
Fast Strategies for the Implementation of SIKE
Round 3 on ARM Cortex-M4

Mila Anastasova1, Reza Azarderakhsh1 and Mehran Mozaffari Kermani2

1Florida Atlantic University, FL, USA
{manastasova2017, razarderakhsh}@fau.edu

2University of South Florida, FL, USA
mehran2@usf.edu

Abstract. The Supersingular Isogeny Key Encapsulation mechanism (SIKE) is
the only post-quantum key encapsulation mechanism based on supersingular
elliptic curves and isogenies between them. Despite the security of the protocol,
unlike the rest of the NIST post-quantum algorithms, SIKE requires more
number of clock cycles and hence does not provide competitive timing, energy
and power consumption results. However, it is more attractive offering smallest
public key sizes as well as ciphertext sizes, which taking into account the
impact of the communication costs and storage of the keys could become as
good fit for resource-constrained devices. In this work, we present the fastest
practical implementation of SIKE, targeting the platform Cortex-M4 based on
the ARMv7-M architecture. We performed our measurements on NIST recom-
mended device based on STM32F407 microcontroller, for benchmarking the
clock cycles, and on the target board Nucleo-F411RE, attached to X-NUCLEO-
LPM01A (Power Shield), for measuring the power and energy consumption.
The lower level finite field arithmetic and extension field operations play main
role determining the efficiency of SIKE. Therefore, we mainly focus on those im-
provements and apply them to all NIST required security levels. Our SIKEp434
implementations for NIST security level 1 take about 850ms which is about
22.3% faster than the counterparts appeared in [SAJA20a]. Moreover, our
implementations are 21.9%, 19.7% and 19.5% faster for SIKEp503, SIKEp610
and SIKEp751 in comparison to the previously reported results in [SAJA20a]
for other NIST recommended security levels. Finally, we benchmark power and
energy consumption and report the results for comparison.
Keywords: Supersingular Isogeny Key Encapsulation (SIKE), Post-Quantum Cryp-
tography (PQC), Arm Cortex-M4

1 Introduction
The increasing capabilities of quantum computers are the motivation behind post-quantum
cryptography (PQC) [Ber09]. Due to their data unit - the q-bit, and the principle
of superposition, they are able to solve the hard mathematical problems underlying the
classical cryptography in much shorter time than the nowadays computers. Shor’s algorithm
[Sho94] proves that factorization and elliptic curve discrete logarithm problems, the base
of the widely used cryptosystems RSA and ECC, can be easily broken when quantum
computers, equipped with enough q-bits, are developed. It is important to notice that
the existence of such big machines is not yet achieved, however, once they are built, our
private data, collected at any moment by a malicious party, could be easily decrypted in
polynomial time, instead of exponential, when classical computers are used.

mailto:manastasova2017@fau.edu
mailto:razarderakhsh@fau.edu
mailto:mehran2@usf.edu

2 Fast Strategies for the Implementation of SIKE Round 3 on ARM Cortex-M4

Due to the rising threat of quantum computers the National Institute of Standardization
and Technology (NIST) [oSN] started a competition for post-quantum secure algorithms
in 2016. Between the years 2017 and 2020 Round 1 and Round 2 of the competition
were completed and their finalists - announced. The last round started in the year 2020
and still evaluates the candidates and their constant improvements, where the finalist
algorithm is expected to be announce during the year 2021. The final round of the
competition assesses two main groups - 9 Key Encapsulation Mechanisms (KEMs) and 6
Digital Signature Algorithms (DSAs). The main advantage of the supersingular elliptic
curve-based cryptosystem, forming part of the alternate group of KEMs, is the compact
size of the public keys and ciphertexts (i.e., 330 and 346 bytes for the NIST security level 1
implementation, respectively), which ensures insignificant communication latency. Taking
into consideration the total timing - the computation cost and the data transmission,
the size of the exchanged information results to be crucial, especially for the IoT and
low-end real-time systems, where the traffic of data is enormous, and the fast information
transmission is crucial for the functionality of the system.

The Supersingular Isogeny Key Encapsulation (SIKE) [JAC+17] scheme is based on
the Supersingular Isogeny Diffie-Hellman (SIDH) algorithm proposed in 2011 by Jao and
De Feo [PQC]. Both protocols rely on computations over elliptic curves similar, but
more sophisticated, than the widely used Elliptic Curve Cryptography (ECC). Although
several performance optimizations of ECC were proposed in the last years, targeting
software and hardware [FA17, Seo20, NEKAMK20, NAK20], in the era of the quantum
computers, this cryptosystem is not going to ensure securely transmitted information. To
provide post-quantum resistance, SIDH and SIKE schemes are based on secret isogeny
maps between supersingular elliptic curves, grouped in different isomorphic classes. These
collections of curves are characterized by the j−invariant value of their elements, which is
used as a unique identifier for each one of these classes. SIDH, however, shows vulnerability
when one of the communication parties uses static key, allowing to break the algorithm in
sub-exponential time [DF]. To eliminate this static key vulnerability SIKE was introduced
as an IND-CCA algorithm, based on pseudorandom walks through supersingular elliptic
curves.

Since the start of the NIST competition several research groups centered their work
on the improvement of SIKE, aiming to reach efficiency in the computational time of
the algorithm. In [SLLH18], [KJA+16], [SSJA20], [SAJA20b] the authors propose several
strategies, targeting ARMv7-M, ARMv7-A and ARMv8 Arm based architectures, reporting
significant speedup of the algorithm execution time. Several hardware implementations
were proposed as well in [EAMK20a],[KAEK+20], [EAMK20b], [PLW+20] targeting the
Xilinx Virtex 7 platform.

Contribution. In this work, we propose speed record results for the implementation
of SIKE, targeting the resource restricted processor ARM Cortex-M4. Our contributions
are itemized as follow:

• We propose to cleverly exploit the special form of the prime numbers used in SIKE for
different NIST security levels and propose new techniques for reducing the number of
memory accesses, therefore, decreasing significantly the clock cycles and the energy
consumption of the protocol. Using these novel implementation strategies, we provide
implementation speedup between 19.5% and 22.3% for all the NIST security levels of
SIKE, where the maximum improvement is obtained for the prime SIKEp434 with
22.3% better performance, resulting in 1.28 times faster execution time.

• We propose a novel idea for the field multiplication, squaring and reduction operations.
We use the floating-point register set as a level 1 cache memory, where we store the
partial value of operations or the operand values. This allows us to significantly
reduce the expensive memory access instructions. Moreover, it allows to increase the

Mila Anastasova, Reza Azarderakhsh and Mehran Mozaffari Kermani 3

row size of the multiplication, therefore, allows the implementation of completely
different sequences of instructions for the reduction and squaring techniques.

• We propose efficient and optimized architectures for field modular addition. Our
modular addition, based on continuous alternating block subtractions/additions,
allows the implement the carry/borrow catcher, using one register for both, and
allows us to perform less instruction for storing and activating the carry/borrow flag.
This on the other side makes one register to be released, which permits to increase
the size of the computational block. Moreover, based on the special form of the
prime numbers, we decided to add the value of 2 to the modulus value, which results
in several all-zero words and saves multiple subtraction instructions.

Organization. The rest of the paper is organized as follows. Section 2 reviews the
mathematical background, needed for understanding of SIDH/SIKE. Section 3 shows
the finite filed arithmetic operations underlying SIDH/SIKE protocols and the proposed
optimization strategies, applied to the implementation. We describe in details the modular
addition, multi-precision multiplication, squaring and Montgomery reduction. Section 4
shows the timing, power and energy consumption results. In Section 5 we summarize our
work and the achieved results.

2 Preliminaries
This section presents an overview of the mathematical concepts, needed for understanding
the supersingular isogeny elliptic curve-based protocols SIDH and SIKE. More detailed
description of the algorithms is presented in documentation of SIKE [SIK].

2.1 Isogeny-Based Cryptography
The transition from classical cryptographic schemes to post-quantum algorithms will offer
much higher security to the communication parties, due to the hard mathematical problems
underlying the new encryption schemes. The mathematical concepts behind SIDH (base
of SIKE) are founded on supersingular elliptic curves, isomorphic classes, j-invariants and
isogeny maps.

A Montgomery-form elliptic curve is defined by the set of points satisfying the equation:

Ea,b/Fp2 : by2 = x3 + ax2 + x

together with the point at infinity, denoted by O. In order to eliminate infinite sets, the
elements, belonging to the curve, are defined over the quadratic extension of a finite field
Fp. The elements of the curve consist of two coordinates (x, y), where both coordinates
are in Fp2 , with x, y = ai+ b and a, b ∈ Fp.

Unlike ECC, the SIDH scheme is based on pseudorandom isogeny walks through
supersingular elliptic curves, defined over a finite field Fp2 , which can be divided into
roughly

⌊
p
12

⌋
groups, called isomorphic classes. Each of them uniquely identified by the

value of the j−invariant which is calculated as follows:

j(Ea,b/Fp2) = 256(a2 − 3)3

(a2 − 4)

The isomorphism is defined as a transition function between two elliptic curves, having
the same j−invariant, which allows both communication parties to use its value as a shared
secret for further efficient symmetric enciphering scheme, since they reach curves from the
same isomorphic class.

4 Fast Strategies for the Implementation of SIKE Round 3 on ARM Cortex-M4

Public Parameters:p = `eA

A `eB

B ± 1, E0/Fp2 , {PA, QA} and {PB , QB}

Alice Bob

1. skA = mA,nA ∈ Z/`eA

A Z
2. φA : E0 → EA with
ker(φA) = 〈[mA]PA + [nA]QA〉

3. pkA = {EA, φA(PB), φA(QB)}

1. skB = mB,nB ∈ Z/`eB

B Z
2. φB : E0 → EBwith
ker(φB) = 〈[mB]PB + [nB]QB〉

3. pkA = {EB , φB(PA), φB(QA)}
pkA

−→
pkB

←−
4. φ′

A : EB → EBA with
ker(φA) = 〈[mA]φB(PA)+[nA]φB(QA)〉

5. ss = j(EBA)

4. φ′
B : EA → EAB with

ker(φB) = 〈[mB]φA(PB)+[nB]φA(QB)〉
5. ss = j(EAB)

Figure 1: SIDH algorithm [PQC].

The pseudorandom walks among the curves consist of isogeny computations. Isogeny
is more generic map between curves, which does not ensure the same j−invariant of the
original and the image curves. By theorem of Tate [Tat66] two curves are isogenous only
if they have the same number of points over a finite field. Velu’s [Vél71] formula is used
to find an isogeny φ and isogenous curve E → E/ 〈G〉, where G denotes the kernel of the
isogeny and can be any finite subgroup from E/Fp2 . The computational cost of the formula
is high, especially for high degree isogenies. In SIKE, for performance optimization, the
large isogenies are split into several maps of smaller degree, where isogenies of degree `e

are split into e isogenies of degree `. Therefore, Alice and Bob compute several "jumps"
through the supersingular curves, forming pseudorandom walks on the isogeny graph.

The security of the isogeny-based cryptosystems relies on the difficulty to find the
function, leading from E to E/ 〈G〉 without knowing the kernel, whereas it is relatively
simple to compute the isogeny map, knowing the subgroup. The best known attack to
find an isogeny, knowing the original and image curves has a complexity of O(√p) and
O(3
√
p), when using classical and quantum computers, respectively. While the security is

significantly improved, since SIKE is believed to the quantum secure, its computational
cost is much higher than the classical cryptosystems.

2.2 Supersingular Isogeny Diffie-Hellman
The Supersingular Isogeny Diffie-Hellman (SIDH) protocol is based on the idea of the
classical Diffie-Hellman scheme, both of which aim to reach an agreement on a shared
secret between two parties. Alice and Bob start from some public parameters, perform
computations, based on their secret data, exchange the result that they have obtained, and
in similar way apply again their secret key to the received data to finally reach a shared
secret which allows them to start using much more efficient symmetric cryptosystems.
While the idea behind both cryptosystem remains the same, the mathematical problem,
underlying the schemes is completely different. SIDH is based on isogeny walks through
supersingular elliptic curves, which increases the security of the system.

Figure 1 shows a high level overview of SIDH, where Alice and Bob start from a
public elliptic curve E0/Fp2 , where p has the form of `eA

A `eB

B f ± 1. In addition, both
parties generate two basis points {PA, QA} and {PB , QB}, respectively, and publish
them. Alice uses her two points, together with her secret key, which consists of two
integers skA = mA,nA ∈ Z/`eA

A Z, to compute her secret isogeny φA : E0 → EA with kernel

Mila Anastasova, Reza Azarderakhsh and Mehran Mozaffari Kermani 5

ker(φA) = 〈[mA]PA +[nA]QA〉. Bob performs the same operations, where his secret isogeny
is of the form φB : E0 → EB, with kernel of the isogeny ker(φB) = 〈[mB]PB + [nB]QB〉.
After Alice and Bob reach the images of the public curve EA and EB, they find the
projection of the other party basis point on their new curves. Finally, Alice and Bob form
their public keys as {EA, φA(PB), φA(QB)} and {EB , φB(PA), φB(QA)}, respectively.

After both parties exchange this information they use, in a similar way, their secret key to
reach curves, belonging to the same isomorphic classes, therefore, with the same j−invariant
value. In particular, Alice will compute an isogeny φ′

A : EB → EBA = EB/〈[mA]φB(PA) +
[nA]φB(QA)〉 and Bob - φ′

B : EA → EAB = EA/〈[mB]φA(PB) + [nB]φA(QB)〉. Finally,
they compute the j−invariant of the resulting curves as j(EBA) = j(EAB), using it as a
shared secret for further communication.

The security of the SIDH algorithm is approximately O(4
√
p) and O(6

√
p) when using

classical or quantum computers, respectively.

2.3 Supersingular Isogeny Key Encapsulation
SIKE was proposed in 2011 by Jao and De Feo [PQC] and was classified as an alternate
candidate for the NIST Round 3 post-quantum standardization competition, where during
the first two rounds it was optimized significantly and it is yet to be improved.

SIKE is a key encapsulation mechanism (KEM) where the parties of communication
reach a shared secret, which is generated as a random message m and then encapsulated
and decapsulated. Detailed graphical representation of the steps performed by both parties
during the execution of the cryptography protocol is shown in Figure 2.

Figure 2 shows detailed description of the operations that Alice and Bob perform to
reach a shared secret when using the post-quantum secure algorithm SIKE.

To perform the protocol Alice and Bob start, similar to SIDH, from a public super-
singular elliptic curve E0/Fp2 , where the prime number p has the form of `eA

A `eB

B ± 1 and
the values of eA and eB vary depending on the NIST security level of the implementation.
Both parties generate and publish two basis points {PA, QA} and {PB , QB} that generate
E0[`eA

A] and E0[`eB

B], respectively. While performing the SIKE protocol, Bob generates his
pair of public and private keys in the same way as in the SIDH algorithm, and sends his
public key to Alice, whereas she is reusing his public key to encapsulate (using several hash
functions denoted in Figure 2 as H, K and J) the random message value. In particular, Bob
uses his secret key skB ∈ Z/`eB

B Z and his base points to compute the kernel of his secret
isogeny map φB : E0 → EB = E0/〈PB + [skB]QB〉, which leads him to curve EB . Similar
to SIDH, Bob finds the projection of Alices’ basis points and forms his public key, using
the image curve together with the two projected points: pkB = {EB , φB(PA), φB(QA)}.

In the scenario of SIKE Alice uses Bob’s public key to perform two secret isogenies:
she reaches curve EA, using an isogeny map φA with kernel 〈PA + [r]QA〉, where r is a
hash of the random message m, concatenated with Bob’s public key. Alice creates her
public key as pkA = {EA, φA(PB), φA(QB)}, using the new image curve and the projection
of Bob’s basis points on it. Moreover, she uses Bob’s public key to compute a second
isogeny, which starts from the image of Bob’s curve using as kernel the projection of her
basis points and the integer r : φ′

A : EB → EAB = EB/〈φB(PA) + [r]φB(QA)〉. Alice
generates the ciphertext that she sends to Bob as the concatenation of her public key and
the XOR function of the secret message with a hash of the j−invariant j(EAB). Finally,
she computes the shared secret as a hash function of the concatenation of the random
message and the ciphertext, that she has computed.

Bob, on the other side, tries to recover the value of the random message m that
Alice masked in the ciphertext. He attempts to compute the value of the integer r
and to reconstruct the same isogeny map, that Alice used to reach the second image
curve EBA. In particular, Bob computes an isogeny function φ′

B : EA → EAB =
EA/〈φA(PB) + [r]φA(QB)〉, which corresponds to the second isogeny performed by him in

6 Fast Strategies for the Implementation of SIKE Round 3 on ARM Cortex-M4

Public Parameters:p = `eA

A `eB

B − 1, E0/Fp2 , {PA, QA} and {PB , QB}

Bob Alice

1. skB ∈R Z/`eB

B Z
2. φB : E0 → EB with

ker(φB) = 〈PB + [skB]QB〉
3. pkB = {EB , φB(PA), φB(QA)}
4. s ∈R {0, 1}t

pkB

−→
1. m ∈R {0, 1}t

2. r = H(m||pkB)mod`eA

A

3.φA : E0 → EA with
ker(φA) = 〈PA + [r]QA〉

4. pkA = {EA, φA(PB), φA(QB)}
5.φ′

A : EB → EBA with
ker(φ′

A) = 〈φB(PA)+[r]φB(QA)〉
6. c = (c0, c1) =
(pkA,K(j(EBA))⊕m)
7. ss = (J(m||c))

c = (c0, c1)
←−

1. φ′
B : EA → EAB with

ker(φ′
B) =

〈φA(PB) + [skB]φA(QB)〉
2. m′ = c1 ⊕K(j(EAB))
3. r′ = H(m′||pkB)mod`eA

A

4. φ′′
A : E0 → EA′ with

ker(φ′′
A) = 〈PA + [r′]QA〉

5. pk′
A = {EA′ , φ

′′
A(PB), φ′′

A(QB)}
6. IF pk′

A = c0
ss = (J(m′||c))

ELSE ss = (J(s||c))

Figure 2: SIKE algorithm [JAC+17].

the SIDH protocol. Afterwards, Bob starts trying to recompute what Alice has already
calculated: he finds the j−invariant of the curve EAB , computes its hash function, which
Alice used to mask the message m with, and reverses the XOR operation. He continues by
recovering the value of r as the hash of m′, concatenated with his public key, repeating the
steps that Alice previously performed. He then computes the second isogeny map of Alice,
using the value r′: φ′′

A : E0 → E′
A = E0/〈PA + [r′]QA〉 and forms Alice’s public key. In

the final step Bob compares the public key of Alice from the ciphertext message and the
one that he has obtained. In case they coincide, he calculates the shared secret in the same
way as Alice did: J(m′||c), where c is the ciphertext, received from Alice and J is hash
function. In the case the value are different, he will use a random value s, created during
the key generation phase, instead of the value of m′ and will compute J(s||c), which will
prevent further communication between both parties.

During Round 2 of the NIST competition the parameters used for the implementation
of SIKE were updated and Round 3 keeps these values. The public supersingular curve
has the shape of E0/Fp2 : y2 = x3 + 6x2 + x, with of p = `eA

A `eB

B − 1. The values for

Mila Anastasova, Reza Azarderakhsh and Mehran Mozaffari Kermani 7

Table 1: Summary of round 3 SIKE public parameters of SIKE submission [JAC+17].

Curve: E0/Fp2 : y2 = x3 + 6x2 + x

Parameter Set NIST Security Public Key Cipher Text Shared Secret
Level Size (B) Size (B) Size (B)

SIKEp434 1 330 346 16
SIKEp503 2 378 402 24
SIKEp610 3 462 486 24
SIKEp751 5 564 596 32

`A = 2 and `B = 3 are fixed to ensure faster computations, however, the values of eA and
eB vary, depending on the security that the implementation is covering. SIKE has four
different primes which ensure NIST security level 1, 2, 3, and 5, respectively of length
434, 503, 610 and 751 bits. More detailed description of the length of the parameters of
SIKE is presented on Table 1. The arithmetic computations over such big integers become
challenging, especially when targeting resource restricted embedded devices. Therefore, the
acceleration of such operations is the main objective for improving SIKE and its timing,
power and energy consumption results.

3 Proposed Finite Filed Arithmetic Computations
The arithmetic operations, required for the execution of SIKE, are in a pyramid-like struc-
ture, consisting of several layers, where the highest one is formed by the SIKE complex
isogeny computations, whereas the lowest one is composed by finite field arithmetic opera-
tions. The execution of high-level function requires several invocations of every consecutive
lower level. Therefore, the speedup of the lowest level of the protocol computational
pyramid ensures significant impact on the overall performance of the cryptosystem.

In this section we describe the modifications that we applied to the finite field operations
to considerably decrease the number of clock cycles needed for the execution of SIKE.

3.1 Modular Filed Addition
Modular addition consists of adding two operands A and B and reduce the result modulo
p in case it is not inside the finite field. This arithmetic operation requires one addition
and one conditional subtraction. However, the development of a cryptosystem, that is
secure against side-channel attacks, requires constant time execution of the operations
independently of the operand values. For robust schemes, the modular addition is hence
formed as one long-integer addition and one long-integer subtraction. The borrow produced
by the subtraction determines the sign of the resulting number T=A+B-p, therefore, is used
to form a mask which is 0xFFFFFFFF when the result is negative and 0x0 when positive.
Finally, the prime p is masked and added back to the result. In this way we obtain A+B-p+p
if A+B-p is negative and A+B-p if A+B-p+0 is positive. This implies two additions and one
subtraction per operation. The strategy increases the timing of the finite filed computation,
since it introduces a redundant addition, however, it ensures the constant time execution,
eliminating the possibility of timing or power attacks.

Several works propose optimizations of this arithmetic operation. In [KPHS18] the
authors provide an assembly implementation of the modular addition and subtraction
operations. Further, in [SAJA20a] the authors introduce a new design, combining the first
addition and subtraction, keeping the carry and borrow bits into general purpose registers
(GPRs), exploiting a novel carry and borrow catcher technique.

In this work, we propose two novel ideas for outperforming the previous implementations

8 Fast Strategies for the Implementation of SIKE Round 3 on ARM Cortex-M4

ADDS
R A

B

C_OUT

A[0]

B[0]

ADCS
R A

B

C_OUT

C_IN
A[1]

B[1]

ADCS
R A

B

C_OUT

C_IN
A[2]

B[2]

ADCS
R A

B

C_OUT

C_IN
A[3]

B[3]

ADCS
R A

B

C_OUT

C_IN
A[4]

B[4]

SBC
R A

B

B_IN
CC

CC

CC

SUBS
R A

B

B_OUT

P[0]

SBCS
R A

B

B_OUT

B_IN

P[1]

SBCS
R A

B

B_OUT

B_IN

P[2]

SBCS
R A

B

B_OUT

B_IN

P[3]

SBCS
R A

B

B_OUT

B_IN

P[4]

R[0]

R[1]

R[2]

R[3]

R[4]

R A

B

B_OUT

A[5]

P[5]

SBC
R A

B

B_IN
BC

BC

BC

B_IN

R[1]

C_IN

ADCS
R A

B

C_OUT

B[5]

ADCS
R A

B

C_OUT

C_IN

B[6]

ADCS
R A

B

C_OUT

C_IN

B[7]

ADCS
R A

B

C_OUT

C_IN

B[8]

ADCS
R A

B

C_OUT

C_IN

B[9]

ADCS
R A

B

C_OUT

C_IN
A[10]

B[10]

ADCS
R A

B

C_OUT

C_IN
A[11]

B[11]

ADCS
R A

B

C_OUT

C_IN
A[12]

B[12]

ADCS
R A

B

C_OUT

C_IN
A[13]

B[13]

ADCS
R A

B

C_OUT

C_IN
A[14]

B[14]

ADC
R A

B

C_IN
A[15]

B[15]

SBCS

R A

B

B_OUT

B_IN
A[6]

P’[6]

SBCS
R A

B

B_OUT

B_IN
A[7]

P’[7]

SBCS
R A

B

B_OUT

B_IN
A[8]

P’[8]

SBCS
R A

B

B_OUT

B_IN
A[9]

P’[9]

SBCS
R A

B

B_OUT

B_IN

P[10]

SBCS
R A

B

B_OUT

B_IN

P[11]

SBCS
R A

B

B_OUT

B_IN

P[12]

SBCS
R A

B

B_OUT

B_IN

P[13]

SBCS
R A

B

B_OUT

B_IN

P[14]

SBCS
R A

B

B_OUT

B_IN

P[15]

RSBS
R A

B

B_OUT

CC

#0RSBS
R A

B

B_OUT

BC

#0

R[5]

R[6]

R[7]

R[8]

R[9]

R[10]

R[11]

R[12]

R[13]

R[14]

R[15]

A[5]

SBCS↘

SUBS

Figure 3: Proposed modular addition design with optimized Carry/Borrow Catcher
(marked as CC and BC, respectively) due to the alternating sequence of addition and
subtraction blocks. The first k subtractions (k depends on the prime number, used for the
different NIST security level implementations of SIKE), marked in blue, are eliminated by
replacing the value of P= 2p with P’= 2p+ 2.

of modular addition. First, by implementing an alternating sequence of additions and
subtractions, our design requires less carry/borrow catcher operations. Moreover, by the
"operation block flipping" strategy, we free one of the GPRs, which allows to execute more
additions/subtractions at a time, where in the last block the number of limbs per operand
may be increased to 6 as shown in Figure 3, since the registers, that keep the memory
addresses of the operands, are freed. This reduces the number of non-consecutive memory
accesses by using the LDM instruction for loading more 32−bit values from A and B. We free
one of the registers, previously used to store the carry or borrow values, by the continuous
switch between addition and subtraction blocks, as shown in Figure 3 (modular addition
for p503), while the first set of instructions (A+B)-P is computed. Our design requires
only one register to keep the carry or the borrow flag, since the operations are reversed,
therefore, we store the value of the carry, activate the following carry flag when needed
and then replace it by the borrow, produced by the last executed block.

On Figure 3, the carry flag is saved after the first 5 addition instructions, since the
operand A[0]-A[4] is added with B[0]-B[4]. Later, the subtraction of the prime from the
resulting value propagates the borrow using the SBCS instruction. The borrow flag is not
saved after the first 5 subtractions, since afterwards we perform A[5]-A[9] - P[5]-P[9]
and the borrow is propagated by the instruction itself. After 10 subtractions the carry
flag is activated using the carry catcher register and then the borrow is stored in the same
GPR. The carry/borrow catcher is implemented by subtracting a register from itself with
the carry propagation option - SBC. We store the result inside the same register, calling it
carry/borrow catcher register. Therefore, its value is 0xFFFFFFFF in case the carry/borrow
flag is active and 0x0 in case it is not. Later, when the next addition instruction is executed,
the value of the flag is activated, depending on the carry catcher register value, using the
instruction RSBS, which performs reversed subtraction. Using 0x0 as a second operand and
the carry/borrow catcher register as the first, the flag will result activated if the catcher

Mila Anastasova, Reza Azarderakhsh and Mehran Mozaffari Kermani 9

register is equal to 0xFFFFFFFF and will be deactivated in case it is 0x0. The carry and
the borrow catchers are implemented, using the same set of instructions - SBC to store the
flag into the register and RSBS to activate the flag using the same register. The proposed
operation block alternating strategy we reduce the number of carry/borrow store and
activate instructions. Moreover, we free one register which is used to load more consecutive
limbs from both operands into the register set. For instance, for p503, shown on Figure
3, we split the operands in only 3 subgroups instead of 4, as proposed in the previous
best implementation design [SAJA20a], thus we reduce the number of non-consecutive
memory accesses. Since the nature of the target platform allows memory access instruction
of subsequent addresses to be executed in N + 1 clock cycles, where N is the number
of 32−bit values loaded or stored, the reduction of the number of subgroups allows to
decrease the number of clock cycles, produced by non-consecutive memory accesses, per
modular addition operation.

It is important to note that, despite the alternation of the add/sub operations, the
last performed instruction should be always a subtraction, since the borrow shows if the
resulting number is positive or negative, thus determines the mask value for the final
addition with P. Therefore, the first operation block (addition or subtraction) depends on
the prime number used for SIKE security level 1, 2, 3 and 5, such that the final borrow
can be kept in the carry/borrow flag.

In this work we also propose to use the special form of the SIKE primes to optimize
even more the quantum secure scheme. As seen before, p has the form of 2eA3eB − 1 which,
due to the value of the exponents, results in a number with several 32-bit all-one words at
the end of the prime. The reduction inside the modular addition of SIKE uses the value
of P= 2p, where the ×2 operation simply results in shifting the number 1 bit to the left.
Therefore, the last words of P consist of several 1′s and a 0 at the end. We noticed that if
we add 2 to the value of P, P’=P+2, all the 1′s followed by a 0 at the end are be replaced
by all-zero words, where the first non-zero digit is increase by one. Based on this idea, we
propose an implementation of the modular addition as follows:

(A+B)-(2P+2)+((MASK2P)+2)

The proposed idea is graphically represented in Figure 3. Since the last k words of P’
are all-zero, we can skip as many subtractions as number of words equal to 0. The value
of k depends on the SIKE prime value. Since we subtract 2P+2 from the partial result,
we add again 2 to the masked value of 2P. In this case we add back the value of 2 as a
final addition or the value of 2P+2. The eliminated subtraction instructions are shown
in blue on Figure 3. This implementation design results in significant speedup due the
considerable reduction of instructions.

Our two novel proposals for the implementation of modular addition result in out-
performance of the previous development designs and significantly improve the overall
timing results for the post-quantum secure algorithm. Moreover, since the proposed
implementation is completely scalable, it is adapted to all the SIKE primes.

3.2 Field Multiplication, squaring, and reduction
The modular multiplication, used for the implementation of SIKE, is Montgomery multi-
plication, which performs multiplications and reduction. It consists of two multiplications
and an addition, where the specific form of the prime numbers, used for the post-quantum
secure protocol, allows several techniques for reducing the execution time. In this section
we propose novel idea for reducing the number of clock cycles of the multiplication, the
reduction and the squaring functions. The scalability of our design allows the adaption of
the implementation to different lengths; therefore, we implemented all the four different
secure levels of SIKE and observed a significant speedup for all of them.

10 Fast Strategies for the Implementation of SIKE Round 3 on ARM Cortex-M4

The architecture of the target platform of this work - Arm Cortex-M4 - promises 1 clock
cycle (CC) per instruction, except for memory access operations, which require 2 CCs.
Therefore, the implementation designs, based on this processor, are focused on reducing
the number of load and store instructions. We present a novel implementation strategy,
which minimizes the memory access instructions. We propose to use the entire set of
floating-point registers (FPRs) simulating level 1 cache memory, requiring only 1 CC per
instruction. Therefore, instead of accessing the memory, which requires 2 CCs, we move
the values from general purpose registers (GPRs) to FPRs. The VMOV instruction requires
only 1CC independently of the order of instructions and ensure that no data dependencies
or structural hazards are produced. This novel idea is the base of our implementation
designs for the multiplication, reduction and squaring operations. Table 2 shows detailed
number of the memory instructions used in several implementations, including our work,
where we replace some of the memory accesses by moving instruction between the two
types of register sets.

3.2.1 Field Multiplication

The multi-precision multiplication operation forms large part of the cryptographic pro-
tocols since the computationally expensive operations (i.e., inversion) are replaced by
several multiplication invocations. This motivates several research groups to focus on
the performance of this operation. The implementation shown in [KPHS18] is based on
the Karatsuba multiplication [KO62], where instead of performing one multiplication of
operand sizes n, three half-size multiplications are completed together with several addi-
tions/subtractions. The time complexity of the Karatsuba algorithm is O(nlog23), whereas
the Product Scanning (PS) approach has time complexity of O(n2), therefore, the proposed
implementation shows better performance. Furthermore, in [DSS16] the authors implement
a 2-level Karatsuba multiplication ending with several 64× 64-bit multiplications instead
of one 256× 256-bit operation. However, due to the architecture of the target processor,
the use of the low cost Multiply ACcumulate (MAC) instructions is proposed in [HW11]
and is integrated in the big-integer multiplication design, since no stall are introduced
after the complex instruction execution. The use of MAC instructions, combined with
reduced number of memory accesses, leads to the most efficient implementation algorithms
for the target platform Arm Cortex-M4, named Operand Caching (OC) [HW11] and its
variants. As the name stands, it is focused on the reuse of operands once they are loaded
into the register set. This strategy reduces the load and store instructions by introducing
the concept of rows. In each row several values of the operands A and B are cached in the
GPR set. The size of the row is defined as the number of accumulative multiplications
performed per column. The OC approach acts as Product Scanning (PS) multiplication
inside each row and as Operand Scanning (OS) between the rows, where the value of the
partially accumulated result is stored into the memory and loaded later when the following
row is being computed. Further improvements of the algorithm are presented by Seo et
al, in [SK12] and [SK15], where the Consecutive Operand Caching and the Full Operand
Caching implementations are proposed, aiming to further optimize the memory accesses
by reconfiguring the sequence of executed instructions .

In [FA17] the use of the MAC instruction UMAAL is evaluated aiming to eliminate the
need of carry bit propagation through the limbs of the partial result value. The MAC
instruction consists of one 64← 32×32-bit multiplication accumulated with 2 32-bit values
and handles the additions without producing an overflow, therefore no carry propagation
is required using the carry flag. The set on MAC instruction is also considered in [HL19],
where the combination of UMLAL and UMAAL instructions is presented. However, the use of
UMLAL requires the initialization of the register that keeps the high 32 bits, which introduces
one additional clock cycle. In [SJA19] the authors propose optimized strategy, integrating
the instruction UMULL, which handles the initialization of the register while the 32× 32-bit

Mila Anastasova, Reza Azarderakhsh and Mehran Mozaffari Kermani 11

Table 2: Memory accesses and GPR to FPR move instructions count. For the multiple
load instructions, the number of registers loaded is shown inside brackets. We measure
the number of clock cycles needed to perform all the instructions to compare the different
implementation strategies.

Memory accesses

Design SIKEp434 SIKEp503

LDR STR VMOV Total
[CC] LDR STR VLDM VMOV Total

[CC]
OS 406 210 - 1232 528 272 - - 1600
OC 132 80 - 424 172 102 - - 548

R-OC 107 63 - 340 140 80 - - 440
This
work 70 0 100 240 24 34 2(×16) 146 296

Design SIKEp610 SIKEp751

LDR STR VMOV Total
[CC] LDR STR VLDM VMOV Total

[CC]
OS 820 420 - 2480 1176 600 - - 3552
OC 268 154 - 844 384 216 - - 1200

R-OC 215 120 - 670 306 168 - - 948
This
work 131 12 188 474 198 32 - 240 700

accumulative multiplication is performed. Later, they improve the design even more in
[SAJA20a], where they implement efficient multiplication strategy for all SIKE primes.
They propose novel management of the register set for caching four words per operand,
therefore, they increase the size of the rows in comparison to the previous implementations.

In this paper, we base our work on [SAJA20b, SAJA20a], where we propose new ideas
to increase even further the size of the rows, if needed. Depending on the form of the
prime, we implement two different strategies, both based on the FPRs use. For the first
implementation strategy, we use the FPR set to load the values of the operands at the
beginning of the algorithm so that we do no need to access the memory to load them into
the GPR set. For the second implementation, we replace the usage of the stack with the
FPR set, using it as a level 1 cache memory for the partial results of the multiplication.
Both implementation strategies improve significantly the performance and allow even
further optimization of the design.

For representing the multiplication we use rhombus notation, where each diagonal line
shows a 32-bit limb from the operand A or B. The limbs from both operands are shown as
A[k], B[k], where k ∈ {n− 1, ..., 2, 1, 0} with 0 being the least significant 32-bit word.
The number of limbs n varies, based on the number of bits needed to represent the integer
m and the processor word size w, thus n = bm/wc. The number of words needed for the
multiplication result is double, where R=(R[2n− 1],...,R[1],R[0]) = A · B. In the
multiplication rhombus notation every dot shows a 32× 32-bit multiplication , where the
operands are the two 32-bit limbs, represented by the crossing diagonals. Finally, the bold
vertical lines show the addition of all the partial 32× 32-bit multiplication products. We
also use box representation to show the sequence of multiplications and additions in more
details.

This work proposes two different approaches for the use of the FPR set. Based on the
length of the operands, we propose distinct multi-precision multiplication optimization
strategies. In the 256-bit examples in Figure 4 and Figure 5 we show both strategies that
are used in our implementation design. On Figure 4, we propose to increase the size of the

12 Fast Strategies for the Implementation of SIKE Round 3 on ARM Cortex-M4

1

2

Multiplication 256 bits

1

2

A[7]B[0]

A[7]B[7]

A[0]B[7]

A[0]B[0]

S0S7S15

A[7]B[0]

A[7]B[7]

A[0]B[7]

S15

Figure 4: Rhombus representation of 256 × 256-bit multiplication, presenting the increased
row size. The technique is implemented by using the FPR set to load the values of the
operands at the beginning of the multiplication, which allows load of the operand limbs in
1 CC.

rows by performing 5 accumulative multiplications. We do that by reserving 5 registers
for the operand A and 6 registers for the resulting values. The 3 free registers left we use
for the second operand B. Since we need 5 words from B, we need to re-load their values
constantly. However, we propose to use the FPR set to store the value of the operands.
We perform a multiple vector load at the beginning of the algorithm. Later, instead of
loading the values of the operands from the memory, requiring 2 CCs, we move them from
FPRs to GPRs, requiring only 1 CC. The computation of each 4× 4-column requires the
load of a new limb of B. Instead, our design requires to load one new word and to re-load
a previous one. However, we replace the load instruction by VMOV and therefore use the
same amount of clock cycles for the computation of the row marked with 2 in Figure 4.
The speedup in our design is introduced, therefore, by the reduction of the previous row
length, which requires less load and store operations for the partial result. Depending
on the prime, the increased size of the rows may result in less number of rows, therefore
multiple memory access instructions are eliminated.

The next multi-precision multiplication strategy is shown on Figure 5. In this design,
which is used for p434, p610 and p751 we do not modify the size of the rows. We use the
FPRs as a cache memory to store the partial values, produced by the rows. Depending on
the resulting size, where the number of FPRs is not enough to store the final result, the
stack is used to store the last 8 and 16 limbs, for p610 and p751, respectively.

Following are presented some specifications about the implementation strategies, de-
pending on the prime numbers.

SIKEp434 The length of the prime requires n = bm/wc = b434/32c = 14 words to store
each operand. In [SAJA20a], the multiplication for p434 is divided into four rows, shown
in Figure 6, where the initialization row, marked with 1 in the Figure 6, produces only
4 words as a partial result. Therefore, the idea of increasing the size of the rows and
decreasing their number could not be efficiently applied. The reduction of rows will result
in only 4 less instructions for storing the temporary value from row 1 and another 4
instructions for loading the words, when accumulating them with the partial result from
row 2.

Our proposal for the prime p434 consists of replacing the usage of the stack for the
partial result with FPRs. The temporary values produced by each row are moved into the

Mila Anastasova, Reza Azarderakhsh and Mehran Mozaffari Kermani 13

2

1

S31SP, #15*4 SP

Multiplication 256 bits

2
A[0]B[0]

S0

Multiplication 256 bits

1

2

A[7]B[0]

A[7]B[7]

A[0]B[7]

A[0]B[0]

S0S7S15

Figure 5: Rhombus representation of 256 × 256-bit multiplication, using the FPRs as a
cache memory level 1 for the partially computed results from each row.

2

1

3

4

A[13]B[0]

A[13]B[13]

A[0]B[13]

A[0]B[0]

S0S13S27

Multiplication p503

1

2

3

A[15]B[15]

A[15]B[15]

A[0]B[15]

A[0]B[0]

S0S15S31

Multiplication p434

Figure 6: Rhombus representation of 448-bit (used in p434) and 512-bit multiplication
(used in p503). The smaller multiplier uses the FPR set as a cache memory for the partial
results, avoiding using the stack. The 512-bit multiplier uses the FPR set to store the
operands and hence to reduce the cost of accesses to their limbs, resulting in reduction of
the number of rows.

FPR set, where the cost of the VMOV instruction is only 1 CC in comparison to the STR
and LDR instructions, which double the required cycles.

The multi-precision multiplication of two 14-word operands produces 28-word value.
We noticed that there are another 4 FPRs which remain free. We have proposed to
store the memory address of the operand A and B into 2 of these registers. Due to the
reduced number of GPRs, the pointer to A and B are not kept into the core register set,
therefore, they should be constantly loaded. The use of the FPRs, storing the addresses,
optimizes even further the memory accesses and results in even more efficient multiplication
algorithm.

SIKEp503 The prime number, consisting of 503 bits, requires 512 bits to store the value
of the operands, where the formula n = bm/wc indicates the need of 16 words to keep
them. The number of limbs for both operands A and B could fit in 32 32− bit registers.
We have noticed that this value is the same as the number of FPRs, where we decided to
load them. This allows the elimination of all memory accesses for loading the operands,
replacing them by the VMOV instruction.

At the beginning of the algorithm, we load the value of the operands into the FPR

14 Fast Strategies for the Implementation of SIKE Round 3 on ARM Cortex-M4

Algorithm 1 Management of the GPRs when the VMOV instruction is used for the increased
row size in the case of 5 consecutive accumulative multiplications.
VLDM R0, {S0-S15}
VLDM R1, {S16-S31}
....
UMAAL R0, R14, R1, R6
UMAAL R0, R12, R2, R7
UMAAL R0, R11, R3, R8
VMOV R6, S6
UMAAL R0, R10, R4, R6
VMOV R6, S10
UMAAL R0, R9, R5, R6
STR R0, [SP, 4*16]
LDR R0, [SP, 4*17]
UMAAL R0, R14, R1, R7
UMAAL R0, R12, R2, R8
UMAAL R0, R11, R3, R6
VMOV R7, S7
UMAAL R0, R10, R4, R7
VMOV R7, S11
UMAAL R0, R9, R5, R7
....

set, using the VLDM instruction, which requires k + 1 clock cycles, with k representing the
number of single precision FPRs. Therefore, each operand will require n+ 1 cycles to load
it into the register set. The big integer multiplication, implemented on resource restricted
devices, does not allow to store the value of the limbs all at once in the register set. Even
more, the GPR set of the processor Arm Cortex-M4 offers only 14 core registers, which can
be used to keep user data. Therefore, a constant reload of the operand words is needed.
We have performed the implementation of p503, based on the idea of loading the values of
the operands in the FPR set, and thus reuse them in much more efficient way.

Algorithm 1 shows how we manage the usage of the GPRs. After loading five consecutive
limbs from A, each following column computation requires to load one new limb of B and
to reload a previous one. This imposes a constant 2 CCs per column for loading 2 operand
words, when using the VMOV instruction. Therefore, the 5× 5-limb multiplication has the
same cost as the 4× 4 multiplication, proposed in [SAJA20b], where the LDR instruction
is used.

The optimization of the implementation, resulting in better execution time, is due to
the increase of the row sizes, which leads to decrease of the number of rows, shown on
Figure 6. Since the design stores the partial results in the stack, the reduction of rows
significantly cuts the number of memory accesses, since less partial results values should be
stored and loaded. We increase the size of the rows from 4 to 5, which reduces the number
of rows and results in implementation, outperforming significantly the previous designs.

SIKEp610 and SIKEp751 The length of the primes requires n = 20 and n = 24 words,
for p610 and p751, respectively. The large size of the operands does not allow to store
them into the FPR set like the p503 implementation, since we are not able to eliminate all
LDR instructions that access the operands. For the large primes p610 and p751 we propose
to use the FPR set to store the partial result, formed after computing each row, similar to
the p434 implementation, which reduces the stack usage. However, the resulting values,
consisting of 40 and 48 words respectively cannot fit into the FPR set entirely. We have
developed a solution that uses the FPRs for the storage of the partial results of the first

Mila Anastasova, Reza Azarderakhsh and Mehran Mozaffari Kermani 15

Multiplication p610
1

2

3

4

5

Multiplication p751
1

2

3

4

5

6

A[19]B[0]

A[19]B[19]

A[0]B[19]

A[0]B[0]

S0S19S31SPSP, #7*4

A[23]B[0]

A[23]B[23]

A[0]B[23]

A[0]B[0]

S0S23S31SP, #15*4 SP

Figure 7: Rhombus representation of 640-bit and 768-bit multiplication (used in p610 and
p751, respectively) based on the implementation of reduced (but not eliminated) stack
usage by storing the partial values in the FPRs as a level 1 cache memory.

four rows for both primes and then uses the stack for the last 8 or 16 words, computed in
the last row/s, respectively, for p610 and p751, as presented on Figure 7.

For further improvement, we store the least significant 32 words of the result into the
FPRs and most significant n− 32 words into the stack, where n = bm/wc, which optimizes
the stack usage, since the following reduction uses the least significant n words as an
operand for the second multiplication operation and should be loaded much more often,
while the n most significant words are used for the accumulation only, therefore are loaded
less times.

3.2.2 Modular Reduction

The post-quantum secure protocol uses Montgomery multiplication, since the reduction
step takes advantage of the special form of the "Montgomery-friendly" prime numbers,
used for the four different NIST security levels. The implementation of this operation
is impacted by the techniques used in the design of the multi-precision multiplication.
The reduction implementation requires another multiplication together with an addition
operation. The "Montgomery-friendly" form of the primes ensures that the least significant
k operations from the multiplication are skipped, since they consist of ×0 multiplications.
More specifically, for NIST security level 1, 2, 3, and 5 k = {6, 7, 9, 11}, respectively.
The optimization technique was proposed by Costello et al. in [CLN16], pointing out the
advantages of Montgomery reduction for the implementation of SIKE due to the special
form of prime, where the previously used Barret reduction was replaced by Montgomery
multiplication in the new implementation design.

The Montgomery reduction is crucial for the efficient implementation of the isogeny-
based quantum secure algorithm. Several works have studied the implementation strategies
suitable for the design of the arithmetic operation. In [LG14], an optimized Hybrid
Montgomery multiplication method was proposed and evaluated, targeting small 8-bit
AVR microcontrollers, showing significant improvement in the timing results. In [SLLH18],
Seo at al. proposed even further acceleration of the Hybrid Scanning method, benefiting
from the MAC instructions in the SISD implementation of the algorithm. In [SAJA20b]
the authors propose several optimizations for the implementation of the multiplication,
increasing the row sizes to 4, and apply them to the reduction, where they show a
performance record of the arithmetic operations.

In this work, we propose novel implementation of the reduction algorithm, which
optimizes the number of rows and therefore reduces the number of memory accesses
significantly. Our reorganization of the sequence of instructions, along with the usage of
the FPR set, presents significant optimization of the algorithm performance in comparison

16 Fast Strategies for the Implementation of SIKE Round 3 on ARM Cortex-M4

1

2A[13]B[0]

A[13]B[13]

A[0]B[13]

A[0]B[0]

S0

S13

S27

Reduction p434

2F

2B

A[15]B[15]

S19

Figure 8: Reduction for p434, presenting the novel shape of the rows. The order of the
rows is marked in circles, where 2F and 2B denote the front and the back part of the
second row.

to the previous best implementation.
We apply the optimization strategy of the increased row size, if needed, as described in

the multiplication implementation - Section 3.2.1. Depending on the prime value and the
number of all-zero words at the least significant positions, we have decreased the number
of rows with 2 (4→ 2), 2 (4→ 2), 2 (5→ 3) and 3 (6→ 3), respectively for p434, p503,
p610 and p751. For NIST security level 1 and 3 primes we have kept the row size to 4
(where for p610 we observed more efficient implementation when we decrease one of the
row sizes to 3), however, for NIST level 2 and 5 we have modified them as presented on
Figure 8 and Figure 9.

The optimization of the number of rows is implemented applying a novel strategy for
reduction shown in Figure 8. The multiplication sequence follows completely different
direction, compared to the previous implementation designs. In this work, we approach the
multiplication, starting from the least significant non-zero values of M and multiply them
with the values of Q, where Q denotes the least significant n words from the result T = A·B.
The Montgomery reduction requires the accumulation of T with the resulting value from
M · Q, before a word from Q can be used for following multiplications. Therefore, we
use the values of Q[0]-Q[k], without accumulating them since M ends with all-zero words,
where k is the index of the most significant all-zero word of M . The first m computed
words of the reduction, where m is the size of the first row, accumulated with the previous
value of T [k + 1]-T [k +m], allow the use of Q[0]-Q[k +m] during the computation of the
first row, since the value is complete and no further accumulation is needed. Therefore, we
extend the length of the first row until the limb k+m from the accumulated operand Q is
needed. Afterwards, we reuse the last m values of Q and load one word from the operand
M per computed column. The implementation technique requires that the direction of
the multiplications is changed. Specifically, we load the values of the first m words from
M and reuse them, while loading the values of Q. Once we reach the Q[k + m] limb
(while we perform the first row of the multiplication), we change the direction of the
operation, where we reuse the cached values of the accumulated Q in the register set and
start loading the values of the operand M . The following rows implement the same idea,

Mila Anastasova, Reza Azarderakhsh and Mehran Mozaffari Kermani 17

1

2A[13]B[0]

A[13]B[13]

A[0]B[13]

A[0]B[0]

S0

S13

S27

Reduction p434

2F

2B

Reduction p503
2

1

A[15]B[15]

A[15]B[15]

A[0]B[15]

A[0]B[0]

S0

S15

S31

2F

2B

Reduction p610
3

2

1

5

A[19]B[0]

A[19]B[19]

A[0]B[19]

A[0]B[0]

S0

S19

S31
SP

SP, #7*4

3F

3B

2F

2B

Reduction p751
3

2

1

A[23]B[0]

A[23]B[23]

A[0]B[23]

A[0]B[0]

S0

S23

S31

SP, #15*4

SP

3F

2F

3B

2B

Figure 9: Reduction for the primes p503, p610 and p751. The front part of a row
calculation is denoted by nF and the back with nB, where n is the row number.

where although it appears that the rows are interrupted in the middle, the same row size is
conserved. Therefore, the computation of each column through the rows consists of 4 (or
5) accumulative 32× 32-bit multiplications. We mark these rows as nF and nB on Figure
8 and Figure9, where n is the number of the row. This technique requires to load cartain
limbs of M several times. For instance, on Figure 8, the second row requires M [10]-M [13]
during the computation of 2F. When 2B is being calculated the value of M [6]-M [9] is
needed at the beginning of the zone, where afterwards the values of M [10]-M [13] should
be reloaded. However, despite the reload of particular words of M , the reduced number
of rows, together with the usage of the FPRs, keeping the value of the operand Q and
later used as a storage for the partial results of the multiplication, results in significant
improvement, where the reloading instructions end up negligible for the timing results.

As mentioned, some of the primes require row size of 5, therefore, for further improve-
ment of these rows we keep 5 words from the operand M in the registers, since it requires
2 clock cycles to move it into the GPRs, using MOVW and MOVT, and only 3 words of the
operand Q, where we need only 1 clock cycle to move their value from the FPR set to the
GPR set.

The implementation of the Montgomery reduction, as mentioned, requires the accu-
mulation of the Q ·M multiplication result to the value of the temporary T = A · B
multiplication. The value of Q is the least significant n words from T , therefore the value of
the low part of T is accessed significantly more times than its high part, which is required
only for accumulating the result. To increase the performance result for the integers that
do not fit in the FPR set only, we have placed the least significant value of A ·B using the
FPRs which ensures one clock cycle per VMOV into the GPRs, whereas we have placed the
extra 8 or 16 words for p610 and p751, respectively in the stack, due to their low access
rate.

We present all the reduction implementation strategies on Figure 9, where we show in
detail the size of each of the rows and the number of rows needed for each prime number.

18 Fast Strategies for the Implementation of SIKE Round 3 on ARM Cortex-M4

Squaring 256 bits

1F

A[7]A[0]

A[7]A[7] A[0]A[0]

S0S7S15

1B

Figure 10: 256-bit squaring, where the rows are denotes in circles. The small size of the
operands allows to show only the sub-squaring type of rows, used in the implementation.
1F denotes the form part and 1B the back part of the operation.

Squaring p434

Squaring p751

2M-F

1F

A[13]A[0]

A[13]A[13]
A[0]A[0]

S0S13S27

Squaring p503

Squaring p610

A[15]A[15]

A[15]A[15] A[0]A[0]

S0S15S31

A[19]A[0]

A[19]A[19] A[0]A[0]

S0S19S31SPSP, #7*4

A[23]A[0]

A[23]A[23] A[0]A[0]

S0S23SP, #15*4 SP S31

1B 2F

2M-B

2B

2M-F

1F1B 2F

2M-B

2B

2M-F

1F1B
2F

2M-B

2B

3M-F

3F

3M-B

3B

2M-F

1F1B
2F

2M-B

2B

3M-F

3F

3M-B

3B

Figure 11: Squaring implementations for all the SIKE primes. The sub-squaring blocks
are denoted with nF and nB and the sub-multiplication block with nM-F and nM-B
(representing Middle Front and Back).

3.2.3 Squaring

Squaring is a special case of multiplication where the operand A and B are the same,
therefore, for the implementation of this arithmetic operation several further optimizations
can be applied. Since the two operands have the same value the number of memory
access instructions can be significantly reduced if the limbs are properly reused. The
rhombus representation of the multiplication can be split into three parts: upper part,
where the operands of the multiplication are different (i.e A[i]A[j]), middle part, where
the operands of the multiplications are the same (i.e A[i]A[i]), and bottom part, which
produces the same results as the upper part with reverse indexes (i.e A[j]A[i]). Therefore,
while performing the squaring, the computation of the bottom part can be eliminated by
doubling the result of the upper part. There are two strategies for the ×2 multiplication
of this part, where one is based on the doubling of the result and the other - on doubling
of one of the operands. In [HL19] the authors use the former implementation, whereas Seo
at al. developed the later strategy in [SAJA20b]. In our proposed implementation we are
using the later design, where we compute the value of 2×A[i] and then multiply by A[j]
to obtain 2×A[i]A[j].

Mila Anastasova, Reza Azarderakhsh and Mehran Mozaffari Kermani 19

Table 3: Comparison between the SIKE implementation targeting Cortex-M4 and our
new implementation design. Results Clock cycles and the seconds on STM32F407 of SIKE
with the proposed optimizations integrated in the implementation. The timing results are
presented in clock cycles and in seconds. The speedup obtained is marked in red color.

Implementation Language
Timing [cc×106] Timing[s] Speedup

KeyGen Encaps Decaps Total KeyGen Encaps Decaps Total [%]

SIKEp434

SIDH v3.3

(SIKE R3)1

C 718 1,175 1,254 2429 4,27 6,99 7,46 14,46 94.1

Seo et al.2 ASM 74 122 133 255 0.44 0.73 0.79 1.52 43.91

Seo et al.3 ASM 54 89 95 184 0.32 0.53 0.57 1.09 22.5

This work ASM 42 69 74 143 0.25 0.41 0.44 0.85 -

SIKEp503

SIDH v3.3

(SIKE R3)1

C 1076 1773 1886 3659 6.40 10.55 11.23 21.78 94.5

Seo et al.3 ASM 104 172 183 355 0.62 1.02 1.09 2.11 43.2

Seo et al.2 ASM 76 125 133 258 0.45 0.74 0.79 1.54 21.6

This work ASM 59 97 104 201 0.35 0.58 0.62 1.20 -

SIKEp610

SIDH v3.3

(SIKE R3)1

C 2011 3701 3722 7423 11.97 22.03 22.16 44.18 94.5

Seo et al.3 ASM 134 246 248 494 0.80 1.46 1.48 2.94 17.5

This work ASM 108 198 199 397 0.64 1.18 1.19 2.43 -

SIKEp751

SIDH v3.3

(SIKE R3)1

C 3647 5915 6353 12267 21.71 35.21 37.81 73.02 94.9

Seo et al.2 282 455 491 946 1.68 2.71 2.92 5.63 34.5

Seo et al.3 ASM 229 371 399 770 1.36 2.21 2.38 4.58 19.5

This work ASM 184 299 321 619 1.10 1.78 1.91 3.69 -
The referred results are presented in:
1 [SIK]
2 [SJA19]
3 [SAJA20b, SAJA20a]

The previous implementations of the modular squaring include the Sliding Block
Doubling (SBD) with Bottom Line and Initial Block algorithm [FA17], where the authors
introduce the use of initial block for optimizing the register. Later, implementation of the
squaring, based on the Operand Scanning strategy, was proposed in [HL19]. However, the
proposed design is particular for integers of length 256 bits, therefore, it cannot be adopted
to other operand sizes. In [SAJA20b] the authors propose an efficient implementation,
where the operation is split into several parts. For 256-bit length of the operands, the
authors define 3 rows. One row is defined as sub-multiplication type, following their
Refined-Operand Caching multiplication optimizations. The other 2 zones are defined as
sub-squaring type, where they use the SBD technique. Moreover, they precompute the
double of the operand and used the stack to save the values, therefore, they apply the
double-operand technique for the ×2 computation.

In this work, we propose new implementation strategy for the modular squaring which
reorders the instructions to optimize the memory accesses. Our design, similar to our
proposed multiplication, uses the FPR set to store the partial values after the computation
of each row. Moreover, due to the absence of second operand, there are several unused
FPRs, where we store particular words of the operand A. This strategy saves several
memory accesses for the load of the operand and reduces the stack usage.

20 Fast Strategies for the Implementation of SIKE Round 3 on ARM Cortex-M4

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

1,000.0

 2
2.
26

 %

 2
1.
88

 %

 1
9.
66

 %

 1
9.
54

 %

434 503 610 751 434 503 610 751 434 503 610 751 434 503 610 751

KeyGen Encaps Decaps Total

CC
x1
06

Speedup (This Work to Seo at al.[2])

Timing

Seo at al. [1]

Seo at al. [2]

This Work

The referred results are presented in:
1 [SJA19]
2 [SAJA20b]

Figure 12: Graph representation of the clock cycles, required for the execution of all SIKE
primes (1does not provide implementation for SIKE p610) on STM32F407 @168MHz.

We separate our implementation into 2 different block types. On Figure 10 we present
only the first block type that we used in our design. Due to the small length of the operands
- 256 bits, the implementation of the entire squaring results in 2 blocks, both of SBD type.
The sub-squaring block type is further split into front and back part where we calculate
the double of the operand words with different indexes, and the single multiplication value
of the equivalent indexes. We perform the SBD implementation block at the beginning
and at the end of each row. We name them as nF and nB, with n being the number of
the row and F and B show the position of the squaring zone - at the front or at the back
of the row, respectively. In Figure 11, the squaring implementation of all SIKE primes can
be observed. Each of the rows starts and ends with the SBD blocks, where the product of
the operand limbs with equal indexes are accumulated with the doubled product of the
different indexes. We first calculate the multiplication of the different indexes products
and at the end compute the value of the same index multiplication. We reuse the doubled
words for the computation of the following columns and keep these doubled values inside
the GPR set. Therefore, we need to re-load the value of the limbs in order to use them
in their non-doubled form. However, due to our implementation strategy, using the FPR
set as a level 1 cache, the reloading is performed in an efficient way, requiring again 1
CC. We observed that, opposite to the implementation in [SAJA20b], it is cheaper to
load the non-doubled value inside the GPR set than to compute the doubled values, then
store them into the stack and later obtain them back from the memory. The load and
store operations require twice more cycles than the moving between different register sets.
Therefore, our squaring implementation outperforms the previous designs due to the low
access to the memory.

The second block type that we implement for our design is the sub-multiplication
block, following the multiplication technique, described in [SAJA20b] and referred as a
Refined-Operand Caching (R-OC). We implement the sub-multiplication between the SBD

Mila Anastasova, Reza Azarderakhsh and Mehran Mozaffari Kermani 21

Table 4: Comparison between the SIKE finite field arithmetic operations measured on
STM32F407 @168MHz. The speedup obtained is marked in red color.

Implementation Language
Timing [cc]/Speedup[%]

Fpadd Speedup Fpsub Speedup Fpmul Speedup Fpsqr Speedup

SIKEp434

SIDH v3.31 C 435 58.39 257 33.07 5,164 84.49 5,164 87.88

Seo et al.2 ASM 254 28.74 208 17.31 110 27.84 981 36.19

Seo et al.3 ASM 253 28.46 207 16.91 1,011 20.77 889 29.58

This work ASM 181 - 172 - 801 - 626 -

SIKEp503

SIDH v3.31 C 492 59.55 327 41.90 6,778 85.48 6,778 88.70

Seo et al.2 ASM 275 27.64 223 14.80 1,333 26.18 1,139 32.75

Seo et al.3 ASM 274 27.37 227 16.30 1,254 21.53 1,060 27.74

This work ASM 199 - 190 - 984 - 766

SIKEp610

SIDH v3.31 C 667 64.47 455 49.89 1,0187 84.90 1,0187 88.19

Seo et al.2 ASM 331 28.40 272 16.18 1,898 18.97 1,573 23.52

This work ASM 237 - 228 - 1538 - 1203 -

SIKEp751

SIDH v3.31 C 793 65.07 516 50.19 14285 85.05 14285 88.97

Seo et al.2 ASM 388 28.61 284 9.51 2,744 22.19 2,242 29.75

Seo et al.3 ASM 387 28.42 318 19.18 2,617 18.42 2,115 25.53

This work ASM 277 - 257 - 2135 - 1575 -
The referred results are presented in:
1 [SIK]
2 [SJA19]
3 [SAJA20b, SAJA20a]

blocks. We mark them on Figure 11 as n Middle-Front (nM-F) and n Middle-Back
(nM-B), where n is the row number. These rows are not computing words with equivalent
indexes, therefore, the only difference from the multiplication R-OC technique is the
doubling of one of the operands. However, since the doubled values in nM-B are reused
from the nM-F block, the ×2 operations there are avoided, optimizing the implementation.
The proposed sequence of blocks, implementing different techniques, results in easy carry
propagation, handled by the MAC instructions.

Our design outperforms the previous designs significantly by reconfiguring the sequence
of operations. The performance of our optimal implementation is shown in the following
section, where the speedup is due to the optimized block configuration and the use of FPR
set as level 1 cache memory.

4 Performance Evaluations
In this section, we present the results that we obtained after applying the proposed
optimization strategies. We have been focused on low-end devices, therefore, we have
performed our experiments, targeting the processor Cortex-M4. We have used the boards
STM32F407 Discovery Board, recommended by NIST as a low-end device, for benchmarking
the clock cycles, the NUCLEO-F411RE and X-NUCLEO-LPM01A for measuring the power
and energy consumption on Cortex-M4.

Our implementations shows significantly better results in comparison to the previous
fastest implementation strategies. In Table 3, we have measured and reported the clock
cycles required for the execution of the SIKE algorithm. For instance, our SIKEp434

22 Fast Strategies for the Implementation of SIKE Round 3 on ARM Cortex-M4

0.0

100.0

200.0

300.0

400.0

500.0

600.0

 1
0.
89

 %

 6
.5
7
%

 4
.8
3
%

 5
.2
6
%

434 503 610 751 434 503 610 751 434 503 610 751 434 503 610 751

KeyPair Encaps Decaps Total

[m
J]

Improvement

Energy

Seo at al.

This Work

The referred results are presented in [SAJA20b].

Figure 13: Graph representation of the energy consumption measured on NUCLEO-F4
and X-NUCLEO-LPM of all primes of SIKE.

implementations for NIST security level 1 takes about 850ms which is about 22.26% faster
than the counterparts appeared in [SAJA20a].

We have obtained a speedup of 22.26%, 21.88% 19.66% and 19.54% for the primes
SIKEp434, SIKEp503, SIKEp610 and SIKEp751, respectively, which is shown in Figure
12 a graphical representation of the speedup is presented. The considered comparison
implementations are proposed by Seo et al. in [SJA19], marked in red color and [SAJA20b],
marked in blue in the bar-chart graph. Both implementations are designed and implemented
in assembly, therefore show the best performance for Cortex-M4 so far. The green bars
present the performance or our opimized implementation, where the value of the speedup
in percentage, compared to the previos best reported results [SAJA20a], is shown under
the graph.

The pyramid-like computational structure of the SIKE operations ensures that the
improvement of the underlying finite field operations will result in a speedup of the entire
algorithm. In Table 4 the clock cycles required for the execution of each one of the finite
field operations are reported before and after our proposed design. We improved the field
addition by around 28% for all the SIKE primes the subtraction from 16% to 19%, the
multiplication outperforms the previous implementation by 18.5% up to 21.5%, and the
squaring shows up to 29.6% better results, in comparison to the best previous reported
results by Seo at al. in [SAJA20b, SAJA20a].

The low energy and power consumption is main objective of the low-end processors,
dedicated to the IoT world. They aim to be efficient not only in execution time but also
to show small use of resources. We have measured the energy and power consumption
using the NUCLEO-F4 board with frequency of 96 MHz. Table 5, reports the results
we have obtained. It can be noticed that the energy consumption is decreased with 14
mJ , 12 mJ , 17 mJ and 31mJ for the SIKEp434, SIKEp503, SIKEp610 and SIKEp751,
respectively. The results correspond to 11%, 6.6%, 4.7% and 5.3% of improvement of the
energy consumption for the four prime numbers. Figure 13 illustrates the comparison in a
bar-chart format, where the improvement of the energy consumption can be seen in the
bottom right corner. The improvement of the energy consumption imposes an increase of

Mila Anastasova, Reza Azarderakhsh and Mehran Mozaffari Kermani 23

Table 5: Table representation of the energy and power consumption measured on NUCLEO-
F4 and X-NUCLEO-LPM of all primes of SIKE.

Implementation Language
Speed Energy [mJ] Power[mW]

[MHz] KeyGen Encaps Decaps Total KeyGen Encaps Decaps Total

SIKEp434

SIDH v3.31 C

96

485.00 798.32 850.72 1,649.04 66.91 67.28 67.20 134.48

Seo et al.2 ASM 37.26 61.60 65.54 127.14 73.74 74.70 74.34 149.04

This work ASM 33.14 54.82 58.48 113.30 74.97 75.90 75.70 151.60

SIKEp503

SIDH v3.31 C

96

724.96 1,198.00 1,273.00 2,471.00 66.56 66.72 66.70 133.42

Seo et al.2 ASM 53.03 87.89 93.55 181.44 75.48 76.16 76.10 152.26

This work ASM 49.58 82.18 87.34 169.52 79.79 80.62 80.40 161.02

SIKEp610

SIDH v3.31 C

96

1,358.00 2,516.00 2,528.00 5,044.00 66.63 66.06 66.98 134.04

Seo et al.2 ASM 97.36 180.50 181.30 361.80 78.17 78.75 78.74 157.49

This work ASM 92.89 171.63 172.71 344.34 82.54 83.11 83.06 166.17

SIKEp751

SIDH v3.31 C

96

2,435.00 3,992.00 4,273.00 8,265.00 65.75 66.46 66.25 132.21

Seo et al.2 ASM 172.07 280.53 301.58 582.11 80.66 81.16 81.21 162.37

This work ASM 163.22 265.73 285.79 551.52 84.74 85.24 85.31 170.55
The referred results are presented in:
1 [SIK]
2 [SAJA20b]

the power use. The proposed implementation increases the power consumption with few
milliwatts, in particular 2 mW, 9 mW, 17 mW and 8 mW, respectively for the primes
SIKEp434, SIKEp503, SIKEp610 and SIKEp751. This increase is equivalent to 1.3%,
5.9%, 5.7% and 4.9% of power increase, which is insignificant taking into consideration
the performance boost as well as energy reduction. Also, it should be noted that for
battery-powered devices energy consumption is the most critical parameter.

5 Conclusion
In this work we presented a highly optimized implementation of the SIKE underlying
finite field arithmetic operations. Our target platform is the low-end processor Cortex-M4,
recommended by NIST for benchmarking the PQC algorithms.

We propose several novel ideas for the modular addition, multiplication, squaring and
reduction techniques. Using the computational block alternating strategy for the modular
addition, the number of carry/borrow catcher operations is reduced. Moreover, we propose
to modify the value of the prime number, where due to its special form, this strategy results
in the elimination of several subtraction instructions. We improve the implementation
of the multiplication, squaring and reduction by using the FPR set as a level 1 cache
memory, which we used to avoid the memory access instructions. We propose two different
multi-precision multiplication strategies, depending on the length of the prime. We use the
FPR set to either store the values of the operands - therefore, to avaid all memory accesses
for loading their lims, or to store the partial results produced by each row - thus, to reduce
the stack usage. Moreover, we proposed novel reduction and squaring techniques, which
use new order of instructions and hence show significant time and energy optimizations.
Our implementation for the addition, subtraction, multiplication and squaring outperforms
the other implementation for p434 with 28.46%, 16.91%, 20.77% and 29.58%, respectively.

We have proposed an implementation design for the underlying finite field arithmetic
operations, ensuring the fast protocol performance. Our improvements of the modular

24 Fast Strategies for the Implementation of SIKE Round 3 on ARM Cortex-M4

addition, subtraction, multiplication and squaring result in significantly better overall
protocol performance compared to the previous best implementation, where for p434
the performance improvement is 22.3%. The optimizations also show better energy
consumption, where for p434 it results to be 10% more efficient.

We hope to push SIKE further in the PQC NIST competition after the implemented
optimizations, since it is the candidate with the smallest key sizes, therefore, ensures
insignificant communication latency. We are going to continue our effort to constantly
improve the timing of the post-quantum algorithm, where we are willing to perform
side-channel analysis of our implementations as a future project.

References
[Ber09] Daniel J Bernstein. Introduction to post-quantum cryptography. In Post-

quantum cryptography, pages 1–14. Springer, 2009.

[CLN16] Craig Costello, Patrick Longa, and Michael Naehrig. Efficient algorithms
for supersingular isogeny diffie-hellman. In Annual International Cryptology
Conference, pages 572–601. Springer, 2016.

[DF] Luca De Feo. Mathematics of isogeny based cryptography. corr,
abs/1711.04062, 2017. https://arxiv.org/pdf/1711.04062.pdf. Last ac-
cessed on January 2, 2021.

[DSS16] Fabrizio De Santis and Georg Sigl. Towards side-channel protected x25519
on arm cortex-m4 processors. Proceedings of Software performance en-
hancement for encryption and decryption, and benchmarking, Utrecht, The
Netherlands, pages 19–21, 2016.

[EAMK20a] Rami Elkhatib, Reza Azarderakhsh, and Mehran Mozaffari-Kermani. Effi-
cient and fast hardware architectures for sike round 2 on fpga. Technical
report, Cryptology ePrint Archive 2020/611, 2020.

[EAMK20b] Rami Elkhatib, Reza Azarderakhsh, and Mehran Mozaffari-Kermani.
Highly optimized montgomery multiplier for sike primes on fpga. In 2020
IEEE 27th Symposium on Computer Arithmetic (ARITH), pages 64–71.
IEEE, 2020.

[FA17] Hayato Fujii and Diego F Aranha. Curve25519 for the cortex-m4 and be-
yond. In International Conference on Cryptology and Information Security
in Latin America, pages 109–127. Springer, 2017.

[HL19] Björn Haase and Benoît Labrique. Aucpace: Efficient verifier-based pake
protocol tailored for the iiot. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, pages 1–48, 2019.

[HW11] Michael Hutter and Erich Wenger. Fast multi-precision multiplication for
public-key cryptography on embedded microprocessors. In International
Workshop on Cryptographic Hardware and Embedded Systems, pages 459–
474. Springer, 2011.

[JAC+17] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca
De Feo, Basil Hess, Amir Jalali, Brian Koziel, Brian LaMacchia, Patrick
Longa, Michael Naehrig, Joost Renes, Vladimir Soukharev, and David
Urbanik. Supersingular Isogeny Key Encapsulation. Submission to the
NIST Post-Quantum Standardization Project, 2017.

Mila Anastasova, Reza Azarderakhsh and Mehran Mozaffari Kermani 25

[KAEK+20] Brian Koziel, A-Bon Ackie, Rami El Khatib, Reza Azarderakhsh, and
Mehran Mozaffari Kermani. Sike’d up: Fast hardware architectures for
supersingular isogeny key encapsulation. IEEE Transactions on Circuits
and Systems I: Regular Papers, 2020.

[KJA+16] Brian Koziel, Amir Jalali, Reza Azarderakhsh, David Jao, and Mehran
Mozaffari-Kermani. Neon-sidh: efficient implementation of supersingular
isogeny diffie-hellman key exchange protocol on arm. In International
Conference on Cryptology and Network Security, pages 88–103. Springer,
2016.

[KO62] Anatolii Alekseevich Karatsuba and Yu P Ofman. Multiplication of many-
digital numbers by automatic computers. In Doklady Akademii Nauk,
volume 145, pages 293–294. Russian Academy of Sciences, 1962.

[KPHS18] Philipp Koppermann, Eduard Pop, Johann Heyszl, and Georg Sigl. 18
seconds to key exchange: Limitations of supersingular isogeny diffie-hellman
on embedded devices. IACR Cryptol. ePrint Arch., 2018:932, 2018.

[LG14] Zhe Liu and Johann Großschädl. New speed records for montgomery
modular multiplication on 8-bit avr microcontrollers. In International
Conference on Cryptology in Africa, pages 215–234. Springer, 2014.

[NAK20] Mojtaba Bisheh Niasar, Reza Azarderakhsh, and Mehran Mozaffari Ker-
mani. Efficient hardware implementations for elliptic curve cryptography
over curve448. In International Conference on Cryptology in India, pages
228–247. Springer, 2020.

[NEKAMK20] Mojtaba Bisheh Niasar, Rami El Khatib, Reza Azarderakhsh, and Mehran
Mozaffari-Kermani. Fast, small, and area-time efficient architectures for
key-exchange on curve25519. In 2020 IEEE 27th Symposium on Computer
Arithmetic (ARITH), pages 72–79. IEEE, 2020.

[oSN] The National Institute of Standards and Technology (NIST).
Post-quantum cryptography standardization, 2017â2018.
https://csrc.nist.gov/projects/post-quantum-cryptography/ post-
quantum-cryptography-standardization. Last accessed on January 10,
2021.

[PLW+20] Jun-Hoe Phoon, Wai-Kong Lee, Denis Chee-Keong Wong, Wun-She Yap,
and Bok-Min Goi. Area–time-efficient code-based postquantum key en-
capsulation mechanism on fpga. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 28(12):2672–2684, 2020.

[PQC] PQCryptov3.2. Sidh library. https://github.com/microsoft/PQCrypto-
SIDH/releases/tag/v3.2.

[SAJA20a] H. Seo, M. Anastasova, A. Jalali, and R. Azarderakhsh. Supersingular
isogeny key encapsulation (sike)round 2 on arm cortex-m4. IEEE Transac-
tions on Computers, (to appear):1–1, 2020.

[SAJA20b] Hwajeong Seo, Mila Anastasova, Amir Jalali, and Reza Azarderakhsh.
Supersingular isogeny key encapsulation (sike) round 2 on arm cortex-m4.
IACR Cryptol. ePrint Arch., 2020:410, 2020.

[Seo20] Hwajeong Seo. Memory efficient implementation of modular multiplication
for 32-bit arm cortex-m4. Applied Sciences, 10(4):1539, 2020.

26 Fast Strategies for the Implementation of SIKE Round 3 on ARM Cortex-M4

[Sho94] P. W. Shor. Algorithms for quantum computation: discrete logarithms
and factoring. In Proceedings 35th Annual Symposium on Foundations of
Computer Science, pages 124–134, 1994.

[SIK] SIKE. Sike website. https://sike.org/. Last accessed on January 5, 2021.

[SJA19] Hwajeong Seo, Amir Jalali, and Reza Azarderakhsh. Sike round 2 speed
record on arm cortex-m4. In International Conference on Cryptology and
Network Security, pages 39–60. Springer, 2019.

[SK12] Hwajeong Seo and Howon Kim. Multi-precision multiplication for public-
key cryptography on embedded microprocessors. In International Workshop
on Information Security Applications, pages 55–67. Springer, 2012.

[SK15] Hwajeong Seo and Howon Kim. Consecutive operand-caching method
for multiprecision multiplication, revisited. Journal of information and
communication convergence engineering, 13(1):27–35, 2015.

[SLLH18] Hwajeong Seo, Zhe Liu, Patrick Longa, and Zhi Hu. Sidh on arm: faster
modular multiplications for faster post-quantum supersingular isogeny key
exchange. IACR Transactions on Cryptographic Hardware and Embedded
Systems, pages 1–20, 2018.

[SSJA20] Hwajeong Seo, Pakize Sanal, Amir Jalali, and Reza Azarderakhsh. Opti-
mized implementation of sike round 2 on 64-bit arm cortex-a processors.
IEEE Transactions on Circuits and Systems I: Regular Papers, 2020.

[Tat66] John Tate. Endomorphisms of abelian varieties over finite fields. Inventiones
mathematicae, 2(2):134–144, 1966.

[Vél71] Jacques Vélu. Isogénies Entre Courbes Elliptiques. Comptes Rendus de
l’Académie des Sciences Paris Séries A-B, 273:A238–A241, 1971.

	Introduction
	Preliminaries
	Isogeny-Based Cryptography
	Supersingular Isogeny Diffie-Hellman
	Supersingular Isogeny Key Encapsulation

	Proposed Finite Filed Arithmetic Computations
	Modular Filed Addition
	Field Multiplication, squaring, and reduction

	Performance Evaluations
	Conclusion

