one more of
x’s item slots is at most 0.974876.

Proof. Using again (2), the probability is exactly pw = 1 −
(s−u)w
sw , where again w ≤ v is the number of unfilled slots for

item x. Then
(s−u)w
sw ≥ (s−u)v

sv ≥
(
s−u−v+1
s−v+1

)v
>
(

1− u
s−v

)v
.

Using upper bounds on v
s and u from the lemma statement,

we have

pw < 1−
(

1− u
s−v

)v
≤ 1−

(
1− 3.66567 1

v

)v
.

Finally, the lower bound on v from the lemma statement shows
3.66567/v ≤ 0.00989, and so we can finally use the lower

exponential bound of Lemma 5 to obtain the stated result.

Lemma 4. Let s, u, v be CCBF parameters that satisfy the
conditions of Lemma 3, and suppose m, t are integers such
that s ≥ 96m and v ≤ 7.409t. Then the tipping point τ , for
threshold t and with m total set bits in the table T , is at most
1.0520553t.

Proof. The tipping point τ is the expected number of slots
filled in the table if t of the m total calls to Increment were
actually called on this particular item.

We can divide the calls to Increment into two groups: the
t calls for item x, and the m − t calls for other items. The
expected number of slots within x’s item set filled by the first
group is at most 0.974876t, from Lemma 3.

For the second group, these calls to Increment on unrelated
items are distributed uniformly at random among all table
indices, and so their expected fraction within this item set
is the same as their overall fraction in the table. Therefore,
the expected number of slots filled by calls to Increment on
other items is at most

(m− t)v
s

<
mv

s
≤ 7.409

96
t.

By linearity of expectation, we can sum these two to obtain
an upper bound on the total expected tipping point as given
in the lemma statement.

Now we can proceed to the proofs of the main theorems on
the accuracy of the CCBF.

Theorem 1. Let n be an upper bound on the total number of
calls to Increment, and t be a desired threshold for TestCount.
Suppose the parameters s, u, v for a CCBF data structure
satisfy the conditions of Lemma 2, and furthermore that
v ≤ 8t. If the actual number of calls to Increment(x,C) is at
most t− 2.1

√
λt, then the probability TestCount(x, t) gives a

false positive is at most 2−λ.

Proof. Let τt be the tipping point for any actual number m ≤
n of total set bits in the table T and for the given threshold
t. And consider random variables X1, . . . , Xv for the v slots
assigned to item x, where each X1 is 0 or 1 depending on
whether the corresponding slot in table T is 0 or 1. We want
to know the probability that the sum of the Xi’s is at least τt,
which is what would cause TestCount(x, t) to produce a false
positive.

Let k = t − 2.1
√
λt be the actual number of calls to

Increment on item x, and write τk for the tipping point at
threshold k. By definition and the exact calculations for τk
outlined earlier, we know that E[

∑
Xi] = τk.

The difference between these two tipping points τt − τk is
the expected number of extra slots filled by t − k calls to
Increment, which from Lemma 2 is at least

0.956414(t− k) = 0.956414 · 2.1
√
λt ≥

√
λv
2 ,

15



where in the last step we used the upper bound on v from the
assumptions of the theorem.

The variables Xi are not independent, but they are neg-
atively correlated, meaning that the whenever one slot is
filled, it only decreases the likelihood that another is filled;
intuitively, this is because there are now fewer chances to fill
the other slot. Therefore we can apply the Hoeffding bound
in this direction (Lemma 6) to say that

Pr

(∑
Xi ≥ τk +

√
λv
2

)
≤ exp(−λ),

as required.

Theorem 2. Let n be an upper bound on the total number of
calls to Increment, and t be a desired threshold for TestCount.
Suppose the parameters s, u, v for a CCBF data structure
satisfy the conditions of Lemmas 2 and 4. If the actual number
of calls to Increment(x,C) is at least

1.1t+ .4λ+ .7
√
λt, (4)

then the probability TestCount(x, t) gives a false negative is
at most 2−λ.

Proof. Writing k for the actual number of complaints given
in (4), we need a tail bound on the probability that, after k
calls to Increment on the same item x, there are still fewer
than 1.0520553t slots of x’s item set filled in, where the latter
constant comes from applying the upper bound on the tipping
point from Lemma 4.

For this, we need a lower bound on the expected number of
bits set after k calls to Increment on item x; from Lemma 2
this is at least 0.956414k.

Now we can apply the Hoeffding bound (Lemma 6), with
µ = 0.956414k and µ + δ = 1.0520553t ≥ τ to see that the
probability that less than τ bits of x’s user set are flipped is
at most

exp
(
−2(1.0520553t− 0.956414k)2/k

)
≤ exp

(
−2
(

0.38λ+ 0.66
√
λt
)2
/k

)
≤ exp

(
− .28λ2 + λ

√
λt+ .87λt

.4λ+ .7
√
λt+ 1.1t

)
≤ exp(−.7λ) ≤ 2−λ.
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