
SynCirc: Efficient Synthesis of Depth-Optimized
Circuits for Secure Computation (Full Version)?

Arpita Patra1, Thomas Schneider2, Ajith Suresh1, Hossein Yalame2

1 Indian Institute of Science, Bangalore, India
{arpita, ajith}@iisc.ac.in

2 TU Darmstadt, Germany
{schneider, yalame}@encrypto.cs.tu-darmstadt.de

Abstract—Secure Multi-party Computation (MPC) allows to
securely compute on private data. To make MPC practical, logic
synthesis can be used to automatically translate a description
of the function to be computed securely into optimized and
error-free boolean circuits. TinyGMW (Demmler et al., CCS’15)
used industry-grade hardware synthesis tools (DC, Yosys) to
generate depth-optimized circuits for MPC. To evaluate their
optimized circuits, they used the ABY framework (Demmler et al.,
NDSS’15) for secure two-party computation. The recent ABY2.0
framework (Patra et al., USENIX Security’21) presented round-
efficient constructions using multi-input AND gates and improved
over ABY by at least 6× in online communication for 4-input
AND gate evaluation.

In this work, we propose SynCirc, an efficient hardware synthe-
sis framework designed for MPC applications. Our framework
is based on Verilog and the open-source tool Yosys-ABC. It
provides custom libraries and new constraints that accommodate
multi-input AND gates. With this, we improve over TinyGMW
by up to 3× in multiplicative depth with a corresponding
improvement in online round complexity. Moreover, we provide
efficient realizations of several new building blocks including
comparison, multiplexers, and equality check. For these building
blocks, we achieve improvements in multiplicative depth/online
rounds between 22.3% and 66.7%. With these improvements,
our framework makes multi-round MPC better-suited for high-
latency networks such as the Internet. With respect to the look-
up table based approach of Dessouky et al. (NDSS’17), our
framework improves the online communication by 1.3× − 18×.

Index Terms—Secure Function Evaluation, Hardware Synthe-
sis, Multi-party Computation, Depth Optimization, Logic Design,
ABY2.0

I. INTRODUCTION

Secure multi-party computation (MPC) [2], [3], one of the
prominent techniques of modern cryptography, allows a set of
n mutually distrusting parties to jointly compute a function
on their private inputs. In addition to the correctness of the
function output, MPC guarantees privacy which ensures that
no set of t corrupt parties can learn more information than
the output. MPC has showcased its potential in real-world
applications such as private auctions [4], secure aggregation [5],
[6], private clustering [7], [8], and recently in the domain of
privacy-preserving machine learning (PPML) [9]–[17].

The area of MPC research was kickstarted mainly by two
protocols, both evaluating a Boolean circuit representing the

?Please cite the version of this paper published at 14. IEEE International
Symposium on Hardware Oriented Security and Trust (HOST’21) [1].

desired functionality – i) Yao’s garbled circuits (GC) [2]
approach and ii) the Goldreich-Micali-Wigderson (GMW) [3]
paradigm. The former has a constant number of communication
rounds, yet incurs a high communication. The latter has a
better communication cost, yet incurs a depth-proportional
round complexity. Since then, enormous literature has been
exploring the design of practically efficient circuit-based secure
computation protocols.

While experts manually designed circuits for each of the
specific functions in the initial days [18]–[23], the task became
tedious with the introduction of large and complex functions.
Moreover, errors in such hand-made circuits can even lead
to a breach of privacy by leaking additional information on
the party’s private inputs. This paved the way for automated
generation of circuits [18], [19], [21], [23]–[32] wherein
high-level function descriptions are automatically compiled
to efficient circuit representations using logic synthesis. The
optimization criteria within the logic synthesis are derived
based on the protocol that uses the circuit. For instance,
Yao-based protocols prefer to have circuits with as less as
possible AND gates (and as high as possible XOR gates due
to free-XOR technique that allows XOR gates to be evaluated
locally [33]), whereas the GMW-style approach prefers circuits
with optimized multiplicative depth. The most widely accepted
methods for logic synthesis include Circuit Compilers (CC)
and Hardware Synthesis Tools (HST).

In the Circuit Compilers approach, Fairplay [18], [19] and
PAL [30] compiled a domain-specific language (DSL) into a
size-optimized Boolean circuit. The CBMC-GC compiler [21]
used an SAT model checker to generate size-optimized Boolean
circuits from the ANSI C language. The PCF compiler [23]
generates a compact assembler-like intermediate representation
while the KSS compiler [20] generates Boolean circuits from
a DSL description. ShallowCC [31] takes ANSI C as input
and creates depth-optimized Boolean circuits by introducing
new optimized building blocks and proposing multiple depth
minimization techniques. In [27], [28], a logic synthesis
toolbox was proposed for security applications. They consist
of resubstitution, refactoring, and rewriting algorithms and
consider the minimization of the number of AND gates as their
primary goal.

In the Hardware Synthesis Tools approach, TinyGarble [24]
proposed a method using sequential circuits and already estab-

lished powerful hardware logic synthesis tools to synthesize
size-optimized circuit descriptions. TinyGMW [25], in contrast
to TinyGarble, focused on automatically synthesizing low-depth
combinational circuits for use in protocols that require a low
multiplicative depth. Dessouky et al. [26] went beyond Boolean
gates and replaced the 2-input Boolean gates representation by
more compact lookup tables (LUTs) and utilized FPGA LUT-
based synthesis tools to transform a description in a hardware
description language (HDL) into a LUT representation for
LUT-based cryptographic protocols. MPCircuits [29] generates
size-optimized Boolean circuits using hardware synthesis tools
and designing new technology libraries for security applications
with multiple parties. Recently, Heldmann et al. [34] proposed
an automated circuit compilation suite based on the compiler
toolchain LLVM. Their LLVM output is further processed with
the ABC tool [35] to produce size-optimized circuits.

In this work, we improve upon the approach of
TinyGMW [25] where industry-grade hardware synthesis tools
were tweaked for logic synthesis. TinyGMW focused on depth-
optimized circuits for the GMW paradigm owing primarily
to the following reasons – i) it allows to pre-compute the
communication-intensive input independent operations in a
setup phase offering a high-speed online phase, and ii) GMW
supports better parallelization of the same circuit using SIMD
operations leading to high throughput [22], [36]. Moreover,
the circuits generated by their toolchain were compatible with
the ABY framework [36], which was the best known MPC
framework for two parties (2PC) back in 2015. Recently, the
ABY2.0 protocols [37] improved upon those in ABY by a
factor 6× in online communication for 4-input AND gate
and introduced MPC protocols to evaluate multi-input AND
gates efficiently. In this work, we use HW synthesis tools to
accommodate for multi-input AND gates to obtain circuits
with a better multiplicative depth that can then be evaluated
using the ABY2.0 protocols [37]. Moreover, we implement
efficient circuits for several building blocks with a focus on
secure computation as the end goal.

A. Outline and Our Contributions

In this work, we present SynCirc, an efficient framework
for synthesizing boolean circuits with the end goal of being
deployed in a secure computation framework. For this, we re-
purpose logic synthesis tools [24]–[26], [29], to automatically
and efficiently compile a function written in a Hardware
Description Language into a multiplicative depth-optimized
representation. The generated circuit comprises basic boolean
gates and multi-input AND gates with a fan-in of up to four.
SynCirc is the first hardware synthesis framework for MPC to
accommodate multi-input AND gates.

Our SynCirc framework, built along the lines of
TinyGMW [25], is designed to minimize the communication
and rounds in the online phase. The framework consists of
several building blocks and improves the multiplicative depth
over previous circuit building blocks between 22.3% and 66.7%.
Thus, SynCirc clubbed with the state-of-the-art 2PC protocols
of ABY2.0 [37] makes MPC better suited for high-latency

networks such as the Internet. Our contributions are summarized
next.

a) Our three-layer framework: Our framework, depicted
in Fig. 1 consists of three layers, with the 3rd and final
layer consisting of the privacy-preserving realization of various
functionalities and forming the end goal.

Layer I consists of basic boolean gates such as AND, XOR,
and NOT. In addition, we incorporate 3 and 4 input AND
gates (AND3 and AND4) at this layer by re-engineering
the synthesis tool with proper parameters. Layer I forms
the basis for Layer II, which comprises the depth-optimized
variants of basic functionalities. This includes `-bit boolean
adder/subtractor, bit extraction, multiplexer, equality test, etc.,
and forms the building blocks for many secure computation
tasks. To accommodate multi-input AND gates during synthesis,
we developed a customized synthetic library in Verilog with
the depth-optimized circuit descriptions of the functionalities
in Layer II. With the proper mapping of functionalities, the
synthesis tool uses our custom descriptions over the built-
in ones. We can assemble the building blocks in Layer II
to construct several advanced functionalities, which would
otherwise be impractical to do by hand. In Layer III, we
present a list of such functionalities: division, sorting, private
set intersection, and privacy-preserving machine learning blocks
such as Rectified Linear Unit (ReLU) and Argmax.

Though we consider only a limited set of functionalities in
this work, we can leverage the modular design of our framework
to enhance the support for more advanced functionalities later.
For instance, as shown in MPCircuits [29], a more advanced
Layer IV for functions like auctions, voting, stable matching,
and nearest neighbour search can be constructed using existing
layers, and we leave this as future work.

TABLE I
COMPARISON OF OUR CONSTRUCTIONS WITH SHALLOWCC [31] IN TERMS

OF MULTIPLICATIVE DEPTH.

Operation ShallowCC [31] SynCirc (this work)

n-bit Addition log2(n) + 1 0.5 log2(n) + 1
n-bit Subtraction log2(n) + 2 0.5 log2(n) + 2
n-bit Multiplication 2 log2(n) + 3 1.5 log2(n) + 2
n-bit Comparison log2(n) + 1 0.5 log2(n)+1
n : 1 Multiplexer log2(log2(n) + 1) 0.25 log2(n)

b) Comparison with Circuits Compiler approach: In Ta-
ble I, we compare the multiplicative depth of the building blocks
of SynCirc with the variants proposed in ShallowCC [31], the
state-of-the-art circuit compiler for depth optimized boolean
circuits. Concretely, for 64-bit inputs, our constructions improve
the multiplicative depth of ShallowCC by 1.25× - 2.0×.
Note that reducing the depth of a block by just one can
impact the overall performance by a large amount in several
applications. The comparison operation is one such example
that contributes to more than 93% of the rounds for neural
network training/inference [17].

c) Implementation and Benchmarking: We implemented
the functionalities in Verilog and synthesized the netlists using

AND2 AND3 AND4 XOR XNOR NOT

Comparison Multiplexer Equality
Test

AES
SboxMultiplierBit

ExtractionLayer II:

Layer I:

Division

Ladner-Fischer
Adder/Subtractor

Layer III: Sorting Manhattan
Distance

AES
Encryption

Private Set
Intersection (PSI) ReLU Sigmoid Argmax Maxpool

Privacy Preserving Machine Learning

Carry-Save
Adder

Fig. 1. The three-layer SynCirc architecture

the Yosys-ABC tool [38], [39]. As XOR gates are free in MPC
protocols, we primarily considered the multiplicative depth
and the number of non-free gates (AND2, AND3, AND4) as
the parameters for benchmarking. We report the values over
different bit-widths ranging from 8 to 64. For obtaining the
secure variant of the functionalities, we evaluated the circuits
generated by our synthesis tool using the state-of-the-art two-
party protocols of ABY2.0 [37]. As evident from Table VI in
§V-B, our improvement in multiplicative depth ranges from
1.3× to 3× over the various functionalities considered in this
work. Note that our framework is independent of the secure
protocol being executed and can be used in any MPC framework
that supports multi-input AND gates.

d) Improvement over Lookup Table (LUT) Based Ap-
proaches: The lookup table-based approach of Dessouky et
al. [26] is an orthogonal line of work, though it has an end
goal similar to ours. The approach keeps a balance between
the communication and rounds by trading off the computation.
They propose two variants with different trade-offs: i) OP-LUT,
which optimizes online communication, and ii) SP-LUT, which
optimizes setup/total communication. When compared with
the OP-LUT variant of [26], our circuits evaluated using the
ABY2.0 [37] protocols improve the online communication in
the range 1.3× - 1.6× keeping the multiplicative depth on par
with the constructs in [26] (cf. Table VIII) for most of the
cases. Moreover, we improve the overall communication of
the circuits mentioned earlier in the range 70× - 208× while
simultaneously eliminating the need for heavy computations
required in [26]. Hence, for practical applications where a
balance between computation and communication is needed,
our framework improves over [26]. More details are provided
in §V-C.

II. PRELIMINARIES AND BACKGROUND

A. Secure computation over Boolean circuits

In this work, we focus on evaluating Boolean circuits using
the GMW paradigm. As pointed out in [22] and TinyGMW [25],
the GMW paradigm has several advantages over the constant
round approach of Yao. Apart from reducing communication,

the GMW approach allows to balance the workload among
the parties, to provision to parallelize evaluations of the same
circuit using SIMD operations [22], [36], and to precompute
all symmetric cryptographic operations in a preprocessing
phase leading to a very efficient online phase. Another
approach that improves over GMW is the Lookup Table (LUT)
method of [26]. It further reduces the round complexity over
GMW and yields communication better than Yao. However,
this improvement comes at the expense of an increase in
computation. Hence, the LUT-based approach can be considered
as a middle ground between Yao and GMW-based solutions.

We use the ABY2.0 [37] protocols for the secure evaluation
of the circuits generated by our framework. ABY2.0 improved
the online communication of its predecessor ABY [36] using
an input-independent preprocessing, which now depends on the
circuit and a new secret sharing scheme. Moreover, ABY2.0
allows to improve the online round complexity of ABY by
incorporating protocols for multi-input AND gates (AND gates
with three and four inputs, to be specific). ABY2.0 is secure
against semi-honest corruption, preventing data leakage to a
passively corrupted party.

B. HDL Synthesis Tools for Secure Computation

Generating a hand-optimized error-free Boolean circuit for
secure computation is a tedious and time-consuming task. The
problem becomes more challenging with the recent advance-
ments in the area where multi-input Boolean gates are taken
into account in addition to the standard two-input ones [37],
[40]. Instead of ‘reinventing the wheel’ and building a new
compiler [18], [19], [21], [23], [27]–[31], [41], works like [24]–
[26], [29] showcased the potential of re-engineering logic
synthesis tools to accomplish this task. A logic synthesis tool
takes a function description, written in a hardware description
language (HDL) as input and transforms this function into
a suitable output for the standard target technologies. For
instance, the target can be either Lookup Tables (LUTs) for
Field Programmable Gate Arrays (FPGAs) or Boolean gates
for Application-Specific Integrated Circuits (ASICs).

In SynCirc, we use the open-source Yosys-ABC tool [38],
[39] for ASIC synthesis following TinyGMW [25]. SynCirc
integrates well with the regular ASIC design flow. This is
because the proposed solution instructs the ASIC synthesis to
use our customized circuit descriptions instead of the standard
cells, and the rest of the workflow is untouched. For this
reason, it is possible to use tools like the commercial Design
Compiler (DC) by Synopsis [42] and we leave the industry-
grade realization of SynCirc using commercial synthesis tools
as future work.

III. GLOBAL FLOW OVERVIEW

A. Challenges of Logic Synthesis for MPC protocols

The generation of circuits with hardware synthesis for secure
computation has two main challenges. First, hardware synthesis
tools target hardware platforms like FPGAs and ASICs and
involve technology constraints different from the ones needed
for Boolean circuits. Moreover, these tools use the layout
as a synthesis parameter, whereas Boolean circuits for secure
computation do not have such layout constraints. The generated
circuits are evaluated ’virtually’ using a secure protocol and not
through a physical evaluation. Second, the cost of a gate varies
significantly from the viewpoint of a hardware synthesis and
secure computation. For example, XOR gates are essentially
free in MPC protocols as they can be evaluated locally. In
contrast, in the logic synthesis tools, Boolean NAND gates are
favored over XOR gates because of their placement costs. For
this reason, the logic synthesis tools need to be repurposed to
achieve our objectives for security applications, especially in
generating multiplicative depth-optimized Boolean circuits for
ABY2.0.

B. Customizing Synthesis

Fig. 2 depicts the high-level flow of our SynCirc synthesis
framework which is similar to the toolchain in TinyGMW [25].
Given the user input in the form of a hardware description
language, the goal of the synthesis tool is to generate its logical
representation in the form of a Boolean circuit that best fits
the user’s constraints. For the secure evaluation, we feed the
Boolean circuit generated as an input to the ABY2.0 protocol.
The first step is synthesizing a set of basic arithmetic and logic
operations such as addition, subtraction, multiplication, division,
comparator, and multiplexers. Each of these operations can be
instantiated from different implementations, depending on the
provided constraints in the synthesis tool. For instance, we can
obtain different circuits for an l-bit comparison by optimizing
for area [32] or delay [43]. The basic operations can be used
as building blocks for advanced operations such as sorting
and private set intersection. In the hardware synthesis tool,
the arithmetic and logic operations are mapped to standard
cells given in a cell library by default. Moreover, standard
libraries [44], [45] or libraries proposed by TinyGarble [24],
TinyGMW [25], and MPCircuit [29] cannot be used directly in
our framework. This is mainly because of two reasons - i) the
cost metric in the ABY2.0 protocol is the multiplicative depth
instead of online communication in the previous works, and

ii) ABY2.0 provides multi-input AND gates (AND3, AND4)
in the protocol that are absent in previous libraries.

User Input

Representation

ABY2.0 Framework

Synthesis
Custom
Libraries

Function Description
(.v/.vhdl)

Customized
Technology

Circuit Building
Blocks

.... Multi-Input
Gates

Hardware Synthesis
Tool (HST)

ADD / SUB / BitExt /
MULT / COMP / MUX /

SBox / EQ

Fig. 2. Global Flow of SynCirc framework

Since the goal is to reduce the multiplicative depth of the
circuit, we have implemented a special synthesis technology
library that includes the circuits minimized for multiplicative
depth of the basic arithmetic and logic operations consider-
ing XOR, AND2, AND3, and AND4 gates. We added our
multiplicative depth-optimized blocks to the library of the
hardware synthesis tool [38], [39]. We then re-engineered the
toolchain to enable automated mapping to our customized
circuit descriptions rather than the standard cells.

The technology library consists of the functional description,
the Boolean function they represent, and their parameters
like the delay and area in a semiconductor vendor’s library.
For this, we use an ASIC cell library in liberty format [44,
Fig. 3] that specifies the cells that can be used along with
their cost functions. Our customized technology library has no
manufacturing or technology rules, similar to the approach in
TinyGarble [24] and TinyGMW [25]. The cells in our library,
which are used in the ASIC mapping for the ABY2.0 protocol,
contain Boolean logic gates AND2, AND3, AND4, NOT, XOR,
and XNOR. The cost function of these gates is manipulated as
follows: the cost parameters of XOR, XNOR, and NOT gates
are set to 0, while those for AND2, AND3, and AND4 gates
are set to reasonably high values. Note that setting the cost
of a Boolean gate to very high values will result in the gate
getting excluded from the synthesis. Thus, to exclude OR gates
from the synthesis, their costs are set to very high values.

Yosys-ABC [38], [39], the open-source toolchain used in
our work, uses gates from the provided technology library
to generate an implementation of the design at a gate level.
We perform a multi-level combinational logic optimization on
gate-level netlists using the external Berkeley ABC [35] tool
integrated with the Yosys [44] toolchain. The “abc" pass over

Yosys extracts the combinational gate-level parts of the design,
passes it through ABC and re-integrates the results. Yosys-ABC
is configured to minimize the multiplicative depth considering
up to 4-input AND gates. As a result, the synthesis process
minimizes the multiplicative depth in the final netlist, and these
settings give the most desirable mapping results. This way, we
gain up to 3× improvement in the multiplicative depth for our
benchmark circuits compared to TinyGMW [25] thanks to our
multi-input AND gates.

We need to ensure that the toolchain uses our multiplicative-
depth optimized circuits from the customized library that we
added for realizing the advanced functionalities. For this, we
add the customized library’s path in the toolchain and we
instruct the tool to optimize depth in the synthesis script.

IV. BUILDING BLOCKS LIBRARY

In this section, we provide high-level details of the depth-
optimized circuits obtained using our toolchain. We classify the
circuits into two types: i) Basic – that form the building blocks
for most of the secure computation tasks, and ii) Advanced
– that use the basic circuits to build circuits for complex
functionalities. All of the below circuits outperform the state-of-
the-art circuits in multiplicative-depth. To verify the correctness,
test benches are used to simulate our building blocks without
any physical hardware which is not needed in MPC protocols.

A. Layer II - Basic Functionalities

Customized Ladner-Fischer Adder/Subtractor (ADDCLF/
SUBCLF). To perform the addition of two `-bit values, the
traditional Ripple Carry Adder (RCA), in which the carry out of
one stage is fed directly to the carry-in of the next stage, yields a
multiplicative depth of ` [46], [47]. To improve the speed, Carry
Look Ahead (CLA) adders were introduced, where the carry
bits are computed in advance, and thus the depth is reduced.
The Ladner-Fischer Adder [22] is one among the widely
used CLA and has a multiplicative depth of 2dlog2(`)e + 1.
ShallowCC [31] proposed a construction with a depth of
dlog2(`)e + 1 for another CLA named Sklansky Adder [48].
ABY2.0 [37] used Parallel-Prefix Adders (PPA) using up to
4-input AND gates to build a hand-optimized adder with `-bit
inputs and `-bit output with multiplicative depth blog4(`)c for
input sizes ` ∈ {8, 64}. For (`+1)-bit outputs, their construction
has multiplicative depth blog4(`)c+1 which matches the depth
of our automatically generated addition circuit in SynCirc.

Fig. 3 shows a depth-optimized 8-bit PPA architecture
obtained by the combined use of AND2, AND3, and AND4
gates.

TABLE II
MULTIPLICATIVE DEPTH OF ADDER CIRCUITS FOR BITWIDTH `.

Work ` 8 16 32 64

Ripple-Carry [47] `− 1 7 15 31 63
Ladner-Fischer [22], [49] 2dlog2(`)e+ 1 7 9 11 13
Sklansky [31] dlog2(`)e+ 1 4 5 6 7
ABY2.0 [37] blog4(`)c+ 1 2 – – 4
SynCirc blog4(`)c+ 1 2 3 3 4

% reduction in depth 40% 40% 50.0% 42.8%

Fig. 3. Parallel Prefix Adder Architecture for 8-bit Customized Ladner-Fischer
Adder (ADDCLF) [37].

The customized Ladner-Fischer Adder produced by our
toolchain has a depth of blog4(`)c+1 and works for any value
of `. This amounts to a reduction of ≈ 42% in multiplicative
depth when compared with the ShallowCC compiler [31] for
the case of 64-bit inputs. Table II provides a comparison of
our circuit with other circuits in the literature. A subtractor
is a special case of adder as the subtraction of two values a
and b and can be represented as a + b̄ + 1 where b̄ denotes
the negated binary representation of b. As a result, we achieve
similar improvements for subtraction.

Carry-Save Adder (ADDCSA). To perform addition of n > 2
values, the sequential method of adding two values at a time
will require n−1 sequential additions and hence a multiplicative
depth of (n − 1)dADD, where dADD denotes the depth of the
adder circuit used. However, a tree-based approach can reduce
the depth to dlog2(n)e·dADD. For adding three `-bit values, both
of the aforementioned approaches require a multiplicative depth
of 2dADD. A Carry-Save Adder (CSA) on the other hand pro-
vides efficient constructions for multiple successive additions
with better multiplicative depth. For instance, the CSA used
in ShallowCC [31] has a multiplicative-depth of dlog2(`)e+ 2
for adding three `-bit values. Moreover, they proposed efficient
constructions for a Carry-Save Network (CSN) that evaluates n
sequential additions with a depth of dlog2(n)e + dlog2(`)e.
Using our toolchain, we obtain a CSA (ADDCSA) with a
depth of blog4(`)c+ 2 and a CSN (ADDCSN) with a depth of
dlog2(n)e + blog4(`)c. Concretely, for a bit-width of 64 and
n = 64, we improve the multiplicative depth of ADDCSA by
1.6× and ADDCSN by 1.3× over ShallowCC.

Bit Extraction (BitExt). The bit extraction circuit computes the
Most Significant Bit (MSB) of the sum of two `-bit values [16],
[37]. For this, we can tweak an `-bit adder by removing all the
unnecessary gates. The transition from adder to bit extraction
circuit is easy in our framework. This is due to the hardware
synthesis tool automatically removing all those gates whose
outputs are neither assigned directly to the output nor used
later as inputs to other gates. Our bit extraction circuit follows
our adder circuit and has a multiplicative depth of dlog4(`)e+1
which matches with the hand-optimized circuit in ABY2.0 [37].
Fig. 4 shows the structure of BitExt circuit with 8-bit inputs.

Fig. 4. BitExt PPA architecture for 8-bit inputs [37].

Multiplier (MULCLF). A multiplier computes the 2`-bit product
of two `-bit inputs. The standard textbook method uses bitwise
multiplication followed by shifted addition resulting in a depth
of 2`− 1 [22]. In this approach, a total of ` partial products of
length `-bit are computed and then added. However, we can
achieve a faster addition of these partial products using a tree
structure and ADDCLF.

TABLE III
MULTIPLICATIVE DEPTH OF MULTIPLIER CIRCUITS FOR BITWIDTH `.

Work ` 16 32 64

Textbook [47] 2`− 1 45 93 189
MulCSN [22] 3dlog2(`)e+ 4 16 19 22
ShallowCC [31] 2dlog2(`)e+ 3 11 13 15
SynCirc dlog2(`)e+blog4(2`− 1)c+2 8 10 12

% reduction in depth 28.0% 23.0% 20.0%

Fig. 5 shows a Wallace-tree based multiplier which consists
of three main steps - i) computing ` partial products with
depth 1, ii) aggregating partial products in a tree struc-
ture with depth dlog2(`)e, and ii) adding two 2` − 1-bit
values using ADDCLF. Thus, a multiplier with a depth of
dlog2(`)e+blog4(2` − 1)c+2 can be designed by combining
all the three steps. We provide a comparison of our circuit
with existing works in Table III. Our circuit reduces the depth
of existing solutions by at least 20.0% for any bit-width.

Comparison (COMP). To compare two `-bit values x and
y (x > y), the standard approach [32] demands a depth
` while the recursive approach [43] requires only a depth
of dlog2(`)e+1. Using multi-input ANDs, our COMP circuit
reduces the depth to blog4(`)c+1. The circuit for 8-bit values
is given in Fig. 6. Table IV provides a comparison of our
construction with existing works, and we observe a minimum
improvement of 40% in multiplicative depth for any bit-width
over existing solutions.

Multiplexer (MUX). A multiplexer (MUX) is the most impor-

tant building block for the control and data flow [33]. MUXes
are used to evaluate conditionals and array accesses. [33]
provided a construction of a 2-to-1 MUX that only requires

Fig. 5. Stages of an 8-bit Wallace tree multiplier [50].

a1[7]
a2[7]

a1[6]

a2[6]
2-bit COMP

2-bit COMP
a1[5]
a2[5]
a1[4]
a2[4]

4-bit COMP

4-bit COMP
8-bit COMP

a1[3]

a2[0]

1-bit

Fig. 6. Multiplicative depth-optimized 8-bit comparison circuit [43].

one AND2 gate for every pair of input bits and has a depth of 1.
The tree architecture for 8-to-1 MUX has a depth of 3 [25]. Our
toolchain could generate circuits of depth 1 for 2-to-1 MUX,
4-to-1 MUX, and 8-to-1 MUX using multi-input AND gates.
Fig. 7 shows the structure for 4-to-1 MUX. Table V details

TABLE IV
MULTIPLICATIVE DEPTH OF COMPARISON CIRCUITS FOR BITWIDTH `.

Work ` 16 32 64

Sequential GT [47] ` 16 32 64
Recursive GT [43] dlog2(`)e+1 5 6 7
SynCirc blog4(`)c+1 3 3 4

% reduction in depth 40.0% 50.0% 43.0%

the multiplicative depth for different numbers of inputs (n).
Concretely, for an 8-to-1 MUX, this amounts to a reduction of
50% in multiplicative depth over ShallowCC [31].

S0
S1

a0
a1
a2
a3

s0s1

a3
a2

S1

S0

a1
a0

M
U
X

00

01

10

11

Fig. 7. Multiplicative depth-optimized 4-to-1 multiplexer (MUX).

Equality Test (EQ). The equality test circuit is a very common
building block used in circuit-based private set intersection
(PSI) [51]–[55] and Data Mining [56]. As shown in Fig. 8,
this circuit can be built from XNOR and AND gates [22], [32].
For `-bit inputs, we need ` XNOR and a tree of (`− 1) AND2
gates of depth dlog2(`)e. The toolchain simply replaces three
AND2 gates with an AND4 gate, which improves the round
complexity over [51] by 2× from log2(`) to log4(`).

X[0]

y[0]

X[1]
y[1]

X[2]
y[2]

X[3]
y[3]

output

Fig. 8. 4-bit Equality check circuit [32].

TABLE V
MULTIPLICATIVE DEPTH OF MULTIPLEXER CIRCUITS FOR BITWIDTH n.

Work n 8 16 32

MUX-Tree [22] dlog2(n)e 3 4 5
MUX-DNFs [31] dlog2(dlog2(n)e)e+ 1 3 4 4
MUX-DNFd [31] dlog2(dlog2(n) + 1e)e 2 3 3
SynCirc dlog8(n)e 1 2 2

% reduction in depth 50.0% 33.0% 33.0%

Sbox (Sbox). Enabling a party to encrypt the message x
using a key k held by the other party is the goal of privacy-

preserving AES [57], which has several applications in private
set intersection [58] and encrypted databases [59], [60]. Since
AES operations like MixColumns and AddRoundKey can be
evaluated using only free XOR gates [61], the focus is to
building efficient circuits for its core block Sbox, which has 8
input bits and 8 output bits. While [62] have used a special
Greedy-approach to identify a small Boolean circuit with 34
AND2 gates and multiplicative depth 4, using our toolchain,
we obtain an Sbox with a multiplicative depth of 3, matching
the depth of the hand-optimized Sbox circuit proposed in
ABY2.0 [37]. This is achieved by replacing some of the AND2
gates in the optimized Sbox constructions of [62], [63] with
AND3 gates. The generated circuit has 30 AND2 and 4 AND3
gates.

B. Layer III - Advanced Functionalities

Division (DIV). Integer DIV, which computes the quotient
for a division of two binary integer numbers, is a complex
operation that is not trivially implementable by hand [64].
This fundamental operation finds application in several ML
algorithms such as the softmax function [65] and k-means
clustering [66]. The standard approach named “long division"
works similar to the textbook multiplication. We can build
an `-bit DIV using ` subtractors and ` multiplexers, each of
bit-width ` [67]. We synthesised DIV circuits in our framework
for bit-widths {` = 16, ` = 32} using SUBCLF and MUX.
Listing 1 shows the details for a 16-bit division based on the
circuit in TinyGarble [24].

1 module Division16(x,y,o);
2 input [15:0] x,y;
3 output[15:0] o;
4 wire [31:0] temp1[16:0];
5 wire [31:0] temp2[15:0];
6 assign temp1[16] = {{16{1b0}}, x};
7 genvar i;
8 generate
9 for(i = 15; i >= 0;i = i - 1)

10 begin:MyDIV
11 if (i > 0)
12 SUB_CLF _SUB(.x_1(temp1[i+1]),.x_2({{(16-i){1b0

}}, y, {g{1b0}}}),.out({o[i],temp2[i]}));
13 else
14 SUB_CLF _SUB(.x_1(temp1[i+1]),.x_2({{(16-i){1b0

}}, y}),.out({o[i],temp2[i]}));
15 MUX _MUX(.x_1(temp1[i+1]),.x_2(temp2[i]),.s(o[i

]),.out(temp[i]));
16 end
17 endgenerate
18 endmodule

Listing 1. 16-bit Division circuit using basic functionalities in SynCirc [24]

Sorting (SORT). Sorting is one of the core building blocks for
many data analysis tasks such as private set intersection [29]
and k-Nearest Neighbors [68]. Our circuit SORT uses the
Bitonic Sort algorithm of [69] that is implemented by [29]. The
circuit consists of multiplexer (MUX) and comparison (COMP)
blocks. These blocks are used for the conditional swap
operation that swaps two input numbers into sorted order.
Manhattan Distance (DSTM). The Manhattan dis-
tance (DSTM) between two points a = (xl

1, y
l
1) and

b = (xl
2, y

l
2) is the absolute distance along a two dimensional

space where only horizontal and vertical paths are allowed and
can be computed as |xl

1−xl
2|+ |yl1− yl2|. This distance metric

is useful in several applications like private localization [68]
and k-Nearest Neighbors [70]. The DSTM value can be
computed using four Subtraction (SUBCLF), two 2-to-1
multiplexer (MUX), and one addition (ADDCLF) block as
shown in Listing 2.

1 module ManhattanDistance16(x1,x2,y1,y2);
2 input [15:0] x1, y1, x2, y2;
3 output [17:0] distance;
4 wire [16:0] dist_x1_x2, dist_x2_x1,

dist_abs_x1x2;
5 wire [16:0] dist_y1_y2, dist_y2_y1,

dist_abs_y1y2;
6 SUB_CLF x1_x2 (.x_1(x1),.x_2(x2),.out(

dist_x1_x2));
7 SUB_CLF x2_x1 (.x_1(x2),.x_2(x1),.out(

dist_x2_x1));
8 SUB_CLF y1_y2 (.x_1(y1),.x_2(y2),.out(

dist_y1_y2));
9 SUB_CLF y2_y1 (.x_1(y2),.x_2(y1),.out(

dist_y2_y1));
10 MUX abs_x1x2 (.x_1(dist_x1_x2),.x_2(

dist_x2_x1),.s(dist_x1_x2[15]),.out(
dist_abs_x1x2));

11 MUX abs_y1y2 (.x_1(dist_y1_y2),.x_2(
dist_y2_y1),.s(dist_y1_y2[15]),.out(
dist_abs_y1y2));

12 ADD_CLF _dist(.x_1(dist_abs_x1x2),.x_2(
dist_abs_y1y2), .out(distance));

13 endmodule

Listing 2. Manhattan Distance using basic functionalities in SynCirc [70]

Private Set Intersection (PSI). Circuit-based PSI [51]–[55]
allows two parties to privately compute a function on the
intersection of their private input sets. This has several
applications like measuring ad conversion rates and data mining.
We use the Bitwise-AND implementation of [29], [51]. Each
set is represented as a binary vector, and the set intersection
is calculated using a bit-wise AND between the sets provided
by the parties. The core building block for performing bit-
wise AND is the private equality circuit (EQ). Also, the more
advanced linear-complexity circuit-based PSI protocols [52]–
[55] use equality circuits after mapping the sets to bins. Our
toolchain uses our depth-optimized EQ circuit for PSI.
Privacy-Preserving Machine Learning (PPML). In privacy
preserving machine learning (PPML) algorithms, since the un-
derlying values are real numbers, Fixed-Point Arithmetic (FPA)
semantic is used to embed real values to `-bit algebraic
structures combined with two’s complement representation [9],
[37]. Here, the least significant d bits denote the fractional
part and the most significant bit (MSB) denotes the sign. An
MSB of 1 denotes a negative value and a 0 denotes a positive
value. We use the FPA semantic details while constructing the
circuits for PPML.

Rectified Linear Unit (ReLU): ReLU is one of the most
widely used non-linear activation functions in several PPML
algorithms. The ReLU function on a value v is defined as
ReLU(v) = max(0, v). For this, first compute the sign of the
value v, say bit b, by extracting the MSB using the BitExt

circuit. Given b, ReLU(v) can be computed using a 2-to-1
multiplexer (MUX) circuit with inputs ((v, 0); b).

Sigmoid (Sigmoid): Sigmoid is another widely-used non-linear
activation function in PPML and is given as:

Sigmoid(v) =

 0 if v < − 1
2

v + 1
2 if − 1

2 ≤ v ≤ 1
2

1 if v > 1
2

Let the bits b1 and b2 denote whether v < − 1
2 and v < 1

2
respectively. If yes, the bits are set to 1 and 0 otherwise. The
bits b1 and b2 can be computed as MSB (v + 1

2) and MSB
(v+ 1

2) respectively using the BitExt circuit. Then, Sigmoid(v)
can be computed using a 4-to-1 MUX with inputs ((1, v +
1
2 , 0, 0); (b1, b2)).
Maxpool (Maxpool): Maxpool is a popular technique used

mainly in Convolutional Neural Networks (CNN) to reduce
the complexity and extract low-level features from the neigh-
bourhood of the nodes. Given n values, Maxpool selects
the maximum among them. As shown in [9], [32], a n-to-1
Maxpool circuit can be built using (n − 1) MAX-2 circuits
following a tree-based approach. A MAX-2 circuit consists
of a comparison (COMP) followed by a 2-to-1 MUX. In
SynCirc, in addition to MAX-2, we use the MAX-3 circuit
that computes the maximum of three values in one shot.
The circuit consists of three COMP and one 8-to-1 MUX
as shown in Fig. 9. Our n-to-1 Maxpool circuit has a depth
of (log4(`) + 2) log3(n) as opposed to (log2(`) + 2) log2(n)
in [9], [32]. For PPML applications, with values represented in
FPA semantics, we can replace the comparison (COMP) with
a bit extraction (BitExt) circuit.

M
U
X

b

a

c

CO
M
P

CO
M
P

CO
M
P

x

y

z x y z

c

a
a

0
1

7

c
b

b

MAX-3

Fig. 9. MAX-3 circuit to find the maximum of 3 numbers [37].

Argmax (Argmax): The Argmax circuit is an extension to
Maxpool where the index of the maximum element is also
computed. For this, we associate an additional 2-to-1 MUX
with every MAX-2 and 8-to-1 MUX with every MAX-3 block
in the Maxpool circuit, which keeps track of the index of the
maximum element [32].

V. EVALUATION

A. Experimental Setup

We implemented all functionalities in Verilog and synthe-
sized the netlists using the open-source logic synthesis Yosys-

TABLE VI
SYNTHESIS RESULTS OF IMPROVED BUILDING BLOCKS COMPARED TO BEST CIRCUITS IN THE LITERATURE FOR INPUTS OF BITWIDTH `.

Circuit Bitwidth Literature SynCirc Depth Improvement
AND2 Depth AND2 AND3 AND4 #AND (Total) Depth

Layer II - Basic Functionalities

ADDCLF [31]
` = 8 24 4 8 8 5 21 3 1.3×
` = 16 64 5 21 15 11 47 3 1.7×
` = 32 160 6 50 43 54 147 3 2.0×
` = 64 384 7 109 133 342 584 4 1.8×

SUBCLF [31]
` = 16 129 6 21 19 19 59 4 1.5×
` = 32 311 7 49 56 69 174 4 1.8×
` = 64 705 8 109 156 378 593 5 1.6×

BitExt [16]
` = 8 22 5 2 5 2 9 4 1.3×
` = 16 46 6 6 6 9 21 4 1.5×
` = 32 94 7 14 15 20 49 4 1.8×
` = 64 190 8 26 27 54 107 5 1.6×

MULCLF [31]
` = 8 152 9 109 15 11 135 7 1.3×
` = 16 576 11 466 43 54 563 8 1.4×
` = 32 2 208 13 1 933 133 342 2 408 10 1.3×

COMP [25]
` = 16 42 5 10 11 5 26 3 1.7×
` = 32 89 6 20 21 16 57 3 2.0×
` = 64 184 7 30 32 32 94 4 1.8×

4-to-1 MUX [25]
` = 16 48 2 32 32 – 64 1 2.0×
` = 32 96 2 64 64 – 128 1 2.0×
` = 64 192 2 128 128 – 256 1 2.0×

8-to-1 MUX [25]
` = 16 112 3 – 64 64 128 1 3.0×
` = 32 224 3 – 128 128 256 1 3.0×
` = 64 448 3 – 256 256 512 1 3.0×

EQ [25]
` = 16 15 4 – – 5 5 2 2.0×
` = 32 31 5 1 – 10 11 3 1.7×
` = 64 63 6 – – 21 21 3 2.0×

AES Sbox [62] 34 4 30 4 – 34 3 1.3×

Layer III - Advanced Functionalities

DIV [25] ` = 16 1 542 93 697 672 1 563 2 932 69 1.4×
` = 32 7 079 207 2 662 3 669 13 133 19 464 189 1.1×

SORT [68]
(n = 16)

` = 16 4 800 60 2 080 880 400 3 360 40 1.5×

DSTM [68] ` = 16 241 13 133 91 87 311 8 1.7×
PSI [29], [51]
(n = 211, δ = 32)

32 736 10 – – 10 912 10 912 5 2.0×

ReLU [9]
` = 16 62 7 22 6 9 37 5 1.4×
` = 32 126 8 46 15 20 81 5 1.6×
` = 64 254 9 90 27 54 171 6 1.5×

Sigmoid [9]
` = 16 140 8 44 44 18 106 5 1.6×
` = 32 284 9 92 94 40 226 5 1.8×
` = 64 572 10 180 182 108 470 6 1.7×

Maxpool [25]
(n = 16)

` = 16 870 24 236 690 558 1 484 12 2.0×
` = 32 1 815 28 472 910 1 248 2 630 12 1.8×
` = 64 3 720 32 724 1 600 2 496 4 820 15 2.1×

Argmax [25]
(n = 16)

` = 16 1 110 24 252 1 138 1 006 2 396 12 2.0×
` = 32 2 295 28 504 1 806 2 144 4 454 12 2.3×
` = 64 4 680 32 788 3 392 4 288 8 466 15 2.1×

ABC [38], [39]. All the experiments have been carried out on
a machine with an Intel Core i9-7960X CPU @ 2.80 GHz and
128 GB of RAM. We compared all the synthesized circuits
in our framework with their state-of-the-art counterparts. The
multiplicative depth that refers to the number of AND gates
(including multi-input ones) in the circuit’s critical path is
the primary metric for our benchmarking as it determines the
round complexity in MPC. We also report the circuit size
in the number of non-free AND gates (AND2, AND3, and
AND4). Since ABY2.0 (and most of the secure computation

protocols) allows the computation of XOR gates locally without
incurring any communication, we do not count XORs in our
benchmarking.

B. Benchmark Evaluation

We report the details of all the circuits obtained using our
synthesis framework in Table VI. As evident from the table,
we improve the multiplicative depth of all the circuits under
consideration, and the improvement ranges from 1.1× to 3×.
This improvement is amplified for applications where these

TABLE VII
COMPARISON OF SYNCIRC WITH HAND-OPTIMIZED ADDCLF AND BitExt CIRCUITS IN ABY2.0 [37].

Circuit Bitwidth Approach AND2 AND3 AND4 Depth Setup (bits) Online (bits)

ADDCLF [31]
` = 8

ABY2.0 [37]
SynCirc

15
8

6
8

1
5 3 3 956

5 280
44
42

` = 16
ABY2.0 [37]
SynCirc

216
109

184
133

179
342 4 153 888

198 469
1 158
1 168

BitExt [16]
` = 8

ABY2.0 [37]
SynCirc

7
2

4
5

1
2 4 2 382

2 403
24
18

` = 16
ABY2.0 [37]
SynCirc

41
26

27
27

47
54 5 32 951

34 021
230
214

TABLE VIII
COMPARISON OF SYNCIRC WITH DEPTH-OPTIMIZED LUT-BASED CIRCUITS IN [26] FOR 32-BIT VALUES. THE FIRST LINE FOR EACH CIRCUIT IS THE

CIRCUIT OF [26] OPTIMIZED FOR SP-LUT AND THE SECOND ONE OPTIMIZED FOR OP-LUT.

Circuit
Lookup Table (SP-LUT [26]) Lookup Table (OP-LUT [26]) SynCirc (ABY2.0 [37]) Improvement over OP-LUT

Setup (bits) Online (bits) Round Setup (bits) Online (bits) Round Setup (bits) Online (bits) Round Setup Online

Adder 22 161 2 199 5 49 105 702 5 41 253 294 3 1.2× 2.4×
6 174 15 487 3 3 657 974 382 3 88.7× 1.3×

Comparator 7 859 861 5 18 867 250 5 14 991 114 3 1.3× 2.2×
2 691 4 322 3 1 065 309 164 3 71.1× 1.4×

Multiplier 356 433 46 691 14 955 649 11 326 14 442 885 4 816 10 2.2× 2.4×
123 614 395 790 8 93 193 239 7 484 8 210.4× 1.6×

AES-Sbox 37 209 5 471 5 113 561 1 230 5 5 024 68 3 22.7× 18.1×
247 2 056 1 524 288 16 1 104.4× 0.24×

circuits contribute to most of the online rounds. For instance,
consider the ReLU circuit where we improve the depth by
at least 1.5×. As shown in ABY2.0 [37], the ReLU circuit
contributes to more than 90% of the online rounds for a two-
layer deep neural network, showcasing the significance of
our improvement. The comparison between the automatically
generated circuits in SynCirc and hand-optimized circuits in
ABY2.0 [37] is given in Table VII. As seen in the table, we can
automatically generate multiplicative depth-optimized circuits
with the same multiplicative depth and similar communication
complexity.

For the analysis of the online communication, it is sufficient
to compare the total number of non-free gates in the circuit
as ABY2.0 has the same online communication for all AND
gates irrespective of the fan-in of the gate. When evaluated
using the ABY2.0 protocol, we observe our circuits incur
less communication (by a factor of 1.1× - 3×) over the best
previous work for almost all the cases, with some exceptions.
Also, the overhead in online communication for some of the
circuits like division is capped by a factor of at most 2.7×.
However, as pointed out in ABY2.0, for the secure computation
over a high latency network such as the Internet, the number of
online rounds plays a crucial role in determining the protocol
efficiency over online communication. Thus the evaluation of
our circuits with ABY2.0 provides good online performance
w.r.t. both communication and rounds.

C. Comparison of SynCirc with Lookup Table (LUT)-based
MPC

Here we compare our circuits with those in Dessouky et
al. [26] that deploys the LUT-based approach. They propose two
variants with different trade-offs: i) OP-LUT, which optimizes
online communication, and ii) SP-LUT, which optimizes

setup/total communication. In Table VIII, we compare the
efficiency of the circuits from our SynCirc compiler evaluated
with ABY2.0 with LUT-optimized circuits and protocols of [26].
Since our work aims at online efficiency, the last column
in that table shows our improvements over OP-LUT which
also optimizes for that metric [26]. We outperform the OP-
LUT in online communication for all the cases except the
AES-SBox. This is expected as the AES-SBox is a highly
non-linear 8×8 lookup table and hence can be efficiently
realized using the LUT method by simply evaluating the
S-box on all 28 possible inputs. For all other circuits, our
improvement in online communication over OP-LUT ranges
from 1.3× - 1.6×. The setup communication is improved
between 71× - 210× while having the same number of online
rounds. When compared with the SP-LUT variant that optimizes
for setup/total communication, our circuits have 3.5× - 24×
more setup communication. However, we improve the online
communication over SP-LUT by 30× - 82×.

VI. CONCLUSION AND FUTURE DIRECTIONS

The generation of optimized error-free Boolean circuits is
a crucial stage in deploying secure computation protocols.
Towards this, we present SynCirc, the first hardware synthesis
framework, accommodating multi-input AND gates, to generate
depth-optimized circuits for secure computation. We enriched
the framework with several advanced functionalities like divi-
sion, sorting, Manhattan distance, private set intersection, and
privacy-preserving machine learning tools. SynCirc outperforms
state-of-the-art compilers for secure computation in circuit
depth by up to 2.3×. Future work can extend to more building
blocks like floating-point operations or combine multi-input
ANDs with more costly but arbitrary lookup tables.

ACKNOWLEDGEMENTS

This project received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020
research and innovation program (grant agreement No. 850990
PSOTI). It was co-funded by the Deutsche Forschungsge-
meinschaft (DFG) — SFB 1119 CROSSING/236615297 and
GRK 2050 Privacy & Trust/251805230, and by the German
Federal Ministry of Education and Research and the Hessen
State Ministry for Higher Education, Research and the Arts
within ATHENE.

Arpita Patra would like to acknowledge financial support
from SERB MATRICS (Theoretical Sciences) Grant 2020,
Google India AI/ML Research Award 2020, and DST National
Mission on Interdisciplinary Cyber-Physical Systems (NM-
CPS) 2020. Ajith Suresh would like to acknowledge financial
support from Google PhD Fellowship 2019.

REFERENCES

[1] A. Patra, T. Schneider, A. Suresh, and H. Yalame, “Syncirc: Efficient
synthesis of depth-optimizedcircuits for secure computation,” in HOST,
2021.

[2] A. C.-C. Yao, “How to generate and exchange secrets,” in FOCS, 1986.
[3] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental

game,” in STOC, 1987.
[4] M. Naor, B. Pinkas, and R. Sumner, “Privacy preserving auctions and

mechanism design,” in ACM Conference on Electronic Commerce, 1999.
[5] H. Fereidooni, S. Marchal, M. Miettinen, A. Mirhoseini, H. Möllering,

T. D. Nguyen, P. Rieger, A. R. Sadeghi, T. Schneider, H. Yalame, and
S. Zeitouni, “SAFELearn: Secure Aggregation for private FEderated
Learning,” in DLS, 2021.

[6] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in CCS, 2017.

[7] H. Keller, H. Möllering, T. Schneider, and H. Yalame, “Balancing quality
and efficiency in private clustering with affinity propagation.” SECRYPT,
2021.

[8] A. Hegde, H. Möllering, T. Schneider, and H. Yalame, “SoK: Efficient
privacy-preserving clustering.” PETS, 2021.

[9] P. Mohassel and Y. Zhang, “SecureML: A system for scalable privacy-
preserving machine learning,” in IEEE S&P, 2017.

[10] H. Chaudhari, A. Choudhury, A. Patra, and A. Suresh, “ASTRA: High
throughput 3PC over rings with application to secure prediction,” in
CCSW, 2019.

[11] H. Chaudhari, R. Rachuri, and A. Suresh, “Trident: Efficient 4PC
framework for privacy preserving machine learning,” in NDSS, 2020.

[12] M. Byali, H. Chaudhari, A. Patra, and A. Suresh, “Flash: Fast and robust
framework for privacy-preserving machine learning,” in PETS, 2020.

[13] A. Patra and A. Suresh, “BLAZE: blazing fast privacy-preserving machine
learning,” in NDSS, 2020.

[14] N. Koti, M. Pancholi, A. Patra, and A. Suresh, “SWIFT: super-fast and
robust privacy-preserving machine learning,” in USENIX Security, 2021.

[15] F. Boemer, R. Cammarota, D. Demmler, T. Schneider, and H. Yalame,
“MP2ML: A mixed-protocol machine learning framework for private
inference,” in ARES, 2020.

[16] P. Mohassel and P. Rindal, “ABY3: A mixed protocol framework for
machine learning,” in CCS, 2018.

[17] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“Delphi: A cryptographic inference service for neural networks,” in
USENIX Security, 2020.

[18] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay: Secure two-party
computation system.” in USENIX Security, 2004.

[19] A. Ben-David, N. Nisan, and B. Pinkas, “FairplayMP: A system for
secure multi-party computation,” in CCS, 2008.

[20] B. Kreuter, A. Shelat, and C.-H. Shen, “Billion-gate secure computation
with malicious adversaries,” in USENIX Security, 2012.

[21] A. Holzer, M. Franz, S. Katzenbeisser, and H. Veith, “Secure two-party
computations in ANSI C,” in CCS, 2012.

[22] T. Schneider and M. Zohner, “GMW vs. Yao? Efficient secure two-party
computation with low depth circuits,” in FC, 2013.

[23] B. Kreuter, A. Shelat, B. Mood, and K. Butler, “PCF: A portable circuit
format for scalable two-party secure computation,” in USENIX Security,
2013.

[24] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, T. Schneider, and
F. Koushanfar, “TinyGarble: Highly compressed and scalable sequential
garbled circuits,” in IEEE S&P, 2015.

[25] D. Demmler, G. Dessouky, F. Koushanfar, A.-R. Sadeghi, T. Schneider,
and S. Zeitouni, “Automated synthesis of optimized circuits for secure
computation,” in CCS, 2015.

[26] G. Dessouky, F. Koushanfar, A.-R. Sadeghi, T. Schneider, S. Zeitouni, and
M. Zohner, “Pushing the communication barrier in secure computation
using lookup tables.” in NDSS, 2017.

[27] E. Testa, M. Soeken, H. Riener, L. Amaru, and G. De Micheli, “A logic
synthesis toolbox for reducing the multiplicative complexity in logic
networks,” in DATE, 2020.

[28] E. Testa, M. Soeken, L. Amarù, and G. De Micheli, “Reducing the
multiplicative complexity in logic networks for cryptography and security
applications,” in DAC, 2019.

[29] M. S. Riazi, M. Javaheripi, S. U. Hussain, and F. Koushanfar, “MPCircuits:
Optimized circuit generation for secure multi-party computation.” in
HOST, 2019.

[30] B. Mood, L. Letaw, and K. Butler, “Memory-efficient garbled circuit
generation for mobile devices,” in FC, 2012.

[31] N. Buescher, A. Holzer, A. Weber, and S. Katzenbeisser, “Compiling
low depth circuits for practical secure computation,” in ESORICS, 2016.

[32] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider, “Improved garbled circuit
building blocks and applications to auctions and computing minima,” in
CANS, 2009.

[33] V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free XOR
gates and applications,” in ICALP, 2008.

[34] T. Heldmann, T. Schneider, O. Tkachenko, C. Weinert, and H. Yalame,
“LLVM-Based circuit compilation for practical secure computation,” in
ACNS, 2021.

[35] R. Brayton and A. Mishchenko, “Abc: An academic industrial-strength
verification tool,” in Computer Aided Verification, 2010.

[36] D. Demmler, T. Schneider, and M. Zohner, “ABY – A framework for
efficient mixed-protocol secure two-party computation,” in NDSS, 2015.

[37] A. Patra, T. Schneider, A. Suresh, and H. Yalame, “ABY2.0: Improved
mixed-protocol secure two-party computation,” in USENIX Security,
2021.

[38] “Berkeley logic synthesis. ABC: a system for sequential synthesis and
verification,” https://github.com/berkeley-abc/abc, 2010.

[39] “Yosys open synthesis suite,” http://www.clifford.at/yosys/, 2013.
[40] S. Ohata and K. Nuida, “Communication-efficient (client-aided) secure

two-party protocols and its application,” in FC, 2020.
[41] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay – secure two-party

computation system.” in USENIX Security, 2004.
[42] “Synopsys Inc. design compiler,” http://www.synopsys.com/Tools/

Implementation/RTLSynthesis/DesignCompiler, 2010.
[43] J. Garay, B. Schoenmakers, and J. Villegas, “Practical and secure solutions

for integer comparison,” in PKC, 2007.
[44] C. Wolf, J. Glaser, and J. Kepler, “Yosys – a free verilog synthesis suite,”

in Austrian Workshop on Microelectronics, 2013.
[45] “Synopsys Inc. design ware library - datapath and building block IP.”

https://www.synopsys.com/dw/buildingblock.php, 2015.
[46] M. S. Javadi, H. Yalame, and H. R. Mahdiani, “Small constant mean-

error imprecise adder/multiplier for efficient VLSI implementation of
MAC-Based applications,” IEEE Transactions on Computers, 2020.

[47] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider, “A systematic approach to
practically efficient general two-party secure function evaluation protocols
and their modular design,” Journal of Computer Security, 2013.

[48] D. Harris, “A taxonomy of parallel prefix networks,” in Signals, Systems
& Computers, 2003.

[49] R. E. Ladner and M. J. Fischer, “Parallel prefix computation,” in JACM,
1980.

[50] C. S. Wallace, “A suggestion for a fast multiplier,” in TEC, 1964.
[51] Y. Huang, D. Evans, and J. Katz, “Private set intersection: Are garbled

circuits better than custom protocols?” in NDSS, 2012.
[52] B. Pinkas, T. Schneider, O. Tkachenko, and A. Yanai, “Efficient circuit-

based PSI with linear communication,” in EUROCRYPT, 2019.
[53] B. Pinkas, T. Schneider, C. Weinert, and U. Wieder, “Efficient circuit-

based PSI via cuckoo hashing,” in EUROCRYPT, 2018.

https://github.com/berkeley-abc/abc
http://www.clifford.at/yosys/
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler
https://www.synopsys.com/dw/buildingblock.php

[54] B. Pinkas, T. Schneider, G. Segev, and M. Zohner, “Phasing: Private
set intersection using permutation-based hashing,” in USENIX Security,
2015.

[55] B. Pinkas, T. Schneider, and M. Zohner, “Scalable private set intersection
based on ot extension,” TOPS, 2018.

[56] D. Bogdanov, M. Niitsoo, T. Toft, and J. Willemson, “High-performance
secure multi-party computation for data mining applications,” Interna-
tional Journal of Information Security, 2012.

[57] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams, “Secure two-
party computation is practical,” in ASIACRYPT, 2009.

[58] D. Kales, C. Rechberger, T. Schneider, M. Senker, and C. Weinert,
“Mobile private contact discovery at scale,” in USENIX Security, 2019.

[59] L. T. Brandão, N. Christin, and G. Danezis, “Toward mending two
nation-scale brokered identification systems,” in PETS, 2015.

[60] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner,
“Ciphers for MPC and FHE,” in EUROCRYPT, 2015.

[61] Y. Huang, D. Evans, J. Katz, and L. Malka, “Faster secure two-party
computation using garbled circuits.” in USENIX Security, 2011.

[62] J. Boyar and R. Peralta, “A small depth-16 circuit for the AES S-box,”
in IFIP International Information Security Conference, 2012.

[63] J. Boyar, P. Matthews, and R. Peralta, “Logic minimization techniques
with applications to cryptology,” Journal of Cryptology, 2013.

[64] F. Kerschbaum, T. Schneider, and A. Schröpfer, “Automatic protocol
selection in secure two-party computations,” in ACNS, 2014.

[65] N. Agrawal, A. Shahin Shamsabadi, M. J. Kusner, and A. Gascon,
“QUOTIENT: Two-party secure neural network training and prediction,”
in CCS, 2019.

[66] P. Bunn and R. Ostrovsky, “Secure two-party k-means clustering,” in
CCS, 2007.

[67] R. Pibernik, Y. Zhang, F. Kerschbaum, and A. Schropfer, “Secure
collaborative supply chain planning and inverse optimization – The
JELS model,” EJOR, 2011.

[68] K. Järvinen, H. Leppäkoski, E.-S. Lohan, P. Richter, T. Schneider,
O. Tkachenko, and Z. Yang, “PILOT: Practical privacy-preserving indoor
localization using outsourcing,” in EuroS&P, 2019.

[69] K. E. Batcher, “Sorting networks and their applications,” in Proceedings
of Spring Joint Computer Conference, 1968.

[70] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, and F. Koushanfar,
“Compacting privacy-preserving k-nearest neighbor search using logic
synthesis,” in DAC, 2015.

	Introduction
	Outline and Our Contributions

	Preliminaries and Background
	Secure computation over Boolean circuits
	HDL Synthesis Tools for Secure Computation

	Global Flow Overview
	Challenges of Logic Synthesis for MPC protocols
	Customizing Synthesis

	Building Blocks Library
	Layer II - Basic Functionalities
	Layer III - Advanced Functionalities

	Evaluation
	Experimental Setup
	Benchmark Evaluation
	Comparison of SynCirc with Lookup Table (LUT)-based MPC

	Conclusion and Future Directions
	References

