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Nearest neighbor search is a fundamental building-block for
a wide range of applications. A privacy-preserving protocol
for nearest neighbor search involves a set of clients who send
queries to a remote database. Each client retrieves the nearest
neighbor(s) to its query in the database without revealing any
information about the query. For database privacy, the client
must not learn anything beyond the query answer.

Existing protocols for private nearest neighbor search re-
quire heavy cryptographic tools, resulting in poor practical
performance or large client overheads. In this paper, we present
the first lightweight protocol for private nearest neighbor search.
Our protocol is instantiated using two non-colluding servers,
each holding a replica of the database. The protocol supports
an arbitrary number of clients simultaneously querying the
database via these servers. Each query is only a single round
of communication for the client and does not require any
communication between servers.

If at least one of the servers is non-colluding, we ensure
that (1) no information is revealed on the client’s query, (2)
the total communication between the client and the servers is
sublinear in the database size, and (3) each query answer only
leaks a small and precisely quantified amount of information
about the database to the client, even when the client is acting
maliciously.

We implement our protocol and report its performance on
real-world data. Our construction requires between 10 and 30
seconds of query latency over large databases of 10M feature
vectors. Client overhead remained under 10us of processing
time per query and typically less than 4 MB of communication,
depending on parameters.

1 Introduction

Nearest neighbor search is used in a wide range of online appli-
cations, including recommendation engines [34, 111], reverse
image search [74], image-recognition [77], earthquake detec-
tion [118], computational linguistics [84], natural-language
processing [99], targeted advertising [97, 112], and numerous
other areas [71, 78, 91, 97].
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In these settings, a server has a database of high-dimensional
feature vectors associated with items. Clients send query
vectors to the server to obtain the set of items (a.k.a. neighbors)
that have similar vectors relative to the issued query. Typically,
the client only obtains the identifiers (IDs) of the neighbors
rather than the feature vectors themselves, as the server may
wish to keep the feature vectors private. The IDs of the feature
vectors can be documents, songs, or webpages, and therefore
all the client requires as output for correct functionality.

For a concrete example, consider a music recommendation
engine such as Spotify. The Spotify server holds a database
of song feature vectors. Each feature vector can be seen as
a concise representation of song attributes — e.g., genre,
popularity, user ratings — encoded in a high-dimensional
vector space. A Spotify user has a vector of features (the query)
representing their musical interests. The goal is to recommend
songs the user may find interesting, which should have similar
features. This is done using nearest neighbor search to find the
ID (e.g., the song) of a vector similar to the query. The client
learns the recommended song without learning the potentially
proprietary feature vector associated with it (beyond what can
be implicitly inferred through similarity with the query).

In the above example, the Spotify database learns exactly
which music genres (singers, etc.) the client is interested
in. It is not difficult to see that in applications that involve
more sensitive user data, similarity search can easily violate
user privacy. Such applications include targeted advertis-
ing [21, 61, 98, 109, 112], biometric data [23, 49], medical
records [15, 104], and DNA data analysis [35, 81, 89, 115].
These applications construct queries from highly personal user
information. For example, in the medical setting, a person’s
medical history, demographics, and even DNA can be com-
piled into a query. The resulting neighbors are other people
who have similar symptoms, gene sequences, or health con-
ditions [87]. Both regulatory and ethical reasons dictate that
such personal information (represented in the query) should
be kept private from the database.

The potential privacy issues surrounding similarity search
have motivated a handful of privacy-preserving protocols [36,



65, 95, 104, 119]. However, due to the complexity of the
problem, existing protocols are highly inefficient. Prior work
either makes use of heavy cryptographic tools (e.g., two-
party computation and fully-homomorphic encryption) or
fails to provide strong privacy guarantees for users (e.g., leak
information on the query to the server). See the overview of
related work in Section 9.

Additionally, existing protocols do not consider malicious?
clients that may attempt to abuse the system to learn more
information about the database. The proposed solutions leave
open the problem of designing a concretely efficient protocol
for private nearest neighbor search, especially when strong
security guarantees are required.

The contribution of this paper is the design and implemen-
tation of a lightweight protocol for private similarity search.
Specifically, we provide a private protocol for solving the
Approximate Nearest Neighbor (ANN) search problem. Our
protocol provides strong security guarantees for both the client
and the database. Moreover, our protocol is concretely efficient
and requires little communication between the client and the
database servers (and no communication between servers).
We achieve this without compromising on privacy for the
client — nothing is leaked on the client’s query. For database
privacy, our construction requires some extra database leakage
compared to the ideal leakage which only reveals the ANN
to the client. The additional leakage is minimal and allows
us to eschew oblivious comparisons, which are highly ineffi-
cient to instantiate [116]. However, we are careful to precisely
quantify this extra leakage relative to the ideal functionality.
In our analysis, we show that the leakage is at most a constant
factor worse than the ideal leakage (asymptotically optimal).
Moreover, we ensure that malicious clients cannot abuse the
protocol to learn more than an honest client would have.

Private ANN search. We operate in the following model
(see Figure 1 for a simplified illustration). Fix a database D3
containing a set of N feature vectors vy,...,vy and corre-
sponding IDs IDy,...,IDy. A client has a query vector q. The
client must learn only the ID(s) of the nearest neighbor(s) rela-
tive to ¢ under some similarity (or distance) metric. This is the
standard setup considered in prior work [36, 65, 95, 104, 119].
For client privacy, the protocol must not leak any information
about ¢ to the database servers. For database privacy, the
protocol must leak as little as possible on vy,...,vy to the
client. Observe that perfect database privacy (i.e., no database
leakage) is unattainable because the client must learn at least
one ID corresponding to a neighboring vector in the database,
which indicates that the vector associated with the ID is similar
to the query. We therefore focus on minimizing extra leakage
of the database to the client. That is, leaking as little as possible

'Existing work requires secure function evaluation between the client and
server, which can be “upgraded” to malicious-security at the cost of compu-
tationally expensive transformations based on zero-knowledge proofs [57].
The use of fully-homomorphic encryption is another alternative to provide
malicious security but comes at a high efficiency cost.
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Figure 1: Overview of approximate nearest neighbor search and the
privacy-preserving protocol considered in this paper. In the private
setting, a client with a query (red dot) interacts with a remote database
via two non-colluding servers (Servers A and B). The client combines
the responses from both servers to obtain the approximate nearest
neighbor ID (in this case the ANN ID = 5) without revealing the
query to the servers.

beyond what can be implicitly inferred from the ID of the
nearest neighbor.

Challenges. Due to the nature of the ANN search problem,
privacy-focused solutions use some form of (oblivious) dis-
tance comparisons between the query and the feature vectors
in the database. Oblivious comparisons [116] require the use
of heavy cryptographic tools (e.g., two-party computation
or fully-homomorphic encryption). Two-party computation
introduces heavy communication costs (typically 1-6 GB per
ANN query [36]). Solutions based on fully-homomorphic en-
cryption introduce high computational overhead for the server
(hours or even days of processing time [104, 119]), resulting in
significant response latency. In this work, we begin by asking
the following question:

Is it possible to design a private similarity search
protocol that is concretely efficient for both the client
and the servers while preserving query privacy and
database privacy?

We answer this question in the affirmative.

Our approach. We begin by making several observations
about the ANN search problem from both an algorithmic
and privacy-preserving perspective. We redesign the standard
locality-sensitive-hashing based data structure for ANN search
with the goal of avoiding oblivious comparisons (the efficiency
bottleneck of prior work). We achieve this by replacing brute-
force comparisons with a radix-sort [72] inspired approach for
extracting the nearest neighbor. We then show how to query this
new data structure through a novel privacy-preserving protocol.
We use distributed point functions [54] as an existing building
block to querying for neighbors. We apply an efficient leakage-
suppressing transformation to query answers (introduced in



Section 5.2) that prevents malicious clients from learning more
than one ID per query. Finally, we optimize our protocol by
applying partial batch retrieval (a new spin on batch-PIR [14]),
which we introduce in Section 6.2.

We show that our protocol is (1) accurate through an
extensive theoretical analysis and empirical evaluation, (2)
private by analyzing the security properties of our protocol
with respect to client and database privacy, and (3) efficient in
terms of concrete server-side computation and client-server
communication. See Sections 7 and 8 for analytical and
empirical results.

Contributions. In summary, this paper makes the following
four contributions:

1. design of a single-round protocol for privacy-preserving
ANN search, achieving sublinear communication and
concrete efficiency,

2. leakage analysis with quantifiable database privacy, which
we show asymptotically matches the ideal functionality,

3. security against malicious clients that may deviate from
protocol in an attempt to abuse leakage, and

4. an open-source implementation [2] which we evaluate on
real-world data with millions of feature vectors.

Limitations. Our protocol has greater database leakage com-
pared to the ideal functionality. We show that the database
leakage is asymptotically optimal, but concretely a small
factor worse on real data; see empirical analysis in Sec-
tion 7. Additionally, in contrast to prior work, our threat
model assumes two non-colluding servers. We note, however,
that using non-colluding servers to instantiate lightweight
privacy-preserving systems has proven fruitful in other ar-
eas [5, 27, 37,42, 43,45, 46, 48, 73, 88], including systems
deployed in industry [45, 59]. In our protocol, the servers do
not communicate with one another.

2 Background: nearest neighbor search

We begin by describing the standard (non-private) approach
to approximate nearest neighbor search based on locality-
sensitive hashing. Even outside of a privacy-preserving con-
text, nearest neighbor search in higher dimensions (d > 10)
requires tolerating approximate results to achieve efficient
solutions [83]. In Section 4, we transform the ideas from
non-private ANN search into a private protocol instantiated
between a client and two servers holding replicas of the
database.

2.1 Locality-sensitive hashing

The approximate nearest neighbor search problem is solved
(efficiently) using hashing-based techniques that probabilis-
tically group similar feature vectors together (see survey of

LSH-based ANN search data structure

BuiLp (DB, H,L) — (Tq,...,7Tr) takes as input a set of N
vectors DB = {vq,...,vN }, LSH family H (Definition 1),
and number of tables L. Outputs hash tables 7i,..., 7.

1: Sample L LSH functions hy,...,hy from H.
2: Use h; to build 7; by hashing each vector vy,...,vn.
3: Output L hash tables Tq,..., 7.

QuEerY (71,...,7r,h1,...,hp,q) — ID takes as input a

query vector ¢, L hash tables, and LSH functions.

1: Compute bucket key [ < h;(q) and retrieve the corre-
sponding bucket 53; in 7; under key [ (if non-empty).*

2: SetC:=BjU---UBL.

3: Find j such that vj € C and A(vj,cR) < cR via brute-
force distance comparisons.

4: if no such j exists, output O; else output ;.

“Note that by the properties of LSH, the query will collide with
probability proportional to the relative distance from other vectors.

Figure 2: ANN search data structure based on locality-sensitive
hashing of Gionis et al. [55].

Andoni et al. [12]). Approximate solutions based on Locality-
sensitive Hashing (LSH) provide tunable accuracy guarantees
and only require examining a small fraction of feature vectors
in the database to find the approximate nearest neighbor(s).

LSH families are defined over a distance metric (such as
Euclidean distance) and have the property that feature vectors
close to each other in space hash to the same value with good
probability. Formally, for a fixed feature vector space D, output
space R, and a distance metric A, an LSH family is defined
as follows.

Definition 1 (Locality-sensitive Hash (LSH) Family). A fam-
ily of hash functions H := {h: D — R} is (R,cR,p1,p2)-
sensitive for distance metric A if for any pair of vectors v, q € D,

if A(v,q) < R then Pr[h(v) =h(q)] = pi,
if A(v,q) > cR then Pr[h(v) =h(q)] < pa2,

where R < ¢R and p; > p».

Remark 1. Note that an LSH family is usually combined with
a universal hash function to map to a fixed output size [44].
Without loss of generality, we assume that the output of the
LSH function is mapped by a universal hash.

LSH for nearest neighbor search. In this work we adapt the
data structure of Gionis et al. [55], which is the standard way
of solving the ANN search problem using LSH (see survey
of Andoni et al. [12]). The data structure consists of two
algorithms: BUILD and QUERY, described in Figure 2.

Because the probability that a nearest neighbor collided with
the query in a subset of hash tables can be made arbitrarily
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Figure 3: Visualization of the nearest neighbor search problem. Left:
collision probability of an LSH-based data structure as a function
of the distance between the query and points in the database. Right:
points colliding with the query in the ANN data structure. Points
within distance R have a high probability of colliding with the query
whereas points within distance R and ¢R from the query have a lower
probability of colliding. The approximation factor ¢ > 1 determines
the quality of the results; typically ¢ = 2 in practical applications.

high (by tuning parameters), BUILD and QUERY ensure that the
nearest neighbor is found with high probability (see Figure 3).
In practice, one must query L ~ VN tables to find a near
neighbor in expectation [12].

3 Overview

We adapt the data structure of Section 2 into a privacy-
preserving protocol between a client with query vector ¢ and
two servers with access to replicas of the database. We begin
by describing the ideal functionality of private ANN search.

Notation. We denote by DB the database of vectors and
their IDs. We let N be the total number of d-dimensional
vectors in DB. A vector is denoted in bold as v where the ith
coordinate of v is denoted by v;. We denote the ith value of a
set S by S(7). A distance metric (e.g., Euclidean distance) is
denoted A, where threshold distances R and cR are as defined
in Section 2.1. We let I denote any prime-order finite field
(e.g., integers mod a prime p). A secret-share of a value v € F
is denoted using bracket notation as [v]. Coordinate-wise
secret-shares of a vector v is denoted [v]. Variable assignment
is denoted by x « y, where x&S denotes a random sample
from the set.

3.1 Ideal functionality

The ideal ANN search functionality is described in Function-
ality 1. The functionality takes as input the public parameters
and query ¢ to output the ID of the nearest neighbor relative
to g to the client. The servers obtain no output. Without loss
of generality, we assume the ID of the ANN is the index of
the ANN for some canonical ordering of the feature vectors in
the database. We let ID = 0 when no nearest neighbor exists.

Restricting the problem. Note that an LSH-based algorithm
will only return an answer that is within distance cR of

Functionality 1: Private ANN Search
Public Parameters:

distance metric A.

— database size N.

— feature vector dimensionality d.

— maximum nearest neighbor radius Rmnay.
Inputs:

— Client: query g € RY.

— Server(s): database DB := {v1,...,vn | v; € R4}
Procedure:
I: vj < nearest neighbor to ¢ in D5 via brute-force search.
2: if A(vj,q) > Rmax then

output 0 to the client and L to the servers.

3: else output j to the client and L to the servers.

the query. We formalize this by assuming that the ideal
functionality outputs the nearest neighbor that is also a near?
(distance less than cR away from the query) neighbor. While
it is possible to imagine contrived databases where the nearest
neighbor is not also a near neighbor, most practical instances
of the problem impose this additional restriction (returning
no neighbor if the nearest neighbor is beyond a threshold
distance from the query) because points beyond some threshold
are effectively unrelated to the query. To this end, the ideal
functionality is defined to reveal the ID of the nearest neighbor
(if one exists) within a fixed distance R = Ry« from the query.
Following Bayer et al. [25], we define two quantities D max and
D nin to be the maximum and minimum distance between any
two points, respectively. Because the distance between any
two vectors is at most Dy, it suffices to have Rmnax < Dmax-

3.2 Threat model and security guarantees

Our protocol is instantiated with two non-colluding servers and
an arbitrary number of clients. Clients query the servers to ob-
tain an ID of the ANN. We do not require any communication
between servers when answering queries.

Threat model.

* Noclientis trusted by either server. Clients may deviate from
protocol, collude with other clients, or otherwise behave
maliciously to learn more about the database.

» No server is trusted by any client. One or both servers may
deviate from protocol in an attempt to obtain information
on a client’s query or the resulting nearest neighbor.

Assumptions. Our core assumption, required for client pri-
vacy, is that the two servers do not collude with each other.
Additionally, we require black-box public-key infrastructure
(e.g., TLS [100]) to encrypt communication over the internet.

2This name comes from the near neighbor search problem [63][6].



Guarantees. Under the above threat model and assumptions,
the protocol provides the following guarantees.

Correctness: If the client and servers both follow protocol,
then the client obtains the ID of the ANN with respect to its
query. The result is guaranteed to have the same approximation
accuracy of standard, non-private data structures for ANN
search, and has tunable accuracy guarantees.

Client privacy: If the servers do not collude, then neither server
learns any information on the client’s query, even if one or
both servers arbitrarily deviate from protocol.

Bounded leakage: Each query answer is guaranteed to leak a
small (and tightly bounded) amount of information over the
ideal functionality, even if the query is maliciously generated
by the client. We provide a precise definition and in-depth
analysis of this leakage in Section 7.

4 Main ideas

To introduce privacy, as required for the client and the database,
we make several changes to the data structure of Figure 2
(BuiLD and QUERY). A simple strawman protocol with client
privacy (but no database privacy) can be realized by applying
well-known techniques in Private-information Retrieval (PIR)
to privately obtain the answer to QUERY (see [38, 39, 52]).
PIR allows a client to privately retrieve a specified object
from a remote database without revealing which object was
retrieved, which naturally generalizes to retrieving buckets
from a hash table [39]. While PIR solves the client privacy
problem, it provides no database privacy. The client learns
VN (see Section 2.1) feature vectors from the database per

query.

The challenge with database privacy. The primary chal-
lenge in reducing database leakage comes from preventing
the client from learning extra vectors in the candidate set.
This is non-trivial to do given that the standard approaches
to removing false-positive candidates (points farther than
cR from the query) require some form of direct distance
comparisons. In the private setting, these become oblivious
comparisons (a comparison between secret-shared values),
which in turn require heavy cryptographic techniques (e.g., gar-
bled circuits [116]). The state-of-the-art approach for privacy-
preserving ANN search (SANNS [36]) prunes candidates by
using an expensive two-party computation, which requires
several gigabytes of communication between the client and
database server.

The insight that we exploit to overcome this challenge is
that LSH can be used directly to accomplish the same goal of
pruning false-positives. We then apply a trick inspired by radix
sorting [72] to extract the nearest neighbor, fully removing
the need for direct comparisons between vectors. Our new
data structure is slightly less efficient when viewed from
an algorithmic perspective (i.e., when compared to the data

structure of Figure 2). However, this is not a problem for us
given that oblivious comparisons are the primary bottleneck in
a privacy-preserving setting. We elaborate on this observation
in the next section.

4.1 Reframing the problem

LSH-based ANN search is typically optimized to minimize
the number of hash tables (L) and the size of the candidate set
for each query. Removing false-positives via brute-force com-
parisons is relatively “cheap” from a computational standpoint
while hash table lookups are relatively expensive. Therefore,
LSH-based ANN search is typically tuned to retrieve as many
(reasonable) candidates as possible from each table. The extra
candidates are then pruned via brute-force comparisons.

The privacy-preserving setting requires different priorities.
First, note that it is not possible to perform only one lookup per
hash table. To preserve privacy, all hash table buckets must be
“touched” by the database server(s) to avoid revealing informa-
tion on the client’s query. This is the lower bound on private
information retrieval [56]. Otherwise, the servers learn that
the client’s hash does not correspond to any untouched bucket.
This is exactly why existing solutions for privacy-preserving
ANN search require O (N) communication between the client
and server, or alternatively, the use of fully-homomorphic
encryption (which requires linear server work). As such, we
cannot hope to have sublinear (in N) work for the servers
when answering client queries.

With this observation in mind, we note that a sublinear
time protocol is not possible, and realize that the optimal
LSH parameters in the non-private setting might not in fact be
optimal for privacy-preserving data structures. We therefore re-
design and re-tune the ANN search data structure of Section 2
for the purpose of avoiding comparisons between vectors.

4.2 Eliminating oblivious comparisons

Goal: No false-positives. One idea to remove comparisons
is to prevent values that will be pruned from being added
to the candidate set in the first place. More precisely, by
tuning the parameters of the ANN search data structure, and
the LSH functions it uses, we can bound the probability of
false-positives in the candidate set to any 0 < 6 < 1.

4.2.1 Bounding false-positives

A standard result in LSH theory is that a (R,cR,p1,p2)-
sensitive hash family can be “amplified” to result in a
(R,cR, p},p})-sensitive hash family, where p| = p’l‘ and
Py = p’z‘. This is done by simply concatenating the outputs of
k independent (R, cR, p1, p2)-sensitive hash functions. Am-
plification is generally used to reduce the size of the candidate
set [12], however, we take this approach to its extreme. For
a larger value of k, fewer collisions will occur. On the other



hand, when considering collisions that do occur, they are more
likely to be true positives. As a result, with a sufficiently large
k, we can significantly reduce false positives and compensate
for the smaller p| by increasing the number of tables L. We
capture this idea in Proposition 1.

Proposition 1. Fix failure probability ¢ > 0, and any
(p1.pa, R, cR)-sensitive hash family where p = }gig;; i
There exists a data structure solving the c¢R-approximate
near neighbor problem in O(N?") time and O (N'**") space,
where p < p’ < 1. This data structure returns the true cR-
approximate nearest neighbor with probability 1 — ¢, without

requiring brute-force distance comparisons between vectors.

Proof. The LSH data structure of Section 2.1 (Figure 2)
achieves asymptotic space and query time O(N'*?) and
O(NP), respectively [12]. Consider the data structure de-
scribed in Figure 2 where QUERY is modified to a random
element € C (if C # 0) instead of an element that is guaranteed
to be within distance ¢ R. We need to bound the success proba-
bility of this random element being within c¢R of the query to
1 —-¢. By Definition 1 (LSH), we have that p; > p,. Therefore,
there exists a “gap” between the probability of a true positive
and a false positive collision, which can be amplified expo-
nentially in k. First, observe that the probability of selecting a
false-positive at random from C, when the database size is N,
is bounded by

N-ph P
k—2k<N._i, (1)
Py +N-p; Py

which we further need to bound by ¢. Since we have that
p1 > p2 (Definition 1), it follows that p,/p; < 1. Therefore,

when
. { log(N) +log(1/9)
| log(1/p2) +log(p1)

we get that (1) is bounded by ¢, which leads to success
probability 1 —§ of selecting a true-positive at random (when
it is contained in the candidate set). We contrast this to
“vanilla” LSH-based data structures (e.g., Figure 2) where

log(N)
k= [log(l/ﬂz)
similar. The new data structure results in the elimination

of brute-force comparison while still preserving accuracy
guarantees. Finally, to prove space and query time, we note
that the expected number of tables is

] [12]. We note that the values are asymptotically

I-p

L=|-p1_k-|:N1%p-5p .

Therefore, we get p’ < 1 when p < % Following the LSH-
based ANN search data structure of Section 2, the asymptotic
query time is O (L) and the space is O(N - L). [

When is p < %? The restriction p < 1/2 (required for sublin-
earity in Proposition 1) is met for many common distance

Candidates

L] (e [e] [][e]
R1 R2 R3 R4 R5
Collisions at each seach radius

Figure 4: Illustration of using multiple radii (R) to search for the
nearest neighbor. Left: Each of the dotted regions represents a
different hash function radius. Right: The candidate result with
the smallest R; is the nearest neighbor, in this case the bucket
corresponding to R».

metrics when the approximation factor ¢ > 2. We cite various
results for when these conditions are met. We note that these
values are for worst-case theoretical guarantees; in practice,
p is much smaller (see Section 8). For Euclidean distance,
Andoni and Indyk [8] show p < % = % with ¢ =2. Andoni
et al. [10] also show a similar result for angular distance. For
any p-stable distribution with 1 < p <2, Datar et al. [44] show
p < % = % for ¢ = 2. For the £;-norm specifically, Motwani
et al. [86] show p < Z]—L = 4]'1 with ¢ = 2. Hamming distance
can be embedded into Euclidean space (see Aumiiller et al.
[17]). Alternatively, [117, Corollary 3.10] shows p < 1 =1
for hamming distance directly.

Bounded false-positives (in the worst case). The conse-
quence of Proposition 1 is that while we can bound false-
positives to any ¢, this comes with the cost of increasing the
number of tables L, since L = [pl‘k-|. Because k is a function
of the LSH sensitivity, we need to ensure that the difference
between p; and p, is sufficiently large to result in reasonable
values of k and L. We describe such LSH families in Ap-
pendix A. In our evaluation (Section 8), we show that on real
data, we can have false positive probability less than 0.05 with
k = 2. With Proposition 1, we can guarantee that all collisions
are within cR from the query, with high probability.

Finding the nearest neighbor. We are now left with the
problem of finding the nearest neighbor within the set of all
cR-neighbors. Our idea for doing so is based on a bucketing
technique of Ahle er al. [63], which resembles radix sort-
ing [72]. A radix sort does not perform direct comparisons,
which aligns with our goals. We recursively apply the data
structure of Proposition 1 on a series of increasing neighbor
radii, retrieving a set of candidates from each radius [63]. The
client then selects a result from the first non-empty candidate
set (see Figure 4).

4.2.2 The privacy-friendly ANN data structure

Our new ANN data structure (presented in Figure 5) merges
the above ideas to eliminate the brute-force step present in the



Comparison-free ANN search data structure

BuiLp (DB, Hy,....,Hr) = (T1,-..,TL,h1,...,hr) takes
as input a set of N vectors vq,...,vn and L hash families
H; each corresponding to an Ry < R; < Ry (Section 4.2).

1: Sample random h; from H;, fori € {1,...,L}.
2: Use h; to build 7; by hashing each vector vy,...,vN.

3: Output the similarity search data structure consisting of
L hash tables 77,...,7r and LSH functions hy,...,hg.

QUuUERY (73,...,71,hy,...,h,q) — ID; as in Figure 2.

1: Compute /; < h;(q) and retrieve bucket 3, from 7;.
2: j « min{ with nonempty 13;, or O if no such i exists.
3: if j # 0 then output any y s.t. v, € Bj; else output 0.

Figure 5: ANN search data structure with no direct comparisons.

vanilla LSH-based data structure of Figure 2. The client can
simply select any element from the first non-empty candidate
set. This data structure can be further adapted to suppress
database leakage, as we explain in the next section.

4.3 Database privacy and suppressing leakage

In this section we explain how the ideas of Section 4.2 apply
to suppress database leakage. Our approach is a combination
of three changes applied to QUERY in Figure 5. We recall that
a simple strawman protocol achieving client privacy can be
constructed by having the client privately retrieve colliding
buckets through PIR [39].

Step 1: Capping buckets. Because there is only one element
to retrieve in expectation from the data structure of Figure 5,
we can limit each hash bucket to only contain one vector. This
ensures the size of the candidate set never exceeds VN.

Step 2: Hiding the vectors. Because the client selects the first
non-zero ID from the candidate set using the data structure

described in Figure 5, it does not need access to the vectors.

As such, we can modify each hash table (BuiLD; Figure 5) to
only store the IDs of each vector. The client can still query the
hash tables using PIR but now only obtains a candidate set of
IDs (absent the vectors). If each vector in the database is d
dimensional, then this simple change reduces leakage from
O (VN -1ogN - d) bits to O(VN -logN +d) bits (each ID is
at least log N bits and O (d) bits are leaked implicitly by the
inference that the neighbor features are similar to the query).3

Step 3: Hiding the candidate set. Compared to the ideal
leakage of O (log N +d) bits, the leakage of O (VN -log N +d)
bits is far from optimal. We remove this extra leakage by
designing a special “oblivious masking” transformation which
hides all-but-one non-zero candidate ID from the client. From
the masked candidate set C, the client is only able to learn at

3A more precise leakage analysis is found in Section 7.

most one ID that collided with its query. This further reduces
leakage from O (VN -log N +d) bits down to O (log N +d) bits
(since only one ID is revealed), which matches the asymptotic
leakage of the ideal functionality. We provide details on the
oblivious masking transformation in Section 5.2, and a more
formal leakage analysis in Section 7.

With these three leakage-suppressing steps, our protocol
achieves close to optimal concrete database leakage per query.
Importantly, the leakage guarantees hold in the face of mali-
cious clients that may deviate from protocol in an attempt to
learn more than an honest client.

5 Protocol

We now describe the details of the high-level ideas covered
in Section 4. We first formalize the necessary building-blocks
in Section 5.1 and Section 5.2 (distributed point functions and
our oblivious masking technique) and then present the full
ANN search protocol in Section 5.3.

5.1 Building blocks

Existing tool: Distributed Point Functions. A point func-
tion P; is a function that evaluates to 1 on a single input {
in its domain and evaluates to O on all other inputs j #i. A
distributed point function (Definition 2) is a point function
that is encoded into a pair of keys which are used to obtain a
secret-shared evaluation of P; on a given input j.

Definition 2 (Distributed Point Function (DPF) [29, 30, 54]).
Fix any positive integer D. Let [ be any finite field (e.g.,
integers mod prime p), and let A be a security parameter. A
DPF consists of two (possibly randomized) algorithms:

» Gen(1Y,i € {l1,...,D}) — (ka, kp) takes as input an index
i and outputs two evaluation keys k4 and kg,

* Eval(k,j) — v; € F takes as input an evaluation key k and
index j € {1,...,D} and outputs a field element v ;.

These algorithms must satisfy correctness and privacy:

Correctness. A DPF is correct if for all pair of keys generated
according to Gen,

1, ifj=i
Pr| Eval(ka,j)+Eval(kp,j)= J l_ =1,
0, otherwise.

Privacy. A DPF is private if each individual evaluation key
output by Gen is pseudorandom (i.e., reveals nothing about i to
a computationally bounded adversary). Formally, this means
that there exists an efficient simulator Sim that can generate an
indistinguishable view for each generated DPF key, without
knowledge of the input i [29, 54].



Application: symmetric PIR. DPFs form the basis for effi-
cient two-server PIR with optimal communication. To see this,
consider an ordered list S of N elements replicated on two
servers. To retrieve the index i in S the client generates DPF
keys and sends a share to each server. The servers evaluate
the DPF on each index j = 1,..., N to obtain a secret-share of
the point function evaluated on input j. Each server then mul-
tiplies the resulting secret-share by the corresponding entry
in § at index j, and outputs the sum of all N component-wise
products. That is, each server computes:

N N

2 (50 Bvaltk, ) = S@)- 111+ ) (SG) - [01).

Jj= J#I

Because P;(j) =1 only when i = j, the resulting sum
(computed in the field F) is a secret-share of S(i). Summing the
shares received from each server, the client recovers the desired
entry in S. Observe that DPFs achieve symmetric PIR [53]
(analogous to oblivious transfer [96]), which guarantees that
the answer consists of at most one element in S.

Extension: PIR-by-keywords. The key size of modern two-
server DPF constructions is O (log D) bits [29, 30]. This allows
for PIR with O (log D +m) communication (where m is the size
of elements in ). More generally, DPFs enable keyword-based
PIR [39]. That is, for a key-value table consisting of N keys
drawn from the domain {1,..., D}, it is possible to use a DPF
in a two-server setting to privately retrieve a value stored under
key i € {1,...,D}, with only O(log D +m) communication
and O (N - m) work on each server [29, 45]. The latter follows
from the ability to “lazily evaluate” DPFs on only the N keys
present in the key-value table, rather than the full domain D.

5.2 New tool: oblivious masking

The core of our leakage suppression technique (described at
a high level in Section 4.3) hinges on the ability to reveal
only the first nonzero value in a secret-shared vector. Because
the vector is secret-shared (in some prime order field [F), this
transformation must only involve affine operations: addition
and scalar multiplication of shares [24, 103]. The idea is to
recursively compute a randomized sum, moving from left to
right. For a secret-shared input vector [v] € F,letz € {1,...,t}
be the index of the first nonzero element in v. The randomized
sums map each element v; to O for i < z and a uniformly
random element in F for i > z. Crucially, this process does
not affect the first non-zero element, v,. We will use this
property to mask all-but-one result from a sequence of PIR
query answers.

Claim 1. Let v € F? be any vector and let z € {1,...,1} be
the first non-zero element of v. Let [v] be an additive secret-
sharing of v. Algorithm 1 outputs a secret-shared vector [y]
such that y; = v; for i < z and a uniformly random element of
F fori > z.

Algorithm 1: ObliviousMasking
Input:

— Secret-shared vector [v] € F*.

— Randomness source rand.
Output:

— Secret-shared vector [y] € F.
Procedure:
1: forie{l,...,t}:

1.1: Sample r; & F according to rand.
1.2 Set [y;] « [vi]+ri- (zj.;g[v,-]).
2: Output [y] € F’.

Proof. The proof follows by examining the three possible
cases for each value in y as a function of v.

1. fori<z,v;=0,50y,=0+r; 3 {0=0€F,
2. fori=z,y, :vz+rZZ§;(')0:vZ eF,

3. fori > Y =Vvitr; 25;60+r,-vz +r; Z;_:lz+l
Case (1) ensures that all zeroes remain zeroes. Case (2) ensures
that the first non-zero element is mapped to itself. Case (3)
ensures that all subsequent elements are uniformly random
in F. To see why (3) holds, observe thatv, #0,s0r;-v_isa
uniformly random element of IF given r; is uniformly random.
It then follows that the sum is uniformly random in F. Finally,
correctness of the computation over secret-shares follows from
all operations performed above being linear (additions and
scalar multiplications) over the input secret-share of v [24]. =

VjEF.

5.3 Putting things together

The full protocol is presented in Protocol 1 and uses the
DPF and oblivious masking building-blocks described in
Section 5.1 and Section 5.2. We briefly describe each step of
the protocol.

Setup. The public parameters consist of the number of hash
tables (L) and a list of L randomly sampled hash functions,
in accordance with the data structure of Figure 5 and Propo-
sition 1. The servers construct L hash tables using the hash
functions from the public parameters. Only the IDs (i.e., in-
dices) of the input vectors are stored in the hash table; the
vectors are discarded (see Section 4.3).

Step 1. The client hashes its query vector ¢ using the LSH
functions in the public parameters. Each resulting hash is
used as the keyword in DPF.Gen to generate a DPF key (see
PIR-by-keywords extension described in Section 5.1). The
generated DPF keys are distributed by the client to each server.

Step 2. Each server uses the L DPF keys it receives from the
client to retrieve a secret-share of a bucket in each of the L
hash tables using PIR-by-keywords. The result is a list C of L



secret-shared buckets containing either a candidate ID (or zero
if the bucket was empty). Each server applies the oblivious
masking transformation (Algorithm 1) to C and obtains the
masked secret-shared list C as output. Each server sends its
share of C to the client in response.

Step 3. From the received secret-shares (C4,Cp), the client
recovers the list C (in cleartext) by computing C = C4 +Cp €
FL .4 The transformation applied by the servers in Step 2
ensures that the client learns at most one non-zero candidate
from the original C. Specifically, by Claim 1, only the first non-
zero value of C will be non-random in C. The first non-zero
value, if present, is output to the client.

Concrete efficiency. While Protocol 1 satisfies our asymptotic
efficiency requirements, it requires a few more optimizations
to achieve concrete efficiency. Specifically, we show how
to optimize query processing time on the server using hash
table multi-probing [82, 93] and a new probabilistic batch-
processing technique [13, 14, 66] for PIR. We present these
optimizations to the protocol in Section 6.

5.4 Asymptotic efficiency analysis

We analyze the communication and computation costs indi-
vidually (summarized in Table 1). To derive our asymptotic
guarantees, we follow the analysis of Andoni and Indyk [8] for
Euclidean distance (which has p < }2 see definition of p in
Proposition 1) and where we assume ¢ = 2 (see Definition 1).

Communication Server Work Client Work Rounds

VN N VN 1

Table 1: Asymptotic efficiency of Protocol 1; constant and log factors
suppressed for readability. We assume L ~ VN (see Section 2.1).

Communication. The protocol communication consists of
the L DPF keys, each of which retrieves one candidate from a
table. The DPF key size is O(logN) [29, 30]. Each masked
ID returned by the protocol is of size log N. Therefore, when
L ~ VN, the total communication is O (VN logN).

Computation. For each server, computing the answer to the
PIR query requires evaluating the DPF on O(N) hash keys
per hash table. Therefore, the total server work is naively
O(L-N). In Section 6.2, we show a new technique that we
use to amortize this processing cost to O(N) by retrieving
multiple candidates from each hash table simultaneously.
Oblivious masking, which is performed over the candidate
set, requires O (\/N ) additional work per server. For the client,
the computational cost is proportional to the query response
size, since it has to receive and recover the candidate set and
find the first non-zero element to return as the answer.

4Additive secret-share recovery follows from the correctness property of
DPFs; see Definition 2.

Protocol 1: Private Similarity Search

Public input: LSH family 7, number of hash tables L, and LSH
functions hy,...,hy sampled i.i.d. from H;.

Server input: database of vectors (vq,...,VN).

Client input: query vector q.

Setup (one-time server-side pre-processing)
ON EACH SERVER

1: forie{l,...,L}:
1.1: Construct hash table 7; by storing j in bucket with key
lj:=h;(vj) forall j € N.
1.2: Truncate each bucket in 7; have at most one value; dis-
carding values at random.

2: Agree on common randomness source rand.

Protocol
Step 1:
ON THE CLIENT

1: forie{l,...,L}:
1.1: I; < hi(q). // get hash key for table 7;.

1.2 (kX>,kg))<—Gen(li). // DPF keys for 7T; query.

2 k= KUy and kg = )k,
3: Send k 4 and kg to servers A and B, respectively.
Step 2:
ON EACH SERVER
1: Parse k = (k(D,.. . k(D).
2: forie{l,...,L}:
2.1: n; < number of bucket keys (/1,...,l,;) in hash table 7;.
220 [a;] & L, Tilly) -Eval(k W), 1j). // Keyword PIR.
3: C—(lat],....[aL)).
4: C « OBLIVIOUSMASKING(C, rand).

Step 3:
ON THE CLIENT

// set of DPF keys.

// Algorithm 1.

1: Receive C4 and Cp from servers A and B, respectively.
2: forie{l,...,L}:
2.1: j; « éA(i) +éB(i).

3: Output j; # 0 for smallest i, or 0 if all j; are zero.

// recover secret-shared ID.

6 Optimizations and extensions

We now turn our attention to making the protocol concretely
efficient. The primary bottleneck in Protocol 1 comes from
the processing time needed to retrieve L buckets using the
provided DPF keys. While this processing time does not
involve the client, it can lead to high latency in answering
queries, as each query requires O (N) server-side work per
hash table.

The seminal work of Ishai et al. [67] provides a way to amor-
tize the processing cost of performing multiple PIR queries



using batch codes. Batch-PIR [67] computes the answer to
¢ simultaneous PIR queries at an amortized processing cost.
While the idea of batching queries is appealing, it does not
directly apply to Protocol 1. The reason is that batch-PIR
only works when retrieving multiple elements from the same
table; not when querying different tables. To align with the
requirements of batch-PIR, we use a technique known as LSH
multi-probing [82, 93]. Multi-probing retrieves multiple keys
in each hash table and reduces the total number of hash tables
in the ANN data structure. Then, we can use batching tech-
niques to retrieve all multi-probes from each table efficiently.
However, we find that the traditional way of performing batch-
PIR through coding schemes results in too much overhead in
probabilistic settings. To remedy this, we develop a new tool
we call partial batch retrieval. We show that combining these
two techniques results in several orders of magnitude faster
processing time.

6.1 LSH multi-probing

The idea behind LSH multi-probing is the following: if the
bucket to which the query hashes to in a table is empty, then
it is likely that “adjacent” buckets in the table contain the
collision [82, 93]. To exploit this observation, each hash table is
probed on £ keys which “surround” the query. The surrounding
keys are computed by hashing a perturbed version of the query
vector, leading to a higher likelihood of finding a candidate,
if it exists. In turn, this reduces the number of hash tables
(L) required (the original motivation of multi-probing [82]).
The appealing property to our use case, however, is that multi-
probing allows us to apply batch-PIR techniques and heavily
amortize processing time when retrieving candidates. The
only change to Protocol 1 is that now the client retrieves up to £
candidates from each hash table, instead of just one candidate.
This reduces the number of hash tables (L) required by a
factor of £. Meanwhile, answering a batch of £ queries can be
amortized to approximately the cost of answering one query,
which we show next.

6.2 Partial batch retrieval

Batch codes [66] have the strict requirement that any com-
bination of ¢ elements should be retrievable with perfect
probability. With Partial Batch Retrieval (PBR) (inspired by
probabilistic batch codes [13, 14]), we relax this requirement:
we only care about retrieving some fraction of the ¢ elements,
with high probability.

The main idea. A simple PBR can be realized by dividing
the elements into m > ¢ partitions at random. If all £ elements
a client would like to retrieve fall into a unique partition, then
it suffices for the client to issue m PIR queries, with each
query retrieving an element from a partition. The total server
processing time to compute PIR answers remains the same.
To see this, observe that for a database of N elements, each
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Batch-PIR  Replication  partitions Fraction
scheme Factor Retrieved

Naive 1 1 1

SBC [66] 3¢ 3logt 1

PBC [14] 3 1.5¢ >1-2720

PBR 1 m M. (1-etim)

Table 2: Replication and partitioning costs of existing batching
schemes: Naive (perform ¢ PIR queries), Subcube batch codes
(SBC) [66], Probabilistic batch codes (PBC) [14]. Replication in-
creases server-side processing by the same factor but influences
communication by a sublinear factor. Communication increases
linearly with the number of partitions for all schemes.

partition contains N /m elements. The total work to answer m
PIR queries, each computed over a set of N/m elements, is
then amortized to O (N).

However, the success of this PBR scheme hinges on ele-
ments falling into unique partitions. How many elements can
we expect to retrieve in practice?

Abstractly, the fraction of retrievable elements can be mod-
eled by the classic “balls and bins” problem [85], where € balls
are tossed into m bins uniformly at random. If all ¢ balls fall
into unique bins, then the number of full bins is £. Fewer than
¢ full bins corresponds to a collision in a bin (i.e., partition)
and only one element in each partition can be retrieved. Let
X; be the indicator random variable where X; = 1 if a bin is
full. Then,

PrX;=1]=1- (1 —l)f >1—etim,
m

which implies that 2 - (1 —e~¢/™) of the ¢ elements are si-
multaneously “retrievable” from the m > ¢ partitions. In the
case that m = €, we can expect to retrieve approximately 63%
of the elements. With m > £, we can increase the probabil-
ity of retrieving all elements at the cost of also increasing
communication by a factor of 7.

Comparison to batch codes. It is natural to ask how PBRs
compare to batch codes. The main difference is with respect
to the guarantees provided by both tools. Batch codes (and
their probabilistic variants [13, 14]) aim to guarantee retrieval
of all ¢ elements. Doing so comes at an efficiency cost: batch
codes replicate data which increases both processing time and
bandwidth. With PBRs, we avoid the need for replicating data,
keeping the total processing cost fixed while only modestly
increasing bandwidth (see Table 2 and Figure 6 for a compari-
son to batch codes). However, this comes at a different cost:
PBRs only guarantee partial retrieval of the ¢ elements. We
find that for certain applications, such as Protocol 1, partial
retrieval in favor of decreased processing time is a desirable
trade-off, given the already probabilistic guarantees of LSH.

Application to Protocol 1. We apply the above PBR scheme
to retrieve a fraction of multi-probe hash keys from each hash
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Figure 6: Concrete overhead factor, in terms of communication and
processing time, for retrieving ¢ elements using our partial batch
retrieval (PBR; Section 6.2), subcube batch codes (SBCs [66]), and
probabilistic batch codes (PBCs [14]).

table in Protocol 1. Our main observation is that failing to
retrieve specific probes is not a total failure. It is equivalent
to not choosing that particular multi-probe, which could have
already happened due to the probabilistic nature of LSH.
Because each multi-probe hash key is uniformly distributed
from universal hashing (see Remark 1), each hash key is
equally likely to be selected, making it possible to directly
apply our PBR scheme. The use of a PBR makes Protocol 1
both concretely and asymptotically efficient. The number of
hash tables L decreases by a factor proportional to £,amortizing
the processing cost for both servers. Setting m = £ = L/a, for
some constant a, results in total amortized processing time
that is O(N) (as referenced in Section 5.4), which matches
the PIR processing lower bound [38].

7 Security and leakage analysis

In this section, we analyze the security of Protocol 1 with
respect to client privacy and server leakage. While client
privacy is conceptually simple and follows directly from the
privacy property of DPFs (Definition 2), the leakage analysis
of the database is more involved.

7.1 Client privacy

Claim 2 (Query Privacy). For all Probabilistic Polynomial
Time (PPT) adversaries .4 corrupting server o for o € {A,B},
Protocol 1 guarantees that A learns no information on the
client’s query, even when deviating from protocol. This holds
even when the query-batching optimization (Section 6) is
applied to Protocol 1.

Proof. The proof follows from a simulation-based indistin-
guishability argument. We say that the protocol is guery
private if there exists a PPT simulator Sim such that

Sim(DB) ~. view(DB, k,),

where view is the view of A from an execution of Protocol 1
with the client. Sim(DB) is trivially constructed by invoking
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the DPF simulator for each DPF key present in the vector
k. provided to A [32]. The client does not send any other
information to the servers apart from the DPF keys which
are used to query the hash tables. Therefore, query privacy
depends only on the privacy property of DPFs and follows
immediately.

With multi-probing and batching (optimizations described
in Section 6), the client retrieves £ keys from each table, where
the key space is partitioned into m uniformly random subsets
(see Section 6.2). This results in m DPF keys sent to each
server per hash table. Because the client sends a DPF key
for each partition (even if no bucket is retrieved from that
partition), no information is revealed to .A. Therefore, query
privacy follows by the same argument. See also Ishai et al.
[66]. [ ]

7.2 Database privacy and leakage

We now turn to formalizing the database leakage incurred when
answering a client query. We must be careful to define database
leakage in a meaningful way. As observed by Zuber and Sirdey
[119]: “[H]aving access to the result of the classification leads
to some (useful) leakage on the raw database.” As such, we
must start from a baseline leakage given that the client obtains
information as output: the ANN ID relative to the query q.
In our setting, the client learns strictly more than just the ID
of the ANN, which we must quantify as additional leakage.
We emphasize that this leakage is with respect to the server’s
database, not the client’s query.

Theorem 1 (Quantifying Ideal Leakage). Fix quantities Dmay,
Dnin, and A as defined in Section 3.1. The ideal leakage for
an instance of approximate nearest neighbor search as instan-
tiated in Functionality 1 is captured by O(d +1logN) bits of
information per query, where d is the intrinsic dimensionality
of the vector space and N is the number of vectors in the
database.

Proof. We start by considering the {.-norm and induced
distance metric A. The {,-norm is the absolute value of
the maximum coordinate: s ||x|| = maxy, |x;|. The induced
distance metric is A(x,y) = {w||x —y||. We first prove the
ideal leakage for the £.,-norm, as it is easier to intuit. We then
show how to extend the proof to any £,-norm induced metric,
which includes Euclidean distance. Other common distance
metrics, such as angular distance and hamming distance, can
be embedded into Euclidean space [36] [17].

Recall that for any query ¢ that will return an ID corre-
sponding to vector v, we have that A(v,q) < Rmax < Dmax-
The ideal functionality implicitly reveals that there exists a
point v such that A(v,q) < Rmax. In the £, metric, this implies
that v is within a cube of side length 2R« centered at g. The
output implicitly reveals that v is in this cube. Considering
each coordinate of v, the number of possible values each
coordinate can take diminishes from 2D t0 2Rmax. As a



result, the information revealed is 10g(Dmax/Rmax) bits. With
the £ metric, this argument can be repeated individually for
each coordinate, making the total leakage d10g(Dmax/Rmax)
bits.

For any ¢,,-norm, the above argument holds by considering
similar shapes and their relative volumes. In the Euclidean
metric A(v,q) < Dnax defines a ball of radius D max. The ideal
functionality reveals that v is in a ball of radius Rnax centered
at g. The ratio of the volumes of these balls is D¢, /R%,,,
making the leakage log(D¢,, /R%.,) = d102(D max/ Rmax) bits,
as in the £, metric. ]

Intuitively, this leakage corresponds to the fact that the
query vector serves as an approximation for the feature vector
of the nearest neighbor, by definition of the problem. The
precision of this approximation is limited to 10g(Dmax/Rmax)-

We now formalize the leakage per query in Protocol 1 and
show that it is no worse than O (d +1log N) bits, which matches
the leakage of the ideal functionality up to a constant factor.

Claim 3 (Asymptotic Leakage of Protocol 1). Let L be the
number of hash tables used to instantiate Protocol 1. Then,
the leakage of Protocol 1 is O(d +log N) bits, matching the
ideal functionality.

Proof. Consider the leakage of an infinite number of queries
answered through Protocol 1. Fix any v; € DB. The total
information revealed on v; is never more than the set §; =
{l1,...,I |l =h;(vj)}. That is, the set of all L LSH digests
of v;. The maximum information revealed is thus the set S;
for all N feature vectors v; € DB.

For an individual query, the oblivious masking transfor-
mation (Section 5.2) guarantees that at most one element
of S—a hash corresponding to a feature vector v € DB—is
leaked. Consider the worst-case (least-hiding) LSH function
possible. This is not even a locality-sensitive hash function
but instead simply the identity function h(x) = x. It follows
that the worst-case implicit query leakage is then O (d) bits,
because [; = v; foralli € {1,...,L}). This is in addition to the
explicit log N bits revealed by the vector ID. Therefore, the
total leakage is O(d +1log N), which matches the leakage of
the ideal functionality in Theorem 1. ]

Claim 4. A client deviating from Protocol 1 cannot learn
more information on DB than an honest client following
protocol.

Proof. Fix §; (the set of all hashes) as defined in the proof
of Claim 3. By the guarantees of the oblivious masking
transformation (Claim 1), even a malicious client can only
obtain one element of S; (for some j € {1,...,L}). All other
elements are uniformly random or zero. Even if the client does
not follow the protocol (such as sending random hashes that
don’t correspond to any one query), the leakage is capped at a
single element of §;. [
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In our asymptotic leakage analysis we assume a worst-case
scenario in terms of the data and the LSH instantiation. In
Appendix B, we analyze the concrete leakage on real data and
using a specific instantiation of LSH for Euclidean distance.

8 Empirical evaluation

We now turn to describing our implementation and empirical
evaluation of Protocol 1. The goal of this section is to answer
the following questions:

e What are the parameters needed to obtain high accuracy in
practice using the data structure of Figure 5?7

* What is the concrete performance of Protocol 1 when used
for ANN search on real data?

* How does Protocol 1 compare to the state-of-the-art ap-
proach for private similarity search?

8.1 Implementation and environment

We implement Protocol 1 in approximately 4,000 lines of code.
Our implementation is written in Go v1.16. with performance-
critical components written in C. The code is open source
and available online [2]. Our DPF implementation follows
Boyle et al. [30] and is partially based on open-source li-
braries [45, 48]. Our implementation uses AES as a pseudo-
random generator which exploits the AES-NI instruction for
hardware-accelerated operations. We use the GMP library [50]
for fast modular arithmetic.

8.1.1 Environment

We deploy our implementation on Amazon Elastic Cloud
Compute (EC2) for our experiments. We geographically locate
the servers on the east coast of the United States while the
client is located on the west coast. We measure average ping
time of 79 ms between the client and servers. Each server runs
on a ¢5.9xlarge Amazon Linux virtual machine. Each server
is equipped with Intel Xeon Platinum 8000 CPU (36 vCPUs)
and 72 GB of RAM. We use a small t2.micro (1 vCPU; 1 GB
of RAM) VM for the client (specifications comparable to a
low-end smartphone).

8.1.2 Implementation of the LSH

We use the Leech lattice LSH of Andoni and Indyk [8],
which we describe in Appendix A for completeness. We find
the closest Leech lattice point to a specified point (e.g., the
query) using the decoder described by Conway and Sloane
[40]. The coordinates of the lattice point are then mapped to
the DPF domain size (we set D = 2%; Definition 2) using a
universal hash. Since the Leech lattice is a 24-dimensional
object, the first step of Andoni and Indyk [8, Appendix B] is
dimensionality reduction [69]. We randomly project d/k of the
coordinates onto each lattice before concatenating the hashes
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Figure 7: Distances to the nearest neighbor over 10,000 training
points in each dataset. The orange curve plots the normal approxima-
tion that informs the choice of each R; for the radix bucketing (see
Section 4.2.2). The vertical dashed lines represent the choice of each
R;, for L = 10 hash tables.

(we use k =2; see Proposition 1). Many locality sensitive
hashing algorithms have efficient methods for multi-probing
[82]. For lattice based hashes, we choose the multi-probes from
the set of closest lattice points, as these correspond to unique
hash values. Indeed, the client can advantageously select
the closer lattice points when retrieving candidates through
PBR (Section 6.2), letting the retrieval failures correspond to
probes that are further away. This results in a small increase
in multi-probe accuracy.

8.2 Datasets and Parameters

We evaluate our implementation on four real-world datasets
obtained from the ANN benchmarks repository [1, 17]. See
Table 3 for summary of dataset characteristics.

Dataset Metric N d
DEEP1B Angular 9,990,000 96
MNIST Euclidean 60,000 784
GIST Euclidean 1,000,000 960
SIFT Euclidean 1,000,000 128

Table 3: Summary of dataset characteristics used in our evaluation.

DEEP1B (Deep billion-scale indexing) [20] contains one bil-
lion image embeddings (feature vectors) resulting from the
last fully-connected layer of the pretrained GoogLeNet [107]
model. We use the smaller version of DEEPIB containing
10M embeddings. Of these, 9,990,000 are used for training
(i.e., building the data structure) and 10,000 are used as test
queries [17].

MNIST (Modified National Institute of Standards and Technol-
ogy dataset) [76] contains feature vector representations of
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Figure 8: Recall (fraction of approximate nearest neighbors found)
for different numbers of table multi-probes using the data structure of
Figure 5 and ¢ = 2. Average of 10 trial runs for different numbers of
probes. Probes = 1 corresponds to no multi-probing (only retrieving
the hash of the query from the table; Section 6.1). 95% confidence
interval is of size 0.017 and invisible in the plot.

handwritten digits. MNIST is widely used to benchmark ANN
search algorithms [9, 11, 17, 22]. Each feature vector is a 784
dimensional representation of a 28 X 28 black and white image
of a handwritten digit between zero and nine. MNIST contains
60,000 training feature vectors and 10,000 test queries.

SIFT and GIST [80, 92] are both datasets of image descriptors.
Both datasets contains 1,000,000 training feature vectors
and 10,000 test queries. In SIFT, each feature vector is 128-
dimensional image embedding. In GIST, each feature vector is
a 960-dimensional embedding. Both datasets are widely used
in ANN algorithm benchmarks [11, 17, 108].

8.2.1 Determining LSH radii

We discuss how to determine the radii to use when instantiating
the data structure of Figure 5. We sample 10,000 points from
each training set, and find the nearest neighbor among the
other training set points. The results are shown in Figure 7.
We use a normal distribution computed over the resulting
distances as an approximation (orange line in Figure 7), and
choose the R; along the quantiles of the normal distribution.
Figure 7 is shown for L = 10. This ensures that the number
of expected candidates colliding at each R; is approximately
the same (in Figure 7, the area between the dashed lines is
the same). Our intuition is that equal areas means that each
table will have % of the collisions, balancing the load and
maximizing efficiency. Each vertical dotted line in Figure 7
corresponds to the R; for an LSH family for the ith hash table,
where R| > Dmin and Rjp = Rmax.



8.3 Performance Evaluation

In this section we report our accuracy and runtime performance.
We compare our results to the state-of-the-art approach for
privacy-preserving ANN search.

8.3.1 Protocol accuracy and latency

Accuracy. We report the accuracy of Protocol 1 when eval-
uated on real-world datasets in Figure 8. The datasets we
choose form a standard for benchmarking ANN search [17].
We use k =2 for the amplification factor (see Proposition 1).
Accuracy is defined in terms of recall: what fraction of ap-
proximate nearest neighbors found are at most c-times the
distance to the true nearest neighbor [6, 55, 63]. Matching
the theory, increasing the number of tables or multi-probes
increases the accuracy. For all datasets we can achieve high
accuracy (> 95%) without needing more than 10 tables and
50 multi-probes per table.

Parallelism. The server overhead of answering queries (which
involves a linear scan over all hash table keys; see Section 5.4)
is easily parallelizable across cores or even across different
machines composing each logical server. In our runtime exper-
iments (Figure 9), we provide results for both single core and
parallelized executions (where each hash table is processed
on a separate core). In our experiments, we observe a linear
speedup in the degree of parallelism.

Performance. We measure and report the server-side pro-
cessing time, communication overhead, and total end-to-end
latency to answer each ANN query on a dataset, as measured
on the client. The server processing time, per hash table,
ranges from 108 ms on the MNIST dataset (60,000 items) to
approximately 14 s on the DEEP1B dataset (10,000,000 items).
The processing time is dominated by the DPF. The other steps,
including OBLIVIOUSMASKING, take less than 2 ms. The client
processing overhead across all datasets was minimal: never
exceeding 10 us. We report the end-to-end latency (as mea-
sured on the client machine) for each dataset in Figure 9. We
note that the latency includes both the processing time of each
server and the network delay between the client (located in the
us-west-2 region) and the servers (located in the us-east-2
region).

Communication. We provide the total communication re-
quired per query in Table 4. The communication overhead
is determined by three factors: (1) the size of the DPF keys,
(2) the number of hash tables L, and (3) the number of multi-
probes performed per table (recall Section 6.2). The size of
each DPF key is fixed, given that each key encodes a point
function in the range [0,2%4] of table bucket hashes (see Sec-
tion 5.1). As such, only the number of tables L and the number
of probes influence the total communication in practice. We
report the communication overhead for one table as a function
of the number of multi-probes in Table 4.

14

DEEP1B dataset MNIST dataset

w m

8 Probes --- Parallelized E Probes === Parallelized

g 8007 . — 1cpU Sl 1 — 1CPU

9 pZ 9 —%— 5 -

wn w

2 600 b [ X

g g4

g 400 § |

© &,

+ 200 =

f= f=

2 Q2 :

O 0-ly==x y - = - O 0—— . T T -
1510 20 30 40 50 1510 20 30 40 50

Number of hash tables Number of hash tables

— GIST dataset — SIFT dataset

3 = 3 100 =

2 801 Probes ---- Parallelized c Probes --- Parallelized

S —— 1 — 1CPU S —— 1 — 1CPU

0] o 759

60 o

> >

2 40 2 507

o} [}

® ©

=20 < 251

[=4 f=4

g 2

oo - —— O 0¥ - - - -
1510 20 30 40 50 1510 20 30 40 50

Number of hash tables Number of hash tables
Figure 9: Query latency (including server processing time and
network delay) as a function of the number of tables and number of
multi-probes performed per table. Probes do not increase computation
time but do increase communication resulting in increased latency
(see our PBR scheme; Section 6.2). Server parallelization factor is
set to equal the number of hash tables. 95% confidence interval is
approximately 500 ms and invisible in the plot.

10
26 kB

50
123 kB

100
245 kB

Multi-probes: 1 5
Communication: 4kB 13kB

Table 4: Communication between the client and both servers per
hash table in terms of the number of multi-probes performed.

8.3.2 Comparison to SANNS

We compare our approach to SANNS [36]. We note that Chen
et al. [36] only evaluate their approach on the DEEP1B and
SIFT datasets, and also use the smaller 10M feature vector
version of DEEPIB in their evaluation. We use these datasets
for a direct comparison in Section 8.3.2. To the best of our
knowledge, SANNS is the most efficient privacy-preserving
protocol for ANN search, achieving performance on the order
of several seconds when evaluated on both DEEP1B and SIFT
(over high-bandwidth network connections). To match the
evaluation of SANNS, we compare with two network settings.
We note that the network configuration used by SANNS has
throughput that is faster than what we were able to mea-
sure on localhost using iperf3 [60], which capped at 3.6
GB/s. The first setting has network throughput between 40
MB/s to 2.2 GB/s, which we call the “fast” network. The
second setting has network throughput between 500 MB/s to 7
GB/s, which we call the “localhost” network.> Given these
network configurations, SANNS is by no means deployable
over realistic network connections [106], which are over 30x
slower. Because SANNS does not provide an open-source
implementation, we use the query times reported in their eval-
uation and note that our deployment environment resembles

5Chen et al. [36] refer to this as the “fast” network in their evaluation.



Protocol 1 SANNS SANNS

(localhost) (Fast Network)
SIFT dataset
Latency (1 CPU): 70.14 s 8.06s(8.6x|) 59.7s(1.2x |)
Latency (32 CPUs): 2.3s 1.55s(1.5x]) 14.2s(6.17x 1)
Communication: 3.66 MB 1.77 GB (484x 1)
DEEPIB dataset
Latency (1 CPU): 624.3 s 30.1s21x |) 181s(3.5x )
Latency (32 CPUs): 21.33 s 458 s 4.6x]) 37.2s(1.75x 1)
Communication: 3.66 MB 5.53 GB (1511x 1)

Table 5: End-to-end comparison between Protocol 1 and SANNS
over a 500 MB/s to 7 GB/s network (localhost) and a fast network (40
MB/s to 2.2 GB/s). We fix L = 30 hash tables and 50 multi-probes
per table. SANNS is network-dominated and hence parallelizes less
favorably compared to Protocol 1 (see [36, Table 2]).

theirs (comparable CPUs, network, and degree of parallelism
applied). We report the results of our comparison in Table 5.
Our improvements over SANNS are primarily in terms of
communication costs. However, we incur a modest latency
overhead on high bandwidth networks, a setting that is highly
favorable to SANNS. Our latency is between 21X slower to
6x faster in comparison to SANNS. On the other hand, our
communication cost is 484—1511x less in comparison. As a
result, over slower networks, e.g., average mobile network sup-
porting 12 Mbps [106], SANNS would incur latency ranging
between 19 minutes (for SIFT) to an hour (for DEEP1B), just
from the network delay. Over such networks, the latency of
Protocol 1 is expected to be 160-500x faster in comparison.

Additionally, because bandwidth costs can be upwards of
$0.02 per GB [19], while CPU cost is around $0.2 per hour,
our protocol is monetarily cheaper (per query). SANNS costs
$0.04-$0.11 per query just for bandwidth alone. In contrast,
our protocol costs up to $0.0002 per query (a 200-550x
reduction in total cost).

9 Related work

Existing works on privacy-preserving similarity search either
use heavy cryptographic tools (e.g., general secure function
evaluation instantiated using two-party computation and fully-
homomorphic encryption) or provide poor privacy guarantees
for either the client or the database.

To the best of our knowledge, all existing works on privacy-
preserving similarity search (with the exception of [104, 119]
which use fully-homomorphic encryption) only consider
honest-but-curious clients and servers and require many rounds
of communication. While generic techniques for upgrading to
active security in two-party computation exist [79], they are
computationally expensive and often considered impractical.
Our protocol is the first to assume fully malicious clients,
which solves the challenge left open by prior approaches [36].
A comparison of related work is provided in Table 6.
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Comm. Comp. Rounds Tools Efficiency
SFR20[104] logN N 1 FHE eocool
SANNS[36] N/k N N 2PC 0000
wo6[65] VN N N 2PC N/A2
QA08[95] N N N 2PC ee0O
zs21[119] logN N2 1 FHE 0003
Protocol | VN N 1 DPF eeee

Table 6: Comparison to related-work providing strong privacy guar-
antees. N is the database size. Ignores constant and log N factors.
We assume dimension d € polylog(N) [55].

1Uses fully-homomorphic encryption to evaluate the entire computation;
takes several hours of computation to evaluate on very small datasets.

2Theoretical work; no implementation or concrete runtime estimates provided.

3Uses fully-homomorphic encryption to evaluate the entire computation;
takes over 20 minutes to evaluate on very small datasets (N = 1000).

Two-party computation based approaches. Indyk and
Woodruff [65] investigate nearest neighbor search between
two parties under the Euclidean distance metric. They show a
O(VN) communication protocol for finding an approximate
near (as opposed to nearest) neighbor to a query. Their tech-
niques rely on black-box two-party computation. This makes
them only asymptotically efficient (they do not provide an
implementation or any concrete efficiency estimate). However,
their protocol shares some similarity to ours. Specifically, they
tolerate some precisely quantified leakage, which they argue
can be a suitable compromise in favor of efficiency gains.

More recently, Chen et al. [36] design and evaluate SANNS,
a system for approximate nearest neighbor search that uses
oblivious RAM, garbled circuits, and homomorphic encryp-
tion. Their solution combines heuristic k-means clustering
techniques to reduce overhead of two-party computation of
computing oblivious comparisons by a constant factor (i.e., %).
However, they still require asymptotically linear communica-
tion, since k is typically small. They leave open the possibility
of using locality-sensitive hashing to provide provable guar-
antees, as we do.

By assuming data-dependent clusters, SANNS is able to
forgo a linear scan over the database when evaluating oblivious
distance comparisons. While their implementation is efficient
over high-bandwidth connections (40MB/s to 7GB/s band-
width), such throughput is often too high to be practical on
real-world connections (especially on mobile networks, which
can be over 30x slower [106]). Moreover, SANNS requires the
data to be clusterable to reduce communication. Our protocol,
in contrast, does not make any assumptions on the input data to
achieve sublinear communication. We show in our evaluation
(Section 8) that our protocol requires between 484—1511x
less communication compared to SANNS, and microseconds
of processing on the client.

Qi and Atallah [95] present a protocol for privacy-preserving



nearest neighbor search in the honest-but-curious setting with
two parties. In contrast to us, they assume each party (i.e.,
server) has a database that is private from the other party.
Queries are computed over the union of both databases. Their
protocol uses secure two-party computation to compute obliv-
ious comparisons and requires linear communication in the
database size. Qi and Atallah [95] do not provide an im-
plementation or any concrete efficiency estimates for their
protocol.

Fully-homomorphic encryption based approaches. Shaul
et al. [104] present a protocol based on fully-homomorphic
encryption, requiring several hours of computation time to
answer queries over small (1000 item) databases. While this
results in both a single-round protocol and tolerates malicious
clients, it is not practical for large databases. Their implemen-
tation requires between three and eight hours (parallelized
across 16 cores) to compute the nearest neighbors on small
datasets ranging between 1,000 and 4,000 feature vectors.

Zuber and Sirdey [119] implement a secure nearest neigh-
bor classifier using (threshold) fully-homomorphic encryption
with applications to collaborative learning and nearest neigh-
bor search. Their approach requires over one hour of server
processing time to compute a query answer over a small
database of approximately 500 feature vectors. As such, their
protocol is not scalable beyond databases containing a few
thousand feature vectors.

Partially-private approaches. Not directly related to privacy,
Aumiiller et al. [18] introduce distance-sensitive hashing
which they show can be beneficial to reducing information
leakage between hashes. However, their security guarantees
are not formally defined and their approach provides a trade-off
between privacy and accuracy, leaking information about the
client’s query and the database simultaneously.

Riazietal. [101] likewise explore LSH as a means of trading-
off privacy with accuracy, with more accurate results revealing
more information on both the query and the database. They
make use of two-party computation to instantiate a garbled
circuit for the purpose of securely evaluating locality-sensitive
hashes without revealing the description of the hash function.
While this reduces some leakage, their approach still reveals
information on the query and the database.

In a similar vein, Boufounos and Rane [28] develop a binary
embedding (locality-sensitive hash) that preserves privacy
when finding similar feature vectors in a remote database. Their
technique is less general compared to [18, 101]. Boufounos
and Rane [28] do not provide a formal security analysis of
their nearest neighbor search protocol based on their secure
embedding. Analyzing their protocol, we found that (1) some
partial information on the query is inadvertently leaked to the
server, and (2) the client learns the distances from its query to
all near-neighbors, resulting in significant database leakage.
No implementation or any concrete runtime estimates were
provided for their protocol.
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Client-outsourced data. Other systems for privacy-
preserving nearest neighbor search (e.g., [15, 47, 62,75, 114])
focus on a setting where a client outsources the data to a
remote database in a way that it can later privately query for
nearest neighbors. As such, they do not consider malicious
clients nor are they interested in preserving the privacy of
item attributes in the database. We consider this setting as
orthogonal.

10 Discussion

Using two servers to instantiate lightweight privacy-preserving
systems has proven fruitful for a wide range of applica-
tions [5, 27, 37, 42, 43, 45, 46, 48, 73, 88], including systems
deployed in industry [45, 59]. In this paper, we presented the
first lightweight privacy-preserving system for approximate
nearest neighbor search using the two-server model. The re-
sulting protocol is highly efficient, with only one round and
a few megabytes of communication between the client and
servers. Moreover, we do not require servers to communi-
cate when answering queries. This is in contrast to many
previous uses of the two-server model, which typically also
require communication between servers when processing re-
quests. Our evaluation (Section 8) provides evidence for the
real-world practicality of our approach, since it is deployable
on high-latency, low-bandwidth networks with lightweight
clients (e.g., low-end smartphones). We survey some potential
applications of our protocol.

Use case 1: Private (approximate) DNA matching. DNA
sequencing has gained significant popularity in the last decade,
leading to swaths of genome data with a wide array of appli-
cations (see Naveed et al. [87] for a survey of applications).
Such data, while highly valuable, is also highly personal and
can uniquely identify individuals [68, 87]. One application
of DNA sequence matching, highlighted by Naveed et al.
[87, Section 7.1] is personalized healthcare. For example,
a patient may be interested in finding whether or not they
are prone to a certain disease. Patients submit their genome
sequence (query) to an organization (e.g., a pharmaceutical
company) mapping sequences to various disease markers
(IDs). When queried, the organization finds common disease
markers associated with the supplied genome sequence. In
this application, both the patient and the organization require
privacy. The patient would like to keep their genome sequence
private while the organization requires privacy for their poten-
tially proprietary sequences associated with various disease
markers [26, 51, 110]. The pattern matching can be viewed
as a nearest neighbor problem. Indeed, Buhler [31] shows
how to apply locality-sensitive hashing to approximate DNA
sequence matching. As such, our protocol may be suitable
to this application, enabling privacy-preserving services for
personalized medicine.

Use case 2: Private targeted advertising. Online targeted



advertising has been widely criticized for the rampant privacy
violations it incurs [58, 90, 105]. Companies have been found
to use protected demographics like gender, race, or religion to
target advertisements in a discriminatory manner [7, 33, 64,
113]. Indeed, recent regulations, introduced in Europe and
California, forbid the collection and use of user data for the
purpose of advertising without explicit consent [3, 4]. Several
privacy-preserving systems for targeted advertising have been
proposed to address these issues [21, 61, 70,94, 102, 109, 112].
The core component of these systems is a privacy-preserving
targeting mechanism which matches users with relevant ads.
This targeting process can be based on LSH [102, 112]. For
example, in AdVeil [102], single-server PIR is used to query
a targeting data structure. While user privacy is maintained,
AdVeil does not take database privacy into consideration
(which may contain proprietary targeting data). Similarly,
with FLoC [112], LSH is used to group users into “cohorts”
for which relevant ads are served. The smaller the cohort, the
less privacy users can expect from the system, resulting in
an undesirable privacy-accuracy trade-off in the ad targeting
mechanism. Both these systems could potentially be extended
with our approach to similarity search for the purpose of
introducing better database and user privacy.

Use case 3: Private medical diagnoses. Zuber and Sirdey
[119] highlight a use case involving classifying images for
medical diagnoses. They show how their nearest neighbor
classifier can be used to (privately) classify tumors as either
malignant or benign using the Breast Cancer Wisconsin di-
agnostic dataset [16]. Zuber and Sirdey [119] perform this
classification using fully-homomorphic encryption, (see Sec-
tion 9). Our protocol could be applied to this setting, with very
minimal overhead. For example, the Breast Cancer dataset
contains 569 feature vectors. We can assign the ID of each
feature vector to be either 1 or 2, for malignant or benign.
Finding the nearest neighbor in this dataset can be performed
using Protocol 1 in under 10 ms of end-to-end latency. Even
on much larger datasets (e.g., MNIST with 60,000 feature
vectors) latency is under 900ms per query, as was shown in
Section 8.

11 Conclusion

We presented a new protocol for privacy-preserving similarity
search based on locality-sensitive hashing. Our protocol is
lightweight, incurring almost no processing overhead on the
client while remaining concretely efficient for the database
servers. We showed that clients can obtain answers to queries
within a few seconds of latency, even on slow networks and
large databases. Compared to the state-of-the-art in privacy-
preserving approximate neighbor search, which requires many
rounds and gigabytes of communication, our protocol requires
only one round and less than four megabytes of communication.
We achieve these gains by tolerating some extra database leak-
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age to the client (while maintaining complete client privacy).
However, we carefully analyze and bound the database leakage,
which we show is asymptotically optimal (matching the ideal
functionality) but concretely reveals a bit more information on
the database. We show that this leakage is bounded, even in
the face of malicious clients deviating from protocol. Finally,
we surveyed several applications of our protocol, which range
from privacy-preserving personalized medicine to targeted
advertising.
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A Efficient LSH for Euclidean distance

In this section we describe how to instantiate Proposition 1
efficiently for Euclidean distance ANN search. We first note
that Proposition 1 is an upper bound and assumes worst-
case data (all points are between R and cR from the query).
In practice, there are LSH functions that can achieve very
small p, without needing a large k. We take another look at
Proposition 1. For a large enough k > d, the region of space
defined by the set {x | h(x) = h(y)} for a fixed y becomes
bounded. Specifically, there exists a bounding distance b such
that
Prh(x) = h(y) Allx =yl > b] < 6.

For a false-positive rate of ¢, it suffices to scale the space
so that the bounding distance b is equal to cR. This scaling
decreases p; as explained in the proof of Proposition 1. For
better efficiency, we observe that it is possible to use LSH
functions that inherently have bounded regions, such as the
Leech lattice based LSH of Andoni and Indyk [8]. By using
structure rather than randomness they can achieve a larger p;
for the same p, as one might expect from k ~ d. We briefly
describe a lattice-based LSH family for Euclidean distance
next.
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Lattice-based LSH. A simple lattice-based locality sensitive
hash family for Euclidean distance is as follows. Choose an
infinite set of points in R?, and let the hash of x be the closest
point of this set. For example, if we consider the set of points
with integer coordinates, we can efficiently find the hash by
rounding the coordinates of x. Lattice based hashes allow us
to bound the error distance on p;; with the integer points, it
is clear that b < Vd. Furthermore, we can reduce b to b’ by

returning L if the distance ||x — A(x)|| is not less than b’/2.

However, the set of integer points is not optimal in that the
error increases greatly for the higher dimensional data we
wish to use it on. For an efficient implementation, we use the
Leech lattice (as in [8, Appendix B]), which has b < V2 for
d =24. See Conway et al. [41] or Conway and Sloane [40] for
more information on the lattice structure.

B Bounding concrete leakage

From the proof of Claim 3, we see that the asymptotic leakage
consists of at most one LSH digest, even when the client is
acting maliciously (Claim 4). In the worst case, this digest
corresponds to a full feature vector, leading to the asymptotic
bound. However, concretely, we would like to analyze how

much worse Protocol 1 is in comparison to Functionality 1.

We answer this in Claim 5. We show that Protocol 1, when
instantiated for Euclidean distance using the Leech lattice LSH
(Appendix A), leaks a more precise approximation compared
to Functionality 1. Intuitively, this extra leakage comes from
the client learning which radix bucket the nearest neighbor
to the query is located in. To analyze the concrete leakage,
we must first establish some technical groundwork pertaining
to the Leech-lattice LSH we use for Euclidean (and Angular)
distance. We do so in Lemma 1, where we will show that a
Leech-lattice LSH digest is inherently less precise than the
corresponding ideal ball in Euclidean space. Specifically, we
show that the ideal ball of radius R has a smaller volume
compared to the region of space represented by an LSH digest.

Lemma 1. The (1,2,0.0097459,0.0000156)-sensitive Leech
lattice LSH [8] has volume at least 0‘%, where Vg is the
volume of the 24-dimensional unit ball.

Proof. Our proof relies on the following fact about the Leech
lattice.

Fact 1: The Leech lattice is a 24 dimensional object
with a sphere packing density of ’f—; [41], where the
density is defined as the fraction of space covered
by (tangent) balls centered at the lattice points.

By Fact 1, we have that the ratio of the volume of the unit
ball to that of the lattice cell is given by the density. A small
calculation shows that the lattice cell then has volume 1. We
ask what is the minimum radius for a 24-dimensional ball
such that the ball has volume 1. We find that the answer is

24 12'
dﬁ ~ 1.29.
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The inverse of this quantity is 0.77, which proves the lemma ©.
The values of p; =0.0097459 and p, = 0.0000156 for ¢ =2
are from [8, Table 1]. [ |

Remark 2. In Lemma 1 we describe the
(1,2,0.0097459,0.0000156)-sensitive Leech lattice LSH for
Euclidean space as described by Andoni and Indyk [8]. We
note that this LSH can be used for any R and c¢R (while also
preserving the same p; and p»), by simply scaling the input
vectors accordingly. See Andoni and Indyk [8] for a more
detailed explanation.

Using Lemma 1, we can bound the concrete leakage of
Protocol 1 when instantiated with the Leech-lattice LSH. This
allows us to empirically bound the concrete leakage for the
datasets we use in our evaluation (Section 8). We compute a
precise leakage bound in Claim 5.

Claim 5 (Concrete Leakage of Protocol 1). Fix Rmin and Riax
as defined in both Figure 5 and Functionality 1, where D, <
Rmin £ Rimax < Dmax. Protocol 1, when instantiated with the
Leech-lattice based LSH of Andoni and Indyk [8] leaks at
most a multiplicative factor of 0.77 - I;’“f‘x more information
compared to Functionality 1. ™

Proof. We recall the argument in the proof of Claim 3. Fix
any v; € DB and S; as in the proof of Claim 3. We show that
S is an upper bound on what can be revealed on v; through
Protocol 1. We now examine how much faster this set can
be leaked with queries issued to Protocol 1 and contrast it to
Functionality 1.

Define an ideal oracle O(DB, R;, -), which given a query ¢,
outputs the ID of any vector in DB within distance R; of ¢, if
such a vector exists. Observe that Functionality 1 is modeled
by O(DB, Rmax,*)-

Suppose that the client obtains a query answer and learns
[; € S;. Note that this leakage is less than (or equal to) that
of learning /| € §;. That is, the hash of the same vector but
on the smallest radius. It is easy to see that /; is at least as
precise (contains as much information) as /; € S, > 1, due
to the increasing radii of the radix buckets, as explained in
Section 4.2.1.

Next, by Lemma 1, we have that the information revealed
by /1 = hi(q) is less than or equal to the information revealed
by O(DB, Ry, q). Indeed, as was shown in Lemma 1, [; is
0.77 less precise compared to O(DB, R;,q), for any i.

Therefore, we have that the ratio in precision between /| and
O(DB, Rmax, *), that is, the ratio between the precision of the
smallest radix bucket and the ideal functionality, is bounded
by 0.77 times the ratio of precision between the ideal oracles

SFor the (1.2,1.8,0.00515,0.0000771)-sensitive LSH [8], this factor is

% ~ (.93, as ¢ = 1.5 is a tighter approximation.



O(DB, Rmin,-) and O(DB, Rmax, -), respectively. Because the
latter ratio is simply ﬁ:‘;‘:, we get that Protocol 1 leaks at most
a multiplicative factor of 0.77 - I;Lnj: more compared to the
ideal leakage of Functionality 1, derived in Theorem 1. m

We empirically compare the concrete leakage of Protocol 1
to the ideal leakage in Appendix B.1 on real world data. We
do so by finding values for Ryn and Rmax as a function of L

(see Section 8.2.1 for how this is done) and applying Claim 5.

Corollary 1. The leakage of k queries to Protocol 1 is bounded
by a multiplicative factor of 0.77 - ';rmn?n more than the leakage
of k queries to Functionality 1.

Proof. We only need to consider the relative leakage between
k successive queries to O(DB, Ryin,-) and O(DB, Ryax, ),
resulting in at most a factor of k more leakage. Another
attack one might consider is to learn more information across
multiple queries. While the information given by k hashes for
the same vector is more specific (e.g., the set of points that have
both hashes is smaller), the same effect occurs with queries to
the ideal oracle. If two queries spaced by some offset return
the same nearest neighbor, then that neighbor must be in the
intersection of the regions of radius Rnyax centered at each
query. The leakage factor captures the extra precision in our
case. It also might be the case that the malicious client is able to
pick queries by exploiting hashes that return zeroes. However,
this is bounded by obtaining a new element of S; (the set of
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all LSH digests for a vector vj; see proof of Claim 3) each
time, which is captured in our concrete leakage bound. m

B.1 Empirical leakage calculation

We chart the leakage factor in Table 7 for the real world datasets
described in Table 3. For each dataset, different radii are
required in order to separate near and nearest neighbors using
the radix approach of Section 4.2. It is this extra precision that
is captured in the leakage factor. We note that this leakage is a
worst-case bound on the actual concrete leakage. Specifically,
this leakage assumes that all points collide at the smallest
radius Rmin, When in practice the points will collide across
buckets defined by radii between Rpin and Rmax-

Dataset L=10 L=30 L=50
DEEP1B 1.97x 2.79x 3.29x
MNIST 2.16X 3.23x 3.92x
GIST 3.25% 6.86% 11.32x
SIFT 3.52x 8.24x 15.7x

Table 7: Relative leakage 0.77 - I;{"*‘X versus ideal following Claim 3,
evaluated on four real datasets. Lrggkage increases roughly propor-
tional with the number of tables (L) given that each additional table
introduces more precision in the resulting answer (assuming addi-
tional tables are used to increase accuracy). See Section 8.2.1 for
more details. The 0.77 factor comes from the imprecision of the

LSH computed in Lemma 1.
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