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ABSTRACT
Secure computing methods such as fully homomorphic encryp-
tion and hardware solutions such as Intel Software Guard Exten-
sion (SGX) have been applied to provide security for user input
in privacy-oriented computation outsourcing. Fully homomorphic
encryption is amenable to parallelization and hardware acceler-
ation to improve its scalability and latency, but is limited in the
complexity of functions it can efficiently evaluate. SGX is capable
of arbitrarily complex calculations, but due to expensive memory
paging and context switches, computations in SGX are bound by
practical limits. These limitations make either of fully homomor-
phic encryption or SGX alone unsuitable for large-scale multi-user
computations with complex intermediate calculations.

In this paper, we present GPS, a novel framework integrating
the Graphene, PALISADE, and SGX technologies. GPS combines
the scalability of homomorphic encryption with the arbitrary com-
putational abilities of SGX, forming a more functional and efficient
system for outsourced secure computations with large numbers of
users. We implement GPS using linear regression training as an in-
stantiation, and our experimental results indicate a base speedup of
1.03x to 8.69x (depending on computation parameters) over an SGX-
only linear regression training without multithreading or hardware
acceleration. Experiments and projections show improvements over
the SGX-only training of 3.28x to 10.43x using multithreading and
4.99x to 12.67 with GPU acceleration.

1 INTRODUCTION
Modern computing scenarios have an urgent need for secure compu-
tation over private user data. Fields including healthcare, education,
finance, genomics, and advertising all have some need to protect the
confidentiality of users’ private inputs and attributes, while being
able to make use of that data. Traditional approaches of gathering
all users’ unencrypted data at datacenters are vulnerable to data
breaches, as shown by frequent accidents in the last decade. An al-
ternative is to collect encrypted data from users to avoid such risks.
In other words, collecting encrypted data from users for secure com-
putations at the aggregator’s server is a particularly interesting case
for the industry. Several broad categories of secure computation can
be applied for this purpose, including Homomorphic Encryption
(HE), Trusted Execution Environments (TEEs), and Secure Multi-
party Computation (MPC). HE allows computation to take place

over encrypted data, separating knowledge and computation and
thus hiding a users’ data from the eyes of a cloud computing service,
however key management is challenging in multi-user scenarios
and its overhead can be prohibitively high unless the computations
are simple arithmetics. MPC allows different users to jointly com-
pute a function over everyone’s input without anyone learning
others’ inputs, however it does not scale well with the number of
users due to the large communication overhead. TEEs are a hard-
ware solution to provide a secure execution environment safe from
spying or tampering against even a malicious operating system or
hypervisor, but it has its own difficulties when the scale of data
aggregation becomes large, especially at the scale demanded in
the industry by large companies such as Facebook [3]. All of these
approaches are able to protect data owner’s information, satisfying
legal requirements such as GDPR, HIPAA, and FERPA. However,
each one has its own weaknesses as aforementioned.

In this paper, we present GPS, a novel integration of homo-
morphic encryption schemes and TEEs into a pipeline of secure
computations that benefits from one’s strengths that mitigate the
other’s limitations and vice versa, for securely computing a function
where inputs are coming from a large number of users. A library OS
for unmodified applilcations, Graphene [76], is used to integrate a
HE library, PALISADE [61], and a popular implementation of TEEs,
Intel SGX [23]. It divides a computation into several subcompu-
tations (Figure 1), which can be performed by either the trusted
computation inside SGX or by homomorphic evaluations of HE.

Large-scale multi-user computations, such as distributed ma-
chine learning, statistical calculations, and voting and consensus
protocols, are notable candidates for privacy-preserving computing.
However, the large scale of such computations makes both efficient
and privacy-preserving computation difficult. Both HE and SGX
have been proposed as solutions to performing secure computation.
In this work, we construct a novel integration of HE and SGX that
aims to overcome these challenges by using the advantages of either
of these secure systems to mitigate the other system’s deficiencies.

Traditionally, the research areas of SGX and HE have been con-
sidered as two disjoint areas, because one belongs to a hardware-
based area and the other belongs to a theory-based area. This paper
is motivated by the complementary strengths and limitations of
SGX and HE. SGX provides fast and trusted arbitrary computation
for smaller workloads, outstripping HE for many computations;
however, SGX faces serious difficulties at scale. In particular, the
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Figure 1: Overview of Our Integration

practical memory space of SGX is limited to about 96MB of physi-
cal memory and 64GB with paging [2], with significant overhead
incurred by paging due to the need to encrypt/decrypt pages and
context switches. Further, in the case of large-scale aggregations
of distributed data, an SGX application needs to read inputs from
a large number of users, which will incur a large overhead due to
paging. These weaknesses make SGX difficult to apply for large-
scale computations involving many users’ aggregated inputs. While
full/total memory encryption technologies are planned for rollout
to consumer CPUs, they are not currently widely available [43].

HE cryptosystems allow computation over encrypted data. The
most functional HE schemes are Fully Homomorphic Encryption
(FHE) schemes, which allow arbitrary computation [12, 18, 34]. Al-
though HE incurs extra overhead due to ciphertext expansions, it
is not limited in scale as SGX is. In practice, most FHE schemes are
implemented as their Somewhat Homomorphic Encryption (SHE)
versions, which allow leveled computations bounded by multiplica-
tive depth. Highly-optimized SHE can be very efficient and show
high throughput [41], with a high potential for parallelization and
optimizations such as the Number-Theoretic Transform [51] and
Residue Number System variants [8, 39]. However, it has other
limitations. SHE’s overhead grows with the multiplicative depth
supported, and this constraint limits the class of computations that
can be done efficiently. Also, functions involving branching (e.g., if-
else, thresholds) on encrypted data cannot be computed efficiently,
as they are non-arithmetic.

In summary, SGX supports smaller general secure computations
efficiently but is limited in its performance at scale. HE enjoys better
parallelism compared to SGX and lacks scale-limiting factors such
as SGX’s paging overhead, but supports only simple arithmetic
functions with limited multiplicative depths efficiently. Compu-
tations in SGX with good memory locality and a low memory
footprint can be run much more quickly than the same computa-
tion run homomorphically [76, 83]. However, this may not be the
case in some scenarios, such as when processing separate inputs
from a large number of users. This is shown in our preliminary
experiments where we compared a simple additive aggregation
(sum) with inputs from a large number of users (Figure 2). In the
case of PALISADE, users upload ciphertexts of SHE upon which

Figure 2: Comparing Simple Sum Calculations. (PALISADE
implementation used depth-1CKKSw/𝑁 = 512, no packing.)

homomorphic additions are performed. In the case of SGX, they
upload AES-encrypted ciphertexts with individual session keys
shared with an SGX enclave, which are decrypted inside the SGX
enclave to perform the sum calculation. The trend of runtime as
the input size increased of an approach based on homomorphic en-
cryption using the PALISADE was much better than using the SGX.
These experiments were run in the same environment described in
Section 5.1, and measured the calculation of a sum of millions of
user inputs.1 Note that HE outperforms SGX even without using
batching, which can greatly improve throughput. This is due to
the overhead of paging many users’ inputs into SGX with context
switches. This result from our preliminary experiment shows the
case where HE is superior to SGX under certain circumstances,
which indicates the need for using integrated solutions for scalable
secure computation solutions. For example, HE can be used to over-
come the limitations of SGX in dealing with large-scale inputs from
users, and the SGX can still be leveraged to provide functionality
that HE schemes have difficulties with.

There exist some lines of research seeking to combine the ca-
pabilities of cloud-based HE and TEEs to cover each strategy’s
weakness [16, 21, 31, 35, 65, 73, 83], and previous work in this area
has successfully implemented small-scale proof-of-concept combi-
nations of HE and TEEs. In order to further explore the possibilities
of combining HE and TEEs for high-scale workloads, there is a need
to implement and integrate state-of-the-art cryptographic schemes
and libraries with TEEs. Prior related work combining TEEs and
cloud-based HE [16, 65] relied upon customizing or freshly imple-
menting HE functionality to allow porting to Intel SGX. However,
this makes easily using the full range of functionality of existing
state-of-the-art HE libraries difficult, as this process has some diffi-
culties; restrictions on external dependencies and in-library use of
I/O and system calls complicates such ports. Further, application
programming in the SGX model is tedious, making this strategy
1The source code of these experiments can be found at https://anonymous.4open.
science/r/Sum_SGX-52DD/ and https://anonymous.4open.science/r/homomorphic-
sum-922F/.
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undesirable for future lines of research. Also, prior work in com-
bining cryptography and SGX has not focused on the scenario of
many users on large scales, which is a case that is especially salient
in today’s world of outsourced computations.

Instead of following previous approaches in reimplementing HE
for SGX, we thus instead explore the use of new containerization
tools for running SGX applications. In particular, we pioneer the
use of the the Graphene containerization framework [76] for inte-
grating HE and SGX. Similarly to other containerization solutions
such as Docker, Graphene provides a lightweight library OS to ap-
plications to allow unmodified binaries to run on various hardware.
By applying Graphene, we can use the feature-rich PALISADE HE
library, and write ordinary applications without having to manu-
ally program according to the SGX model. This work is the first to
explore using containerization to allow SGX-assisted HE by inte-
grating SGX and an existing feature-rich HE library, bypassing a
rewrite of HE libraries and applications for SGX.

Properly integrating the SGX and the HE for optimal efficiency
is challenging even with containerization. To do so, the strengths
and weaknesses of different secure computation paradigms should
be considered carefully in different applications to determine how
a hybrid secure computation pipeline (Figure 1) can be constructed
for the best efficiency. We first review the strengths and weaknesses
of HE and TEEs in details, and discuss their combination in previous
research. This leads to discussion of what work is most important
to advance this line of research, and in particular our recommen-
dations for what schemes and libraries are the best candidates for
integration into SGX for future work. We then present some strate-
gies for such integration, and also discuss what applications are
well-suited for such a hybrid secure computation paradigm. Finally,
we apply the methodologies in the linear regression training as a
concrete instantiation of GPS, and present experiment results with
the implementations.

1.1 Contributions
(1) We propose a novel secure computation paradigm that com-

bines TEEs and HE into a pipeline of secure computation
in large-scale applications, which can achieve the high effi-
ciency that cannot be achieved by TEEs or HE alone.

(2) We analyze how a system using TEEs to provide assisted
computing to HE can be best designed to take full advantage
of the relative strengths and capabilities of both tools, and
how computations canmost advantageously be split between
a TEE and HE.

(3) We present a concrete implementation with source code of
our system using Graphene, PALISADE, and SGX that is
easily reconfigurable for different schemes and applications.
This is the first such system using Graphene for convenient
integration of SGX and existing HE libraries. We discuss our
various choices in our system’s design, justifying our choices
of schemes and tools, and show our experimental results.

2 BACKGROUND
2.1 Homomorphic Encryption
Homomorphic Encryption (HE) schemes allow for some computa-
tion to take place on encrypted data. Fully Homomorphic Encryp-
tion (FHE) schemes allow arbitrary computation, but are practically
limited by their complexity and the need to periodically refresh
encrypted data between some operations. In practice, most FHE
schemes are implemented as their Somewhat Homomorphic En-
cryption (SHE) versions, which allow arbitrary computation up
to some multiplicative depth. A list of HE implementations can
be found at Awesome Homomorphic Encryption [67]. Most HE
schemes are implemented in C++, though there is some use of
Python, Go, and other languages. We discuss the most relevant
libraries in Section 4.3

The DGHV [78], TFHE [19], and FHEW [32] FHE schemes are
FHE schemes that operate on single-bit plaintexts or batches thereof.
DGHV is a very simple and intuitive scheme, and TFHE and FHEW
are capable of highly efficient bootstrapping to allow computa-
tion of arbitrary depth. However, having single-bit or bit-encoded
plaintexts is highly cumbersome for many real-world applications.
Implementations of these schemes are available [20, 22, 61], though
some are not currently maintained.

The B/FV [34] and BGV [13] schemes are both FHE schemes
that encrypt and perform homomorphic computation on elements
of Z𝑡 , i.e., integral HE schemes. B/FV and BGV are similar, mainly
differing in whether a message is hidden in the low or high bits
of a ciphertext. Batching via the Chinese Remainder Theorem for
polynomial rings allows packing thousands of operands into a single
plaintext, greatly improving practical throughput for B/FV and BGV.
Batched ciphertexts can use ciphertext rotation to permute the order
of the packed elements. Many different libraries implement B/FV
and/or BGV, including Microsoft SEAL [68], PALISADE [61], Helib
[40], and Lattigo [55].

The CKKS [18] scheme is an FHE scheme that operates approx-
imately on floating-point numbers by using a complex canonical
embedding. Similarly to B/FV and BGV, CKKS can improve perfor-
mance with batching and rotation. SEAL, PALISADE, Helib, and
Lattigo all implement CKKS.

All of B/FV, BGV, and CKKS operate on polynomial rings. Cipher-
texts are in 𝑅𝑞 = Z𝑞/(𝑥𝑁 +1) and plaintexts are in 𝑅𝑡 = Z𝑡/(𝑥𝑁 +1)
for a ciphertext modulus degree 𝑁 which is a power of two. Arith-
metic on these rings can be accelerated by use of Residue Number
System arithmetic [8, 39], which breaks down numbers with large,
multi-precision representations (e.g., elements of Z𝑞) into arrays
of numbers that can fit into a single computer word. The nega-
cyclic Number-Theoretic Transform can also be applied to greatly
reduce the runtime of polynomial multiplication from O(𝑁 2) to
O(𝑁 · 𝑙𝑜𝑔(𝑁 )).

Using FHE has some pitfalls:
(1) Ciphertext expansion: In FHE schemes, the ciphertext may

be much larger than the plaintext. As an example, VISE [21]
showed ciphertext expansion factors of 2000× for TFHE and
up to ≈ 1012× for DGHV. (The expansion factors are more
tolerable for B/FV, BGV, and CKKS with batching.) In scenar-
ios where bandwidth between data owners and evaluators is
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limited, the size of FHE operands may pose a limitation. Fur-
ther, ciphertext sizes increase commensurate to the complex-
ity of the computations that a particular parameter setting
supports, so higher utility incurs greater costs.

(2) Computational intensity: Homomorphic operations on the
large operands of FHE ciphertexts are computationally heavy.
Homomorphic multiplication may take up to hundreds of
milliseconds for larger parameters offering a greater multi-
plicative depth [83]. Smaller parameters can improve run-
time at the cost of depth (discussed next), and batching can
improve throughput, but the intensity is inherent in the
mathematics.

(3) Depth: FHE schemes can only perform evaluation up to a
certain multiplicative depth, at which point the expensive
operation of bootstrapping is needed to refresh the cipher-
text. Using SHE variants in practice avoids this overhead, but
limits the possible evaluations in their multiplicative depth.

(4) Unfriendly applications: Some functionality such as branch-
ing or looping on encrypted data is not easily supported in
FHE, restricting practical computations to those expressed
in a purely arithmetic or logical fashion.

Careful parameter selection and optimization of the computa-
tion can mitigate ciphertext expansion and computation intensity.
Parallel computing, cloud computing, and hardware acceleration
can also be used to accelerate FHE. However, for computations with
high multiplicative depth or otherwise unfriendly computations,
SGX may be a more effective approach.

2.2 TEEs and Intel SGX
Trusted Execution Environments (TEEs) are systems that enable
trusted and secure computing even in the presence of a malicious
host operating system. Code running in a TEE is free from tam-
pering from other processes, whether at user or kernel level. The
memory of the process is held in a secure enclave that is encrypted
when paged out and decrypted when paged in, so even ring 0 pro-
cesses cannot read it. TEEs can also encrypt/decrypt data using
privately held keys, making their external communications undeci-
pherable to the host OS. A TEE can also perform remote attestation
to assure other parties that it is honestly running a given program.
A widely used realization of a TEE is Intel SGX [23].

SGX also has pitfalls:
(1) Expensive paging: Due to the encryption/decryption on pag-

ing, paging data in/out of the protected memory enclave
incurs a latency penalty [36].

(2) Memory limit: Intel SGX has an physical memory limit of
128MB, due to the limited size of Processor ReservedMemory
[36]. The practical limit is closer to 90MB [23]; using a greater
amount of memory may incur untenable overhead from
frequent paging. This makes SGX unsuitable for large-scale
computations. This is mitigated in some newer CPUs with a
larger enclave size [53], though this does not help with the
expense of paging new data in/out of enclave memory.

(3) Incomplete standard libraries: While much of the standard
C and C++ libraries can be used, some functionality such as
input/output, locales, and system calls cannot be used.

(4) Practical vulnerabilities: While the current SGX specification
is secure (or at least not yet proven insecure), many prac-
tical attacks have been demonstrated [9, 27, 37, 56, 57, 84],
damaging the reputation of secure hardware in the research
community. Fortunately, these attacks are difficult to execute
in practice and can be mitigated. Some attacks are against
multithreaded SGX execution [84], so to improve security it
may be desirable to run SGX applications with only a single
thread, though this may hurt performance.

2.2.1 SGX Efficiency. According to our prior experiments, for the
small-scale arithmetic computations that can fit into the capacity
of SGX enclaves, the computations inside SGX run 2-3 orders of
magnitude faster than the corresponding homomorphic compu-
tations. However, simply performing as much subcomputation as
possible inside SGX enclaves will result in significant extra over-
head. Maximum capacity for the user applications inside the EPC
memory area is approximately 96MB, and the overhead increases
up to 2000 times [6, 7, 49] when the scale exceeds this capacity
because expensive paging and context switches occur [70]. It is
nontrivial even for the manufacturer to increase this limit due to
the integrity tree overhead and other constraints [70]. Furthermore,
SGX is disadvantaged in distributed computing that requires com-
munication due to the overhead of system calls [4, 85]. For the same
reasons, SGX incurs significant performance penalties when it loads
inputs from a large number of users due to the overhead of context
switching as well as the paging [21, 65]. On the other hand, various
optimizations in lattice-based cryptography have greatly improved
its efficiency and throughput, making their throughput close to
that of plain computations under certain conditions [17, 71]. Dis-
tributed computing can be applied to homomorphic computations,
especially with special hardware such as GPUs [25, 26, 82], FPGAs
[47, 63, 64, 77], and others [62, 74]. However, they significantly
outperform computations with SGX under certain conditions (e.g.,
large-scale inputs, simple operations, small ciphertext parameters),
and they can be slower than the corresponding computations inside
SGX even with paging under other conditions.

2.2.2 SGX Programming Model. Programming applications for the
SGX is nontrivial. An application must be split into trusted and
untrusted segments of code, and the programmer must manually
specify entry into and exit from the secure enclave (ECALLs and
OCALLs). Further, C++ standard library types (e.g., std::vector) and
nonstandard classes cannot be passed in ECALLs and OCALLs,
forcing programmers to serialize and marshal data in and out of
the enclave using C buffers. Applications must be written without
using I/O or system calls from inside the enclave, and can only use
such functionality by making OCALLs out to untrusted space. Due
to these constraints, some expertise is required to program for the
SGX, and existing applications cannot be easily ported to the SGX.

3 RELATEDWORK
3.1 TEEFHE
One weakness of HE is that to achieve Fully Homomorphic En-
cryption, ciphertexts must be regularly refreshed to mitigate noise
added from homomorphic multiplications. The refreshing proce-
dure, referred to as “bootstrapping", is computationally intensive
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and complex to implement. As an alternative, a trusted party hold-
ing the secret key could decrypt and re-encrypt ciphertexts to
create fresh encryptions. TEEFHE [83] used TEEs as the trusted
party, thus preventing any disclosure of the secret key outside of a
secure environment.

The TEEFHE system offers homomorphic computation as a cloud
service. Cloud nodes run homomorphic computations on cipher-
texts encrypting user data, and those nodes will have access to TEE-
enabled ciphertext refreshment as an oursourced service. TEEFHE
uses Microsoft SEAL [68] as its FHE library, and Intel SGX as its
TEE. SEAL implemented a Simulator class, which can be used to
estimate the remaining noise budget in ciphertexts, and thus decide
when outsourced refreshment is necessary. Current publicly avail-
able versions of SEAL no longer provide access to the Simulator
class, which makes continuations of this research infeasible without
access to internal versions of SEAL.

TEEFHE’s design is to construct a simple API for its TEE nodes,
consisting of operations to configure FHE parameters, securely
read in users’ secret keys, and refresh ciphertexts. Because SGX
is vulnerable to side-channel attacks [15], simply keeping the se-
cret key privately inside the memory enclave is not sufficient to
guarantee security. Data-dependent computations may reveal some
parts of the secret key under side-channel analysis. To mitigate
this, TEEFHE uses code from SEAL that is modified to not exhibit
memory accesses, branching, or variable-time computation that is
dependent on the secret key.

At 80 bits of security, TEEFHE showed an improvement of two or-
ders of magnitude over SEAL using bootstrapping (another feature
not currently publicly available). Notably, side-channel mitigation
did not result in any noticeable degradation in performance.

3.2 VISE
The VISE system [21] is another effort to combine TEEs and HE
for cloud-based secure computation. In HE, because the values of
variables are hidden, branching on encrypted conditions cannot be
easily done. Further, large ciphertext expansions may make it infea-
sible for sensor nodes on slower networks (e.g., satellite Internet) to
send homomorphically encrypted data. TEE-only computation with
SGX is not suitable for cloud-based computation, due to memory
limits and a strict binding between an SGX-based process and its
physical host.

VISE solves these problems by using TEEs (Intel SGX, specifi-
cally) for both a data gateway and facilitating conditional computa-
tions for a cloud homomorphic computation system. Data owners
send their data to VISE’s TEE servers, using non-homomorphic
encryption to reduce communication overhead. The TEE servers
homomorphically encrypt user data and forward it to a traditional
cloud cluster, which has the advantages of flexibility and scalability
according to demand and available resources. As needed, the cloud
cluster may return ciphertexts to the TEE servers for secure de-
cryption conditional computation, and reencryption. Final results
of batch computations and real-time analytics are also managed by
the TEE servers.

VISE uses custom implementations of the DGHV [78] and TFHE
[20] schemes. As mentioned in Section 2.1, these schemes operate
over single bits or arrays of bits, making themmost useful for logical

operations but less useful for arithmetic operations. VISE modifies
the original source code of implementations of DGHV and TFHE
to make them SGX-friendly, which involved an SGX port of GMP
[38] and of custom polynomial arithmetic.

3.3 Other Similar Work
TEEFHE and VISE are the works most similar to ours, in aiming
to combine fully homomorphic encryption with SGX for high-
performance systems. There is other work that more generally
applies SGX and TEEs for improved cryptographic protocols.

Some work uses SGX to guarantee the integrity of homomorphic
operations and secure computation. In the system of Drucker and
Gueron [30, 31], SGX is used to guarantee the integrity of homo-
morphic operations in the Pallier additively homomorphic scheme,
and (somewhat surprisingly) this system showed a slowdown of
less than 2× against solely using SGX or homomorphic encryption.
These results are unlikely to be replicated for more complex and
expensive fully homomorphic encryption schemes. Kuccuk et al.
[48] use SGX to implement a trusted third part for use in secure
multiparty computation. The fully homomorphic TFHE scheme
was ported to the SGX by Singh [69], and resulted in a slowdown
of about 100×, which can be improved upon further.

Other lines of work use an SGX for data management and trusted
computing for use with other cryptographic primitives. The Iron
system [35] uses SGX to construct functional encryption by hav-
ing client-hosted SGX processes perform function evaluation and
decryption upon authentication from a server SGX. The COVID
contact tracing system of Takeshita et al. [73] uses SGX to man-
age HE-based Conditional Private Set Intersection, mitigating the
scalability issues of SGX by only having the SGX read inputs from
infected individuals. Similarly, Wang et al. [80] and Luo et al. [52]
apply SGX-based protocol management and secure computing for
private auctions and private user matching, respectively. Karl et
al. [44] use a TEE to provide noninteractivity for general-purpose
secure multiparty computation, and later works of Karl’s [45, 46]
use SGX to provide noninteractive fault recovery and multivariate
polynomial aggregations in private stream aggregation.

Some other work combines SGX and cryptography to improve
the performance of trusted computing. The SAFETY and SCOTCH
systems [16, 65] use SGX and additive homomorphic encryption
for secure queries on patient data, showing an increase over solely
using SGX. Use of the partially homomorphic Pallier cryptosystem
[60] does not lend post-quantum security or the ability to perform
homomorphic operations beyond addition, and SAFETY does not
consider query privacy.

4 GPS AND ITS INSTANTIATION
4.1 Models and Assumptions
In previous works [21, 83] constructing systems combining TEEs
and fully homomorphic encryption, the use of the SGX is directly
dependent upon the number of users. For the relatively small scales
evaluated (less than 30 clients for TEEFHE and 1000 for VISE), this
is not a serious limitation. However, for computations on much
larger scales that are linearly dependent on the number of users, a
larger number of users may incur unacceptable overheads on SGX
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nodes due to the overhead in paging. We thus examine the use of a
TEE in scenarios not directly dependent upon the number of users.

System Model. We consider the following parties in this setting.
(1) Users who provide individual data points to untrusted server.

The total number of users may be large.
(2) An untrusted server running high-performance homomor-

phic computations to collect and aggregate users’ data points
to compute certain functions. The server is equipped with
SGX, which can be relied upon for lightweight assistance,
but is unable to handle computations at the scale of the num-
ber of users due to its limits in paging overhead and total
enclave space. (This is shown in the experimental results
given in Section 1 - the SGX’s performance degrades at a
much faster rate than that of an HE-based approach.)

In GPS, the SGX generates FHE keys, and allows the public
key to be distributed, while keeping the secret key securely in its
enclave. Users will homomorphically encrypt their data, and send
it to the server for homomorphic computation. The server will run
some computations homomorphically, possibly using acceleration
techniques such as GPU or other hardware acceleration, or highly
parallel computing. As needed, intermediate results are sent into
the SGX, decrypted, operated upon, reencrypted, and returned to
untrusted memory. Finally, the server sends ciphertexts encrypting
the final result, which the SGX will decrypt and return to the server.

4.2 Threat Model and Security
We consider the case of an honest-but-curious adversary who may
eavesdrop on user-server communications or compromise any com-
bination of the server and users. A security definition saying that an
adversary learns nothing about uncompromised users’ inputs is not
appropriate, as the server learns the final result of the computation,
from which information may be gleaned. In such scenarios where
the final result may be released to a compromised party, approaches
such as differential privacy [33] should be used to protect user pri-
vacy. We only discuss information leakage; total input privacy via
differential privacy is an orthogonal issue and dependent on the
computation at hand. Instead, we follow a commonly used security
definition [72]: no adversary learns more from the real execution
of the protocol than in the ideal functionality of the system.

Parties: There exist 𝑛 users, and one untrusted server with an SGX.
Inputs: Each user provides one input 𝑥𝑖 , and a function 𝑓 (𝑋 ) on the
set 𝑋 = {𝑥𝑖 } of user inputs is publicly known.
Output: The untrusted server learns 𝑓 (𝑋 ) .

Figure 3: Ideal Functionality of GPS for Secure Computa-
tion.

The ideal functionality in this scenario is that all users input their
values to a black-box protocol assumed to be secure, and the server
receives the result of the computation. This is given in Figure 3, and
security according to this functionality is defined in Definition 4.1.

Definition 4.1. A protocol Γ securely computes a function 𝑓 (· · · )
according to the ideal functionality in Figure 3 for a security param-
eter 𝜆 when for all probabilistic polynomial-time (PPT) adversaries
A operating against Γ, there exists a PPT simulator 𝑆 operating

against the ideal functionality 𝛿 given in Figure 3 such that for
every set of inputs 𝑋 = {𝑥𝑖 }, the views of 𝐴Γ (𝜆,𝑋 ) of 𝐴 in the real
protocol and 𝑆𝛿 (𝜆,𝑋 ) of 𝑆 in the ideal protocol are computationally
indistinguishable.

For our notion of security, we assume that the SGX is secure
against side-channel attacks; such issues are orthogonal to our work.
Such vulnerabilities are addressed in other work [14, 42, 58, 59, 81].
Other orthogonal issues such as robustness to user failure are also
not considered in this work.

4.3 Scheme and Library Choice
C and C++ are the languages of choice for SGX programming, so
we did not consider implementations in other languages such as
Lattigo [55]. The most prominent C++ homomorphic encryption
libraries are Microsoft SEAL [68], Helib [40], and PALISADE [61],
all of which implement efficient polynomial ring arithmetic using
Residue Number System [8, 39] and Number-Theoretic Transform
[51] techniques. Of those three, PALISADE implements the most
schemes, provides a very wide array of additional functionality such
as signatures and identity-based encryption [66], is extensively
documented with examples, and is the most actively developed
and supported. PALISADE also uses library-level multithreading
to improve performance transparently to the user. (SEAL is also
highly efficient, but it only implements the B/FV and CKKS schemes,
and several useful parts of SEAL are not publicly available, such
as bootstrapping and noise estimation.) For these reasons, we use
PALISADE in our system, and as a result our choice of library does
not limit our choice of scheme for future work.

We choose the CKKS scheme for our implementation due to
the usefulness of floating-point arithmetic for applications such as
logistic regression and machine learning. CKKS, like BGV and B/FV,
allows batching for high throughput, which is desirable for the large-
scale computational system we consider. While our implementation
uses CKKS, the system can easily run using BGV, B/FV, or TFHE,
all of which are supported by PALISADE.

4.4 Approach to Integration
PALISADE and its dependencies cannot be run directly in the SGX,
as SGX applications can use only a limited set of the C and C++
standard libraries (as discussed in Section 2.2.2). Functionality such
as input/output and system calls is disabled, and some functions
are not reimplemented in the SGX SDK’s provided C/C++ libraries.
These restrictions have forced prior work to partially or fully reim-
plement homomorphic encryption libraries for use in SGX appli-
cations [21, 83]. While this approach is possible, it is not desirable
for developers to need to rewrite libraries whenever a particular
library or scheme is desired for use with SGX, especially consider-
ing the high complexity of homomorphic encryption and the more
sophisticated libraries implementing it (e.g., PALISADE, SEAL).

A more preferable approach is to utilize a general and reusable
method of porting FHE libraries to SGX. One such method is the use
of the Graphene containerization framework [75, 76]. Graphene is a
library OS, which exposes needed library and system functionality
through its own shared libraries to user applications, and itself runs
on the host OS. Graphene has already been shown to be a viable
method of porting applications and libraries originally written for
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ordinary environments to SGX [50]. By using Graphene, we can
easily run unmodified PALISADE applications in SGX, without any
need to modify PALISADE. Some minor configuration is needed for
passing arguments and environment variables, specifying allowed
input/output files, and importing PALISADE shared libraries as
trusted files.

As mentioned in Section 2.2, multithreading in SGX may ex-
pose side-channel vulnerabilities [84]. To mitigate this, we disable
multithreaded execution. By default, PALISADE uses OpenMP to
provide multithreading in homomorphic operations. For the SGX
application, we disabled this functionality by default. A rewrite
of PALISADE (a very large and full-featured library) to remove
all side-channel attacks, as in TEEFHE [83], is orthogonal to this
project. Also, multithreading in SGX may incur overhead due to
the use of kernel threads to back application-level threads [49, 76].

This combination of technology - Graphene, PALISADE, and
SGX - is our system, GPS, that we can apply to computations not
easily handled by SGX or HE alone.

GPS is secure according to Definition 4.1. It is easy to see that
security of user inputs and intermediate computations prior to the
final result is preserved. By the semantic security of homomorphic
encryption, no adversary learns any new information about un-
compromised users’ ciphertexts sent to the server, and the server
cannot learn anything about the data on which it is operating. Data
operated upon by the SGX is encrypted securely in enclave memory,
and is thus also protected by semantic security (assuming no side-
channel vulnerabilities). Thus no adversary can learn from their
view any information about user data that would not be learned
in the ideal case from seeing compromised users’ inputs and the
server’s result, showing security.

4.5 Methodologies/Strategies of Integration
When adapting a computation for use with GPS, a careful considera-
tion of the specific traits of the computation along with the relative
strengths and weaknesses of SGX and HE. We recall that HE is
highly parallelizeable and scalable, but may be limited by some fac-
tors such as multiplicative depth or complex calculations not easily
expressible in arithmetic circuits. In contrast, SGX is not limited
by multiplicative depth or complexity, being capable of arbitrary
computations, but the SGX is not well-suited for dealing with many
different inputs from many different users, due to memory space
limits and paging overhead.

Thus to intelligently apply GPS, portions of the computation that
are directly polynomially dependent on the number of users/inputs
(i.e., Ω(𝑛) for 𝑛 users) in computation or memory should be run
outside the SGX, by the untrusted server, who can bring much more
memory and scalability to bear. On the other hand, computations
that are 𝑂 (1) but difficult to compute homomorphically (i.e., re-
quiring conditionals, high multiplicative depth, or operations not
easily approximated with only addition and multiplication) can be
performed more easily in the SGX. For similar reasons, the size
of the final result should be small and not dependent on the num-
ber of users. A given computation can be described in terms of its
abstract dataflow (e.g., as a directed acyclic graph, though such a
formal description may not be necessary), and each stage of the
computation should be analyzed to determine whether it is better

suited to HE or SGX. This choice is a heuristic one, based on factors
such as the computation’s multiplicative depth, the size of inputs
to the stage of the computation, and the feasibility of implementing
the computation within the restrictions of HE (i.e. strict arithmetic
circuits without looping or conditionals). To deal with the accu-
mulation of multiplicative depth, SGX-based bootstrapping stages
can be inserted as needed in the computation, similarly to TEEFHE
[83].

It should be noted that GPS is a protocol that utilizes function-
dependent HE, and thus all the regular difficulties of writing HE
applications apply. Issues such as parameter selection, optimization
of the computation for multiplicative depth and minimal computa-
tion, and deferment of relinearization still must be considered by
HE experts.

4.6 Instantiation: Linear Regression Training
As an instantiation of our idea to be used in evaluation, we chose
the training of linear regression models. Note that the focus of this
paper is not on the optimization of linear regression training; this
instantiation is an example to show concrete ideas and experiment
results. Therefore, we only focus on how much improvement we
gain by applying GPS to this task, rather than whether the OLS
is the best option for the linear regression training. A more full
investigation of varied securely computed functions is a topic for
future work.

Linear regression is a simple method of attempting to choose
weights in a model. For 𝑛 users, each with a vector of 𝑝 observed
independent variables x𝑖 ∈ R𝑝 and a dependent variable 𝑦𝑖 ∈ R,
the Ordinary Least Squares (OLS) method for training a linear
regression model computes

𝛽 = (X𝑇X)−1X𝑇 y

where X is the 𝑛 × 𝑝 matrix whose 𝑛 rows consist of the vectors
x𝑖 , and y is the vector of length 𝑛 whose entries are the users’
responses 𝑦𝑖 . While approximations, other regression methods, and
other types of multi-user secure computation exist, we chose OLS
for this work for its simplicity and wide applicability.

Linear regression is a good application for combining homomor-
phic encryption with trusted computing for the following reasons:

(1) It can take advantage of light trusted computing assistance at
some stages such as inverse computation, which are difficult
to do with purely homomorphic computation.

(2) The larger portions of the computation scales linearly with
the number of users, making it a difficult task at scale for an
SGX - for example, computing X𝑇X is multiplying 𝑝 ×𝑛 and
𝑛 × 𝑝 matrices.

(3) The size of smaller computations (e.g., finding the inverse of
the 𝑝 ×𝑝 matrix X𝑇X) and the final result are not dependent
on the number of users.

Concretely, all 𝑛 users will send their 𝑝 homomorphically en-
crypted inputs x𝑖 , 𝑦𝑖 to the server. The server will combine its
received inputs for batched evaluation (see Batching for Linear Re-
gression below) as X, X𝑇 , and y, and will then first compute X𝑇X.
That result is only a 𝑝 × 𝑝 matrix, and as 𝑝 is a small number not
dependent on the number of users (usually, 𝑝 < 20), the SGX can

7



XXX, YY. ZZZZ, United States Jonathan Takeshita, Colin McKechney, Justin Pajak, Antonis Papadimitriou, Ryan Karl, and Taeho Jung

easily handle computing its inverse. In parallel, X𝑇 y is also com-
puted homomorphically, resulting in a 𝑝 × 1 vector. Next, X𝑇X and
X𝑇 y are sent into the enclave and decrypted. The elements packed
in each ciphertext are summed up to complete the dot product
(see below). The SGX then computes the matrix inverse (X𝑇X)−1.
Finally, the product 𝛽 = (X𝑇X)−1 (X𝑇 y) is computed, resulting in
a 𝑝 × 1 result, which is then returned to the server.

Batching for Linear Regression. Previous work in homomorphic re-
gression training used batching to pack thousands of operands into
a single ciphertext [10, 11]. Because the scale of computation we
consider is much larger than in previous work, we cannot directly
apply previously-used batching techniques emplacing entire ma-
trices into single ciphertexts. Further, the structure of OLS linear
regression does not allow any training to occur without input from
multiple users. This is because the rows of X𝑇 (equivalently, the
columns of X) are comprised of values from each of the 𝑛 users, and
𝑛 may be too large to use ordinary methods of packing all users’
information into a single ciphertext. However, we can still apply
batching to improve throughput.

Suppose we can batch 𝐵 operands in a single ciphertext. (In
CKKS, 𝐵 is equal to 𝑁 /2, where 𝑁 is the polynomial modulus
degree; 𝐵 = 𝑁 in BGV and B/FV.) We can use batching to reduce the
number of homomorphic multiplications by a factor of 𝐵, at the cost
of 𝑛 ·𝑝 additions. In our application, we can have all 𝑛 users 𝑢𝑖 send
𝑝 ciphertexts 𝑥𝑖, 𝑗 for 𝑖 ∈ [0, 𝑁 ) and 𝑗 ∈ [0, 𝑝). These ciphertexts
encrypt user 𝑖’s 𝑗𝑡ℎ regressor. Users will also send ciphertexts 𝑦𝑖
for 𝑖 ∈ [0, 𝑛) encrypting their response value. All ciphertexts have
the actual data encrypted at slot 𝑖 (mod 𝑁 ), with all other slots
zero-valued. Then to pack the values 𝑥𝑖, 𝑗 into ciphertexts, the server
can simply homomorphically add users’ ciphertexts.

The server utilizes packing to compress the rows of X𝑇 , and
equivalently the columns of X, and similarly to reduce the size of y.
Doing this reduces the number of operands in a row or column from
𝑛 to ⌈𝑛

𝐵
⌉, reducing the number of both additions andmultiplications

that must occur by a factor of roughly 𝐵. When packed ciphertexts
are decrypted by the SGX, all 𝐵 of their elements must be additively
aggregated into a single value.

Normally, the multiplicative depth of a computation is the de-
termining factor in the computations a SHE scheme can compute.
This is because homomorphic multiplications increase ciphertext
noise multiplicatively, while homomorphic additions only increase
noise additively. While the multiplicative depth required for a ma-
trix multiplication is technically only 1 in both cases, for values of
𝑛 in the millions, the noise gained from the 𝑛 additions becomes
non-negligible. By using this manner of batching, we can reduce
the number of homomorphic operations, thus allowing us to use
smaller parameters, which reduces ciphertext size and homomor-
phic operation runtime.

5 EXPERIMENTAL EVALUATION
5.1 Implementation
Our test workstation used an Intel Xeon CPU with 20 cores op-
erating at 3.7GHz and 128GB memory, using Ubuntu 18.04. Our
tests, written in C++, used the Development version of PALISADE,
version 1.11.2. PALISADE uses OpenMP [24] for multithreading its

operations, and we also used OpenMP to parallelize matrix mul-
tiplication. We conducted experiments with threads both enabled
and disabled. In our hybrid system, relinearization was not used for
homomorphic multiplications, significantly improving our runtime.

We wrote PALISADE programs for the pack-and-multiply used
to calculate X𝑇X in linear regression, as well as a general ma-
trix multiplication program. Using Graphene and PALISADE, we
wrote SGX programs to calculate a matrix inverse, perform a fi-
nal multiplication, and decrypt the final output. An SGX-only
implementation of multi-user linear regression was also imple-
mented as a baseline. We time each portion of the computation,
and report the results. We also implemented logistic regression
using only homomorphic encryption, but quickly realized that
for our scale, this strategy is not feasible, due to the factorial-
time computation of computing a determinant and matrix inverse.
This further supports our decision to run small-scale yet diffi-
cult operations inside the SGX. Our source code is available at
https://anonymous.4open.science/r/LinReg_SGX-A73D/ and https:
//anonymous.4open.science/r/integrated-linear-regression-81D7/

5.2 Experimental Results
We evaluated scenarios with varying values of 𝑝 and 𝑛. We allow 𝑝

to vary from 2 to 12, and 𝑛 to vary from 1, 000, 000 to 10, 000, 000,
in increments of 1, 000, 000. All results shown are the average of
10 trials, except in the SGX implementation with 𝑛 = 5, 000, 000,
𝑝 = 12, which ran for 5 trials due to the high runtime. Standard
deviations for results were within ±2.2% of the mean, and ±1% for
the single-threaded comparisons to SGX. We describe improvement
in terms of speedup, the ration of the baseline’s runtime to the new
system’s runtime.

Setting a polynomial modulus degree of 𝑁 = 8192 gives us
𝐵 = 4096 packed elements per CKKS plaintext. Due to our batching,
we need only perform dot products on vectors of ciphertexts of
length ⌈𝑛

𝐵
⌉ ≤ 2442. Each element was created from 𝐵 − 1 = 4095

homomorphic additions, so the total number of homomorphic ad-
ditions is no more than 6537, with only one homomorphic multipli-
cation needed for matrix multiplication. This allows noise bounds
tolerant enough for us to only need two ciphertext moduli totalling
111 bits, giving this instantiation of CKKS between 192 and 256
bits of (classical) security - greater than the 80 bits used in TEEFHE
[83], and the 128 bits evaluated by VISE [21] (though VISE usually
used 64 bits of security for performance reasons). SGX’s AES en-
cryption provides at least 128 bits of security, so from this and our
CKKS parameters we can conclude that our setting has at least 128
bits of security. These parameters result in ciphertext sizes of ap-
proximately only 265KB, keeping users’ communication overhead
small.

5.2.1 Single-Threaded Comparison to SGX. We first evaluate our
performance by comparing the performance of a basic GPS im-
plementation of linear regression directly to an SGX-only imple-
mentation of linear regression. As shown in Figure 5 and table 2,
while both systems’ runtime scales linearly with the input size, GPS
shows better performance and scaling as the number of inputs in-
creases, achieving speedups from 1.13× to 2.07×. It should be noted
that this comparison is for a large-scale multi-user computation;
for smaller workloads SGX is likely to outperform GPS. Figure 4
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also shows how GPS’ performance is also better than SGX as the
number of dependent variables increases. As shown in Table 1, GPS
averages a 1.16× to 8.69× speedup. These experiments show that
on a large scale, a basic implementation of GPS without optimiza-
tions such as hardware acceleration, parallelized matrix operations,
etc. outperforms SGX, though both exhibit the same asymptotic
behavior.
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Figure 4: Linear Regression Comparison of GPS and SGX
with 𝑛 = 5, 000, 000

Inputs (Millions)

Ti
m

e 
(s

ec
on

ds
)

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

GPS (Single-Threaded)

SGX

GPS (Multithreaded)

GPS (GPU, estimated)

Linear Regression Comparison with 10 Independent Variables

Figure 5: Linear Regression Comparison of GPS and SGX
with 𝑝 = 10

5.2.2 Multithreaded Performance. Our evaluation in Section 5.2.1
used only a single thread for each program (though the first two
matrix multiplications were computed in parallel). Using OpenMP
[24], we next parallelized our implementation of matrix multiplica-
tion using PALISADE, in order to exploit one of GPS’ advantages:
the ability to parallelize homomorphic computation. We used 18
threads in total, and found that the optimal division of threads was
to give 10 to the calculation of X𝑇X and 8 to the calculation of
X𝑇 y. Figures 4 and 5 show the performance achieved by applying
PALISADE’s multithreading to GPS, and Tables 1 and 2 show the
improvements that this brings as compared to single-threaded SGX.

While consistent speedups are shown, the smaller improvements in-
dicate that the homomorphic operations parallelized by PALISADE
were not major bottlenecks. Overall, multithreaded GPS achieved
speedups from 2.09× to 3.32× for increasing 𝑛 and from 1.08×
to 3.14× for increasing 𝑝 over single-threaded GPS. Against SGX,
multithreaded GPS showed improvements from 2.09× to 3.32× for
increasing 𝑛 and from 3.28× to 10.43 for increasing 𝑝 . Future work
in applying parallelism at a higher level (e.g., parallelizing matrix
arithmetic) may be able to further improve this.

5.2.3 Estimation of Speedup from GPU Acceleration. Due to the
computational and memory demands of HE, much research has
been undertaken into hardware acceleration of HE. Prior work has
examined the use of GPUs, FPGAs, ASICs, and other hardware solu-
tions [5, 25, 26, 29, 54, 62–64, 74, 82]. The most widely available and
used of these technologies is GPU. A recent GPU implementation of
CKKS showed speedups of one to two orders of magnitude against
Microsoft SEAL [5]. In particular, speedups of about 25× were re-
ported for benchmarks of homomorphic addition andmultiplication
at 𝑁 = 8192, and 20× speedups were reported for real-world infer-
ence computations. Taking a conservative estimate of 20× speedup
for our matrix multiplication (which is comprised entirely of addi-
tions and multiplications), we then estimate the improvement we
can gain from GPU acceleration of matrix multiplication, and show
the results in Figures 4 and 5 and tables 1 and 2. (These tests did
not count runtime for process startup/cleanup, which is small.)

The 20× speedup in matrix multiplication time translated to
estimated speedups of only 4.99× to 5.77× for increasing 𝑛 and
5.25× to 12.67 for increasing 𝑝 against SGX. This suggests that
while hardware acceleration of homomorphic operations is useful
for improving the protocol’s latency, the main obstacle of the com-
putations that GPS is best applied to is the overhead marshalling
inputs from a large number of users.

5.3 Analysis
This initial investigation of GPS generally shows consistent im-
provement over SGX-only implementations, which can translate to
a large reduction in latency for large-scale computations with data
from a large number of users. Having designed and implemented
GPS, future work can now focus on attaining orders-of-magnitude
improvements.

Techniques such as multithreading and GPU acceleration show
or project an improvement of up to approximately 20× for the
arithmetic portions of GPS. However, applying or projecting these
shows only improvements of 2.09× to 12.67×. This indicates that
the bottleneck in our implementation of GPS is mainly due to the
overhead from other intensive portions of our computation, such
as matrix inversion and input/output.

Interestingly, matrix inversion was slower in the SGX-only ver-
sion than in GPS. This is most likely due to the additional memory
consumption of the SGX-only version, which had previously read in
all 𝑛×𝑝 user inputs. That memory use increases the amount of pag-
ing that needs to take place, and memory paging is a slow operation
for the SGX due to the need for memory encryption/decryption.
This further reinforces the efficacy of our design in witholding the
full set of user inputs from the SGX.
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Table 1: Speedup for GPS and Optimizations with Increasing 𝑝 (𝑛 = 5, 000, 000)
Dependent Vars. 2 3 4 5 6 7 8 9 10 11 12
GPS vs. SGX 8.69 4.84 3.18 2.26 1.73 1.38 1.16 1.03 1.23 3.21 5.80

Multithreaded GPS vs. SGX 10.43 8.67 7.43 5.61 4.70 4.15 3.65 3.28 3.76 5.45 6.27
Multithreaded GPS vs. GPS 1.20 1.79 2.34 2.48 2.72 3.01 3.14 3.20 3.07 1.69 1.08

GPU-Accelerated GPS (estimated) vs. SGX 12.67 10.18 7.96 6.60 6.10 5.60 5.40 5.25 5.43 6.20 6.38
GPU-Accelerated GPS (estimated) vs. GPS 1.46 2.10 2.50 2.92 3.54 4.06 4.64 5.12 4.43 1.93 1.10

Table 2: Speedup for GPS and Optimizations with Increasing 𝑛 (𝑝 = 10)
Inputs (Millions) 1 2 3 4 5 6 7 8 9 10
GPS vs. SGX 2.07 1.62 1.40 1.28 1.22 1.21 1.18 1.16 1.15 1.13

Multithreaded GPS vs. SGX 4.33 4.12 3.91 3.77 3.71 3.74 3.76 3.77 3.78 3.76
Multithreaded GPS vs. GPS 2.09 2.54 2.79 2.94 3.04 3.09 3.19 3.25 3.29 3.32

GPU-Accelerated GPS (estimated) vs. SGX 4.99 5.24 5.27 5.25 5.33 5.56 5.56 5.63 5.72 5.77
GPU-Accelerated GPS (estimated) vs. GPS 2.41 3.23 3.76 4.09 4.37 4.60 4.72 4.85 4.98 5.10

6 LIMITATIONS
Our integration of SGX and SHE for the first time addresses the
performance drawbacks of SGX in large-scale distributed data ag-
gregation, which resulted from the loading of a large number of
inputs from users into SGX enclaves that causes frequent system
calls and context switches. The integration is not effective in the
cases where the loading of user inputs does not cause frequent
system calls (e.g., the number of users is small, the total size of
aggregated datasets is small).

Inmany cases, SGX-only computationwill remain a better choice,
particularly in scenarios unlike ours, with a limited number of
inputs and little opportunity for parallel processing. Overall, the
basic use of GPS can improve the runtime of computations, but does
not improve the asymptotic runtime or scalability of a computation
without the use of other techniques (e.g., parallelization). Also,
not all computations are most advantageously adapted to GPS:
computations without a large number of inputs and reducing the
size of intermediate computations may be better suited for more
traditional approaches of applying SGX or HE.

The experimental results shown in Section 5.1 show only modest
speedups; while this does show an improvement over SGX, this
suggests that GPS can still be improved to maturity by exploring
further integration with parallelization and hardware acceleration.

GPS does not address some pertinent obstacles to widespread
adoption of HE and secure computing. GPS requires expert knowl-
edge of both SGX and HE to implement correctly, which may dis-
courage its use by non-experts. Common obstacles such as param-
eter selection for performance and security, choices of scheme
and data encoding, and programming in the HE paradigm are
still present in GPS. Fortunately, due to our novel utilization of
Graphene for the SGX portions of GPS, developers do not need to
have expertise in the particulars of SGX programming as needed
for development with the SGX SDK; however, programmers still
need to be acutely aware of the strengths and limitations of SGX to
use GPS effectively. Future use of FHE transpilers [1, 28, 79] may
further reduce the barriers to entry in developing for HE and GPS.

7 CONCLUSION
In this paper, we showed the potential of combining homomorphic
encryption and trusted execution for large-scale multi-user compu-
tations not suited to HE-only or SGX-only computation. Further, we
pioneered the use of containerization to use existing HE libraries
in SGX without needing to modify the libraries or our application.
Our experimental results show the improvements of GPS over an
SGX-only implementation of linear regression; speedups of 1.13×

to 2.07× as the number of dependent variables scale and 1.03× to
8.69× as the number of users scale. When applying PALISADE’s
multithreading capabilities, we can increase the improvement over
SGX to 3.71× to 4.33× with increasing 𝑛 and 3.28× to 10.43× over
SGX. We project that this improvement can also be increased by
GPU acceleration of arithmetic HE computations, for speedups of
4.99× to 5.77× for increasing 𝑛 and 5.40× to 12.67× for increasing 𝑝 .
Besides the improvements shown, our results indicate bottlenecks
due to high I/O overhead from many different users, which informs
our priorities for future research.

There are many possible directions for future work. One avenue
is in investigating the combination of SGX and systems such as
cloud computing platforms. Another is in examining more varied
applications, such as statistical calculation and machine learning
tasks. An obstacle encountered in this work was the high overhead
from I/O of user input; future work examining how to mitigate
this will be able to have a great impact on the latency of such inte-
grated systems. While some work exists in combining lightweight,
purpose-built cryptographic protocols with SGX (Section 3.3), the
principles of GPS can be further applied for such integrations for
even better efficiency and functionality. Another exciting new di-
rection is in the use of FHE transpilers [1, 28, 79]. As noted in
Section 4.5, expertise with HE is still needed to apply GPS. Use of
a transpiler to programmatically convert source code from plain
operations to encrypted computation can allow non-experts to im-
plement their computations securely with HE libraries. Future work
in transpilers could even examine specifically targeting GPS. GPS
has shown improvement over the basic case of SGX-only compu-
tation, and has many potential avenues for further improvement,
which we hope to explore in future work.
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