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Abstract. Integers can be decomposed in multiple ways. The choice of a recoding technique is generally
dictated by performance considerations. The usual metric for optimizing the decomposition is the
Hamming weight. In this work, we consider a different metric and propose new modified forms (i.e.,
integer representations using signed digits) that satisfy minimality requirements under the new metric.
Specifically, we introduce what we call balanced non-adjacent forms and prove that they feature a
minimal Euclidean weight. We also present efficient algorithms to produce these new minimal forms.
We analyze their asymptotic and exact distributions. We extend the definition to modular integers
and show similar optimality results. The balanced non-adjacent forms find natural applications in fully
homomorphic encryption as they optimally reduce the noise variance in LWE-type ciphertexts.
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1 Introduction

Let B be an integer ≥ 2. Every positive integer k < Bn can be expressed uniquely as k =
∑n−1

i=0 ki B
i with

0 ≤ ki < B. Integer B is referred to as the radix and integers ki are called the digits. If the digit set is
extended to {−(B − 1), . . . , B − 1}, integer k can also be written under the form

k =
∑
i≥0

k′i B
i with −(B − 1) ≤ k′i ≤ B − 1 .

The corresponding representation (. . . , k′2, k
′
1, k

′
0)B is called a modified radix-B form for k. Modified radix-B

forms are not unique. For example, (2, 2)4 and (1,−2, 2)4 are two modified radix-4 forms for 10.

Signed-digit representations. Minimal representations using signed digits find applications in the theory of
arithmetic codes [39] and in fast arithmetic techniques [22]. In these applications, the minimality requirement
relates to the Hamming weight of the representation (i.e., the number of nonzero digits). For radix 2,
Reitwiesner [34] proved that the so-called non-adjacent form (NAF) is optimal in the sense that it has minimal
Hamming weight among the modified radix-2 forms. The general case was later addressed by Clark and
Liang [10]. They present a minimal representation for any signed-radix B. In that case, Arno and Wheeler [2]
precisely estimated that the average proportion of nonzero digits is equal to (B − 1)/(B + 1).

The main application of non-adjacent forms in cryptography resides in fast exponentiation [16]; in
particular, in settings wherein the computation of an inverse is inexpensive like in elliptic curve groups [29].
Non-adjacent forms were further adapted to certain classes of elliptic curves by decomposing integers as power
sums of the Frobenius endomorphism [21,25,36]. Another extension of the basic NAF representation is to
consider a succession of w digits, at most one of them being nonzero [36,38,31]. Yet another extension of the
basic NAF is to rely on certain digit sets of the form {0, 1, x} with representations featuring the non-adjacency
property [30]. Binary representations with respect to more general digit sets of the form {0, 1, x, y, . . . , z} are
investigated in [18]. Alternative minimal modified radix-B forms for fast exponentiation, but enabling to scan
the exponent digits from the left to the right, are presented in [19,20,32].
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Fully homomorphic encryption and noise propagation. A salient feature of known constructions for fully
homomorphic encryption [35,14] is the presence of noise in the ciphertexts for security reasons. We refer the
reader to [17] for an excellent survey on homomorphic encryption.

Here is a simple illustration. Multiplying a noisy ciphertext by a scalar may result in a ciphertext whose
noise error exceeds tolerated bounds. A standard trick to control the noise growth is to decompose the scalar
with respect to a (small) radix [4,3]. This technique has been applied in a number of fully homomorphic
encryption schemes—at the heart of the encryption process or as an auxiliary tool for accompanying gadgets
or procedures; see e.g. [6,27,4,15,1,13,7,9].

Let Enc denote a homomorphic encryption scheme. Imagine we need to evaluate c← k · Enc(x) for some
scalar k and ciphertext Enc(x). Instead of directly computing c← k · Enc(x), letting k =

∑n
i=0 k

′
i B

i for a
given radix B, we can alternatively obtain c as

c←
n∑

i=0

k′i Enc(B
i x)

from the precomputed ciphertexts Enc(Bi x), for 0 ≤ i ≤ n.
Let us look at the noise propagation in this second approach. For a random variable X, we respectively

denote by E[X] and Var(X) its expectation and its variance. Suppose that scalar k with |k| < Bn is
drawn at random. Assuming that the noise is centered and that its variance is bounded by the same
threshold σ2 in Enc(x) and Enc(Bi x), the noise present in c ← k · Enc(x) has its variance bounded by
(Var(k) + E[k]2)σ2 = E[k2]σ2 while the noise present in c ←

∑n
i=0 k

′
i Enc(B

i x) has its variance bounded
by

(∑n
i=0(Var(k

′
i) + E[k′i]2)

)
σ2 =

(∑n
i=0 E[k′i2]

)
σ2. Observe that E[k2] = 1

3 (B
n − 1)Bn if k is uniform over

{−Bn + 1, . . . , Bn − 1} and that k′i ∈ {−B + 1, . . . , B − 1} if (k′n, . . . , k′0) is a modified radix-B for k. Hence,∑n
i=0 E[k′i2] is expected to be much smaller than E[k2]; this is all the more true that

∑n
i=0 E[k′i2] is small. It

is therefore of interest to produce modified radix-B forms that minimize this latter bound in order to contain
the noise propagation in ciphertexts.

Contributions. Not all signed-digit representations equally perform. We saw for example that (2, 2)4 and
(1,−2, 2)4 are two valid radix-4 representations for 10. Another representation for 10 is (1,−1,−2)4, This paper
seeks for modified radix-B forms (k′n, . . . , k

′
0) that minimize the quantity

∑n
i=0 k

′
i
2
. Back to our example, the

form (1,−1,−2)4 is actually what we call a “balanced non-adjacent form” and, as will be shown, constitutes
an optimal choice for decomposing 10 in radix 4.

Our main results are:

– We define a new modified radix-B form that we call balanced non-adjacent form (or BNAF in short).
These forms get one’s name from the usual NAF because for B = 2 they exhibit the non-adjacency
property. We prove that every integer has a BNAF and that the BNAF is unique.

– We propose a simple criterion to check whether or not a modified radix-B form is a BNAF. Based on it,
we present algorithms for producing BNAFs on various input formats.

– We introduce the metric of Euclidean weight for modified radix-B forms and prove that it is optimally
met by BNAFs. Specifically, we show that among all possible modified radix-B forms (k′n, . . . , k

′
0) for a

given integer k, the BNAF always minimizes the quantity
∑n

i=0 k
′
i
2
.

– We study statistical properties of BNAFs:
1. We use Markov chains to model the asymptotic behavior of the BNAF recoding process and provide

estimates for the occurrence probability for the digits in a random BNAF.
2. We determine the exact distribution of BNAFs for n-digit random integers.

Outline of the paper. The rest of the paper is organized as follows. In the next section, we review some
signed-digit representations. Section 3 is the core of the paper. We define the BNAF and prove important and
useful properties the BNAF satisfies. In Section 4, we present a generic recoding algorithm. This algorithm is
used to analyze the probability distribution of the BNAF representation under different settings. In Section 5,
we extend the previous results to modular representations. Finally, we demonstrate a number of cryptographic
applications in Section 6.
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2 Balanced Signed-Digit Representations

Integers can always be recoded with digits in the set {−B0, . . . , B−1−B0} for any integer 0 ≤ B0 < B. When
B0 = ⌊B/2⌋, the corresponding representation is known as balanced modified radix-B form [12, Chapter 9].
Remarkably, such a decomposition is at most one digit longer than the standard unsigned decomposition. In
particular, any nonnegative integer k < Bn can be recoded as a balanced radix-B form having at most n+ 1
digits.

2.1 Odd radices

If B is odd and B0 = ⌊B/2⌋ then −B0 = −B−1
2 and B − 1−B0 = B−1

2 . In this case, the corresponding form

with digits in the balanced set {−B−1
2 , . . . , B−1

2 } for a nonnegative integer k is easily obtained. Analogously to
obtaining the regular radix-B representation, the idea is to repeatedly divide by B, obtain the corresponding
remainder, and repeat the process with the resulting quotient. The difference is that the remainders are
chosen in the set {−B−1

2 , . . . , B−1
2 } (instead of {0, . . . , B − 1}).

Example 1. Take B = 5 and consider the integer k = 93. Starting with 93, we successively obtain 93 = 19·5−2,
19 = 4·5−1, 4 = 1·5−1, and 1 = 0·5+1. The balanced modified radix-5 for k = 93 is therefore (1,−1,−1,−2)5.

2.2 Even radices

The previous methodology similarly applies to an even value for B ≥ 4 [11, § 3]. It produces a valid modified
radix-B representation, which is however not [fully] balanced. The so-obtained digits k′i belong to the set
{−B

2 , . . . ,
B
2 − 1}. This is the recoding typically used with the gadget decomposition; see e.g. [9, Algorithm 1]

for B a power of two.

Example 2. With radix B = 4, an application to k = 93 yields the representation (1,−2,−2,−1, 1)4. Note
that the digits are in the set {−2, . . . , 1}.

When the radix B is even, one has −B
2 ≡

B
2 (mod B). Digits −B

2 and B
2 can then be used interchangeably.

By allowing remainders of B
2 , one can obtain different representations using the digit set {−B

2 , . . . ,
B
2 }.

Example 3. Continuing with Example 2, one can check that (1, 2,−1, 1)4 is another valid modified radix-4
representation for k = 93—but now with digits in the set {−2, . . . , 2}.

3 Balanced Non-Adjacent Forms

Here we introduce the balanced non-adjacent form and characterize its properties. This section mainly deals
with integers; extensions to modular representations are covered in Section 5.

3.1 Definition

We start with the general definition.

Definition 1. Let B ≥ 2 be a radix. A modified radix-B representation

(. . . , k′2, k
′
1, k

′
0)

for an integer k =
∑

i k
′
i B

i is called a balanced non-adjacent form (BNAF) if and only if, for all i,

(C1) |k′i| ≤ ⌊B2 ⌋;
(C2) 0 ≤ k′i · k′i+1 ≤ ⌊B2 ⌋

(
⌊B2 ⌋ − 1

)
when |k′i| = ⌈B2 ⌉.
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Remark 1. Conditions (C1) and (C2) are exclusive when the radix is odd. For an odd radix B, the definition
of a BNAF simplifies to |k′i| ≤ B−1

2 for all i.

For an even radix B, a pair of digits (k′i+1, k
′
i) with |k′i+1|, |k′i| ≤ ⌊B2 ⌋ that satisfies Condition (C2) is said

admissible. Interestingly, the definition of a BNAF for B = 2 coincides with the definition of the non-adjacent
form (NAF): k′i ∈ {−1, 0, 1} and k′i · k′i+1 = 0.

We present below a generic algorithm that converts any modified-radix form (k′n, . . . , k
′
0) where k′i ∈

{−(B − 1), . . . , B − 1} for an integer k with |k| < Bn into a BNAF. The algorithm is valid for both even and
odd radices.

Algorithm 1: Conversion algorithm

Input: Modified radix-B form (k′
n, . . . , k

′
0) of an integer k =

∑n
i=0 k

′
i B

i with |k| < Bn

Output: BNAF(k)← (k′
n, . . . , k

′
0)

for i = 0 to n− 1 do
σi ← sign(k′

i)

if
(
|k′

i| > ⌊B2 ⌋
)
∨
(
(|k′

i| = ⌈B2 ⌉) ∧ ((−⌊B
2
⌋ ≤ σi · k′

i+1 ≤ −1) ∨ (⌊B
2
⌋ ≤ σi · k′

i+1 ≤ B − 1))
)
then

k′
i ← k′

i − σi ·B
k′
i+1 ← k′

i+1 + σi

end if

end for

return (k′
n, . . . , k

′
0)

Lemma 1. Algorithm 1 is correct.

Proof. We have to prove that, on input a modified radix-B of an integer k with |k| < Bn, Algorithm 1
actually outputs a BNAF.

Iteration i of the for-loop at most modifies the values of digits k′i and k′i+1. As will become apparent, all
along the algorithm, it holds that:

– k′i ∈ {−B, . . . , B} and k′i+1 ∈ {−B + 1, . . . , B − 1} before entering iteration i;

– |k′i| ≤ ⌊B2 ⌋ after exiting iteration i and the corresponding value for k′i is unchanged by the next iterations.

We introduce some notation for more clarity. Let (k′n
(0)

, . . . , k′0
(0)

) denote the input in Algorithm 1 of a

modified radix-B form of an integer k =
∑n

j=0 k
′
j
(0)

Bj , |k| < Bn. More generally, let (k′n
(i)
, . . . , k′0

(i)
) denote

the representation entering iteration i in Algorithm 1—remark that (k′n
(i+1)

, . . . , k′0
(i+1)

) also denotes the
representation exiting iteration i. Moreover, we note that the algorithm is such that

∑n
j=0 k

′
j B

j always keeps

equal to k; i.e.,
∑n

j=0 k
′
j
(i+1)

Bj = k for all 0 ≤ i ≤ n − 1. We also have σi = sign(k′i
(i)
). The output of

Algorithm 1 is
∑n

j=0 k
′
j
(n)

Bj .
With the new notation, the two above observations can be rewritten as:

– k′i
(i) ∈ {−B, . . . , B} and k′i+1

(i) ∈ {−B + 1, . . . , B − 1};
– |k′i

(i+1)| ≤ ⌊B2 ⌋ and k′i
(j)

= k′i
(i+1)

for i+ 1 < j ≤ n− 1.

The first observation and the relation k′i
(j)

= k′i
(i+1)

for i+ 1 < j ≤ n− 1 are easily verified by inspection

of the algorithm. We now show that the relation |k′i
(i+1)| ≤ ⌊B2 ⌋ is verified. If |k′i

(i)| > ⌊B2 ⌋ (i.e., k
′
i
(i) ∈

{−B, . . . ,−⌊B2 ⌋ − 1} ∪ {⌊B2 ⌋+ 1, . . . , B}), it is updated as k′i
(i+1)

= k′i
(i) − σi ·B ∈ {−B + ⌊B2 ⌋+ 1, . . . , B −
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⌊B2 ⌋−1} ⊆ {−⌊B2 ⌋, . . . , ⌊
B
2 ⌋}. Observe also that when B is even and |k′i

(i)| = ⌈B2 ⌉ = ⌊
B
2 ⌋ and is updated then

it becomes k′i
(i+1)

= k′i
(i) − σi ·B ∈ {±⌊B2 ⌋}. In all cases, the relation |k′i

(i+1)| ≤ ⌊B2 ⌋ is therefore satisfied.

Since the for-loop iterates for i from 0 to n− 1 and since k′i
(j)

= k′i
(i+1)

for j > i+ 1, from the relation

|k′i
(i+1)| ≤ ⌊B2 ⌋, it follows that Condition (C1) holds true for all 0 ≤ i ≤ n − 1; i.e., |k′i

(n)| ≤ ⌊B2 ⌋ for
0 ≤ i ≤ n− 1. It also holds true for the output k′n because the algorithm keeps invariant

∑n
j=0 k

′
j
(i+1)

Bj = k;

hence, the condition |k| < Bn implies that the final output k′n
(n)

lies in {0, 1,−1} and thus |k′n
(n)| ≤ ⌊B2 ⌋

because B ≥ 2.
For even radices B, we need in addition to check that Condition (C2) is fulfilled. We so assume that

B is even and so ⌊B2 ⌋ = ⌈
B
2 ⌉ =

B
2 . If the value of k′i

(i)
entering iteration i satisfies |k′i

(i)| < B
2 then this

value remains unchanged until the end of the algorithm; as a consequence, the output k′i
(n)

belongs to

{−B
2 + 1, . . . , B

2 − 1}. If the value of k′i
(i)

entering iteration i satisfies |k′i
(i)| > B

2 then it is updated as

k′i
(i+1)

= k′i
(i)−σi ·B ∈ {−B

2 +1, . . . , B
2 −1} and will no longer be modified by the subsequent iterations; as a

consequence, the output k′i
(n)

belongs to {−B
2 +1, . . . , B

2 −1}. For output values k′i
(n) ∈ {−B

2 +1, . . . , B
2 −1},

Condition (C2) is always valid. Hence, the only case that needs to be analyzed is when the value of k′i
(i)

entering iteration i is ±B
2 . There are four sub-cases according to the value of σi · k′i+1

(i)
entering iteration i.

– Sub-case 1: k′i
(i) ∈ {±B

2 } and σi · k′i+1
(i) ∈ {−B +1, . . . ,−B

2 − 1}. In this case, as seen from Algorithm 1,

k′i and k′i+1 are not modified at iteration i. Hence, the final output value for k′i is k′i
(n)

= B
2 if σi = 1

and k′i
(n)

= −B
2 if σi = −1. Furthermore, since k′i+1

(i+1)
= k′i+1

(i)
, if σi = 1 then k′i+1

(i+1) ∈ {−B +

1, . . . ,−B
2 − 1} and so will be changed at iteration i + 1 to eventually become the final output value

k′i+1
(n)

= k′i+1
(i+1) − σi+1 · B ∈ {1, . . . , B

2 − 1}, which satisfies Condition (C2). Likewise, if σi = −1
then k′i+1

(i+1) ∈ {B2 + 1, . . . , B − 1} and so will be changed at iteration i + 1 to eventually become

k′i+1
(n)

= k′i+1
(i+1) − σi+1 ·B ∈ {−B

2 + 1, . . . ,−1}, which again satisfies Condition (C2).

– Sub-case 2: k′i
(i) ∈ {±B

2 } and σi · k′i+1
(i) ∈ {−B

2 , . . . ,−1}. In this case, both k′i and k′i+1 are updated

at iteration i as k′i
(i+1) ← k′i

(i) − σi · B = −k′i
(i) ∈ {∓B

2 } and k′i+1
(i+1) ← k′i+1

(i)
+ σi. Hence, at the

end of iteration i, the resulting k′i+1
(i+1)

belongs to {−B
2 + 1, . . . , 0} if σi = 1 and to {0, . . . , B

2 − 1} if
σi = −1. In both cases, this value for k′i+1

(i+1)
being such that |k′i+1

(i+1)| < B
2 , it won’t be changed at

iteration i+ 1. Moreover, as the resulting k′i
(n)

= k′i
(i+1)

and k′i+1
(n)

= k′i+1
(i+1)

have the same sign, the

final output pair (k′i+1
(n)

, k′i
(n)

) satisfies Condition (C2).

– Sub-case 3: k′i
(i) ∈ {±B

2 } and σi · k′i+1
(i) ∈ {0, . . . , B

2 − 1}. In this case, the values of k′i and k′i+1 won’t

be changed at iteration i nor at iteration i + 1. The final output values are therefore k′i
(n)

= B
2 and

k′i+1
(n) ∈ {0, . . . , B

2 − 1} if σi = 1, and k′i
(n)

= −B
2 and k′i+1

(n) ∈ {−B
2 + 1, . . . , 0} if σi = −1. Both cases

satisfy Condition (C2).

– Sub-case 4: k′i
(i) ∈ {±B

2 } and σi · k′i+1
(i) ∈ {B2 , . . . , B − 1}. In this case, the values of k′i and k′i+1 are

changed at iteration i as k′i
(i+1)

= −k′i
(i)

and k′i+1
(i+1)

= k′i+1
(i)

+ σi ∈ {B2 + 1, . . . , B} if σi = 1 and

∈ {−B, . . . ,−B
2 − 1} if σi = −1. In turn, k′i+1

(i+1)
will be changed at iteration i + 1 to eventually

become k′i+1
(n)

= k′i+1
(i+1) − σi+1 · B = k′i+1

(i+1) − σi · B. The final output values are therefore such

that k′i
(n)

= −B
2 and k′i+1

(n) ∈ {−B
2 + 1, . . . , 0} if σi = 1, and k′i

(n)
= B

2 and k′i+1
(n) ∈ {0, . . . , B

2 − 1} if
σi = −1. Again Condition (C2) is satisfied.

This shows that Algorithm 1 is correct and produces a BNAF. ⊓⊔

3.2 Properties

Although an integer can have several modified radix-B representations, the next theorem states that it has
exactly one BNAF.
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Theorem 1. Every integer has a unique BNAF.

Proof. Lemma 1 shows that there exists a BNAF for every integer. Suppose that an integer k possesses
two different BNAF representations: k =

∑
i k

′
i B

i and k =
∑

i k
′′
i B

i. Let i∗ denote the smallest index such
that k′i∗ ̸= k′′i∗ . From k =

∑
i k

′
i B

i =
∑

i k
′′
i B

i, we deduce that (k′i∗ − k′′i∗)B
i∗ ≡ 0 (mod Bi∗+1) and thus

k′i∗ − k′′i∗ ≡ 0 (mod B).
The cases of odd radix and even radix are treated separately.

1. Consider the case of an odd radix B. Since k′i∗ ̸= k′′i∗ , the relation k′i∗ − k′′i∗ ≡ 0 (mod B) implies
k′i∗ − k′′i∗ = αB for some nonzero integer α. Since |k′i∗ | ≤ ⌊B2 ⌋ =

B−1
2 and |k′′i∗ | ≤ ⌊B2 ⌋ =

B−1
2 , it follows

that |k′i∗−k′′i∗ | ≤ B−1. The equation k′i∗−k′′i∗ = αB has therefore no nonzero solution α. A contradiction.
2. Consider now the case of an even radix B. Again, since by definition |k′i∗ | ≤ ⌊B2 ⌋ =

B
2 and |k′′i∗ | ≤ ⌊B2 ⌋ =

B
2 ,

and k′i∗ ̸= k′′i∗ , it thus follows from k′i∗ − k′′i∗ ≡ 0 (mod B) that k′i∗ = −k′′i∗ = ±B
2 . Without loss of

generality, we assume that k′i∗ = B
2 and k′′i∗ = −B

2 . From
∑

i k
′
i B

i ≡
∑

i k
′′
i B

i (mod Bi∗+2), we deduce
that (k′i∗+1−k′′i∗+1)B+(k′i∗−k′′i∗) ≡ 0 (mod B2). In turn, this yields (k′i∗+1−k′′i∗+1)B+B ≡ 0 (mod B2)

and therefore k′i∗+1− k′′i∗+1 +1 ≡ 0 (mod B) ⇐⇒ k′′i∗+1 ≡ k′i∗+1 +1 (mod B). Furthermore, as k′i∗ = B
2

and k′′i∗ = −B
2 , we must have 0 ≤ k′i∗+1 ≤ B

2 − 1 and −B
2 + 1 ≤ k′′i∗+1 ≤ 0 to fulfill Condition (C2). From

k′′i∗+1 ≡ k′i∗+1 + 1 (mod B), the requirement 0 ≤ k′i∗+1 ≤ B
2 − 1 leads to k′′i∗+1 ∈ {1, . . . , B

2 } ∪ {−
B
2 },

which contradicts the condition −B
2 + 1 ≤ k′′i∗+1 ≤ 0.

Consequently, the BNAF is unique. ⊓⊔

Integers can have multiple modified radix-B forms. The notion of weight relates an integer to its
representation and enables to qualitatively distinguish among different representations.

Definition 2. Given a base B ≥ 2, the Euclidean weight of an integer k is the smallest value W such that
there is a modified radix-B form

(k′n, . . . , k
′
0) such that

n∑
i=0

k′i B
i = k and

n∑
i=0

k′i
2
= W

for digits k′i with |k′i| < B.

The next theorem exhibits the main feature of the BNAF representation. It states that the BNAF of an
integer k, BNAF(k) = (k′n, . . . , k

′
0), minimizes the quantity

∑n
i=0 k

′
i
2
. The BNAF representation is in that

sense optimal.

Theorem 2. If (k′n, . . . , k
′
0) denotes the BNAF of an integer k then the Euclidean weight of k is equal to∑n

i=0 k
′
i
2
.

Proof. The proof relies on Algorithm 1.

We use the notation used in the proof of Lemma 1. We let (k′n
(i)
, . . . , k′0

(i)
) denote the representation

entering iteration i in Algorithm 1; we also let σi = sign(k′i
(i)
). By abuse of language, for the representation

(k′n
(i)
, . . . , k′0

(i)
), we call the quantity

W (i) =

n∑
j=0

(k′j
(i)
)
2

the Euclidean weight of (k′n
(i)
, . . . , k′0

(i)
) in Algorithm 1. The weight of the output of Algorithm 1 is given by

W (n).
We now show that W (n) ≤W (0), namely that the Euclidean weight of the output is smaller than or equal

to the Euclidean weight of the input. Specifically, we show that if the if-branching is executed at iteration i
then there exists an index j with i < j ≤ n such that W (j) ≤ W (i); if it is not executed then obviously
W (i+1) = W (i).
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If the if-branching is executed at iteration i, it follows that k′i
(i+1)

= k′i
(i)−σi B and k′i+1

(i+1)
= k′i+1

(i)
+σi.

The other values are unchanged. This yields

W (i+1) −W (i) =
∑n

j=0
(k′j

(i+1)
)2 −

∑n

j=0
(k′j

(i)
)2

= (k′i
(i+1)

)2 + (k′i+1
(i+1)

)2 − (k′i
(i)
)2 − (k′i+1

(i)
)2

= −σiB(2k′i
(i) − σiB) + σi(2k

′
i+1

(i)
+ σi)

= −2B |k′i
(i)|+B2 + 2σi k

′
i+1

(i)
+ 1 . (*)

The if-branching is executed at iteration i when (at least) one of the following conditions is met:

1. |k′i
(i)| > ⌊B2 ⌋. There are several sub-cases.

(a) B is even. Then, since |k′i
(i)| ≥ ⌊B2 ⌋+ 1 = B

2 + 1 and σi k
′
i+1

(i) ≤ B − 1, we get using (*)

W (i+1) −W (i) ≤ −2B(B2 + 1) +B2 + 2(B − 1) + 1 = −1 < 0 ,

that is, W (i+1) < W (i). We have j = i+ 1.

(b) B is odd and σi k
′
i+1

(i) ≤ ⌊B2 ⌋. When B is odd, we have ⌊B2 ⌋ =
B−1
2 . This case is similar to the

previous one. We obtain from (*)

W (i+1) −W (i) ≤ −2B(B−1
2 + 1) +B2 + 2(B−1

2 ) + 1 = 0 .

We get W (i+1) ≤W (i) and have j = i+ 1.

(c) B is odd and σi k
′
i+1

(i)
> ⌊B2 ⌋. First, we note that σi k

′
i+1

(i)
> ⌊B2 ⌋ supposes i ≤ n− 2 because for

i = n − 1 we have k′i+1
(i) ∈ {0, 1,−1} (|k| < Bn). If the condition σi k

′
i+1

(i)
> ⌊B2 ⌋ holds, this can

only occur if σi = 1 and k′i+1
(i)

> ⌊B2 ⌋ or if σi = −1 and k′i+1
(i)

< −⌊B2 ⌋. Moreover, since we have

k′i+1
(i+1)

= k′i+1
(i)

+ σi, we infer that σi+1 = σi. The if-branching is executed at both iterations i
and i+ 1. A double application of (*) yields

W (i+2) −W (i)

= (−2B |k′i+1
(i+1)|+B2 + 2σi+1 k

′
i+2

(i+1)
+ 1) + (−2B |k′i

(i)|+B2 + 2σi k
′
i+1

(i)
+ 1)

≤ −2(B − 1) |k′i+1
(i)| − 2B + 2B2 + 2 + 2(B − 1)− 2B(B−1

2 + 1)

≤ −2(B − 1) |k′i+1
(i)|+B(B − 1)

≤ −2(B − 1)(B−1
2 + 1) +B(B − 1) = 1−B

< 0 .

Hence, we have W (i+2) < W (i) and so j = i+ 2.

2. (|k′i
(i)| = ⌈B2 ⌉) ∧ (−⌊B2 ⌋ ≤ σi · k′i+1

(i) ≤ −1). We assume w.lo.g. that B is even because when, it is odd,

the condition |k′i
(i)| = ⌈B2 ⌉ implies |k′i

(i)| > ⌊B2 ⌋, which is covered in the previous case. We so get from (*)

W (i+1) −W (i) ≤ −2B B
2 +B2 + 2(−1) + 1 = −1 < 0

and thus W (i+1) < W (i). We have j = i+ 1.

3. (|k′i
(i)| = ⌈B2 ⌉)∧ (⌊

B
2 ⌋ ≤ σi · k′i+1

(i) ≤ B− 1). Here too, we assume w.l.o.g. that B is even. We distinguish
two sub-cases.
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(a) σi · k′i+1
(i)

> ⌊B2 ⌋ =
B
2 . This case is analogous to Case 1c. We have σi+1 = σi. A double application

of (*) yields

W (i+2) −W (i) = (−2B |k′i+1
(i+1)|+B2 + 2σi+1 k

′
i+2

(i+1)
+ 1) + (−2B |k′i

(i)|+B2 + 2σi k
′
i+1

(i)
+ 1)

≤ −2(B − 1) |k′i+1
(i)| − 2B + 2B2 + 2 + 2(B − 1)− 2B(B2 )

≤ −2(B − 1)(B2 + 1) +B2 = 2−B < 0 .

We have W (i+2) < W (i) and j = i+ 2.

(b) σi · k′i+1
(i)

= ⌊B2 ⌋ =
B
2 . Again, this requires σi+1 = σi. We thus have k′i+1

(i)
= k′i

(i) ∈ {±B
2 } or,

equivalently, k′i+1
(i)

= k′i
(i)

= σi
B
2 . We let i∗ denote the smallest index such that i∗ > i + 1 and

k′i∗
(i) ̸= σi

B
2 . Note that, for B ≠ 2, i∗ ≤ n because k′n

(l) ∈ {0, 1,−1} for all 0 ≤ l ≤ n since |k| < Bn,

and consequently, k′n
(l)

/∈ {±B
2 }. The same is true for B = 2 because if k′n−1

(l) ∈ {±B
2 } for some

0 ≤ l ≤ n then k′n
(l) ̸= k′n−1

(l)
since |k| < Bn. Moreover, note that i∗ ≤ n − 1 when σi k

′
i∗

(i)
> B

2

because (k′n
(l)
, k′n−1

(l)
, k′n−2

(l)
) = (d, σi

B
2 , σi

B
2 ) for some digit d > σi

B
2 contradicts |k| < Bn.

We have k′i
(i)

= k′i+1
(i)

= · · · = k′i∗−1
(i)

= σi
B
2 and k′i∗

(i) ̸= σi
B
2 . At every subsequent iteration up to

iteration i∗ − 1, it turns out that the if-branching is executed, which results in

(k′i∗
(i∗)

, k′i∗−1
(i∗)

, . . . , k′i+1
(i∗)

, k′i
(i∗)

) =
(
k′i∗

(i)
+ σi,−σi(

B
2 − 1), . . . ,−σi(

B
2 − 1),−σi

B
2

)
.

The cases of σi k
′
i∗

(i)
< B

2 and σi k
′
i∗

(i)
> B

2 are treated separately.

i. σi k
′
i∗

(i)
< B

2 . In this case, we get

W (i∗) −W (i) = (k′i∗
(i)

+ σi)
2 +

∑i∗−1

l=i+1
(−σi(

B
2 − 1))2 + (−σi

B
2 )

2 − (k′i∗
(i)
)2 −

∑i∗−1

l=i
(σi

B
2 )

2

= 2σi k
′
i∗

(i)
+ 1− (i∗ − i− 1)(B − 1)

≤ 2(B2 − 1) + 1− (B − 1) = 0

since i∗ ≥ i+ 2. Hence, W (i∗) ≤W (i) and we have j = i∗.

ii. σi k
′
i∗

(i)
> B

2 . In this case, the if-branching is also executed at iteration i∗. We get

W (i∗+1) −W (i) = (k′i∗+1
(i)

+ σi)
2 + (k′i∗

(i) − σi(B − 1))2 +
∑i∗−1

l=i+1
(−σi(

B
2 − 1))2 + (−σi

B
2 )

2

− (k′i∗+1
(i)
)2 − (k′i∗

(i)
)2 −

∑i∗−1

l=i
(σi

B
2 )

2

= 2σi k
′
i∗+1

(i)
+ 1− 2σi(B − 1) k′i∗

(i)
+ (B − 1)2 − (i∗ − i− 1)(B − 1)

≤ 2(B − 1) + 1− 2(B − 1)(B2 + 1) + (B − 1)2 − (B − 1)

= 3− 2B < 0 .

We so have W (i∗+1) < W (i) and j = i∗ + 1.

Theorem 1 teaches that the BNAF is unique. This means that, given an integer k and any modified
radix-B representation of that integer, Algorithm 1 always returns the same modified radix-B form for k,
namely the BNAF of k. Moreover, we just saw that the BNAF has an Euclidean weight that is smaller than or
equal to the Euclidean weight of the input modified radix-B form. This implies that the BNAF representation
has minimal Euclidean weight. In other words, if (k′n, . . . , k

′
0) is the BNAF of k, |k| < Bn, then the Euclidean

weight of k is W =
∑n

i=0 k
′
i
2
. ⊓⊔
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4 Recoding Algorithm

4.1 Description

The BNAF of an integer k can be obtained directly from the definition by repeatedly dividing k by B
(integer division); if Conditions (C1) or (C2) (cf. Definition 1) are invalidated then a correction is applied
to the resulting digit (and as well as to k). The “mod” operator in K mod B indicates the unique value in
{0, . . . , B − 1} that is congruent to K modulo B.

Algorithm 2: BNAF recoding

Input: Integer k ̸= 0
Output: BNAF(k)← (k′

n, . . . , k
′
0) with k′

i ∈ {−⌊B2 ⌋, . . . , ⌊
B
2
⌋} s.t.

∑n
i=0 k

′
i B

i = k

K ← k; i← 0
while (K ̸= 0) do

k′
i ← K mod B; K ← (K − k′

i)/B

if (k′
i > ⌊B2 ⌋) ∨

(
(k′

i = ⌈B2 ⌉) ∧ ((K mod B) ≥ ⌊B
2
⌋)
)
then

k′
i ← k′

i −B; K ← K + 1
end if
i← i+ 1

end while

return (k′
i−1, . . . , k

′
0)

Remark 2. As indicated in Remark 1, Conditions (C1) and (C2) are exclusive when radix B is odd. In this
case, the if-branching in Algorithm 2 simply reads as if (k′i > ⌊B2 ⌋) then.

4.2 Stochastic analysis

This section studies the asymptotic behavior of the digits resulting from the BNAF recoding.

If k′i = K mod B then (K−k′i)/B = ⌊K/B⌋. Hence, we see that the output value of k′i is at each iteration
completely determined by the current values of K mod B and of ⌊K/B⌋ mod B. A pair of digits (e, d) is
therefore sufficient to describe each possible case.

It is useful to introduce some notation. We define the quantities Ki that keep track of the successive values
of K entering the for-loop at iteration i, and represent Ki mod B2 as the pair (ei, di) with 0 ≤ di, ei < B
such that Ki mod B2 = ei B + di. By construction, we have{

K0 = k

Ki+1 =
Ki−k′

i

B for 0 ≤ i ≤ n− 1
.

Depending on the values of Ki mod B2 = (ei, di), there are different cases to consider. This is detailed in
Table 1.

From the last column in Tables 1(a) and 1(b), we remark that the knowledge of (ei, di) only enables to
obtain di+1. We have

di+1 = Ki+1 mod B =
(Ki − k′i) mod B2

B
=

eiB + di − k′i
B

(mod B)

=

{
ei if k′i = di

ei + 1 (mod B) if k′i = di −B
.
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Table 1. Output digit k′
i according to the pair (ei, di).

(a) Odd radix B

State (ei, di) k′
i (ei+1, di+1)

a-1.

{
0 ≤ di ≤ B−1

2

0 ≤ ei < B
di (∗, ei)

a-2.

{
B−1
2

< di < B

0 ≤ ei < B
di −B (∗, (ei + 1) mod B)

(b) Even radix B

State (ei, di) k′
i (ei+1, di+1)

b-1.

{
0 ≤ di <

B
2

0 ≤ ei < B
di (∗, ei)

b-2.

{
di =

B
2

0 ≤ ei <
B
2

B
2

(∗, ei)

b-3.

{
di =

B
2

B
2
≤ ei < B

−B
2

(∗, (ei + 1) mod B)

b-4.

{
B
2
< di < B

0 ≤ ei < B
di −B (∗, (ei + 1) mod B)

We also remark that if the radix-B digits forming k are uniformly random over {0, . . . , B − 1} then so is ei+1;
in other words, ei+1 can take any value in {0, . . . , B − 1} with a probability of 1

B .

When B is odd (and thus ⌊B2 ⌋ =
B−1
2 ), from Table 1(a), we have k′i ← di ∈ {0, . . . , B−1

2 } or k
′
i ← di−B ∈

{−B−1
2 , . . . ,−1}. We therefrom infer that each digit is equiprobable in the recoding and so has an occurrence

probability of Pr[k′i = d] = 1
B for any d ∈ {0, . . . , ⌊B2 ⌋}.

When B is even, we obtain from Table 1(b) the following transition probabilities. For State b-1, since

di+1 = ei and 0 ≤ ei < B, there is a probability of B/2
B = 1

2 to stay in State b-1 and a probability of 1/2
B = 1

2B
to transition to State b-2, and similarly of 1

2B to State b-3. The probability to transition to State b-4 from

State b-1 is thus of 1− 1
2 −

1
2B −

1
2B = B−2

2B . For State b-2, since di+1 = ei and 0 ≤ ei <
B
2 , the transition is

necessarily to State b-1. For State b-3, since di+1 = ei + 1 mod B and B
2 ≤ ei < B, there is a probability

of B/2−1
B/2 = B−2

B to transition to State b-4 and a probability of 1
B/2 = 2

B to transition to State b-1 (i.e.,

when ei = B − 1). Finally, for State b-4, since di+1 = ei + 1 mod B and 0 ≤ ei < B, there is a probability of
B/2−1

B = B−2
2B to stay in State b-4 (i.e., when ei ∈ {B2 , . . . , B − 2}), there is a probability of 1/2

B to transition

either to State b-2 or b-3 (i.e., when ei =
B
2 − 1), and there is a probability of B/2

B = 1
2 to transition to

State b-1 (i.e., when ei ∈ {0, . . . , B
2 − 2} ∪ {B − 1}).

Schematically, we have the automaton depicted in Figure 1.

The corresponding Markov matrix P where element (i, j) denotes the probability for transitioning from
State b-i to State b-j (1 ≤ i, j ≤ 4) is given by

P =


1
2

1
2B

1
2B

B−2
2B

1 0 0 0
2
B 0 0 B−2

B
1
2

1
2B

1
2B

B−2
2B

 .
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b-1

b-2

b-3

b-4
1
2

1
2B

1
2B

B−2
2B

1

2
B

B−2
B

B−2
2B

1
2

1
2B

1
2B

Fig. 1. Transition probabilities among the different states for an even radix B.

The companion stationary probability vector π = (π1, π2, π3, π4) satisfies πP = π subject to
∑

1≤j≤4 πj = 1.
We find

π =
(B2 +B + 2

2B(B + 1)
,

1

2(B + 1)
,

1

2(B + 1)
,
B − 2

2B

)
.

We can now estimate the occurrence probability of each digit. This is made explicit in the next proposition.

Proposition 1. Let B ≥ 2 be a radix. Then a digit k′i ∈ {−⌊B2 ⌋, . . . , ⌊
B
2 ⌋} from a uniformly random radix-B

BNAF features the following distribution

Pr[k′i = d] =


B+2
B+1

1
B if d = 0 and B is even

1
2(B+1) if d ∈ {−⌊B2 ⌋, ⌊

B
2 ⌋} and B is even

1
B otherwise

where d ∈ {−⌊B2 ⌋, . . . , ⌊
B
2 ⌋}.

Proof. We already showed that Pr[k′i = d] = 1
B when B is odd. We henceforth assume that B is even.

Excluding the digit di = 0, States b-1 and b-4 in Table 1(b) are symmetric. We so deduce π1 = Pr[k′i = 0]+π4

and thus Pr[k′i = 0] = B2+B+2
2B(B+1) −

B−2
2B = B+2

B(B+1) . From Table 1(b), we also get Pr[k′i =
B
2 ] = π2 = 1

2(B+1) and

Pr[k′i = −B
2 ] = π3 = 1

2(B+1) . For the remaining case (i.e., d /∈ {−B
2 , 0,

B
2 }), we infer from States b-1 and b-4

in Table 1(b) (excluding 0) that every digit is equiprobable and thus (π1 −Pr[k′i = 0]) + π4 = (B − 2)Pr[k′i =
d | d /∈ {−B

2 , 0,
B
2 }] ⇐⇒ Pr[k′i = d | d /∈ {−B

2 , 0,
B
2 }] =

2π4

B−2 = 1
B . ⊓⊔

As a corollary, we can easily deduce the corresponding variance.

Corollary 1. Let B ≥ 2 be a radix. Then a digit k′i in a uniformly random radix-B BNAF satisfies

E[k′i] = 0 and Var(k′i) =

{
1
12 (B

2 − 1) if B is odd
1
12

(B+2)(B2−B+1)
B+1 if B is even

.

Proof. This is immediate. We use the identity
∑T

t=1 t
2 = 1

6T (T +1)(2T +1). From its definition, since E[k′i] =∑
−⌊B

2 ⌋≤d≤⌊B
2 ⌋ Pr[k

′
i = d] d = 0 by symmetry, the variance is given by Var(k′i) =

∑
−⌊B

2 ⌋≤d≤⌊B
2 ⌋ Pr[k

′
i =

d] d2 = 2
∑⌊B

2 ⌋
d=1 Pr[k

′
i = d] d2. If B is odd, we get Var(k′i) = 2 1

B

∑B−1
2

d=1 d2 = B2−1
12 . If B is even then we get

Var(k′i) = 2 1
B

∑B
2 −1

d=1 d2 + 2 1
2(B+1) (

B
2 )

2 = 1
12 (B − 1)(B − 2) + 1

4
B2

B+1 = (B+2)(B2−B+1)
12(B+1) . ⊓⊔
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4.3 Exact distribution

In this section, we consider the set of nonnegative integers whose standard radix-B representation consists of
at most n digits; that is, the set {0, . . . , Bn − 1}. The previous analysis shows that endowing this set with
the uniform probability measure results in a digit distribution for the BNAF satisfying

Pr[k′i] ∼

{
1
B when B is odd
B+2
B+1

1
B when B is even

as n→∞ .

For a finite value of n, when B is even, the exact digit distribution for 0 and ±B/2 oscillates around

the asymptotic value according to the digit index. Indeed, if (S1
(i), S2

(i), S3
(i), S4

(i)) denotes the probability

vector wherein component Sj
(i) represents the probability of being in State b-j at iteration i in Algorithm 2

then
(S1

(i+1), S2
(i+1), S3

(i+1), S4
(i+1)) = (S1

(i−1), S2
(i−1), S3

(i−1), S4
(i−1))P

where P is the Markov matrix; see Section 4.2. For a uniformly random integer k ∈ {0, . . . , Bn − 1}, letting
BNAF(k) = (k′n, . . . , k

′
0), the least significant digit k′0 is equiprobable amongst the possible values except for

±B
2 . Namely, we have Pr[k′0 = d] = 1

B if d ∈ {−B
2 + 1, . . . , B

2 − 1} and Pr[k′0 = d] = 1
2B if d ∈ {±B

2 }. We so

deduce that (S1
(0), S2

(0), S3
(0), S4

(0)) = (12 ,
1
2B , 1

2B , B−2
2B ). By induction, we find

(S1
(i), S2

(i), S3
(i), S4

(i)) = (S1
(0), S2

(0), S3
(0), S4

(0))Pi

=
(1
2
+

Bi + (−1)i+1

Bi+1(B + 1)
,
Bi+1 − (−1)i+1

2Bi+1(B + 1)
,
Bi+1 − (−1)i+1

2Bi+1(B + 1)
,
B − 2

2B

)
.

Hence, since Pr
[
k′i =

B
2

]
= S2

(i) and Pr
[
k′i = −B

2

]
= S3

(i), we obtain

Pr
[
k′i =

B
2

]
= Pr

[
k′i = −B

2

]
=

1

2(B + 1)
− (−1)i+1 1

2Bi+1(B + 1)
.

In the same way, from the symmetry between State b-1 without 0 and State b-4, we have S1
(i) + Pr

[
k′i =

0
]
= S4

(i) and thus

Pr[k′i = 0] =
1

B
+

Bi + (−1)i+1

Bi+1(B + 1)
=

B + 2

B(B + 1)
+ (−1)i+1 1

Bi+1(B + 1)
.

Furthermore, as the BNAF distribution is computed over the finite set of integers in {0, . . . , Bn − 1},
the exact digit distribution for the leading digits also differs from the asymptotic distribution. Owing to
the BNAF definition, when B is even, the largest integer k∗ ∈ {0, . . . , Bn − 1} having the most significant
of its BNAF equal to 0 has for BNAF (k′n, k

′
n−1, k

′
n−2, k

′
n−3, . . . ) = (0, B

2 ,
B
2 − 1, B

2 ,
B
2 − 1, . . . ); that is, the

BNAF starts with a leading 0 followed by a succession of the digits (B2 ,
B
2 − 1). We need to distinguish

the cases of n even or n odd. If n is even then BNAF(k∗) = (0, B
2 ,

B
2 − 1, B

2 ,
B
2 − 1, . . . , B

2 ,
B
2 − 1), which

corresponds to k∗ =
∑(n−2)/2

i=0 (B2 B + B
2 − 1)B2i = 1

2 (B
n − 1) + 1

2
Bn−1
B+1 = 1

2B
n B+2
B+1 −

B+2
2(B+1) . If n is odd

then BNAF(k∗) = (0, B
2 ,

B
2 − 1, B

2 ,
B
2 − 1, . . . , B

2 ) and thus k∗ = B
2 Bn−1 +

∑(n−3)/2
i=0 ((B2 − 1)B + B

2 )B
2i =

1
2 (B

n − 1) + 1
2
Bn+1
B+1 = 1

2B
n B+2
B+1 −

B
2(B+1) . As a consequence, it follows that

Pr[k′n = 0] =

1
2B

n B+2
B+1 −

B+2
2(B+1) + 1

Bn
=

1

2

B + 2

B + 1
+

1

2Bn
− 1

2Bn(B + 1)

when n is even, and

Pr[k′n = 0] =

1
2B

n B+2
B+1 −

B
2(B+1) + 1

Bn
=

1

2

B + 2

B + 1
+

1

2Bn
+

1

2Bn(B + 1)
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when n is odd. Because k ∈ {0, . . . , Bn − 1}, k′n must be 0 or 1. In turn, we have Pr[k′n = 1] = 1− Pr[k′n =
0] = 1

2
B

B+1 −
1

2Bn + 1
2Bn(B+1) when n is even, and Pr[k′n = 1] = 1

2
B

B+1 −
1

2Bn − 1
2Bn(B+1) when n is odd.

The BNAF definition also prohibits k′n−1 to be equal to −B
2 when B is even—otherwise we would have

k′n ≤ 0, which contradicts the range definition 0 ≤ k ≤ Bn − 1. As a result, since −B
2 ≡

B
2 (mod B),

the proportion of B
2 for k′n−1 grows accordingly. We so have Pr

[
k′n−1 = −B

2

]
= 0 and Pr

[
k′n−1 = B

2

]
=(

1
2(B+1) − (−1)n 1

2Bn(B+1)

)
+
(

1
2(B+1) − (−1)n 1

2Bn(B+1)

)
= 1

B+1 − (−1)n 1
Bn(B+1) .

The case of an odd radix B is easier to deal with. We immediately have Pr[k′i = d] = 1
B for any

d ∈ {−⌊B2 ⌋, . . . , ⌊
B
2 ⌋}, 0 ≤ i ≤ n − 1. This clearly appears from Algorithm 2; see Remark 2. For the most

significant digit k′n, it can only take values in {0, 1} due to range restrictions—recall that input integer k ∈
{0, . . . , Bn − 1}. Specifically, we have k′n = 0 if k ∈ {0, . . . , Bn−1

2 } and k′n = 1 if k ∈ {B
n+1
2 , . . . , Bn − 1}. We

so get Pr[k′n = 0] = (Bn+1)/2
Bn and Pr[k′n = 1] = (Bn−1)/2

Bn .

Putting it all together, we proved the following result.

Theorem 3. Given a radix B ≥ 2, let (k′n, . . . , k
′
0) represent the BNAF of an n-digit integer uniformly drawn

at random in {0, . . . , B − 1}n. Then

– for an even radix B:

Pr[k′i = d | 0 ≤ i ≤ n− 1]

=



1
B

B+2
B+1 + (−1)i+1 1

Bi+1(B+1) if d = 0
1

2(B+1) − (−1)i+1 1
2Bi+1(B+1) if d ∈ {±B

2 } and i ̸= n− 1
1

(B+1) − (−1)n 1
Bn(B+1) if d = B

2 and i = n− 1

0 if d = −B
2 and i = n− 1

1
B otherwise

and

Pr[k′n = d] =


1
2
B+2
B+1 + 1

2Bn + (−1)n+1 1
2Bn(B+1) if d = 0

1
2

B
B+1 −

1
2Bn − (−1)n+1 1

2Bn(B+1) if d = 1

0 otherwise

;

– for an odd radix B:

Pr[k′i = d | 0 ≤ i ≤ n− 1] =
1

B
and Pr[k′n = d] =


1
2 + 1

2Bn if d = 0
1
2 −

1
2Bn if d = 1

0 otherwise

where d ∈ {−⌊B2 ⌋, . . . , ⌊
B
2 ⌋}. ⊓⊔

5 Extensions

The balanced non-adjacent forms can be extended to modular representations.

Definition 3. Let B ≥ 2 be a radix. If there exists a BNAF (k′n−1, . . . , k
′
0) such that

k ≡
n−1∑
i=0

k′i B
i (mod Bn)

then (k′n−1, . . . , k
′
0) is called a BNAF modulo Bn for k.

13



BNAF representations modulo Bn apply to integers in Z/BnZ. They equally apply to discretized torus

elements in B−nZ/Z by noting that B−nZ/Z ∼= Z/BnZ
Bn . Indeed, a torus element τ ∈ B−nZ/Z can always be

rewritten as τ = k ·B−n where k ≡
∑n−1

i=0 k′i B
i (mod Bn). It is interesting to note that modular BNAFs do

not need one more digit in their encoding.

The next two theorems are straightforward generalizations of Theorem 1 and Theorem 2.

Theorem 4. Every integer k has a BNAF modulo Bn. This BNAF, say (k′n−1, k
′
n−2, . . . , k

′
0), is unique—

unless B is even and k′n−1 ∈ {±B
2 }, in which case (−k′n−1, k

′
n−2, . . . , k

′
0) is also a BNAF modulo Bn for k. ⊓⊔

Theorem 5. If (k′n−1, . . . , k
′
0) is a BNAF modulo Bn of an integer k then the Euclidean weight of k (mod Bn)

is equal to
∑n−1

i=0 k′i
2
. ⊓⊔

If k is an integer in {0, . . . , Bn − 1} and if (k′n, . . . , k
′
0) ← BNAF(k), Theorem 3 tells that k′n ∈ {0, 1}.

More precisely, a close inspection of the proof shows that k′n = 0 whenever

– 0 ≤ k ≤ Bn−1
2 if B is odd, or

– 0 ≤ k ≤ Bn(B+2)−B−1−(−1)n

2(B+1) if B is even.

In all cases, we therefore have k′n = 0 if 0 ≤ k ≤ ⌊B
n

2 ⌋. We define k = Bn−k and let (k′n, . . . , k
′
0)← BNAF(k).

If ⌊B2 ⌋+ 1 ≤ k ≤ Bn − 1, we have by symmetry k′n = 0 since 0 ≤ Bn − k ≤ ⌊B
n

2 ⌋ for ⌊
B
2 ⌋+ 1 ≤ k ≤ Bn − 1.

Note also that BNAF(−k) = −BNAF(k). The BNAF modulo Bn of an integer k can therefore be defined as{
BNAF(k mod Bn) if k mod Bn ≤ ⌊B

n

2 ⌋
BNAF

(
(k mod Bn)−Bn

)
otherwise

(**)

where the BNAF is obtained as per Algorithm 2. This alternative definition makes the modular BNAF
unique, except when B is even and k ≡ Bn

2 mod Bn. In this latter case, there are two BNAFs modulo Bn:(
B
2 , 0, . . . , 0

)
and

(
−B

2 , 0, . . . , 0
)
.

Another benefit of the formulation (**) is that the distribution of the resulting BNAF digits is centered,
provided that when B is even and k ≡ Bn

2 (mod Bn) one of the two forms
(
B
2 , 0, . . . , 0

)
or

(
−B

2 , 0, . . . , 0
)

is returned at random; see Theorem 6. The corresponding algorithm is detailed in Algorithm 3. Given an
integer k and a power n, it outputs the BNAF modulo Bn of k. The algorithm makes use of an internal
routine random() that returns a uniformly random bit.

Algorithm 3: Modular BNAF recoding

Input: Integer k ̸= 0 and n ≥ 1
Output: (k′

n−1, . . . , k
′
0) with k′

i ∈ {−⌊B2 ⌋, . . . , ⌊
B
2
⌋} s.t.

∑n−1
i=0 k′

i B
i ≡ k (mod Bn)

K ← k mod Bn; i← 0

if (K > ⌊B
n

2
⌋) ∨

(
(K = ⌈B

n

2
⌉) ∧ (random() = 1)

)
then

K ← K −Bn

end if
while (K ̸= 0) do

k′
i ← K mod B; K ← (K − k′

i)/B

if (k′
i > ⌊B2 ⌋) ∨

(
(k′

i = ⌈B2 ⌉) ∧ ((K mod B) ≥ ⌊B
2
⌋)
)
then

k′
i ← k′

i −B; K ← K + 1
end if
i← i+ 1

end while

return (k′
i−1, . . . , k

′
0)
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We state exactly the occurrence probability of each digit in the modular BNAF produced by Algorithm 3.
We also state their expectation and variance.

Theorem 6. Given a radix B ≥ 2 and a power n, let (k′n−1, . . . , k
′
0) represent the BNAF modulo Bn of an

integer uniformly drawn at random in {0, . . . , Bn − 1} as per Algorithm 3. Then

– for an even radix B:

Pr[k′i = d | 0 ≤ i ≤ n− 1] =


1
B

B+2
B+1 + (−1)i+1 1

Bi+1(B+1) if d = 0
1

2(B+1) − (−1)i+1 1
2Bi+1(B+1) if d ∈ {±B

2 }
1
B otherwise

;

– for an odd radix B:

Pr[k′i = d | 0 ≤ i ≤ n− 1] =
1

B

where d ∈ {−⌊B2 ⌋, . . . , ⌊
B
2 ⌋}.

Proof. The theorem is a direct consequence of Theorem 3 using (**) and noting that k′n = 0. When B is
even, the digits B

2 and −B
2 are equiprobable for k′n−1 because of the random choice for k ≡ Bn

2 (mod Bn).

We so infer from Theorem 3 that Pr
[
k′n−1 = B

2

]
= Pr

[
k′n−1 = −B

2

]
= 1

2(B+1) − (−1)n 1
2Bn(B+1) when B is

even. The other cases are immediate. ⊓⊔

Corollary 2. Given a radix B ≥ 2 and a power n, let (k′n−1, . . . , k
′
0) represent the BNAF modulo Bn of

an integer uniformly drawn at random in {0, . . . , Bn − 1} as per Algorithm 3. Then any digit k′i in the
representation (k′n−1, . . . , k

′
0) satisfies

E[k′i] = 0 and Var(k′i) =

{
1
12 (B

2 − 1) if B is odd
1
12

(B+2)(B2−B+1)
B+1 − (−1)i+1

4Bi−1(B+1) if B is even
.

Proof. The proof is analogous to that of Corollary 1. We have E[k′i] = 0 because the distribution is centered.

For the variance, it then follows that Var(k′i) = 2
∑⌊B

2 ⌋
d=1 Pr[k

′
i = d] d2. If B is odd, we get Var(k′i) =

2 1
B

∑B−1
2

d=1 d2 = B2−1
12 and if B is even, Var(k′i) = 2 1

B

∑B
2 −1

d=1 d2 + 2
(

1
2(B+1) − (−1)i+1 1

2Bi+1(B+1)

)
(B2 )

2 =

1
12

(B+2)(B2−B+1)
B+1 − (−1)i+1

4Bi−1(B+1) . ⊓⊔

6 Applications

As already mentioned in the introduction, a salient feature of lattice cryptosystems, notably those based on
LWE [33] and its variants [37,24,5,23,8], is the presence of noise in the ciphertexts.

The noise can have different natures. It can be a parameter that is defined at setup time to guarantee
a certain security level. It can be a quantity that evolves over time due to ciphertext evaluations as in
fully homomorphic encryption. Finally, it can be algorithmic as the result of approximate computations or
numerical errors.

Gadget decomposition. Informally, an LWE ciphertext c can be seen as a (d+ 1)-dimensional vector such
that its dot product with the key t = (−s, 1) (also seen as a (d+ 1)-dimensional vector) equals the input
plaintext µ plus some small noise error e. The noise term is typically removed by rounding. We write
c← LWEs(µ) ∈ (Z/qZ)d+1. Ciphertext c can be multiplied by a small scalar k to give an encryption of kµ.
In order to support multiplication by an arbitrary scalar k, the multiplier needs first to be decomposed.

We follow the presentation of [28]; see also [17, Section 3]. Given a radix B and a level ℓ, the so-called
gadget vector is given by g = (1, B, . . . , Bℓ−1) ∈ (Z/qZ)ℓ so that for any vector v ∈ (Z/qZ)ℓ the product
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v · g⊺
yields a scalar k in Z/qZ. We also consider the associated inverse transformation g−1 : Z/qZ→ (Z/qZ)ℓ

such that for any scalar k ∈ Z/qZ, we have g−1(k) · g⊺
= k and g−1(k) is “small”. Explicitly, this inverse

transformation replaces the input scalar by a (signed) radix-B expansion:

g−1(k) = (k0, . . . , kℓ−1) such that k ≡
∑ℓ−1

i=0 ki B
i (mod q) .

From the basic LWE encryption scheme, an “extended” encryption scheme L̂WE is built by LWE-encrypting

individually each component of plaintext vector µ g: L̂WEs(µ)← (LWEs(µ), LWEs(Bµ), . . . , LWEs(B
ℓ−1µ)).

The LWE encryption of k µ can then be obtained from L̂WEs(µ) as LWEs(kµ)← g−1(k) · L̂WEs(µ)
⊺
.

For an LWE ciphertext c ← LWEs(µ), we let Err(c) denote the noise error present in c. We can then

write ⟨c, t ⟩ = µ+ Err(c), where t = (−s, 1). We define Ci := LWEs(B
iµ) and C′ := g−1(k) · L̂WEs(µ)

⊺
. We

so obtain

⟨C′, t ⟩ =
〈∑ℓ−1

i=0 ki LWEs(B
iµ), t

〉
=

∑ℓ−1
i=0 ki ⟨LWEs(B

iµ), t ⟩

=
∑ℓ−1

i=0 ki(B
i µ+ Err(Ci)) =

(∑ℓ−1
i=0 kiB

i
)
µ+

∑ℓ−1
i=0 Err(Ci))

= k µ+
∑ℓ−1

i=0 ki Err(Ci) .

The noise present in C′ only amounts to Err(C′) =
∑ℓ−1

i=0 ki Err(Ci)—this has to be compared with the
noise kErr(c) present in c ′ ← k LWEs(µ). Hence, using the gadget decomposition, the error only grows
logarithmically in q instead of linearly. Furthermore, the gadget decomposition can accommodate any digit
expansion. As a consequence, selecting the BNAF for g−1(k) further improves the situation since the variance
Var(Err(C′)) is then minimal.

We note that the gadget decomposition applies to all LWE-type encryption schemes. It also extends
naturally to vectors and matrices as done for example in the GSW encryption scheme [15] for the multiplication
of ciphertexts.

Key switching. LWE-type ciphertexts under a given key can be converted into ciphertexts under another key
in different parameter sets thanks to a key switching procedure [6, § 1.2]. Its implementation requires key-
switching keys: they essentially consist of an encryption of the key components of the original s = (s1, . . . , sd)
with respect to the new key s ′. More precisely, using the previous notation, the d key switching keys are given

ksk[j]← L̂WEs ′(sj), 1 ≤ j ≤ d. An input LWE ciphertext c← LWEs(µ) := (a1, . . . , ad, b) is then turned into
the ciphertext

c ′ ← (0, . . . , 0, b)−
d∑

j=1

g−1(aj) ksk[j] .

We are back to a setting similar to the previous one. Letting g−1(aj) = (aj,0, . . . , aj,ℓ−1), ksk[j] = (ksk[j]0, . . . ,
ksk[j]ℓ−1) and t ′ = (−s ′, 1), we can check that

⟨c ′, t ′⟩ = ⟨(0, . . . , 0, b), t ′⟩ −
∑d

j=1⟨g−1(aj) ksk[j], t
′⟩

= b−
d∑

j=1

(
aj sj +

∑ℓ−1
i=0 aj,i Err(ksk[j]i)

)

= ⟨c, t ⟩ −
d∑

j=1

ℓ−1∑
i=0

aj,i Err(ksk[j]i) ,

that is, an LWE encryption of µ under key s ′—provided that the noise keeps small.
Here too, it is crucial to adopt the BNAF representation for the gadget decomposition. The gain quickly

becomes significant as the error not only is amplified by the number ℓ of levels but also by the dimension d of
the input ciphertext (typically of the order of 103 ≈ 210 at a 128-bit security level).
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Fast Fourier transform. Crandall and Fagin [11, § 3] empirically observe that when floating-point FFTs
are employed, it is advantageous to make use of balanced representations. Indeed, they tend to reduce the
convolution errors attendant to floating-point arithmetic, including those resulting from round-off errors.
Algorithm 3 produces decompositions that are perfectly balanced: they on average have a zero mean; see
Corollary 2. FFT techniques are well suited to module lattices as a way to reduce the computation time
in lattice cryptography [26]. They for example play a central role in the fast bootstrapping procedure of
FHEW [13] or of TFHE [9].
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8. Jung Hee Cheon and Damien Stehlé. Fully homomophic encryption over the integers revisited. In E. Oswald
and M. Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, Part I, volume 9056 of Lecture Notes in
Computer Science, pages 513–536. Springer, 2015. doi:10.1007/978-3-662-46800-5_20.

9. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE: Fast fully homomorphic
encryption over the torus. Journal of Cryptology, 33(1):34–91, 2020. doi:10.1007/s00145-019-09319-x.

10. W. Edwin Clark and J. J. Liang. On arithmetic weight for a general radix representation of integers. IEEE
Transactions on Information Theory, 19(6):823–826, 1973. doi:10.1109/TIT.1973.1055100.

11. Richard Crandall and Barry Fagin. Discrete weighted transforms and large-integer arithmetic. Mathematics of
Computation, 62(205):305–324, 1994. doi:10.1090/S0025-5718-1994-1185244-1.

12. Richard Crandall and Carl Pomerance. Prime Numbers: A Computational Perspective. Springer, 2001. doi:

10.1007/978-1-4684-9316-0.
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