
Efficient Modular Multiplication*

Joppe W. Bos1, Thorsten Kleinjung2 and Dan Page3

1 NXP Semiconductors, Leuven, Belgium
2 EPFL, Lausanne, Switzerland

3 University of Bristol, Bristol, United Kingdom

This chapter is concerned with one of the fundamental building blocks used in modern public-
key cryptography: modular multiplication. Speed-ups applied to the modular multiplication
algorithm or implementation directly translate in a faster modular exponentiation for RSA or a
faster realization of the group law when using elliptic curve cryptography.

This chapter outlines the most commonly used modular multiplication method Montgomery
multiplication for generic moduli as well as different techniques when “special” moduli of a partic-
ular shape are used. Moreover, we study approaches which might produce errors with a very small
probability. Such faster “sloppy reduction” techniques are especially beneficial in cryptanalytic
settings. We look at this from both a historical as well as an applied implementation perspective.
The best approach to implement modular multiplication on a modern 64-bit architecture with
advanced single-instruction, multiple data instruction set extensions is, for example, quite different
from the best approach on resource constrained embedded devices.

Throughout this chapter we focus on the cryptographic setting unless we specifically discuss
an algorithm for cryptanalysis. Contrary to many mathematical software applications, the running
time of a cryptographic implementation (and hereby also the modular multiplication) should
avoid secret-data-dependent branches and secretly indexed memory access. Such constant time
implementations are one of the basic countermeasures against timing attacks: advanced techniques
which use information about the running time of the target algorithm to extract the used private key.
Such attacks are part of a larger family of attacks known as side-channel attacks.

Throughout this chapter we represent a wn-bit non-negative integer X in the so-called radix-2w

representation,

X =

n−1∑
i=0

xi2wi (1)

where 0 ≤ xi < 2w. We denote xi the i-th word of the integer X.

1 Montgomery multiplication

In order to accelerate the modular multiplication on modern computer platforms Peter Montgomery
introduced a modular reduction technique now known as Montgomery reduction [43]. The main
idea behind this approach is to change the representatives of the residue classes and change the
modular multiplication accordingly.

Let N be an odd wn-bit integer, here we assume w is the word size of the target computer
platform (say 32- or 64-bit for modern architectures) and the modulus N can be represented by an
array of n such computer words. More precisely, instead of computing the modular multiplication
A · B mod N the Montgomery multiplication computes MontMul(A, B) = A · B · 2−wn mod N. In
order to use this modular multiplication method one needs to change the representation of the inputs.

*This material will be published in revised form in Computational Cryptography edited by Joppe W. Bos and Martijn
Stam and published by Cambridge University Press. See www.cambridge.org/9781108795937.

www.cambridge.org/9781108795937

2 Efficient Modular Multiplication

Algorithm 1 The radix-2w interleaved Montgomery multiplication algorithm. Compute A · B · 2−wn

modulo the odd modulus N using the pre-computed Montgomery constant µ = −N−1 mod 2w.

Input: A =
∑n−1

i=0 ai2wi, B,N such that N is odd,
0 ≤ ai < 2w, 0 ≤ A, B < 2wn, 2w(n−1) ≤ N < 2wn.

Output: C ≡ A · B · 2−wn mod N such that 0 ≤ C < N.
1: C ← 0
2: for i = 0 to n − 1 do
3: C ← C + aiB
4: q← µC mod 2w

5: C ← (C + Nq)/2w

6: end for
7: if C ≥ N then
8: C ← C − N
9: end if

10: return C

Given a wn-bit modulus N, we define the Montgomery form of an integer A to be Ã = A ·2wn mod N.
This change of residue class ensures that the multiplication of two inputs in Montgomery form
corresponds to the desired result in Montgomery form since

MontMul(Ã, B̃) ≡ Ã · B̃ · 2−wn ≡ A · 2wn · B · 2wn · 2−wn ≡ Ã · B (mod N).

This change of representation is performed since computing the Montgomery multiplication can be
done efficiently on modern computer architectures where multiplications and exact divisions by
powers of two correspond to shifting the number to the left or right, respectively.

Montgomery multiplication uses the pre-computed value µ = −N−1 mod 2wn. Then, if we
compute the Montgomery reduction of an integer C such that 0 ≤ C < N2 the idea is to add the
multiple N · (µ ·C mod 2wn) to C. Adding a multiple of N does not change the outcome modulo N
and the computing a reduction modulo 2wn is for free on modern computer architectures: just take
the wn least significant bits. Adding this multiple of N ensures

C + N · (µ ·C mod 2wn) ≡ C − N ·
(
N−1 ·C mod 2wn

)
≡ C −C ≡ 0 (mod 2wn)

Hence, C + N · (µ ·C mod 2wn) is divisible by 2wn which can be computed by shifting wn positions
to the right avoiding an expensive division operation. Moreover, after this division by 2wn the result
has been reduced to at most 2N since

0 ≤
C + N · (µ ·C mod 2wn)

2wn <
N2 + N · 2wn

2wn < 2 · N

because N < 2wn. This means a completely reduced result in [0,N] can be computed with an
additional conditional subtraction.

In many practical implementations of Montgomery multiplication the interleaved Montgomery
multiplication algorithm is used. This approach merges the multiplication and reduction: after
multiplying one computer word of A with the entire input of B the result is reduced modulo N. This
has the advantage that the maximum size of the intermediate result remains significantly smaller:
n + 2 computer words instead of the 2n + 1 required when computing the full product A · B first
and doing the Montgomery reduction next. This approach is outlined in Algorithm 1.

2 Arithmetic for RSA

Although embellishments such as padding (e.g., via OAEP [4], per PKCS #1 [31]) are important
from a security perspective, textbook RSA [52] can be described in terms of arithmetic in the

Joppe W. Bos, Thorsten Kleinjung and Dan Page 3

multiplicative group (Z/NZ)∗ as follows:

1. generation of a public and private key pair: given a security parameter λ

KeyGen(λ) =

select random λ
2 -bit primes p and q

compute N = p · q
compute Φ(N) = (p − 1) · (q − 1)
select random e ∈ (Z/NZ)∗ such that gcd(e,Φ(N)) = 1
compute d = e−1 (mod Φ(N))
return public key (N, e) and private key (N, d)

2. encryption of a plaintext m ∈ (Z/NZ)∗:

Enc((N, e),m) = me (mod N)

3. decryption of a ciphertext c ∈ (Z/NZ)∗:

Dec((N, d), c) = cd (mod N)

The description implies that efficiency of the underlying arithmetic and RSA itself are directly
related. This fact could be viewed as an advantage, because improvement of the former will clearly
yield improvement of the latter, or as a challenge: if the former cannot be efficient enough, RSA
becomes impractical. Rivest, Shamir, and Adleman themselves seem to have been well aware of this
challenge. For example, preceding modern advice with respect to the co-design of cryptographic
constructions and their implementation (see, e.g., the RWC’15 invited talk by Bernstein [6, Page
24]), their research paper [52] included overt focus on the latter. [52, Section IV.A], for example,
discusses efficient realisation of encryption and decryption operations via an explicit left-to-right
binary or “square-and-multiply” algorithm (see, e.g., Knuth [35, Section 4.6.3] or Gordon [26,
Section 2.1]) for modular exponentiation. As one of the first published (cf. classified work by
Cocks [54, Chapter 6]) public-key encryption schemes, it seems likely that one rationale for them
to do so would be to rebut any claims of impracticality with respect to the technology landscape
of that era. In fact, it remains challenging to implement efficient modular arithmetic and hence
RSA on both higher-end platforms (e.g., due to increasingly demanding workloads), and lower-end
platforms (which are, e.g., constrained with respect to computation and storage).

A vast range of literature has been dedicated to addressing such challenges more generally, so
it seems reasonable to claim that RSA has acted as a driver for innovation with respect to modular
arithmetic. Such innovation spans both software and hardware, of course, but, as noted as an
aside in [52, Section IV.A], special-purpose hardware was (and still is) an attractive way to deliver
efficiency. Rivest [50] describes an ASIC-based implementation by himself, Shamir, and Adleman;
as the first such implementation of RSA, it provides valuable insight into the state-of-the-art in
efficient modular arithmetic of that era. The implementation is best described as a co-processor
for multi-precision integer arithmetic, requiring 40000 transistors within a single 42 mm2 chip.
The co-processor could be directed to compute various operations on operands stored in eight
512-bit registers. A limited set of operations, e.g., multiply-accumulate, were supported directly by
a 512-bit ALU, and others via a 224-word micro-code program. Use of a micro-coded approach
allowed more complex, number theoretic operations and, crucially, modular multiplication and
exponentiation as required by RSA. Pre-dating techniques such as Montgomery multiplication (see
Section 1 on page 1), modular reduction would likely have been realised using integer division,
which, in turn, likely used a shift-and-subtract approach [48, Section 13.1] supported by the ALU.
Operating at 4 MHz, the co-processor was able to “perform RSA encryption at rates in excess of
1200 bits/second”. Although the manufactured result never worked reliably, the design process is
also remarkable in that it leveraged a purpose-built, LISP-style HDL, and motivated subsequent
work by Rivest on the theory and practice of place-and-route [53].

Many facets of the technology landscape have changed since publication of RSA in 1978, not
least the increased societal awareness, and importance of cryptography in general. Ultimately,

4 Efficient Modular Multiplication

however, RSA has remained largely (i.e., with caveats per [11]) secure and so has been widely
commercialised (see, e.g., [51]) and deployed during what is a rich, 40+ year history. This
demonstrates that associated challenges with respect to efficient modular arithmetic have at least
been mitigated if not solved, with any resulting innovations refined and capitalised on by more
recent constructions. In this Section we survey a very selective, limited subset of that history,
focusing largely, but not exclusively on RSA-specific approaches.

2.1 Capitalising on special-form moduli

The selection of special-form parameters is a common, general optimisation strategy; doing so
allows specialisation of associated algorithms, e.g., eliminating any overhead required to cope
with the general case. Indeed, certain RSA parameters can be optimised in this way. The use of a
short and low Hamming weight encryption exponent, e.g., e = 65537, is common: this replaces a
general-purpose modular exponentiation with a short, fixed sequence of modular multiplications,
for example. Equally, it is plausible to focus on the modulus N as a strategy for optimising the
modular multiplications themselves. Where Montgomery multiplication is used per Section 1,
imposing a special-form on the pre-computed value µ = −N−1 mod 2w represents one such strategy.
More specifically, a multiplication by µ (e.g., µ ·C in line 4 of Algorithm 1) will be more efficient,
even trivial, if we can select N such that µ = ±1. Crucially, however, the impact of over-optimisation
on the security properties of RSA must be carefully considered. Selecting too small an e, e.g.,
e = 3, should be avoided due to the attack of Wiener [62], for example. Likewise, any special
structure in N could, intuitively, be exploited during an attempt to factor it.

2.1.1 Selecting a special-form modulus

Consider three classes of special-form N, namely

N = p · q =

fMS B ‖ r ⇒ 1) pre-determined MSBs

r ‖ fLS B ⇒ 2) pre-determined LSBs
fMS B ‖ r ‖ fLS B ⇒ 3) pre-determined MSBs and LSBs

where fMS B and fLS B denote fixed (or constrained) values and r denotes a random (or unconstrained)
value, all of suitable length: given a choice of fMS B and/or fLS B, these classes imply the MSBs
and/or LSBs of N are pre-determined (i.e., selected) during key generation. The question is, how?

Vanstone and Zuccherato [58] describe an approach for the first and second classes, i.e.,
selection of some t MSBs ([58, Section 2]) or LSBs ([58, Section 7]). Citing a range of prior art,
Lenstra [37] reviews an “obvious and straight-forward trick” that affords both generalisation and
improved efficiency by a) supporting all three classes, and b) avoiding the need for factorisation
as a sub-step. Although [37, Section 4] provides a high-level description of how the three classes
of special-form N could be capitalised on in the context of RSA, selection of LSBs, in particular,
directly enables the strategy outlined above: one simple selects the w LSBs such that −1 ≡ N
(mod 2w), for example, which then naturally implies µ = 1 ≡ −N−1 (mod 2w) as required.

Both Vanstone and Zuccherato [58, Section 11] and Lenstra [37, Section 4] consider the security
implications of selecting an associated N, framed within the context of contemporary factoring
algorithms. A (very) informal summary would be that such special-form N have no negative impact
on the security of RSA, provided that the fixed portions are not too large.

2.1.2 Scaling a general-form modulus

Rather than selecting a special-form modulus N outright, some alternative approaches attempt to
construct and use N′ = s · N, i.e., the product of an existing modulus N and scaling factor s; the
result, termed a scaled modulus, exhibits the special-form required and thereby supports associated
optimisations. Note that using N′ rather than N potentially implies a larger modulus. As a result,
use of a small enough s such that 2w·(n−1) ≤ s · N < 2w·n, i.e., N′ and N have the same number of

Joppe W. Bos, Thorsten Kleinjung and Dan Page 5

radix-2w words, might typically be preferred. Doing so avoids increasing the loop bound in line 2
of Algorithm 1, for example, thereby maximising the value of using N′ by avoiding any additional
overhead.

Quisquater multiplication [49], first presented at the EUROCRYPT’90 rump session, uses an
instance of this approach; we note that Walter [59] independently developed a similar approach
around the same time. Following the presentation in [32], consider that the quotient and remainder
stemming from division of some X by N can be computed as Q = bX/Nc and R = X − Q · N =

X − bX/Nc · N respectively. The integer division required to compute Q is (relatively) inefficient,
so use of an approximate quotient Q̂ can be more attractive when a) Q̂ can be computed more
efficiently than Q, and b) any error resulting from use of Q̂ vs. Q can be corrected via a small
number of efficient sub-steps. Quisquater observed that Q is lower-bounded by

Q̂ =
⌊ X
2c · 2w·n

⌋
·
⌊2c · 2w·n

N

⌋
and yields an approximate remainder R̂ = X − Q̂ · N. If one selects a c such that s = b(2c · 2w·n)/Nc
then pre-computes and uses the modulus N′ = s · N, the required remainder can be computed as
R̂ = X − bX/2c+(w·n)c · N′. therefore; this is (more) efficient, because the integer division involved
can be replaced with an appropriate shift. Note that, by construction, the c MSBs of the therefore
special-form modulus N′ are equal to 1, but we did not need to select the existing, general modulus
N with that property.

Hars [30, Section 5.4] describes an approach he terms tail tailoring, set within the context of
Montgomery multiplication. The idea is to set s = µ = −N−1 (mod 2w), i.e., the pre-computed
value related to N: doing so implies

N′ = s · N ≡ − N−1 · n0 ≡ − n−1
0 · n0 ≡ − 1 (mod 2w),

recalling that n0 denotes the 0-th or least-significant word of N, and so the pre-computed value
related to N′ is µ′ = −N′−1 ≡ 1 (mod 2w) as required to enable the strategy outlined above. Note
that, by construction, the w LSBs of the therefore special-form modulus N′ are equal to 1, but we
did not need to select the existing, general modulus N with that property.

2.2 Capitalising on parallelism

It should be obvious that, in the period since publication of [52], almost any platform one might
expect RSA to be implemented on has vastly improved with respect to computational, communica-
tion, and storage capabilities. It is interesting to highlight a symbiotic relationship between study
of the algorithms for modular arithmetic, and platforms that any associated implementation is then
developed. A common theme is that algorithms and platforms co-evolve to some extent, so that,
e.g., an improvement in the latter might be capitalised on by the former and vice versa.

Support for parallel computation has, in particular, evolved from a once niche to now commodity
feature in most platforms; it represents a central means of addressing the limitations on scaling (e.g.,
clock frequency) that stem from Moore’s Law [45]. Flynn’s Taxonomy [24] offers a structured way
to reason about the use of parallelism, describing instances as either single (i.e., scalar) or multiple
(i.e., parallel) along two dimensions, namely instructions and data: the four classes are Single
Instruction Single Data (SISD), Single Instruction Multiple Data (SIMD), Multiple Instruction
Single Data (MISD), and Multiple Instruction Multiple Data (MIMD). Given the computational
demands of modular arithmetic, it is unsurprising that one can identify work attempting to capitalise
on any class outlined above as a way to deliver improved efficiency. However, for various reasons,
SIMD is arguably the most interesting. For example, it has wide-scale support through instances
of the Intel MMX/SSE/AVX, ARM NEON, PowerPC AltiVec, and AMD 3DNow! families, and
aligns with genuine vector-like support from, for example ARM SVE, and the RISC-V V extension.
In addition, it forces lower-level relationship between algorithms and platform, in the sense the
ISA dictates the exact form of SIMD support.

6 Efficient Modular Multiplication

Algorithm 2 Bos et. al [13, Algorithm 2]: a parallel radix-2w interleaved (SIMD-friendly)
Montgomery multiplication algorithm.

Input: A, B, M, and µ, such that A =
∑n−1

i=0 ai2wi, B =
∑n−1

i=0 bi2wi, M =
∑n−1

i=0 mi2wi, 0 ≤ A, B < M,
2w·(n−1) ≤ M < 2w·n, 2 - M, µ = M−1 mod 2w.

Output: C ≡ A · B · 2−w·n mod M such that 0 ≤ C < M.
1: parallel
2: thread
3: D = 0, i.e., di = 0 for 0 ≤ i < n
4: for j = 0 to n − 1 do
5: q← ((µ · b0) · a j + µ · (d0 − e0)) mod 2w

6: t0 ← a j · b0 + d0, t0 ← bt0/2wc

7: for i = 1 to n − 1 do
8: p0 ← a j · bi + t0 + di, t0 ← bp0/2wc, di−1 ← p0 mod 2w

9: end for
10: dn−1 ← t0
11: end for
12: end thread
13: thread
14: E = 0, i.e., ei = 0 for 0 ≤ i < n
15: for j = 0 to n − 1 do
16: q← ((µ · b0) · a j + µ · (d0 − e0)) mod 2w

17: t1 ← q · m0 + e0, t1 ← bt1/2wc

18: for i = 1 to n − 1 do
19: p1 ← q · mi + t1 + ei, t1 ← bp1/2wc, ei−1 ← p1 mod 2w

20: end for
21: en−1 ← t1
22: end for
23: end thread
24: end parallel
25: C = D − E
26: if C < 0 then
27: C ← C + M
28: end if
29: return C

2.2.1 Intra-multiplication parallelism

Bos et. al [13] adopt an intra-multiplication (i.e., within each multiplication) approach to paralleli-
sation, splitting Algorithm 1 on page 2 into two threads, which can then be computed in parallel.
We continue to use this term per [13], but note that lanes might be a better choice: the idea is to
compute in two SIMD-based lanes within one execution context, not two execution contexts (i.e., a
multi-threaded implementation). Their approach is based on two main ideas. First, lines 3, 4, and 5
of Algorithm 1 capture 1 × n, 1 × 1, and 1 × n word multiplications respectively; these constitute
the computational core, but are difficult to parallelise due to dependencies between them. Notice,
however, that computation of q = µC mod 2w requires c0 alone: this fact implies it is possible to
compute the 1 × n word multiplications in parallel, if one duplicates the computation of c0 in each
thread so as to eliminate the problematic dependency. Second, rather than use the Montgomery
constant µ = −M−1 mod 2w as is, the sign is flipped to yield µ = M−1 mod 2w instead. Doing
so yields two outcomes, namely that 1) both D and E are bounded by M, meaning they can be
represented in n (vs. n + 1) words; this fact simplifies management of carries, and 2) the conditional
final subtraction in Algorithm 1 becomes a conditional final addition.

Algorithm 2 reproduces [13, Algorithm 2], thus capturing the approach for completeness.

Joppe W. Bos, Thorsten Kleinjung and Dan Page 7

Notice that the threads detailed in lines 2 to 12 and 13 to 23 adhere to a SIMD computational
model, in the sense they perform the same operations (e.g., line 8 vs. 19) with different data (resp.
D vs. E). The only caveat is perhaps lines 5 and 16, which compute q. Since both require d0
and e0, some synchronisation is required; in reality, it is likely easier to compute q sequentially
then distribute the result to both threads. The fact there are two threads somewhat specialises
the approach to ISAs with support for 2-way (or 2-lane) SIMD; the authors focus on w = 32
specifically, in line with concrete ISAs providing such support. Compared with a sequential 32-bit
implementation, [13, Section 4] reports improvement by a factor of 1.68 to 1.76 using a 2048-bit
modulus on platforms enabled with the Intel SSE (e.g., Intel Xeon) and ARM NEON (e.g., ARM
Cortex-A9) ISAs. However, vs. a sequential 64-bit implementation the results are not as positive:
the parallel approach is limited by the form of SIMD supported, in the sense the ISAs allow
(32 × 32)-bit multiplication only. Constraints imposed by, e.g., non-orthogonality of the ISA are a
common challenge for SIMD-based implementations. For example, in early work Acar [1, Section
5.4.1] noted the difficulty of using MMX for modular arithmetic due to a lack of suitable unsigned
multiplication instructions. This issue has arguably improved over time, as ISAs have evolved
away from their media-oriented origins and toward support for general-purpose workloads. Either
way, use of intra-multiplication parallelism is advantageous in the sense that improvement could
be harnessed by any workload based on modular multiplication: use of modular exponentiation in
RSA is one example, but, equally, others can (transparently) benefit.

2.2.2 Inter-multiplication parallelism

Within the context of cryptographic implementation, the term bit-slicing is normally attributed to
Biham [10]: it refers to a non-standard representation of data, plus a non-standard implementation
of functions that operate on instances of said representation. Consider a w-bit word x, where xi

denotes the i-th bit for 0 ≤ i < w. Computing the result of operations on such words, e.g., x ⊕ y, the
XOR of words x and y, is rendered efficient by native support in the underlying processor. However,
computing the result of xi ⊕ x j, i.e., the XOR of bits within x, is more difficult due to a lack of the
same (native) support. Where such operations are common, the use of bit-slicing can be attractive:
it transforms such an x into w slices, say x̂[i] for 0 ≤ i < w, such that x̂[i]k = xi (i.e., the i-th bit
of x) for some k. Put another way, the i-th bit of x is placed at the k-th index within the i-th slice.
Visually, this transformation is described by

x = 〈x0, x1, . . . , xw−1〉 7→

x̂[0] = 〈 . . . , x0, . . . 〉
x̂[1] = 〈 . . . , x1, . . . 〉

...
x̂[w − 1] = 〈 . . . , xw−1, . . . 〉

Under such a representation, the original operation can again be efficient: we can (natively)
compute x̂[i] ⊕ x̂[j], because xi and x j are at the same index in those slices. More generally, any
function previously used as r = f (x) must be transformed into an alternative r̂ = f̂ (x̂) in order to
process bit-sliced operands. This implies two disadvantages: 1) there is an overhead related to the
conversion of x into x̂ and r̂ into r, and 2) many operations must be translated into a “software
circuit”, composed of Boolean operations on the slices, within f̂ ; although one can (natively)
compute x + y, for example, the same is not true of x̂ and ŷ. Crucially, however, if each slice is
itself represented as a w-bit word, then it is possible to compute w instances of f̂ in parallel on
suitably packed x̂. A common analogy is that of bit-slicing transforming the w-bit, 1-way scalar
processor into a 1-bit, w-way SIMD processor, thus yielding upto a w-fold improvement which
acts to compensate for the disadvantages.

An analogous technique can be applied to (modular) integer arithmetic using a radix-2w

representation: the idea is again to slice an X ∈ Z into n slices, say X̂[i] for 0 ≤ i < n, such that

8 Efficient Modular Multiplication

X̂[i]k = xi (i.e., the i-th word of X) for some k. Visually, this transformation is described by

X = 〈x0, x1, . . . , xn−1〉 7→

X̂[0] = 〈 . . . , x0, . . . 〉

X̂[1] = 〈 . . . , x1, . . . 〉
...

X̂[n − 1] = 〈 . . . , xn−1, . . . 〉

As with bit-slicing this can make it easier to combine words within X, say xi and x j, e.g., to deal
with carries between words. This technique, termed word-slicing, seems to have independent
origins from bit-slicing itself. More specifically, Montgomery [44] originally observed that, the
vectorisation of modular arithmetic “horizontally” (or intra-operation) was more difficult than
“vertically” (or inter-operation) on a vector-based Cray Y-MP. To solve this problem he adopted
word-slicing, vectorising an ECM [41] implementation “vertically” to allow multiple trials in
parallel (vs. the “horizontal” parallelisation of one trial). Page and Smart [46] rediscover the
technique in adopting an inter-multiplication approach to parallelisation. Their idea is to support
parallel computation of R[k] = X[k]e (mod N[k]) for 0 ≤ k < 4, i.e., four exponentiations using
different bases and moduli but the same exponent; note that use of the same exponent implies
uniform control-flow within each exponentiation, i.e., they follow SIMD-style computation. Set
within the context of RSA this permits a form of “batch” encryption or decryption, e.g., by a server
dealing with multiple clients. Implementing the parallel exponentiation reduces to implementing
parallel Montgomery multiplication, namely Algorithm 1, through use of word-slicing: one simply
slices and packs words in

R[k] = 〈 r[k]0, r[k]1, . . . , r[k]n−1 〉

N[k] = 〈 n[k]0, n[k]1, . . . , n[k]n−1 〉

X[k] = 〈 x[k]0, x[k]1, . . . , x[k]n−1 〉

for 0 ≤ k < 4 to yield

R̂[i] = 〈 r[0]i, r[1]i, r[2]i, r[3]i 〉

X̂[i] = 〈 x[0]i, x[1]i, x[2]i, x[3]i 〉

N̂[i] = 〈 n[0]i, n[1]i, n[2]i, n[3]i 〉

for 0 ≤ i < n, then implements a suitable f̂ such that R̂ = f̂ (X̂, e, N̂) computes the required
exponentiations. The only arithmetic complication is the conditional final subtraction step in lines
7 to 9 of Algorithm 1, as used to produce the least residue modulo N such that 0 ≤ C < N as
output; without it, the output would satisfy 0 ≤ C < 2 · N. As observed by Walter [60, 61] (and
others [28, 27]), where Algorithm 1 is used iteratively (where the output is reused as a subsequent
input, e.g., in an exponentiation) the subtraction step can be eliminated whenever 4 · N < 2wn since
then all input and output to the Montgomery multiplication are bounded by 2 · N and represented
in a redundant Montgomery form. Having removed the conditional subtraction, a Montgomery
multiplication can be computed with no data-dependent control-flow; the (minor) trade-off is a
requirement to cater for 1-word larger operands when the length of the modulus is close to a
multiple of w (which for standard RSA parameters, it will be). Compared with a sequential 32-bit
implementation, [46, Section 3.3] reports improvement by close to a factor of 2 using a 2048-bit
modulus on platforms enabled with the Intel SSE (Intel Pentium 4) ISA. Of course, realising the
improvement in practice assumes a usable batch of exponentiations is available; where such a batch
cannot be guaranteed, use of an intra-multiplication approach [13] could be a more sensible use of
the computational resources.

2.3 Dealing with large moduli

Set against the context of contemporary factoring algorithms (as discussed in [52, Section IX]),
Rivest, Shamir, and Adleman “recommend[ed] using 100-digit (decimal) prime numbers p and q,

Joppe W. Bos, Thorsten Kleinjung and Dan Page 9

so that [N] has 200 digits” [52, Section VII] to ensure the security of RSA; this means a 665-bit N.
However, the technology landscape has obviously evolved since then. This has meant improvement
in factoring algorithms, their implementation, the platforms they are executed on, and therefore,
ultimately, their efficiency: all these factors have contributed to a significant increase in the length
of plausibly factorable moduli, and hence recommendations for secure parameterisation.

For example, in 2001 Lenstra and Verheul [38] developed a methodology and analysis of
parameter selection for a range of cryptographic constructions, including RSA. They conclude that
“RSA keys that are supposed to be secure until 2040 are about three times larger than the popular
1024-bit RSA keys that are currently secure” noting an impact on the efficiency of associated
modular arithmetic: use of RSA will be “9 − 27 times slower”. ENISA [55, Section 3.6] offer a
longer-term perspective, recommending 15360-bit moduli to ensure “security [of RSA] for thirty
to fifty years”. Resources such as

https://www.keylength.com

offer a useful summary of recommendations, over time and from different sources. Even viewing
such recommendations as approximate, the obvious challenge is how to scale, i.e., how to mitigate
the impact of increased moduli lengths on the efficiency of associated modular arithmetic and
hence RSA.

2.3.1 “Double-length” arithmetic

Consider the Karatsuba-Ofman [33] technique, which allows the computation of a product R = X ·Y
by decomposition. For n-bit integers X and Y , assuming for simplicity that n is even, it decomposes

X = X1 · 2n/2 + X0
Y = Y1 · 2n/2 + Y0

where Xi and Yi are then (n/2)-bit integers, then computes

R = R2 · 2n + R1 · 2n/2 + R0

where
R0 = T0
R1 = T1 − T0 − T2
R2 = T2

T0 = X0 · Y0
T1 = (X0 + X1) · (Y0 + Y1)
T2 = X1 · Y1

Put another way, this technique realises an n-bit integer multiplication using a) three (n/2)-bit
multiplications, plus b) some auxiliary additions and subtractions. In the context of hardware
implementation, for example, this is attractive because it enables various trade-offs including
between area and latency: it implies reduced area of a (n/2)-bit vs. n-bit multiplier, as a trade-off

against increased latency with respect to their reuse when computing T0, then T1, then T2.
One might consider scaling RSA using a conceptually similar technique: if we have efficient

modular arithmetic for an n-bit modulus (e.g., in the form of dedicated hardware, or co-processor),
the idea would be to somehow leverage it in delivering what we want, i.e., arithmetic for a (2 ·n)-bit
or “double-length” modulus. Paillier [47, Section 1] succinctly outlines two research challenges of
this type, namely “[h]ow to optimally implement nk-bit modular operations using k-bit modular
operations” and, more specifically, “[h]ow to implement an nk-bit modular multiplication using
k-bit modular operations with a minimal number of k-bit multiplications”, leading to various
associated work (see, e.g., [19, 63]). As a representative example, consider the solution of Fischer
and Seifert [23] which assumes an API that provides an operation

(Q,R) = MultModDiv(X,Y,M)

https://www.keylength.com

10 Efficient Modular Multiplication

Algorithm 3 Fischer and Seifert [23, Section 3.1]: “basic doubling” algorithm.

Input:
N = Nt · 2n + Nb

X = Xt · 2n + Xb

Y = Yt · 2n + Yb

 such that 0 ≤ Nb, Xb,Yb < 2n

Output: R = X · Y (mod N)
1: (Q1,R1)← MultModDiv(Yt, 2n,Nt)
2: (Q2,R2)← MultModDiv(Q1,Nb, 2n)
3: (Q3,R3)← MultModDiv(Xt,R1 − Q2 + Yb,Nt)
4: (Q4,R4)← MultModDiv(Xb,Yt,Nt)
5: (Q5,R5)← MultModDiv(Q3 + Q4,Nb, 2n)
6: (Q6,R6)← MultModDiv(Xt,R2, 2n)
7: (Q7,R7)← MultModDiv(Xb,Yb, 2n)
8: Q← R3 + R4 − Q5 − Q6 + Q7
9: R← R7 − R6 − R5

10: return Q · 2n + R (mod N)

for an n-bit M, where

Q = (X · Y) mod M
R = b(X · Y)/Mc

The simpler of two algorithms is presented in [23, Section 3.1]: it realises a (2 ·n)-bit multiplication
modulo N, by using seven invocations of MultModDiv (noting that some can be executed in parallel,
if/when possible), plus some auxiliary additions and subtractions. We reproduce the approach in
Algorithm 3 for completeness, but omit the proof of correctness provided in detail by [23, Section
3.1].

2.3.2 “Approximate-then-correct” arithmetic

Using the long-term ENISA [55, Section 3.6] recommendation as motivation, Bentahar and
Smart [5] explore the efficiency of algorithms for arithmetic modulo a 15, 360-bit N, via both
analytical and experimental approaches: their premise is that asymptotically efficient yet concretely
unsuitable algorithms, for smaller moduli, become “in scope” for such larger moduli.

[5, Section 2.4] outlines the use of “wooping”, a technique attributed to Bos [12, Chapter 6]
(see also [22, Section 15.1.1]) as a means of error correction. Imagine one computes the integer
product R = X · Y. To (probabilistically) verify whether R is correct, one selects a random prime p,
computes

X̂ = X (mod p)
Ŷ = Y (mod p)
R̂ = X̂ · Ŷ (mod p)

then tests whether R ?
= R̂ (mod p). If the equality does not hold we infer R is incorrect; if the

equality holds, the probability of a false-positive is 1/p. R̂ can be viewed as an arithmetic checksum,
which can a) be efficiently computed if p is small (e.g., a single word, meaning w bits; this is
particularly true when also using special-form p), and b) offers a low false-positive probability if p
is large enough, or multiple such checksums are used. This technique is then used in [5, Section 3],
in order to yield efficient algorithms for Montgomery [43] and Barrett [3] reduction. The central
idea is to approximate certain full products using (more efficient) half products, then correct said
approximations via wooping.

Joppe W. Bos, Thorsten Kleinjung and Dan Page 11

3 Arithmetic for ECC

Besides RSA (see Section 2 on page 2), the other popular approach to realize public-key crypto-
graphy is based on the algebraic structure of elliptic curves over finite fields. This elliptic curve
cryptography (ECC) [36, 42] enjoys increasing popularity since its invention in the mid 1980s.
This became the preferred alternative to RSA due to the attractiveness of smaller key-sizes [39, 40].

As opposed to RSA, the cryptographic standard includes many parameters which determine the
exact choice of curve used and over which finite field. Since the initial standardization of elliptic
curve cryptography [57] there has been significant progress: this includes taking into account
various new types of attacks (such as side-channel attacks) and performance improvements. This
latter area includes using different curve models, which lowers the total cost of elliptic curve
group operations. However, all the curve operations have to be implemented using a sequence of
operations in the underlying finite field. There have been advances in the choice of the shape of
these primes in order to increase the performance of the modular arithmetic.

In this Section we will describe the choices made for the prime shapes in the ECC standard
by the National Institute of Standards and Technology (NIST) [56], why these primes result in
particularly efficient modular reduction implementations and what caused the choice of slightly
different prime shapes with the new elliptic curves.

3.1 Generalized Mersenne numbers

It is well known that reduction modulo Mersenne primes is very efficient. A Mersenne prime is a
prime number which is one less than a power of two: 2x − 1. When computing a · b modulo 2x − 1
with 0 ≤ a, b < 2x − 1, one can compute the reduction without multiplications as

c = a · b = c1 · 2x + c0 ≡ c1 + c0 (mod 2x − 1)

where 0 ≤ c0, c1 < 2x, since 2x ≡ 1 mod 2x − 1. However, for even more practical convenience,
one would like x to be close to a multiple of 32 or 64 since this matches (a multiple of) the word
size of virtually all modern computer architectures.

Unfortunately, there are not many Mersenne primes in the range where this is of interest for
elliptic curve cryptography. For example, when looking at the range 100 < x < 1000 only four
such values are available: x ∈ {107, 127, 521, 607}. The modulus 2127 − 1 has been proposed for
usage with hyperelliptic curve cryptography in genus 2 (cf. [8, 25, 15]) where it offers sufficient
security while 2521 − 1 is used in the NIST standard for elliptic curve (genus 1) cryptography.

One direction to generalize this idea is to use prime moduli of the form 2x − c where c is small
enough to fit in a computer word. These are sometimes referred to as Crandall numbers [20] and
will be explored in more detail in Section 3.2 on page 13. Another direction to generalize was
studied by Solinas in [56] and later adopted by NIST. A potential reason to go for these generalized
Mersenne numbers over Crandall numbers might be patent-related (cf. [20]).

Solinas studied efficient reductions, e.g. reduction which do not require multiplications, modulo
polynomials of the form

f (t) = td +

d−1∑
i=0

ci · ti (2)

where ci ∈ {−1, 0, 1}. For selected integers k and d these techniques can then be used for efficient
reduction modulo f (2k) as will be shown in more detail in this section. The five selected generalized
Mersenne primes of this shape which are specified in the NIST standard are

p192 = 2192 − 264 − 1
p224 = 2224 − 296 + 1
p256 = 2256 − 2224 + 2192 + 296 − 1
p384 = 2384 − 2128 − 296 + 232 − 1
p521 = 2521 − 1.

12 Efficient Modular Multiplication

It should be noted that for the first four generalized Mersenne primes all the exponents are a
multiple of 32. This makes implementations on 32-bit platforms significantly easier and faster. The
exception is for the Mersenne prime p521; here the choice was clearly made to go for a Mersenne
prime instead of a generalized Mersenne prime such as 2512−232−1, 2512−232 +1, or 2512−2288 +1.

3.1.1 Using the Prime Shape Directly

Let us give an example how this efficient modular reduction works. We will use the modulus p256 as
an example since this is arguably the most frequently used prime out of these five since this targets
the 128-bit security level when used with an appropriate elliptic curve for usage in cryptography.
Similar to the approach used for Mersenne primes one writes large powers of two (where the
exponent is ≥ 256) in terms of smaller powers of two. For example, 2256 ≡ 2224 − 2192 − 296 + 1 by
the definition of p256. For larger exponents this can be done similarly and one obtains

2256 ≡ 2224 − 2192 − 296 + 1,
2288 ≡ −2192 − 2128 − 296 + 232 + 1,
2320 ≡ −2224 − 2160 − 2128 + 264 + 232,

2352 ≡ −2224 − 2160 + 2 · 296 + 264 − 1,
2384 ≡ −2224 + 2 · 2128 + 2 · 296 − 232 − 1,
2416 ≡ −2224 + 2192 + 2 · 2160 + 2 · 2128 + 296 − 264 − 232 − 1,
2448 ≡ 3 · 2192 + 2 · 2160 + 2128 − 264 − 232 − 1,
2480 ≡ 3 · 2224 + 2 · 2192 + 2160 − 296 − 264 − 232.

Hence, after an initial multiplication c = a · b for 0 ≤ a, b < p256 the modular reduction can be
carried out efficiently by substituting the powers of two in c =

∑15
i=0 ci232i with the congruent values

from above. When grouping terms together things boil down to

c = a · b =

15∑
i=0

ci232i ≡ s1 + 2s2 + 2s3 + s4 + s5 − s6 − s7 − s8 − s9 mod p256

where the 32-bit coefficients of the si are defined in terms of the coefficients c as

2224 2192 2160 2128 296 264 232 20

s1 c7 c6 c5 c4 c3 c2 c1 c0
s2 c15 c14 c13 c12 c11 0 0 0
s3 0 c15 c14 c13 c12 0 0 0
s4 c15 c14 0 0 0 c10 c9 c8
s5 c8 c13 c15 c14 c13 c11 c10 c9
s6 c10 c8 0 0 0 c13 c12 c11
s7 c11 c9 0 0 c15 c14 c13 c12
s8 c12 0 c10 c9 c8 c15 c14 c13
s9 c13 0 c11 c10 c9 0 c15 c14

Computing the reduction modulo p256 can be done using six modular additions and four modular
subtractions. Computing the modular addition c = a + b mod p256 in constant running time (see
Section on page 1) can be done at the cost of approximately one addition and one subtraction using

c1 ← a + b, c2 ← c1 − p256, c← select(bc1/2256c, c1, c2)

where the function select(x, a, b) return a if x = 0 or b otherwise. Such a selection can be
implemented efficiently in constant time by masking out the correct results. Ergo, the total cost of
a constant-time modular reduction is ten 256-bit additions and ten 256-bit subtractions.

Joppe W. Bos, Thorsten Kleinjung and Dan Page 13

3.1.2 Using Montgomery Reduction

Another approach to perform arithmetic modulo generalized Mersenne numbers is using Mont-
gomery arithmetic (see Section 1 on page 1). Recall that radix-2w Montgomery reduction requires a
multiplication with the pre-computed Montgomery constant µ = −N−1 mod 2w and a multiplication
with the modulus N. Similar to the observation made in Section 2.1.2 on page 4 in the setting of
RSA the multiplication with µ can be avoided whenever N ≡ ±1 mod 2w since then µ ≡ ∓1 mod 2w.
This observation has been made and used in various cryptographic applications before, see for
example Lenstra [37], Acar and Shumow [2], Knežević, Vercauteren, and Verbauwhede [34],
Hamburg [29], and Bos, Costello, Hisil, and Lauter [15, 16].

Turning to our running example when using p256 this multiplication can be omitted since
−p−1

256 mod 2x = 1 for all positive integers x ≤ 96. Let us present an approach where one uses a
Montgomery-radix of 264 for a 32-bit platform when computing c = A ·B =

∑3
i=0 ai264i ·B mod p256.

After computing and accumulating the product of ai with B as c = c + ai · B the Montgomery
reduction can be simplified as

c = (c + p256 · (c1 · 232 + c0))/264

=
(
c +

(
c0 · 2256 − c0 · 2224 + c0 · 2192 + c0 · 296 − c0

)
+(

c1 · 2288 − c1 · 2256 + c1 · 2224 + c1 · 2128 − c1 · 232
))
/264

=

 9∑
i=2

ci · 232(i−2)

 − (
c1 · 2192 + c0 · 2160

)
+(

c1 · 2224 + c0 · 2192 + c1 · 2160 + c0 · 2128 + c1 · 264 + c0 · 232
)

when using the special shape of p256. This process reduces the size of the result by 64 bits and
needs to be performed four times in total to compute a full Montgomery reduction. This results in
the following interleaved Montgomery multiplication routine for p256 on a 32-bit platform:

c← 0
for i = 0 to 3 do

c← c + ai · B
t1 ← c1 · 2224 + c0 · 2192 + c1 · 2160 + c0 · 2128 + c1 · 264 + c0 · 232

t2 ← c1 · 2192 + c0 · 2160

c←
⌊

c
264

⌋
+ t1 − t2

end for
Hence, the Montgomery reduction modulo p256 takes only four 256-bit additions and four 256-bit
subtractions in total. When reduction between zero and p256 is required a conditional subtraction
needs to be computed which can be done using one additional 256-bit addition and one additional
256-bit subtraction. This approach is more efficient compared to the direct approach described in
the previous subsection and allows for a significantly simpler implementation.

3.2 Arithmetic for Curve25519

Since the standardization of the NIST curves, together with the prime used to define the finite field,
a significant amount of progress has been made in the field of elliptic curve cryptography with
respect to the performance and security properties. This lead Bernstein to introduce an alternative
elliptic curve for usage in public-key cryptography [7]. This curve is denoted Curve25519, referring
to the shape of the prime used to define the finite field: 2255 − 19. From a modular arithmetic point
of view this approach deviates from the generalized Mersenne approach used by NIST. Bernstein
proposes to use a Crandall number [20] of the form 2x − c where c is small compared to the word
size used instead.

14 Efficient Modular Multiplication

Bernstein proposes to represent integers modulo 2255 − 19 as elements of the ring of poly-
nomials

∑9
i=0 uixi, where ui is an integer multiple of 2d25.5ie such that ai/2d25.5ie ∈ {−225,−225 +

1, . . . ,−1, 0, 1, . . . , 225 − 1, 225} are a reduced-degree reduced-coefficient polynomial and represent
elements of Z/(2255 − 19)Z where each polynomial represents its value at one. Hence, the idea is
to represent a 255-bit integer using ten 26-bit pieces. This approach is motivated by using the fast
floating-point operations available on most modern processors.

Although this floating point approach is of interest by itself, it is not the preferred approach
used by many of the implementations in cryptographic libraries. In practice, either a representation
which allows a non-unique representation of the elements to avoid carry-propagation is used or a
redundant representation. Both approaches are outlined below.

One common approach to implement efficient multi-precision arithmetic is to use a non-unique
representation where the coefficients have sufficient space to grow without the need for carry
propagation. This allows efficient accumelation of results during the multiplication and reduction
step. For example, in the implementation approach of EdDSA [9], which targets 64-bit Intel and
AMD CPUs, a radix-264 can cause bottleneck when dealing with carries. Therefore an element
x ∈ Z/(2255 − 19)Z is represented as x =

∑4
i=0 xi251i. A unique representation would require that

each 0 ≤ xi < 251, however, in practice the coefficients xi are stored in 64-bit computer words
which avoid carry propagation. The idea is that after multiplication c = a ·b for 0 ≤ a, b < 2255−19
the integer c =

∑9
i=0 ci251i can be efficiently reduced by computing

(xi + 19xi+5) 251i, for 0 ≤ i ≤ 4.

Moreover, when the coefficients xi are 0 ≤ xi < 251+δ for a positive integer δ > 0 then
(xi + 19xi+5) 251i < 256+δ. In practice, the multiplication accepts inputs with each limb having up
to 54 bits (i.e., δ = 3). The disadvantage of this approach is that comparisons in this non-unique
representation become more cumbersome and, more importantly, more registers are needed to
represent an element.

When the number of available registers is limited it might be more efficient to work with a
redundant representation and compute with elements from Z/(2(2255 − 19))Z = Z/(2256 − 38)Z. For
example, Düll, Haase, Hinterwälder, Hutter, Paar, Sánchez and Schwabe outline the most efficient
approach for the embedded platforms AVR ATmega (8-bit), MSP430X (16-bit), and the ARM
Cortex M0 (32-bit) in [21]. This approach uses the “straight-forward” approach as also considered
by Bos in [14]. Given two integers a, b such that 0 ≤ a, b < 2256 − 38 then first compute the
multiplication c = a · b. An initial reduction step can be computed with

c = c12256 + c0 ≡ c138 + c0 mod 2256 − 38

using a single 6×256 bits multiplication where 0 ≤ c0, c1 < 2256. The resulting integer d = c138+c0
can be further reduced similarly d = d12256 + d0 ≡ d138 + d0 mod 2256 − 38 using a 6 × 6 bits
multiplication. The resulting d138 + d0 < 382 + 2256 and a final conditional subtraction is needed
to reduce the input to the range [0, . . . , 2256 − 38 − 1].

4 Special Arithmetic

Apart from RSA and ECC there are many more situations in cryptology where efficient modular
multiplication is needed. As in the case of RSA and ECC most or all cryptosystems allow special-
ising parameters in order to speed up their arithmetic. Instead of enumerating all improvements of
modular multiplication in special stituations we focus on two examples, namely sloppy reduction
[17] which speeds up modular reduction for certain moduli at the expense of correctness, and a
method for arithmetic operations modulo Mersenne numbers [18] whose efficiency depends on the
available arithmetic instructions.

Joppe W. Bos, Thorsten Kleinjung and Dan Page 15

4.1 Sloppy reduction

As already alluded to at the end of the previous section, modular reduction is quite easy if the
modulus is an integer of the form N = 2n − r (Crandall number) where r is a small positive
integer, say, r2 + r ≤ 2n. In this case it is advantageous to extend the range of operands and results
from [0, . . . ,N − 1] to [0, . . . ,R − 1] with R = 2n. The modular reduction of a product c = a · b,
0 ≤ a, b < R can be computed by a repeated application of the following simple reduction step R.
For an integer d with 0 ≤ d < R2, and d = d0 + d1R with 0 ≤ d0, d1 < R define R(d) = d0 + d1r.
Equivalently, one has R(d) = d − d1N which implies R(d) ≡ d mod N. Moreover, R(d) < d holds
if and only if d ≥ R. Thus, by applying R sufficiently often to the product c it will be reduced to
an integer below R and a final conditional subtraction reduces it to the range [0, . . . ,N − 1] if so
desired. It is easy to show (cf. below) that for r2 ≤ R three reduction steps are always sufficient; for
r = 1 two steps suffice.

Since the time spent in a reduction step is not negligible, the idea of sloppy reduction is to
skip the third reduction step and output R(R(d)) mod R as the modular reduction, leading to the
following reduction routine

for i = 1 to 2 do
d0 ← d mod R
d1 ← b

d
R c

d ← d0 + d1r
end for
d ← d mod R

This can produce a wrong result so sloppy reduction is only useful if the probablility of an incorrect
result is sufficiently low. In the case that the result can be verified by other means the probablility
must be low enough such that the cost of verification and possible recomputation does not exceed
the saving from sloppy reduction. For example, in cryptanalysis it is often the case that the results
of only a small fraction of many computations are used and that these results can be checked
quickly. If no verification of the result is possible, sloppy reduction may still be used, e.g., if the
probablility of an incorrect result is much smaller than the probablility of errors from other sources
(algorithmic or hardware).

Analysis of incorrectness Let d be an integer with 0 ≤ d < R2. In the following, equivalent
conditions for R(R(d)) ≥ R, i.e., failure of sloppy reduction for d, will be derived. Writing
d = x + yN = x′ + (y − z)R with 0 ≤ x < N and 0 ≤ x′ < R one gets x′ = x − yr + zR and
thus 0 ≤ z ≤ r + 1 (as y ≤ R + r, a consequence of r2 + r ≤ R). Therefore it follows from
R(d) = x + zN = (x − zr) + zR that

R(R(d)) =

x x ≥ zr
x + N x < zr

holds. Thus sloppy reduction fails if and only if r ≤ x < zr holds. In order to express this statement
on a more managable quantity than z, write x = u + vr with 0 ≤ u < r; from the above one also has
1 ≤ v ≤ z − 1 ≤ r. Since x′ = x − yr + zR < R implies yr > x + zR − R ≥ x + vR, one obtains

d = x + yN >
xr + xN + vRN

r
=

R(x + vN)
r

=
R(u + vR)

r
.

Conversely, this inequality implies that x < zr holds. Since R(u+vR)
r ≥ R2 for v ≥ r, the bound on v

can be improved to 1 ≤ v < r (this also implies R(R(d)) < N + r2 < 2N so that a third reduction
step will always result in a correct modular reduction, cf. above).

Summarising, one obtains the following
Fact: Let d be an integer with 0 ≤ d < R2. Then R(R(d)) ≥ R if and only if there exist 0 ≤ u < r
and 1 ≤ v < r such that d ≡ u + vr mod N and d > R(u+vR)

r hold.

16 Efficient Modular Multiplication

From these conditions one easily obtains an estimate of the number of 0 ≤ d < R2 with
R(R(d)) ≥ R. Indeed, it is

r−1∑
u=0

r−1∑
v=1

#{d | d ≡ u + vr mod N and
R(u + vR)

r
< d < R2}

which can be approximated by

r−1∑
u=0

r−1∑
v=1

rR2 − R(u + vR)
Nr

=

r−1∑
v=1

(r − v)R2

N
−

r−1∑
u=0

(r − 1)uR
Nr

=
R(rR − r + 1)(r − 1)

2N

with an error of at most r(r − 1). Thus, if sloppy reduction is applied to a randomly chosen number
in the interval [0,R2 − 1], the probability of an incorrect result is about r(r−1)

2N .
However, sloppy reduction is usually used after a multiplication of two uniformly distributed

factors in the interval [0,R − 1], possibly followed by an addition or a subtraction of a uniformly
distributed integer in the same interval, so that the input of sloppy reduction is not uniformly
distributed in [0,R2 − 1]. In these cases the analysis is more difficult; the analysis given below will
rely on heuristic assumptions.

Consider first the case c = a · b + a′ with 0 ≤ a, b < R and |a′| < R. For a rough approximation
of the failure probability one discards a′ and assumes that the condition c ≡ u + vr mod N is met
with probability 1

N for given u and v. The number of pairs (a, b) satisfying a · b > R(u+vR)
r can be

approximated by the integral∫ R

(u+vR)
r

(R −
R(u + vR)

ar
)da = R(R −

(u + vR)
r

) −
R(u + vR)

r
log

rR
u + vR

. (3)

By approximating u + vR with vR and summing over u and v one gets the following estimate for
the probability of an incorrect result

1
NR2

r−1∑
u=0

r−1∑
v=1

R(R −
vR
r

) −
vR2

r
log

r
v

=
1
N

(
r(r − 1)

2
−

r−1∑
v=1

v log
r
v

).

The case c = a · b becomes more involved since the number and properties of solutions of
ab ≡ u + vr mod N depend on the greatest common divisor of u + vr and N. For example, if u + vr
and N are even, at least one of a and b must be even too.

Given 0 ≤ u < r and 1 ≤ v < r let w = gcd(u + vr,N) and consider the solutions (a, b) of
ab ≡ u + vr mod N. These solutions satisfy gcd(a,N) = gcd(a,w). For a fixed divisor g | w the
number of residue classes of a modulo N satisfying gcd(a,N) = gcd(a,w) = g is φ(N

g) and for each
such residue class b is determined uniquely modulo N

g . Thus the number of residue classes of pairs
(a, b) satisfying ab ≡ u + vr mod N is

∑
g|w φ(N

g)g.
Under the heuristic assumption that this expression divided by N2 approximates the probability

that a pair (a, b) with a · b > R(u+vR)
r also satisfies ab ≡ u + vr mod N, the analysis for the case

c = a · b + a′ can be redone by adjusting equation (3) with this probability. This leads to a long
formula which is not displayed here but which is discussed in a few examples.

• Assume that the smallest prime factor of N is bigger than r2. This applies for example to
r = 3, N = 2n − 3 with n . 3 mod 4. Then w = 1 for all u, v as above so that the probability
of failure is approximated by φ(N)

N2 (r(r−1)
2 −

∑r−1
v=1 v log r

v). In the case r = 3 this simplifies to
φ(N)(3−log 27

4)
N2 which is less than 1.1

N . Notice that this is much lower than the probability 3
N for

inputs uniformly distributed in [0,R2 − 1].

• Consider the case r = 38, n = 256 so that N = 2p where p is the prime used in Curve25519
(cf. final part of Section 3.2 on page 13). Then w can only take the values 1 and 2 with

Joppe W. Bos, Thorsten Kleinjung and Dan Page 17

the former occuring if u is odd and the latter if u is even. Thus the probability that ab ≡

u + vr mod N is satisfied becomes φ(N)
N2 =

p−1
N2 ≈

1
2N if u is odd and φ(N)+2φ(N

2)
N2 =

3(p−1)
N2 ≈ 3

2N
if u is even. Since u + vR can be approximated with vR and the sum over u contains as many
even as odd values of u, one obtains the same result as in the analysis of the case c = a ·b+a′,
namely

1
N

(703 −
37∑

v=1

v log
38
v

) ≈
343
N

as an approxmiation of the probability of an incorrect result. Again this is lower than in the
case of inputs uniformly distributed in [0,R2 − 1].

4.2 Special arithmetic for Mersenne numbers

In the case of a Mersenne number N = 2n−1 modular reduction is fairly simple since two reduction
steps R are sufficient and, moreover, the second reduction step consists of adding either 0 or 1.
However, if n is not a multiple of the word size, this involves many shifts and in some cases it may
be advantageous to interweave these shifts with operations of the preceding multiplication. For
example, this is done in [18] which will be outlined in the following.

Let w denote the word size of the underlying architecture and assume that w-bit additions
and subtractions, preferably with carry propagation, are available as well as a w/2 × w/2 to w-bit
multiplication. Furthermore, assume that the number of words of N is in a range where one can
benefit from using the Karatsuba-Ofman technique (or similar ones). Since branches are usually
expensive, especially in a SIMD-setting (as in [18]), it is advantageous to adapt the word size
in the algorithm so that carries in intermediate results of the Karatsuba-Ofman technique can be
avoided. More precisely, let s < w/2 be the adapted word size, let S = 2s be the radix and let
m be the number of s-bit words used to represent integers modulo N. Thus up to w/2 − s levels
of the Karatsuba-Ofman technique can be applied. If an (unsigned) radix-2s representation is
used, the intermediate coefficients dk =

∑m−1
i, j=0,i+ j=k aib j in the product (

∑m−1
i=0 aiS i) ·

∑m−1
j=0 b jS j)

are bounded by mS 2. This bound can be halved by using a signed radix-2s representation, i.e.,
writing A =

∑m−1
i=0 aiS i with −2s−1 ≤ ai < 2s−1 which allows to uniquely represent any integer in

the interval [−2ms−1, 2ms−1 − 1]. Using this representation the intermediate coefficients dk fit in
dlog2 me + 2s − 1 bits and it is assumed that s and m are chosen such that log2 m + 2s − 1 ≤ w
holds. For such a signed radix-2s representation the arithmetic operations, i.e., modular addition,
subtraction and multiplication as well as conversions between signed radix-2s and (unsigned)
radix-2w, are described in the following. For ∗ ∈ {+,−, ·} the operands of C ≡ A ∗ B mod N are
written as A =

∑m−1
i=0 aiS i, B =

∑m−1
i=0 biS i and C =

∑m−1
i=0 ciS i.

4.2.1 Modular addition and subtraction

These operations are done coefficient wise with a subsequent transformation of the result modulo
N into a signed radix-2s representation. The transformation is facilitated by adding the constant
C0 = 2s−1 ∑m−1

i=0 S i to A and subtracting it from the result. The steps are as follows:

1. Compute a′i = ai + 2s−1 for 0 ≤ i < m (adding C0).

2. Set ci = a′i + bi in the case of an addition or ci = a′i − bi in the case of a subtraction for
0 ≤ i < m.

3. Set c = 0. For i = 0 to m − 1 first replace c by c + ci, then set ci to c mod S and finally
replace c by b c

S c.

4. Add c · 2α to cβ where α and β are integers such that sm − n = α + sβ with 0 ≤ α < s. If
cβ ≥ S , propagate the carry as in the previous step until c = 0. If handling cm−1 produces a
carry, repeat this step.

18 Efficient Modular Multiplication

5. Set ci = ci − 2s−1 for 0 ≤ i < m (subtracting C0).

In the first step the constant C0 is added to A, then A and B are added or subtracted in the second
step. The third step normalises the coefficients of C to the range [0, S − 1] while producing a
carry c which corresponds to c · S m and which is taken care of in the fourth step thus producing a
radix-2s representation of C + C0. In the fifth step C0 is subtracted so that C is in a signed radix-2s

representation.

4.2.2 Modular multiplication

This is done in two phases. In the first phase the intermediate coefficients dk =
∑m−1

i, j=0,i+ j=k aib j,
0 ≤ k < 2m−1 are computed so that

∑2m−2
k=0 dkS k modulo N is the result C. The second phase handles

the reduction of this sum modulo N and its transformation into a signed radix-2s representation. In
the first phase the Karatsuba-Ofman technique (for polynomials) can be used. The reduction of∑2m−2

k=0 dkS k modulo N proceeds in two substeps. Firstly, the dk are made non-negative by adding a
constant which is 0 modulo N. Next, the dk with k ≥ m are split into two w/2-bit words which are
added with an appropriate shift to the appropriate dk′ with k′ < m. The resulting sum

∑m−1
k=0 dkS k

satisfies 0 ≤ dk < 2w. The transformation into a signed radix-2s representation is essentially the
same as in the addition method above, i.e., first the constant C0 is added, next the carries are
propagated, and finally the constant C0 is subtracted. This leads to the following steps:

1. Compute for 0 ≤ k < 2m−1 the intermediate coefficients dk =
∑m−1

i, j=0,i+ j=k aib j of the product
A · B using at most w/2 − s levels of the Karatsuba-Ofman technique.

2. Set d0 = d0 + 2w−1, di = di + 2w−1 − 2w−1−s for 1 ≤ i < 2m − 1 and dβ = dβ − 2α where α and
β are integers such that s(2m − 2) + w − 1 − n = α + sβ with 0 ≤ α < s.

3. Set di = di + 2s−1 for 0 ≤ i < m (adding C0).

4. For m ≤ i < 2m − 1 do the following operations. First write di = d′i + d′′i · 2
w/2, then add

d′i · 2
α′ to dβ′ and d′′i · 2

α′′ to dβ′′ where α′, β′, γ′, α′′, β′′, γ′′ ∈ Z such that is = α′ + sβ′ + nγ′

and is + w/2 = α′′ + sβ′′ + nγ′′ with 0 ≤ α′, α′′ < s and 0 ≤ α′ + sβ′, α′′ + sβ′′ < n.

5. Perform the third and fourth step of the addition method to di, 0 ≤ i < m.

6. Set ci = di − 2s−1 for 0 ≤ i < m (subtracting C0).

Notice that the m additions of the third step can be combined with corresponding additions in the
second step.

4.2.3 Conversions

Usually, the input of a long calculation is available in a radix-2w representation and this is also
the desired format for the result. Therefore, a few conversions between signed radix-2s and
radix-2w representations are needed at the beginning and at the end. Although in most cases a
simple and slow conversion is sufficient, it is possible that during the course of the calculation
many conversions are needed so that it must be more efficient. With some of the tricks used above
reasonably efficient conversion routines can be built which are sketched below. These can be further
optimised by combining some of their steps with steps of the preceding or subsequent modular
operation, e.g., the fourth step of the following conversion is the inverse of the first step of modular
addition. As above let A =

∑m−1
i=0 aiS i be the signed radix-2s representation and Ã =

∑m̃−1
i=0 ãi2wi the

radix-2w representation of the same residue class modulo N with 0 ≤ Ã < N and an appropriate m̃.
The conversion from radix-2w to signed radix-2s proceeds as follows:

1. Add the constant C0 = 2s−1 ∑m−1
i=0 S i to Ã using the standard addition technique with carry

propagation.

Joppe W. Bos, Thorsten Kleinjung and Dan Page 19

2. Set a′i = 0 for 0 ≤ i < m. For 0 ≤ i ≤ m̃ split ãi appropriately and add the appropriately
shifted parts to the appropriate a′i .

3. Perform the third and fourth step of the addition method to a′i , 0 ≤ i < m.

4. Set ai = a′i − 2s−1 for 0 ≤ i < m (subtracting C0).

With the precomputed constant C1 where C1 ≡ −C0 mod N and 0 ≤ C1 < N the conversion
from signed radix-2s to radix-2w proceeds as follows:

1. Set ai = ai + 2s−1 for 0 ≤ i < m (adding C0).

2. Initialise the ã j with the precomputed constant C1.

3. For 0 ≤ i ≤ m split ai · 2αi into (at most) two w-bit words where 0 ≤ αi < w and
is − n[is

n] ≡ αi mod w. Then add these words to the appropriate ã j (in order to minimise
carry propagation, perform these additions in increasing order of j).

4. Reduce
∑m̃−1

i=0 ãi2wi modulo N; usually this requires only a few shifts and additions.

References

[1] T. Acar. High-Speed Algorithms & Architectures for Number Theoretic Cryptosystems. PhD
thesis, Department of Electrical & Computer Engineering, Oregon State University, 1997.

[2] T. Acar and D. Shumow. Modular reduction without pre-computation for special moduli.
Technical report, Microsoft Research, 2010.

[3] P. Barrett. Implementing the Rivest, Shamir and Adleman public key encryption algorithm
on a standard digital signal processor. In Advances in Cryptology (CRYPTO), pages 311–323.
Springer-Verlag LNCS 263, 1986.

[4] M. Bellare and P. Rogaway. Optimal asymmetric encryption. In Advances in Cryptology
(EUROCRYPT), pages 92–111. Springer-Verlag LNCS 950, 1994.

[5] K. Bentahar and N. Smart. Efficient 15,360-bit RSA using woop-optimised montgomery
arithmetic. In IMA Cryptography And Coding (IMACC), LNCS 4887, pages 346–363.
Springer-Verlag, 2007.

[6] D. Bernstein. Error-prone cryptographic designs. Real World Cryptography (RWC) invited
talk, 2015.

[7] D. J. Bernstein. Curve25519: New Diffie-Hellman speed records. In M. Yung, Y. Dodis,
A. Kiayias, and T. Malkin, editors, PKC 2006, volume 3958 of LNCS, pages 207–228, New
York, NY, USA, Apr. 24–26, 2006. Springer, Heidelberg, Germany.

[8] D. J. Bernstein. Elliptic vs. Hyperelliptic, part I. Talk at ECC (slides at http://cr.yp.to/
talks/2006.09.20/slides.pdf), September 2006.

[9] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. High-speed high-security
signatures. In B. Preneel and T. Takagi, editors, CHES 2011, volume 6917 of LNCS, pages
124–142, Nara, Japan, Sept. 28 – Oct. 1, 2011. Springer, Heidelberg, Germany.

[10] E. Biham. A fast new DES implementation in software. In Fast Software Encryption (FSE),
LNCS 1267, pages 260–272. Springer-Verlag, 1997.

[11] D. Boneh. Twenty years of attacks on the RSA cryptosystem. Notices of the American
Mathematical Society, 46(2):203–213, 1999.

http://cr.yp.to/talks/2006.09.20/slides.pdf
http://cr.yp.to/talks/2006.09.20/slides.pdf

20 Efficient Modular Multiplication

[12] J. Bos. Practical Privacy. PhD thesis, Technische Universiteit Eindhoven, 1992.

[13] J. Bos, P. Montgomery, D. Shumow, and G. Zaverucha. Montgomery multiplication using
vector instructions. In Selected Areas in Cryptography (SAC), LNCS 8282, pages 471–489.
Springer-Verlag, 2013.

[14] J. W. Bos. High-performance modular multiplication on the Cell processor. In M. A. Hasan
and T. Helleseth, editors, Workshop on the Arithmetic of Finite Fields – WAIFI 2010, volume
6087 of Lecture Notes in Computer Science, pages 7–24. Springer, 2010.

[15] J. W. Bos, C. Costello, H. Hisil, and K. Lauter. Fast cryptography in genus 2. In T. Johansson
and P. Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 194–210,
Athens, Greece, May 26–30, 2013. Springer, Heidelberg, Germany.

[16] J. W. Bos, C. Costello, H. Hisil, and K. Lauter. High-performance scalar multiplication using
8-dimensional GLV/GLS decomposition. In G. Bertoni and J.-S. Coron, editors, CHES 2013,
volume 8086 of LNCS, pages 331–348, Santa Barbara, CA, USA, Aug. 20–23, 2013. Springer,
Heidelberg, Germany.

[17] J. W. Bos, M. E. Kaihara, T. Kleinjung, A. K. Lenstra, and P. L. Montgomery. Solving
a 112-bit prime elliptic curve discrete logarithm problem on game consoles using sloppy
reduction. International Journal of Applied Cryptography, 2(3):212–228, 2012.

[18] J. W. Bos, T. Kleinjung, A. K. Lenstra, and P. L. Montgomery. Efficient SIMD arithmetic
modulo a Mersenne number. In E. Antelo, D. Hough, and P. Ienne, editors, IEEE Symposium
on Computer Arithmetic – ARITH-20, pages 213–221. IEEE Computer Society, 2011.

[19] B. Chevallier-Mames, M. Joye, and P. Paillier. Faster double-size modular multiplication
from euclidean multipliers. In Cryptographic Hardware and Embedded Systems (CHES),
LNCS 2779, pages 214–227. Springer-Verlag, 2003.

[20] R. E. Crandall. Method and apparatus for public key exchange in a cryptographic system,
October 1992. US Patent 5,159,632.

[21] M. Düll, B. Haase, G. Hinterwälder, M. Hutter, C. Paar, A. H. Sánchez, and P. Schwabe.
High-speed curve25519 on 8-bit, 16-bit and 32-bit microcontrollers. Design, Codes and
Cryptography, 77(2), 2015.

[22] N. Ferguson, B. Schneier, and T. Kohno. Cryptography Engineering: Design Principles and
Practical Applications. Wiley, 2010.

[23] W. Fischer and J.-P. Seifert. Increasing the bitlength of a crypto-coprocessor. In Cryptographic
Hardware and Embedded Systems (CHES), LNCS 2523, pages 71–81. Springer-Verlag, 2002.

[24] M. Flynn. Some computer organizations and their effectiveness. IEEE Transactions on
Computers, C-21(9):948–960, 1972.

[25] P. Gaudry and É. Schost. Genus 2 point counting over prime fields. J. Symb. Comput.,
47(4):368–400, 2012.

[26] D. Gordon. A survey of fast exponentiation methods. Journal of Algorithms, 27:129–146,
1998.

[27] S. Gueron. Enhanced Montgomery multiplication. In Cryptographic Hardware and Embedded
Systems (CHES), LNCS 2523, pages 46–56. Springer-Verlag, 2002.

[28] G. Hachez and J.-J. Quisquater. Montgomery exponentiation with no final subtractions:
Improved results. In Cryptographic Hardware and Embedded Systems (CHES), LNCS 1965,
pages 293–301. Springer-Verlag, 2000.

Joppe W. Bos, Thorsten Kleinjung and Dan Page 21

[29] M. Hamburg. Fast and compact elliptic-curve cryptography. Cryptology ePrint Archive,
Report 2012/309, 2012. http://eprint.iacr.org/2012/309.

[30] L. Hars. Long modular multiplication for cryptographic applications. In Cryptographic
Hardware and Embedded Systems (CHES), LNCS 3156, pages 45–61. Springer-Verlag, 2004.

[31] J. Jonsson and B. Kaliski. Public-Key Cryptography Standards (PKCS) #1: RSA cryptography
specification, version 2.1. Internet Engineering Task Force (IETF) Request for Comments
(RFC) 3447, 2003.

[32] M. Joye. On Quisquater’s multiplication algorithm. In D. Naccache, editor, Cryptography
and Security: From Theory to Applications, LNCS 6805, pages 3–7. Springer-Verlag, 2012.

[33] A. Karatsuba and Y. Ofman. Multiplication of many-digital numbers by automatic computers.
Physics-Doklady, 7:595–596, 1963.

[34] M. Knežević, F. Vercauteren, and I. Verbauwhede. Speeding up bipartite modular multiplica-
tion. In M. A. Hasan and T. Helleseth, editors, Arithmetic of Finite Fields – WAIFI, volume
6087 of Lecture Notes in Computer Science, pages 166–179. Springer, 2010.

[35] D. Knuth. The Art of Computer Programming: Seminumerical Algorithms, volume 2. 3
edition, 1997.

[36] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(177):203–209,
1987.

[37] A. Lenstra. Generating RSA moduli with a predetermined portion. In Advances in Cryptology
(ASIACRYPT), LNCS 1514, pages 1–10. Springer-Verlag, 1998.

[38] A. Lenstra and E. Verheul. Selecting cryptographic key sizes. Journal of Cryptology,
14(4):255–293, 2001.

[39] A. K. Lenstra. Unbelievable security. Matching AES security using public key systems
(invited talk). In C. Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 67–86,
Gold Coast, Australia, Dec. 9–13, 2001. Springer, Heidelberg, Germany.

[40] A. K. Lenstra and E. R. Verheul. Selecting cryptographic key sizes. Journal of Cryptology,
14(4):255–293, Sept. 2001.

[41] H. Lenstra. Factoring integers with elliptic curves. Annals of Mathematics, 126(3):649–673,
1987.

[42] V. S. Miller. Use of elliptic curves in cryptography. In H. C. Williams, editor, CRYPTO’85,
volume 218 of LNCS, pages 417–426, Santa Barbara, CA, USA, Aug. 18–22, 1986. Springer,
Heidelberg, Germany.

[43] P. Montgomery. Modular multiplication without trial division. Mathematics of Computation,
44(170):519–521, 1985.

[44] P. Montgomery. Vectorization of the elliptic curve method. Technical report, Centrum
Wiskunde & Informatica (CWI), 1994(ish).

[45] G. Moore. Cramming more components onto integrated circuits. Electronics Magazine,
38(8):114–117, 1965.

[46] D. Page and N. Smart. Parallel cryptographic arithmetic using a redundant montgomery
representation. IEEE Transactions on Computers, 53(11):1474–1482, 2004.

http://eprint.iacr.org/2012/309

22 Efficient Modular Multiplication

[47] P. Pailler. Low-cost double size modular exponentiation or how to stretch your cryptocopro-
cessor. In Public Key Cryptography (PKC), LNCS 1560, pages 223–234. Springer-Verlag,
1999.

[48] B. Parhami. Computer Arithmetic: Algorithms and Hardware Designs. Oxford University
Press, 1 edition, 2000.

[49] J.-J. Quisquater. Encoding system according to the so-called RSA method, by means of a
microcontroller and arrangement implementing this system. U.S. Patent 5,166,979.

[50] R. Rivest. A description of a single-chip implementation of the RSA cipher. LAMBDA
Mazazine, 1(3):14–18, 1980.

[51] R. Rivest, A. Shamir, and L. Adleman. Cryptographic communications system and method.
U.S. Patent 4,405,829.

[52] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM (CACM), 21(2):120–126, 1978.

[53] A. Sherman. VLSI Placement and Routing: The PI Project. Springer-Verlag, 1989.

[54] S. Singh. The Code Book: The Secret History of Codes and Code-Breaking. Fourth Estate,
1999.

[55] N. Smart. Algorithms, key size and parameters report. Technical report, European
Union Agency for Network and Information Security (ENISA), 2014. http://www.enisa.
europa.eu.

[56] J. A. Solinas. Generalized Mersenne numbers. Technical Report CORR 99-39, Centre
for Applied Cryptographic Research, 1999. http://www.cacr.math.uwaterloo.ca/
techreports/1999/corr99-39.pdf.

[57] U.S. Department of Commerce/National Institute of Standards and Technology. Digital
Signature Standard (DSS). FIPS-186-4, 2013. http://nvlpubs.nist.gov/nistpubs/
FIPS/NIST.FIPS.186-4.pdf.

[58] S. Vanstone and R. Zuccherato. Short RSA keys and their generation. Journal of Cryptology,
8(2):101–114, 1995.

[59] C. Walter. Faster modular multiplication by operand scaling. In Advances in Cryptology
(CRYPTO), LNCS 576, pages 313–323. Springer-Verlag, 1991.

[60] C. Walter. Montgomery exponentiation needs no final subtractions. Electronics Letters,
35(21):1831–1832, 1999.

[61] C. Walter. Montgomery’s multiplication technique: How to make it smaller and faster.
In Cryptographic Hardware and Embedded Systems (CHES), LNCS 1717, pages 80–93.
Springer-Verlag, 1999.

[62] M. Wiener. Cryptanalysis of short RSA secret exponents. IEEE Transactions on Information,
36(3):553–558, 1990.

[63] M. Yoshino, K. Okeya, and C. Vuillaume. Double-size bipartite modular multiplication. In
Australasian Conference on Information Security and Privacy (ACISP), LNCS 4586, pages
230–244. Springer-Verlag, 2007.

http://www.enisa.europa.eu
http://www.enisa.europa.eu
http://www.cacr.math.uwaterloo.ca/techreports/1999/corr99-39.pdf
http://www.cacr.math.uwaterloo.ca/techreports/1999/corr99-39.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

	Montgomery multiplication
	Arithmetic for RSA
	Arithmetic for ECC
	Special Arithmetic

