Lelantus Spark: Secure and Flexible Private
Transactions

Aram Jivanyan’?* and Aaron Feickert?

! Firo
2 Yerevan State University
3 Cypher Stack

Abstract. We propose a modification to the Lelantus private transac-
tion protocol to provide recipient privacy, improved security, and addi-
tional usability features. Our decentralized anonymous payment (DAP)
construction, Spark, enables non-interactive one-time addressing to hide
recipient addresses in transactions. The modified address format permits
flexibility in transaction visibility. Address owners can securely provide
third parties with opt-in visibility into incoming transactions or all trans-
actions associated to the address; this functionality allows for offloading
chain scanning and balance computation without delegating spend au-
thority. It is also possible to delegate expensive proving operations with-
out compromising spend authority when generating transactions. Fur-
ther, the design is compatible with straightforward linear multisignature
operations to allow mutually non-trusting parties to cooperatively re-
ceive and generate transactions associated to a multisignature address.
We prove that Spark satisfies formal DAP security properties of balance,
non-malleability, and ledger indistinguishability.

1 Introduction

Distributed digital asset protocols have seen a wealth of research since the in-
troduction of the Bitcoin transaction protocol, which enables transactions gen-
erating and consuming ledger-based outputs, and provides a limited but useful
scripting capability. However, Bitcoin-type protocols have numerous drawbacks
relating to privacy: a transaction reveals source addresses and amounts, and sub-
sequent spends reveal destination addresses. Further, data and metadata associ-
ated with transactions, like script contents, can provide undesired fingerprinting
of transactions.

More recent research has focused on mitigating or removing these limitations,
while permitting existing useful functionality like multisignature operations or
opt-in third-party transaction viewing. Designs in privacy-focused cryptocurren-
cies like Beam, Firo, Grin, Monero, and Zcash take different approaches toward
this goal, with a variety of different tradeoffs. The RingCT-based protocol cur-
rently used in Monero, for example, practically permits limited sender anonymity

* Corresponding author: aram@firo.org

due to the space and time scaling of its underlying signature scheme [17,9].
The Sprout and Sapling protocols supported by Zcash [11] (and their currently-
deployed related updates) require trusted parameter generation to bootstrap
their circuit-based proving systems, and interact with transparent Bitcoin-style
outputs in ways that can leak information [2,4]. The Mimblewimble-based con-
struction used as the basis for Grin can leak graph information prior to a merging
operation performed by miners [8]. To mitigate Mimblewimble’s linkability issue,
Beam has designed and implemented into its system an adaption of Lelantus for
use with the Mimblewimble protocol which enables obfuscation of the transac-
tion graph [19]. The Lelantus protocol currently used in Firo does not provide
recipient privacy; it supports only mints and signer-ambiguous spends of arbi-
trary amounts that interact with transparent Bitcoin-style outputs, which can
leak information about recipient identity [12].

Here we introduce Spark, an iteration on the Lelantus protocol enabling trust-
less private transactions which supports sender, receiver and transaction amount
privacy. Transactions in Spark, like those in Lelantus and Monero, use specified
sender anonymity sets composed of previously-generated shielded outputs. A
parallel proving system adapted from a construction by Groth and Bootle et al.
[10, 3] (of independent interest and used in other modified forms in Lelantus[12]
and Triptych [16]) proves that a consumed output exists in the anonymity set;
amounts are encrypted and hidden algebraically in Pedersen commitments, and
a tag derived from a verifiable random function [7, 13] prevents consuming the
same output multiple times, which in the context of a transaction protocol would
constitute a double-spend attempt.

Spark transactions support efficient verification in batches, where range and
spend proofs can take advantage of common proof elements and parameters to
lower the marginal cost of verifying each proof in such a batch; when coupled
with suitably-chosen sender anonymity sets, the verification time savings of batch
verification can be significant.

Spark enables additional useful functionality. The use of a modified Chaum-
Pedersen discrete logarithm proof, which asserts correct tag construction, en-
ables efficient signing and multisignature operations similar to those of [14] where
computationally-expensive proofs may be offloaded to more capable devices with
limited trust requirements. The protocol further adds two levels of opt-in visi-
bility into transactions without delegating spend authority. Incoming view keys
allow a designated third party to identify transactions containing outputs des-
tined for an address, as well as the corresponding amounts and encrypted memo
data. Full view keys allow a designated third party to additionally identify when
received outputs are later spent (but without any recipient data), which enables
balance auditing and further enhances accountability in threshold multisignature
applications where this property is desired.

All constructions used in Spark require only public parameter generation,
ensuring that no trusted parties are required to bootstrap the protocol or ensure
soundness.

2 Cryptographic Preliminaries

Throughout this paper, we use additive notation for group operations. Let N be
the set {0,1,2,...} of non-negative integers.

2.1 Pedersen Commitment Scheme

A homomorphic commitment scheme is a construction producing one-way al-
gebraic representations of input values. The Pedersen commitment scheme is a
homomorphic commitment scheme that uses a particularly simple linear com-
bination construction. Let ppcom = (G,F, G, F') be the public parameters for a
Pedersen commitment scheme, where G is a prime-order group where the dis-
crete logarithm problem is hard, F is its scalar field, and G, F' € G are uniformly-
sampled independent generators. The commitment scheme contains an algorithm
Com : F? — G, where Com(v,7) = vG + rF that is homomorphic in the sense
that
Com(vy,71) + Com(vg, ro) = Com(vy + va,71 + 71)

for all such input values v1,vs € F and blinding factors r1,r, € F. Further, the
construction is perfectly hiding and computationally binding.

We also require a matrix version of this construction, where input values v are
matrices with entries in F, and the generator G is replaced with a corresponding
matrix of independent generators. The definition and security properties extend
naturally to this case.

2.2 Representation proving system

A representation proof is used to demonstrate knowledge of a discrete logarithm.
Let pprep = (G, F) be the public parameters for such a construction, where G is
a prime-order group where the discrete logarithm problems is hard and F is its
scalar field.

The proving system itself is a tuple of algorithms (RepProve, RepVerify) for
the following relation:

{PPreps G, X € Giz € F: X = 2G}

The well-known Schnorr proving system may be used for this purpose.

2.3 Modified Chaum-Pedersen Proving System

A Chaum-Pedersen proof is used to demonstrate discrete logarithm equality.
Here we require a modification to the standard proving system that uses a second
group generator. Let ppchaum = (G, F, G, F, H) be the public parameters for such
a construction, where G is a prime-order group where the discrete logarithm
problem is hard, F is its scalar field, and G, F, H € G are uniformly-sampled
independent generators.

The proving system is a tuple of algorithms (ChaumProve, ChaumVerify) for
the following relation:

{PPehaum, Y, Z € G; (z,y) €F: Y = G +yF, H = 27}

We present an instantiation of such a proving system in Appendix A, along
with security proofs.

2.4 Parallel One-out-of-Many Proving System

We require the use of a parallel one-out-of-many proving system that shows
knowledge of openings of commitments to zero at the same index among two sets
of group elements. In the context of the Spark protocol, this will be used to mask
consumed coin serial number and value commitments for balance, ownership,
and double-spend purposes. We show how to produce such a proving system as
a straightforward modification of a construction by Groth and Kohlweiss [10]
that was generalized by Bootle et al. [3].

Let pppar = (G, F,n, m, ppcom) be the public parameters for such a construc-
tion, where G is a prime-order group where the discrete logarithm problem is
hard, F is its scalar field, n > 1 and m > 1 are integer-valued size decomposition
parameters, and ppcom are the public parameters for a Pedersen commitment
(and matrix commitment) construction.

The proving system itself is a tuple of algorithms (ParProve, ParVerify) for
the following relation, where we let N = n"™:

{pppara {Su‘/z ii_ol C GZ,Z S N, (S,U) clF:
0<I< N,S;=Com(0,s),V; = Com(0,v)}

We present an instantiation of such a proving system in Appendix B.

2.5 Authenticated Encryption Scheme

We require the use of an authenticated symmetric encryption scheme. In the
context of the Spark protocol, this construction is used to encrypt value and
arbitrary memo data for use by the sender and recipient of a transaction.

Let ppsym be the public parameters for such a construction. The construction
itself is a tuple of algorithms (SymKeyGen, SymEncrypt, SymDecrypt). Here
SymKeyGen is a key derivation function that accepts as input an arbitrary string,
and produces a key in the appropriate key space. The algorithm SymEncrypt
accepts as input a key and arbitrary message string, and produces ciphertext in
the appropriate space. The algorithm SymDecrypt accepts as input a key and
ciphertext string, and produces a message in the appropriate space if authenti-
cation succeeds.

Assume that such a construction is indistinguishable against chosen-plaintext
attack (IND-CPA), indistinguishable against adaptive chosen-ciphertext attack
(IND-CCAZ2), and key-private under chosen-ciphertext attacks (IK-CCA) in this
context.

2.6 Range Proving System

We require the use of a zero-knowledge range proving system. A range prov-
ing system demonstrates that a commitment binds to a value within a specified
range. In the context of the Spark protocol, it avoids overflow that would other-
wise fool the balance definition by effectively binding to invalid negative values.
Let pprp = (G, F, Umax, PPcom) be the relevant public parameters for such a con-
struction, where pp.om are the public parameters for a Pedersen commitment
construction.

The proving system itself is a tuple of algorithms (RangeProve, RangeVerify)
for the following relation:

{pprp,C € G;(v,r) €F: 0 < v < Vpax, C = Com(v,7)}

In practice, an efficient instantiation like Bulletproofs [5] or Bulletproofs+
[6] may be used to satisfy this requirement.

3 Concepts and Algorithms

We now define the main concepts and algorithms used in the Spark transaction
protocol.
Addresses. Users generate addresses that enable transactions. An address

consists of a tuple
(addrp, addriy,, addre, addrg).

For each address, addrpi is the public address used for receiving funds, addr;,
is an incoming view key used to identify received funds, addrg,) is a full view
key used to identify outgoing funds and conduct computationally-heavy proving
operations, and addrgy is the spend key used to generate transactions.

Coins. A coin encodes the abstract value which is transferred through the
private transactions. Each coin is associated with:

— A (secret) serial number that uniquely defines the coin.

— A serial number commitment.

— An integer value for the coin.

— An encrypted value intended for decryption by the recipient.

— A value commitment.

— A range proof for the value commitment, or a proof that a plaintext value
is represented by the value commitment.

— A memo with arbitrary recipient data.

— An encrypted memo intended for decryption by the recipient.

— A recovery key used by the recipient to identify the coin and decrypt private
data.

Coins additionally bind recipient addresses in an indistinguishable way; this may
be useful for out-of-band payment proofs that require such binding.
Private Transactions. There are two types of private transactions in Spark:

— Mint transactions. A Mint transaction generates new coins of public value
destined for a recipient public address in a confidential way, either through
a consensus-enforced mining process, or by consuming transparent outputs
from a non-Spark base layer. In this transaction type, a representation proof
is included to show that the minted coin is of the expected value. A Mint
transaction creates transaction data txpi, for recording on a ledger.

— Spend transactions. A Spend transaction consumes existing coins and gen-
erates new coins destined for one or more recipient public addresses in a
confidential way. In this transaction type, a representation proof is included
to show that the hidden input and output values are equal. A Spend trans-
action creates transaction data txspenq for recording on a ledger.

Tags. Tags are used to prevent coins from being consumed in multiple trans-
actions. When generating a Spend transaction, the sender produces the tag for
each consumed coin and includes it on the ledger. When verifying transactions
are valid, it suffices to ensure that tags do not appear on the ledger in any pre-
vious transactions. Tags are bound to coins uniquely via the serial number, but
cannot be associated to specific coins without the corresponding full view key.

Algorithms. Spark is a decentralized anonymous payment (DAP) system
defined as the following polynomial-time algorithms:

— Setup: This algorithm outputs all public parameters used by the proto-
col and its underlying components. The setup process does not require any
trusted parameter generation.

— CreateAddress: This algorithm outputs a public address, incoming view
key, full view key, and spend key.

— CreateCoin: This algorithm takes as input a public address, coin value,
and memo, and outputs a coin destined for the public address.

— Mint: This algorithm takes as input a public address, value, and (optionally)
implementation-specific data relating to base-layer outputs, and outputs a
mint transaction tXmint.

— Identify: This algorithm takes as input a coin and an incoming view key,
and outputs the coin value and memo.

— Recover: This algorithm takes as input a coin and a full view key, and
outputs the coin value, memo, serial number, and tag.

— Spend: This algorithm takes as input a full view key, a spend key, a set of
input coins (including coins used as a larger ambiguity set), the indexes of
coins to be spent, the corresponding serial numbers and values, a fee value,
and a set of output coins to be generated, and outputs a spend transaction
tXspend-

— Verify: This algorithm accepts either a mint transaction or a spend trans-
action, and outputs a bit to assess validity.

We provide detailed descriptions below, and show security of the resulting
protocol in the appendixes.

4

Algorithm Constructions

In this section we provide detailed description of the DAP scheme algorithms.

4.1

Setup

In our setup the public parameters pp are comprised of the corresponding pub-
lic parameters of a Pedersen commitment (and matrix commitment) scheme,
representation proving system, modified Chaum-Pedersen proving system, par-
allel one-out-of-many proving system, symmetric encryption scheme, and range
proving system.

Inputs: Security parameter A, size decomposition parameters n > 1 and

m > 1, maximum value parameter vy ax

10.

Outputs: Public parameters pp

. Sample a prime-order group G in which the discrete logarithm, decisional

Diffie-Hellman, and computational Diffie-Hellman problems are hard. Let F
be the scalar field of G.

. Sample F, G, H € G uniformly at random. In practice, these generators may

be chosen using a suitable cryptographic hash function on public input.

. Sample cryptographic hash functions

Hsera Hvah Hser’ 5 Hval/7 Hbind : {07 1}* —+F

uniformly at random. In practice, these hash functions may be chosen using
domain separation of a single suitable cryptographic hash function.

. Compute the public parameters ppcom = (G, F, G, F') of a Pedersen commit-

ment scheme.

. Compute the public parameters pprep, = (G, F) of a representation proving

system.

. Compute the public parameters ppchaum = (G,F, G, F, H) of the modified

Chaum-Pedersen proving system.

. Compute the public parameters pppar = (G,F,n,m, ppcom) of the parallel

one-out-of-many proving system.

. Compute the public parameters ppsym of an authenticated symmetric en-

cryption scheme.

. Compute the public parameters ppy, = (G, F, Umax, PPcom) Of a range proving

system.
Output all generated public parameters and hash functions as pp.

4.2 CreateAddress

We describe the construction of all addresses and underlying key types used in
the protocol.

Inputs: Security parameter \, public parameters pp

Outputs: Address key tuple (addrpk, addr;y,, addrp, addrgy)

Sample s1, s, € F uniformly at random, and let D = Com(0, 7).
Compute @1 = Com(s1,0) and Q2 = Com(sa, 7).

Set addrpx = (Q1, Q2).

Set addr;, = s1.

Set addrgy = (s1, 82, D).

Set addrgk = (s1, S2,7).

Output the tuple (addrpk, addrin, addrea, addrgy).

IR S ol e

4.3 CreateCoin

This algorithm generates a new coin destined for a given public address. Note
that while this algorithm generates a serial number commitment, it cannot com-
pute the underlying serial number.

Inputs: Security parameter A, public parameters pp, destination public ad-
dress addrpy, value v € [0, Uax), memo m, type bit b

Outputs: Coin public key S, recovery key K, value commitment C', value
commitment range proof IT,, (if b = 0), encrypted value T (if b = 0) or value v
(if b = 1), encrypted memo m

1. Parse the recipient address addrpx = (Q1, Q2).

2. Sample k € F.

3. Compute the serial number commitment S = Com(Hger (kQ1,Q1,Q2),0) +
Q2.

4. Compute the recovery key K = Com(k,0).

Generate the value commitment C' = Com (v, Hya1(kQ1)).

6. If b =0, generate a range proof

ot

Hrp = RangeProve(pprp, C7 (’Ua Hval(le)))'

7. Generate a symmetric encryption key kgym = SymKeyGen(kQ1); encrypt
the value T = SymEnc(ksym,v) (if b = 0) and memo m = SymEnc(ksym, m).

8. If b = 0, output the tuple (S, K, C, II,,, 7, m). Otherwise, output the tuple
(S, K,C,v,m).

The case b = 0 represents a coin with hidden value being generated in a Spend
transaction, while the case b = 0 represents a coin with plaintext value being
generated in a Mint transaction. Note that it is possible to securely aggregate
range proofs within a transaction; this does not affect protocol security.

4.4 Mint

This algorithm generates new coins from either a consensus-determined mining
process, or by consuming non-Spark outputs from a base layer with public value.
Note that while such implementation-specific auxiliary data may be necessary
for generating such a transaction and included, we do not specifically list this
here. Notably, the coin value used in this algorithm is assumed to be the sum of
all public input values as specified by the implementation.

Inputs: Security parameter A\, public parameters pp, destination public ad-
dress addrpy, coin value v € [0, Umax), memo m
Outputs: Mint transaction tXpint

1. Generate the new coin CreateCoin(addrpk, v, m, 1) — Coin = (S, K, C,v,m).
2. Generate a value representation proof on the value commitment:

ITy1 = RepProve(pprep, F, C — Com(v, 0); Hva (EQ1))

3. Output the tuple tXpmint = (Coin, ITha)).

4.5 Identify

This algorithm allows a recipient (or designated entity) to compute the value
and memo from a coin destined for its public address. It requires the incoming
view key corresponding to the public address to do so. If the coin is not destined
for the public address, the algorithm returns failure.

Inputs: Security parameter A\, public parameters pp, incoming view key
addr;y,, public address addrpy, coin Coin.

Outputs: Value v, memo m

1. Parse the incoming view key addrj, = s; and public address addrpx =
(Ql? QQ)

2. Parse the serial number commitment .S, value commitment C', recovery key
K, encrypted value T (if the coin is of type b = 0) or value v (if the coin is
of type b = 1), and encrypted memo 7 from Coin.

3. If Com(Hger(s1K,Q1,Q2),0) + Q2 # S, return failure.

4. Generate a symmetric encryption key kg, = SymKeyGen(s1K); decrypt
the value v = SymDec(ksym, ¥) (if b = 0) and memo m = SymDec(kgym, 7).

5. If Com(v, Hya(s1K)) # C, return failure.

6. Output the tuple (v, m).

4.6 Recover

This algorithm allows a recipient (or designated entity) to compute the serial
number, tag, value, and memo from a coin destined for its public address. It
requires the full view key corresponding to the public address to do so. If the
coin is not destined for the public address, the algorithm returns failure.
Inputs: Security parameter A\, public parameters pp, full view key addrgy,
public address addrpy, coin Coin.
Outputs: Coin serial number s, tag T', value v, memo m

1. Parse the required full view key components as addrg, = (81, s2) and public
address addrpx = (Q1, Q2).

2. Parse the serial number commitment .S, value commitment C, recovery key
K, encrypted value v (if the coin is of type b = 0) or value v (if the coin is
of type b = 1), and encrypted memo 7 from Coin.

3. If Com(Hger(51K,Q1,Q2),0) + Q2 # S, return failure.

4. Generate a symmetric encryption key kgym = SymKeyGen(s;K); decrypt
the value v = SymDec(ksym,?) (if b = 1) and memo m = SymDec(ksym, 7).

5. If Com(v, Hya1(s1K)) # C, return failure.

Compute the serial number s = Hger (1K, Q1,Q2) + s2 and tag T = (1/s)H.

7. Output the tuple (s,T,v,m).

>

4.7 Spend

This algorithm allows a recipient to generate a transaction that consumes coins
destined to its public address, and generates new coins destined for arbitrary
public addresses. The process is designed to be modular; in particular, only the
full view key is required to generate the parallel one-out-of-many proof, which
may be computationally expensive. The use of spend keys is only required for
the final Chaum-Pedersen proof step, which is of lower complexity.

It is assumed that the recipient has run the Recover algorithm on all coins
that it wishes to consume in such a transaction.

Inputs:

— Security parameter A\ and public parameters pp

— A full view key addrg,

— A spend key addrg

— A set of N input coins InCoins as part of a cover set

— For each u € [0,w) coin to spend, the index in InCoins, serial number, tag,
value, and recovery key: (Iy, Sy, Ty, Vo, Ky)

— An integer fee value f € [0, Umax)

— A set of t output coin public addresses, values, and memos:

t—1
{addrpk j, v5,m;}i ",
Outputs: Spend transaction tXspend

1. Parse the required full view key component as addrg, = D.
2. Parse the spend key addrgx = (s1, $2,7).
3. Parse the cover set serial number commitments and value commitments as
InCoins = {(S;, C;)} N1
4. For each u € [0, w):
(a) Compute the serial number commitment offset:
S! = Com(sy, —Hser (84, D)) + D
(b) Compute the value commitment offset:

C,, = Com(vy, Hyar (Su, D))

(c) Generate a parallel one-out-of-many proof:

(ITyar)u = ParProve(pppar, {Si — S, Ci — C,, éif)l;

u’ u

(luy Her! (Suy D)7 Hval(leu) - Hval’(suv D)))

10

5. Generate a set OutCoins = {CreateCoin(addrka,vj,mj,0)}2;5 of output
coins.

6. Parse the output coin value commitments as OutCoins = {éj}é;(l), where
each éj contains a recovery key preimage k; and destination address com-
ponent (Q1);.

7. Generate a representation proof for balance assertion:

w—1 t—1
II,.1 = RepProve | pprep, F, Z Cl - Zéj — Com(f,0);
u=0 =0
w—1 t—1
Z Hval/(sua D) - Z Hval(kj(Ql)j)
u=0 =0

8. Let = Hpinda(InCoins, OutCoins, f,{S.,, Cl,, Tu, (IIar)u, }1::_3 , Mpa).
9. For each u € [0,w), generate a modified Chaum-Pedersen proof, where we

additionally bind u to the initial transcript:

(Hchaum)u = Cha'umProve(ppchaumv Sq/u Tu; (Su, r— Hser’ (8u7 D)))

10. Output the tuple:

tXspend = (InCoins, OutCoins, f,
{S:u Cl/u Tu, (Hpar)u» (Hchaum)u}j;ol 9 Hbal)

Remark 1. We note that it is possible to modify the balance proof to account
for other input or output values not represented by coin value commitments,
similarly to the handling of fees. This observation can allow for the transfer of
value into new coins without the use of a Mint transaction, or a transfer of value
to a transparent base layer. Such transfer functionality is likely to introduce

practical risk that is not captured by the protocol security model, and warrants
thorough analysis.

4.8 Verify

This algorithm assesses the validity of a transaction.
Inputs: either a mint transaction txpint or a spend transaction tXspend
Outputs: a bit that represents the validity of the transaction
If the input transaction is a mint transaction:

. Parse the transaction txmins = (Coin, ITpy).
. Parse the coin value and value commitment as Coin = (v, C).
. Check that v € [0, Umax), and output 0 if this fails.

. Check that RepVerify(pprep; ITval, F, C — Com(v,0)), and output 0 if this
fails.

5. Output 1.

=W N

11

If the input transaction is a spend transaction:

. Parse the transaction:

tXspend = (InCoins, OutCoins, f,
{S:u quu Tu7 (Hpar)lu (Hchaum)u}:;ol) Hbal)

. Parse the cover set serial number commitments and value commitments as

InCoins = {(S;,C;) } 5t

. Parse the output coin value commitments and range proofs as OutCoins =

{ij (pr)j 3;%)

. For each u € [0,w) :

(a) Check that T, does not appear in any previously-verified transaction,
and output 0 if it does.

(b) Check that ParVerify (pppars (Ipar)us {Si —S.,, Ci —C: YN :1), and output
0 if this fails.

(¢) Check that ChaumVerify(ppehaum, (Hehaum)u, Sis Tw), and output 0 if
this fails.

. For each j € [0,1) :

(a) Check that RangeVerify(pp:p, (II1p);, C), and output 0 if this fails.

. Check that f € [0, vnax), and output 0 if this fails.

. Check that
w—1 t—1
RepVerify [pprep, bal, F, Z Cl - Zéj — Com(f,0)
u=0 =0

and output 0 if this fails.
. Output 1.

5 Multisignature Operations

Spark addresses and transactions support efficient and secure multisignature
operations, where a group of signers are required to authorize transactions. We
describe a method for signing groups to perform the CreateAddress and Spend
algorithms to produce multisignature addresses and spend transactions indistin-
guishable from others.

Throughout this section, suppose we have a group of v signers who wish

to collaboratively produce an address or transaction. Further, sample a crypto-
graphic hash function Hage : {0,1}* — F uniformly at random.

CreateAddress

1. Each player o € [0,v) chooses $1,4,52,a, 7o € F uniformly at random, and
sets Dy = Com(0,74). It sends the the values s1 o, 82,4, Do to all players.

12

2. All players compute the aggregate incoming view key and full view key com-
ponents:

v—1

S1= Z Hage (‘{51,6}2;570‘) Sl,a
a=0
v—1

3= Y Hogg <{82,6}E;é7 a) 52,0
a=0

D= Sﬂagg (‘{DB}E;%)’O‘) De
=0

3. All players compute the aggregate public address components:

@1 = Com(s1,0)
Q2 = Com(s2,0) + D

Note that each player a keeps its spend key share r, private.

5.2 Spend

Because all players possess the aggregate full view key corresponding to the ag-
gregate public address, any player can use it to construct all transaction compo-
nents except modified Chaum-Pedersen proofs. We describe now how the signers
collaboratively produce such a proof to authorize the spending of a coin, with
the following proof inputs (using our previous notation):

PPchaum S;, T (Sua r—= Hser/(sua D))

1. Each player a € [0,v) chooses Ty, 3, € F uniformly at random. It generates
a commitment to the tuple (7,5, F") and sends it to all players.

2. Each player reveals its commitment opening to all players, verifies all players’
openings, and aborts if any are invalid.

3. All players compute the initial proof terms:

v—1
Al = ZFB G
B=0

v—1
Ay = Z?ﬁ T,
B=0
v—1

Az = (55F)

B=0

They compute the challenge ¢ from the initial proof transcript.

13

4. Each player « € [0,v) computes the following:

v—1
t] = 275 + ¢Sy
B=0
t2,o¢ = ga + cHagg ({Dﬁ}g;(l)7 OZ) Ta

It sends t5 , to all players.
5. All players compute the final proof term:

v—1
ty = Z t2,5 - CHscr/(sua D)
B=0

6 Applications of Key Structures

The key structure in Spark permits flexible and useful functionality relating to
transaction scanning and generation.

The incoming view key is used in Identify operations to determine when
a coin is directed to the associated public address, and to determine the coin’s
value and associated memo data. This permits two use cases of note. In one case,
blockchain scanning can be delegated to a device or service without delegating
spend authority for identified coins. In another case, wallet software in possession
of a spend key can keep this key encrypted or otherwise securely stored during
scanning operations, reducing key exposure risks.

The full view key is used in Recover operations to additionally compute the
serial number and tag for coins directed to the associated public address. These
tags can be used to identify a transaction spending the coin. Providing this key
to a third party permits identification of incoming transactions and detection of
outgoing transactions, which additionally provides balance computation, with-
out delegating spend authority. Users like public charities may wish to permit
public oversight of funds with this functionality. Other users may wish to pro-
vide this functionality to an auditor or accountant for bookkeeping purposes. In
the case where a public address is used in threshold multisignature operations, a
cosigner may wish to know if or when another cohort of cosigners has produced
a transaction spending funds from its address.

Further, the full view key is used in Spend to generate one-out-of-many
proofs. Since the parallel one-out-of-many proof used in Spark can be compu-
tationally expensive, it may be unsuitable for generation by a computationally-
limited device like a hardware wallet. Providing this key to a more powerful
device enables easy generation of this proof (and other transaction components
like range proofs), while ensuring that only the device holding the spend key can
complete the transaction by generating the simple modified Chaum-Pedersen
proofs.

14

7 Efficiency

It is instructive to examine the efficiency of Spend transactions in size, generation
complexity, and verification complexity. In addition to our previous notation for
parameters, let vmayx = 264, so coin values and fees can be represented by 8-byte
unsigned integers. Further, suppose coin memos are fixed at M bytes in length,
with a 16-byte authentication tag; this is the case for the ChaCha20-Poly1305
authenticated symmetric encryption construction, for example [15]. Transaction
size data for specific component instantiations is given in Table 1, where we
consider the size in terms of group elements, field elements, and other data.
Note that we do not include input ambiguity set references in this data, as this
depends on implementation-specific selection and representation criteria.

Table 1. Spend transaction size by component

Component |Instantiation Size (G) Size (IF)| Size (bytes)
f 8
I, Bulletproofs+ 2[1g(64t)] + 3 3
I Schnorr 2
Input data (w coins)
(s, C") 2w
Hpar this paper 2m+ 4dw|[m(n —1) + 4w
I chaum this paper 3w 2w
Output data (¢ coins)
(S,K,C) 3t
(B, 7) ChaCha20-Poly1305 (8 + M + 16)t

To evaluate the verification complexity of Spend transactions using these
components, we observe that verification in constructions like the parallel one-
out-of-many proving system in this paper, Bulletproof+ range proving system,
Schnorr representation proving system, and modified Chaum-Pedersen proving
system in this paper all reduce to single linear combination evaluations in G.
Because of this, proofs can be evaluated in batches if the verifier first weights
each proof by a random value in IF, such that distinct group elements need only
appear once in the resulting weighted linear combination. Notably, techniques
like that of [18] can be used to reduce the complexity of such evaluations by up
to a logarithmic factor. Suppose we wish to verify a batch of B transactions, each
of which spends w coins and generates ¢ coins. Table 2 shows the verification
batch complexity in terms of total distinct elements of G that must be included
in a linear combination evaluation.

We further comment that the parallel one-out-of-many proving system pre-
sented in this paper may be further optimized in verification. Because corre-
sponding elements of the {S;} and {V;} input sets are weighted identically in
the protocol verification equations, it may be more efficient (depending on imple-
mentation) to combine these elements with a sufficient weight prior to applying

15

Table 2. Spend transaction batch verification complexity for B transactions with w
spent coins and t generated coins

Component Complexity
Parallel one-out-of-many |B[w(2m + 6) +2m™] +m" + 1
Bulletproofs+ B(t+ 21g(64t) + 3) + 1287 + 2
Schnorr B(5w) + 3
Modified Chaum-Pedersen Bw+t+1)+2

the proof-specific weighting identified above for batch verification. Initial tests
using a variable-time curve library suggest significant reductions in verification
time with this technique.

Acknowledgments

The authors thank pseudonymous collaborator koe for ongoing discussions dur-
ing the development of this work.

References

1. Ben Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer,
E., Virza, M.: Zerocash: Decentralized anonymous payments from Bitcoin.
In: 2014 IEEE Symposium on Security and Privacy. pp. 459-474 (2014).
https://doi.org/10.1109/SP.2014.36

2. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von Neumann architecture. In: Proceedings of the 23rd USENIX
Conference on Security Symposium. p. 781-796. SEC’14, USENIX Association,
USA (2014)

3. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short ac-
countable ring signatures based on DDH. In: Pernul, G., Y A Ryan, P., Weippl, E.
(eds.) Computer Security — ESORICS 2015. pp. 243-265. Springer International
Publishing, Cham (2015)

4. Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for zk-SNARK
parameters in the random beacon model. Cryptology ePrint Archive, Report
2017/1050 (2017), https:/ /ia.cr/2017/1050

5. Biinz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.:
Bulletproofs: Short proofs for confidential transactions and more. In: 2018
IEEE Symposium on Security and Privacy (SP). pp. 315-334 (2018).
https://doi.org/10.1109/SP.2018.00020

6. Chung, H., Han, K., Ju, C., Kim, M., Seo, J.H.: Bulletproofs+: Shorter proofs for
privacy-enhanced distributed ledger. Cryptology ePrint Archive, Report 2020/735
(2020), https://ia.cr/2020/735

7. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Vaudenay, S. (ed.) Public Key Cryptography - PKC 2005. pp. 416-431.
Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

16

8. Fuchsbauer, G., Orru, M., Seurin, Y.: Aggregate cash systems: A cryptographic in-
vestigation of Mimblewimble. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptol-
ogy — EUROCRYPT 2019. pp. 657-689. Springer International Publishing, Cham
(2019)

9. Goodell, B., Noether, S., RandomRun: Concise linkable ring signatures and forgery
against adversarial keys. Cryptology ePrint Archive, Report 2019/654 (2019),
https://ia.cr/2019/654

10. Groth, J., Kohlweiss, M.: One-out-of-many proofs: Or how to leak a secret and
spend a coin. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology - EURO-
CRYPT 2015. pp. 253-280. Springer Berlin Heidelberg, Berlin, Heidelberg (2015)

11. Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash protocol specification (2021),
https://github.com/zcash/zips/blob/master /protocol/protocol.pdf

12. Jivanyan, A.: Lelantus: A new design for anonymous and confidential cryptocurren-
cies. Cryptology ePrint Archive, Report 2019/373 (2019), https://ia.cr/2019/373

13. Lai, R.W.F., Ronge, V., Ruffing, T., Schréder, D., Thyagarajan, S.A.K.,
Wang, J.: Omniring: Scaling private payments without trusted setup. In: Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Commu-
nications Security. p. 31-48. CCS ’19, Association for Computing Machin-
ery, New York, NY, USA (2019). https://doi.org/10.1145/3319535.3345655,
https://doi.org/10.1145/3319535.3345655

14. Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple Schnorr multi-signatures
with applications to Bitcoin. Designs, Codes and Cryptography 87(9), 2139-2164

2019)

15. 1(\Tir, Y., Langley, A.: ChaCha20 and Poly1305 for IETF protocols. RFC 7539, RFC
Editor (May 2015), http://www.rfc-editor.org/rfc/rfc7539.txt, http://www.rfc-
editor.org/rfc/rfc7539.txt

16. Noether, S., Goodell, B.: Triptych: Logarithmic-sized linkable ring signatures with
applications. In: Garcia-Alfaro, J., Navarro-Arribas, G., Herrera-Joancomarti, J.
(eds.) Data Privacy Management, Cryptocurrencies and Blockchain Technology.
pp. 337-354. Springer International Publishing, Cham (2020)

17. Noether, S., Mackenzie, A., et al.: Ring confidential transactions. Ledger 1, 1-18
(2016)

18. Pippenger, N.: On the evaluation of powers and monomials. STAM Journal on
Computing 9(2), 230-250 (1980)

19. Pyrros Chaidos, V.G.: Lelantus-CLA. Cryptology ePrint Archive, Report
2021/1036 (2021), https://ia.cr/2021/1036

A Modified Chaum-Pedersen Proving System

The proving system is a tuple of algorithms (ChaumProve, ChaumVerify) for the
following relation:

{PPehaum, Y, Z € G; (x,y) €F: Y = 2G + yF, H = 27}
The protocol proceeds as follows:

1. The prover selects random 7, s € F. It computes
(Al, A27 Ag) = (’I“C;7 ’I"Z, SF)

and sends these values to the verifier.

17

2. The verifier selects a random challenge ¢ € F and sends it to the prover.

3. The prover computes responses t1 := r+cz and t5 := s+ cy, and sends these
values to the verifier.

4. The verifier accepts the proof if and only if

A1+A3+CY:t1G+t2F

and
Ao +cH =141 7.

We now prove that the protocol is complete, special sound if G and F are
independent, and special honest-verifier zero knowledge if G and H are indepen-
dent.

Proof. Completeness of this protocol follows trivially by inspection.

To show the protocol is special honest-verifier zero knowledge, we construct
a valid simulator producing transcripts identically distributed to those of valid
proofs. The simulator chooses a random challenge ¢ € F, random values t;,t5 €
F, and a random value A; € G. It sets As :=t1Z — cH and A3 := ;G + toF —
cY — Aj. Such a transcript will be accepted by an honest verifier. Observe that
all transcript elements in a valid proof are independently distributed uniformly
at random if the generators F, G, H are independent, as are transcript elements
produced by the simulator.

To show the protocol is special sound, consider two accepting transcripts
with distinct challenge values ¢ # ¢ € F:

(A17A27 A3a C,tlatQ)

and
(Alv AQa A3a C/7t/17t/2)

The first verification equation applied to the two transcripts implies that (¢ —
)Y = (t1—1))G+(t2—t5) F, so we extract the witness values © := (t;—t})/(c—¢)
and y := (to — t5)/(c —), or a nontrivial discrete logarithm relation between
G and F (a contradiction if these generators are independent). Similarly, the
second verification equation implies that (¢ — ¢)H = (t; — t})Z, yielding the
same value for x as required.

This completes the proof.

Remark 2. Note that extraction of a valid witness to show special soundness (as
opposed to a nontrivial discrete logarithm relation between generators) requires
that G and F' be independent.

Remark 3. Note that transcripts produced by the simulator are indistinguishable
from those of real proofs only if G and H are independent.

18

B Parallel One-out-of-Many Proving System

The proving system itself is a tuple of algorithms (ParProve, ParVerify) for the
following relation, where we let N = n"™:

{pppar, {Si7‘/;}£\]:61 c G%leN, (s,v) €F:
0 <1< N,S;=Com(0,s),V; = Com(0,v)}

The protocol is shown in Figure 1, where we use the notation of [12].

This protocol is complete, special sound, and special honest-verifier zero
knowledge; the proof is essentially the same as in the original construction, with
only minor straightforward modifications.

C Payment System Security

Zerocash [1] established a robust security framework for decentralized anony-
mous payment (DAP) scheme security that captures a realistic threat model
with powerful adversaries who are permitted to add malicious coins into trans-
actions’ input ambiguity sets, control the choice of transaction inputs, and pro-
duce arbitrary transactions to add to a ledger. Here we formally prove Spark’s
security within a related (but modified) security model; proofs follow somewhat
similarly to that of [1].
We recall the security definition for a DAP scheme

IT = (Setup, CreateAddress, Mint, Spend, Recover, Verify),

which is secure if it satisfies definitions for ledger indistinguishability, transaction
non-malleability, and balance security properties, which we define below.

Each security property is formalized as a game between a polynomial-time
adversary A and a challenger C, where in each game the behavior of honest
parties is simulated via an oracle OPAF . The oracle OP4¥ maintains a ledger L
of transactions and provides an interface for executing CreateAddress, Mint, and
Spend algorithm operations for honest parties. To simulate behavior from honest
parties, A passes a query to C, which makes sanity checks and then proxies the
queries to OPAP | returning the responses to A as needed. For CreateAddress
queries, C runs the CreateAddress protocol algorithm and returns the public
address addrp; to A. For Mint queries, the adversary specifies the value and
destination public address for the transaction, and the resulting transaction is
produced and returned by C if valid. For Spend queries, the adversary specifies
the input coins to be consumed, as well as the values and destination public
addresses for the transaction, and the resulting transaction is produced (after
C recovers the consumed coins) and returned by C if valid. The oracle OPAP
also provides an Insert query that allows the adversary to insert arbitrary and
potentially malicious tXmint Or tXspena transactions to the ledger L, provided
they are valid.

For each security property, we say the DAP satisfies the property if the
adversary can win the corresponding game with only negligible probability.

19

ParProve (pppar, {5, Vi} o' (1,5, v))

Compute:
ra,rre, o {azi gty R F
Vj € [0,m)
n—1

aj,0 = = 25=1 @jii
A = Com({aj, ;-rfi;lo’"fl, rA)
B = Com({o1;,:}] 6" " 5)
C=

Com({a;,i(1—201,)}7—5" " ro)

D= Com({fai,- ??i_:lo’”_ ,TD)
Vj € [0,m)
PP «rF
Gy =30 pisVi+ Com(0, pY)

J

G°
(computing p; ;

as in the orig. paper)

Vj € [0,m),i € [1,n)

fii = 01T+ aj
ZA=TBT+TA
zc =rcx+7rp
25 = s — Sl g5
oy = va™ = S o

A’B’C’D7

5 =il pigSi+ Com(0,pf) {GF,GY Y7
—A,B,C,D{G},G/}"' € G

z+{0,1}*
%

—1,n—1

{fjvi};'n:(),izl

ZA,R2C, 28,2V
_—

ParVerify (pppar ,{S:, Vi }i\’:_o

Accept if and only if:

“1n—1
{fiitjizoh €F
ZA,2C, RV, ZR € F
Vi:fio=z—

n—1 p
i=0 JJ:?

D+ xC =

Com({fj.i(x — f5.)} g™

A+zx2B =
Com({ f,i

m—1,n—1
4,6=0
S fiSi = 3 G
= Com(0, zs)
N—-17 m— j
Zi:ol fiVi— Zj:ol z’ G}/
= Com(0, zv)
=175 fisy

;ZA)

where f,

Fig. 1. Parallel one-out-of-many protocol

20

)

;Zc)

Remark 4. We also require the DAP scheme to be complete, which implies that
any unspent coin on the ledger can be spent. This property means that if the
coin appears on the ledger L as an output of a transaction, a user in possession of
the corresponding secret data can generate a valid Spend transaction consuming
it. This property immediately follows from the completeness properties of the
underlying cryptographic constructions.

C.1 Balance

Balance requires that no bounded adversary A can control more coins than
are minted or spent to it. It is formalized by a BAL game. The adversary A
adaptively interacts with C and the oracle with queries, and at the end of the
interaction outputs a set of coins AdvCoins. Letting ADDR be set of all addresses
of honest users generated by CreateAddress queries, A wins the game if

Vunspent + YA ADDR > Umint + VADDR— A

which implies that the total value the adversary can spend or has spent already
is greater than the value it has minted or received. Here:

— Vunspent 18 the total value of unspent coins in AdvCoins;

— Umint 1S the total value minted by A to itself through Mint or Insert queries;

— UADDR— A 18 the total value of coins received by A from addresses in ADDR,;
and

— vA—ADDR 1S the total value of coins sent by the adversary to the addresses
in ADDR.

We say a DAP scheme IT is BAL-secure if the adversary A wins the game BAL
only with negligible probability:

PriBAL(II, A, \) = 1] < negl(\)

Assume the challenger maintains an extra augmented ledger (L,a) where
each a; contains secret data from transaction tx; in L. In that case where tx;
was produced by a query from A to the challenger C, a; contains all secret
data used by C to produce the transaction. If instead tx; was produced by a
direct Insert query from A, a; consists of all extracted witness data from proofs
contained in the transaction. The resulting augmented ledger (L, @) is balanced
if the following conditions are true:

1. Each valid spend transaction tXgpend,r i (L, &) consumes distinct coin se-
rial /value commitment pairs, and each consumed coin is the output of a valid
tXmint,s OF tXspend,j transaction for some ¢ < k or j < k. This requirement
implies that all transactions spend only valid coins, and that no coin is spent
more than once within the same valid transaction.

2. No two valid spend transactions in (L, @) consume the same coin. This implies
no coin is spent through two different transactions. Together with the first
requirement, this implies that each coin is spent at most once.

21

3. For each (tXspend, @) in (L, @) consuming input coins with value commitments
{C, Yy, for each u € [0,w):

— If C, is the output of a valid Mint transaction with augmented ledger
witness a’, then the value of C, contained in @’ is the same as the cor-
responding value contained in a for the value commitment offset C,.

— If C, is the output of a valid Spend transaction with augmented ledger
witness a’, then the value of C, contained in @’ is the same as the cor-
responding value contained in a for the value commitment offset C,.

This implies that values are maintained between transactions.

4. For each (tXspend,a) in (L,a@) with fee f that consumes input coins with
value commitment offsets {C” }*“_4 and generates coins with value commit-
ments {C };;é, a contains values {v, }*’~ and {7; };;%) corresponding to the
commitments such that the balance equation

w—1 t—1
E Uy = E vj+ f
u=0 §=0

holds. For each (txmint,a) in (L,a@) with public value v that generates a
coin with value commitment C, a contains a value v’ corresponding to the
commitment such that v = v’. This implies that values cannot be created
arbitrarily.

5. For each txXgpend in (L, @) inserted by A through an Insert query, each con-
sumed coin in tXspend is not recoverable by any address in ADDR. This
implies that the adversary cannot generate a transaction consuming coins it
does not control.

If these five conditions hold, then A did not spend or control more money than
was previously minted or spent to it, and the inequality

Umint T VADDR— A < Vunspent + VA ADDR
holds. We now prove that Spark is BAL-secure under this definition.

Proof. By way of contradiction, assume the adversary A interacts with C leading
to a non-balanced augmented ledger (L, @) with non-negligible probability; then
at least one of the five conditions described above is violated with non-negligible
probability:

A violates Condition 1: Suppose that the probability 4 wins the game
violating Condition 1 is non-negligible. Each tXpena generated by a non-Insert
oracle query satisfies this condition already, so there must exist a transaction
(tXspend, @) in (L, @) inserted by A.

Suppose there exist inputs ug, ug € [0, w) of tXspena that consume the same
coin with serial number commitment S. Validity of the corresponding parallel
one-out-of-many proofs (ITpar)y, and (IIpar)u, yields extractions z,, and x,,
such that S-S, = x,, F and S-S, = x,,F for the serial number commitment
offsets S;, and S, , respectively. Validity of the modified Chaum-Pedersen proofs
(Hehaum)u, and (Hehaum)u, give extracted openings S, = s,,G + 7y, ' and

22

Sy, = Suy G+7y, I and tag representations Ty, = (1/5y,)H and Ty, = (1/54,)H.
This implies

S =85, G+ (ru, + 2wy) F = 8u,G + (Tuy + Tuy)F

represents two openings of S. However, transaction validity means T, # Ty,,
and injectivity of the tag construction asserts s,, 7 Su,. Hence we have dis-
tinct openings of S, which contradicts the binding property of the underlying
commitment scheme.

The second possibility for violation of the condition is that the transaction
tXspend CONSUMes a coin that is not generated in any previous valid transaction.
Validity of the modified Chaum-Pedersen proof for such an input gives a tag
representation T'= (1/s)H and serial number commitment offset S’ = sG +rF.
Validity of the parallel one-out-of-many proof for the input gives an index [such
that S;— S’ = F, meaning S; = sG+ (r+x)F is an opening of this commitment.
Because transaction validity requires all input ambiguity set elements to be
produced in previous valid transactions as valid commitments, the adversary
knows an opening of such a commitment, which is a contradiction.

A violates Condition 2: Suppose that the probability 4 wins the game
violating Condition 2 is non-negligible. This means the augmented ledger (L, @)
contains two valid Spend transactions consuming the same coin but producing
distinct tags. Similarly to the previous argument, this implies distinct openings
of the coin serial number commitment, which is a contradiction.

A violates Condition 3: Suppose that the probability A wins the game
violating Condition 3 is non-negligible. Let C be the value commitment of the
coin consumed by an input of tXspena and generated in a previous transaction
(of either type) in (L,&). Since the generating transaction is valid, we have
an extracted opening C' = vG + aF from either the balance proof (in a Mint
transasction) or the range proof (in a Spend transaction). Validity of the cor-
responding parallel one-out-of-many proof in txspena gives an extracted discrete
logarithm C' — C’ = «F, where C’ is the input’s value commitment offset. But
this immediately gives C' = vG+(a—x)F, a contradiction since the commitment
scheme is binding.

A violates Condition 4: Suppose that the probability A4 wins the game
violating Condition 4 is non-negligible. If the augmented ledger (L, @) contains a
Spend transaction that violates the balance equation, this immediately implies
a break in the commitment binding property since the corresponding balance
proof Il is valid, which is a contradiction. If instead the augmented ledger
(L,d) contains a Mint transaction that violates the balance requirement, this
immediately implies a break in the commitment binding property since the cor-
responding balance proof I1,; is valid, again a contradiction.

A violates Condition 5: Suppose that the probability 4 wins the game
violating Condition 5 is non-negligible. That is, A produces a Spend transaction
tXspend Dy an Insert question that is valid on the augmented ledger (L,a@) and
consumes a coin can be recovered by a public address (Q1,Q2) € ADDR. Let
(s1, s2,7) be the secret key corresponding to this address. Since tXgpena can be re-

23

covered by this honest address, the serial number commitment for the consumed
coin is of the form

S :Hser(51K7 Qh Q2)G + Q2
:(Hser(lea Qla Q2) + 32)G +rF

for recovery key K. Validity of the parallel one-out-of-many proof corresponding
to S gives an extraction z such that S — S’ = zF, where S’ is the serial number
commitment offset. Hence

S = (Hser (51K, Q1,Q2) + 52)G + (1 — x)F

and the corresponding tag (via validity of the modified Chaum-Pedersen proof)
is

T =1/(Hser(51K,Q1,Q2) + 52)H.

Since we can model Hg, as a random oracle, A has produced an opening to
S’ and a discrete logarithm to T, but did not produce the secret key (s1, $2,7)
corresponding to the public address (Q1,Q2), a contradiction.

This completes the proof.

C.2 Transaction Non-Malleability

This property requires that no bounded adversary can substantively alter a
valid transaction. In particular, non-malleability prevents malicious adversaries
from modifying honest users’ transactions by altering data or redirecting the
outputs of a valid transaction before the transaction is added to the ledger. Since
non-malleability of Mint transactions is offloaded to authorizations relating to
consensus rules or base-layer operations, we need only consider the case of Spend
transactions.

This property is formalized by an experiment TR-NM, in which a bounded
adversary A adaptively interacts with the oracle OPAP | and then outputs a
spend transaction tx’. If we let T' denote the set of all transactions produced by
Spend queries to OPAP | and L denote the final ledger, A wins the game if there
exists tx € T such that:

— tx' £ txg

— tx’ reveals a tag also revealed by tx; and

— both tx’ and tx are valid transactions with respect to the ledger L’ containing
all transactions preceding tx on L.

We say a DAP scheme IT is TR-NM-secure if the adversary A wins the
game TR-NM only with negligible probability:
Pr[TR-NM(II, A, \) = 1] < negl())
Let T be the set of all txspend transactions generated by the OPAP in response
to Spend queries. Since these transactions are generated by these oracle queries,
A does not learn any secret data used to produce these transactions.

24

Proof. Assume that the adversary A wins the game with non-negligible proba-
bility. That is, A produces a transaction tx’ revealing a tag T also revealed in a
transaction tx. Without loss of generality, assume each transaction consumes a
single coin.

Observe that a valid Spend binds all transaction elements except for modified
Chaum-Pedersen proofs into each such proof via Hyping and the proof transcripts.
Therefore, in order to produce valid tx’ # tx, we consider two cases:

— the modified Chaum-Pedersen proofs are identical, but tx’ and tx differ in
another element of the transaction structures; or
— the modified Chaum-Pedersen proof in tx’ is distinct from the proof in tx.

In the first case, at least one input to the binding hash Hy;nq used to initialize
the modified Chaum-Pedersen transcripts must differ between the proofs. Be-
cause we model this hash function as a random oracle, the outputs differ except
with negligible probability, a contradiction since the resulting proof structures
must be identical.

In the second case, validity of the modified Chaum-Pedersen proof I/,
contained in tx’ leads to an extraction of an opening of the serial number com-
mitment offset S’ = sG + rF. Further, validity of the parallel one-out-of-many
proof I}, contained in the transaction yields an index [and discrete logarithm
extraction such that S; = sG+ (r +) F, where S; is contained in InCoins. How-
ever, S; was generated in a transaction in L’ preceding tx, and contains either
a proof of representation (if generated in a Mint transaction) or range proof (if
generated in a Spend transaction) that asserts its representation with respect
to the generators G, F' is unique up to the binding property of the commitment
scheme.

However, the adversary does not know the opening of S; (since it was gen-
erated by the oracle), and the modified Chaum-Pedersen proof ITepaum from tx
authorizing the spend of S; is special honest-verifier zero knowledge, the ad-
versary can only produce its valid proof Il.p.um with negligible probability, a
contradiction.

C.3 Ledger Indistinguishability

This property implies that no bounded adversary A received any information
from the ledger except what is already publicly revealed, even if it can influence
valid ledger operations by honest users.

Ledger indistinguishability is formalized through an experiment L-IND be-
tween a bounded adversary A and a challenger C, which terminates with a binary
output b by A. At the beginning of the experiment, C samples Setup(1*) — pp
and sends the parameters to A; next it samples a random bit b € {0,1} and ini-
tializes two separate DAP oracles OP4F and OPAP | each with its own separate
ledger and internal state. At each consecutive step of the experiment:

1. C provides A two ledgers (Liegt = L, Lright = L1—p) where Ly and Li_; are
the current ledgers of the oracles OF AP and OPAP respectively.

25

2. A sends to C two queries @, Q" of the same type (one of CreateAddress,
Mint, Spend, Recover, or Insert).

— If the query type is Insert or Mint, C forwards Q to L, and Q' to Ly_y,
permitting A to insert its own transactions or mint new coins to Ljeg
and Liight.

— For all queries of type CreateAddress, Spend, or Recover, C first checks
if the two queries) and Q' are publicly consistent, and then forwards
Q to OPAY and Q' to OPAP . Tt receives the two oracle answers (ag, a1),
but returns (ap, a1_p) to A.

As the adversary does not know the bit b and the mapping between (Lict;, Lright)
and (Lo, L1), it cannot learn weather it affects the behavior of honest parties on
(Lo, L1) or on (Ly, Lg). At the end of the experiment, A sends C a bit b" € {0, 1}.
The challenger outputs C outputs 1 if b = ', and 0 otherwise.

We require the queries @ and Q' be publicly consistent as follows: if the
query type of Q and @’ is Recover, they are publicly consistent by construction.
If the query type of @ and @’ is CreateAddress, both oracles generate the same
address. If the query type of Q and @’ is Mint, the minted values of both queries
must be equal. If the query type of Q and @’ is Spend, then:

— Both @ and Q' must be well-formed and valid, so the referenced input coins
must have been generated in a previous transaction on the ledger and be
unspent. Further, the transaction must balance.

— The number of spent coins and output coins must be the same in @ and Q’.

— If a consumed coin in @ references a coin in Ly posted by A through an
Insert query, then the corresponding index in (' must also reference a coin
in Ly posted by A through an Insert query and the values of these two coins
must be equal as well (and vice versa for Q').

— If an output coin referenced by @ does not reference a recipient address in the
oracle ADDR list (and therefore is controlled by A), then the corresponding
value must equal that of the corresponding coin referenced by @) at the same
index (and vice versa for Q’).

We say a DAP scheme IT is L-IND-secure if A wins the game L-IND only
probability at most negligibly better than chance:

Pr[L-IND(IT, A,) = 1] - % < negl(V)

Proof. In order to prove that A’s advantage in the L-IND experiment is negli-
gible, we first consider a simulation experiment D™, in which A interacts with
C as in the L-IND experiment, but with modifications.

The simulation experiment DS™: Since the parallel one-out-of-many,
modified Chaum-Pedersen, representation, and range proving systems are all
special honest-verifier zero knowledge, we can take advantage of the simulator
for each. Given input statements and verifier challenges, each proving system’s
simulator produces transcripts indistinguishable from honest proofs. Addition-
ally, we now define the behavior of the full simulator.

26

The simulation. The simulation D™ works as follows. As in the original
experiment, C samples the system parameters Setup(1*) — pp and a random bit
b, and initializes DAP oracles OPAT and OPAP. Then DS'™ proceeds in steps. At
each step, it provides A with ledgers Lierg = Ly and Lyjghy = Li—p,after which
A sends two publicly-consistent queries (@, Q') of the same type. Recall that
the queries @ and Q' are consistent with respect to public data and information
related to the addresses controlled by A. Depending on the query type, the
challenger acts as follows:

— Answering Recover and Insert queries: The challenger proceeds as in the
original L-IND experiment.

— Answering CreateAddress queries: In this case the challenger replaces the
public address components 1 and ()2 with random strings of the appropri-
ate lengths, producing addrpy that is returned to A.

— Answering Mint queries: The challenger does the following to answer @ and
Q' separately:

1. If A provided a public address addrpk not generated by the challenger,
it produces a coin using CreateCoin as usual.
2. Otherwise, it simulates coin generation:
(a) Samples a recovery key K uniformly at random.
) Samples a serial number commitment S uniformly at random.
(¢) Samples a value commitment C uniformly at random.
) Samples a random input used to produce a symmetric encryption
key SymKeyGen — kgyc.
(e) Simulates the memo encryption by selecting random m of the proper
length, and encrypting it to produce SymEnc(kepnc, m) — .
3. Simulates the balance proof ITy, on the statement (C' — Com(v,0).
4. Assembles the transaction and adds it to the ledger as appropriate.

— Answering Spend queries: The challenger does the following to answer () and
Q' separately, where w is the number of consumed coins and ¢ the number
of generated coins specified by A as part of its queries:

1. Parse the input cover set serial number commitments and value commit-
ments as InCoins = {(S;, C;)} VL.
2. For each u € [0,w), where [,, represents the index of the consumed coin
in InCoins:
(a) Samples a tag T, uniformly at random.
(b) Samples a serial number commitment offset S, and value commit-
ment offset C!, uniformly at random.
(c) Simulates a parallel one-out-of-many proof (I,), on the statement
({8: = S, Ci = CLHLGY.
3. For each j € [0,1):
(a) If A provided a public address addrpx not generated by the chal-
lenger, it produces a coin using CreateCoin as usual.
(b) Otherwise, it simulates coin generation:
i. Samples a recovery key K; uniformly at random.
ii. Samples a serial number commitment S; uniformly at random.

27

iii. Samples a value commitment 6j uniformly at random.

iv. Samples a random input used to produce a symmetric encryption
key SymKeyGen — kepc.

v. Simulates the value encryption by selecting random v of the
proper length, and encrypting it to produce SymEnc(kenc, 0) —
Vj.

vi. Simulates the memo encryption by selecting random m of the
proper length, and encrypting it to produce SymEnc(kepe, m) —
;.

vii. Simulates a range proof (I,p); on the statement (C).

4. Simulates the balance proof II,, on the statement

w—1 t—1
> €, =Y C;— Com(f,0)
u=0 j=0

5. For each u € [0, w), computes the binding hash y as defined and simulates
a modified Chaum-Pedersen proof (IIchaum) o0 the statement (5!, T,).
6. Assembles the transaction and adds it to the ledger as appropriate.

For experiments defined below, we define Adv” as the advantage of A in some
experiment D over the original L-IND game. By definition, all answers sent to
A in D™ are computed independently of the bit b, so AdvP™" = 0. We will
prove that A’s advantage in the real L-IND experiment D" is at most negligibly
different than A’s advantage in D%™. To show this, we construct intermediate
experiments in which C performs a specific modification of D" against A.

Experiment D;: This experiment modifies D™* by simulating all one-
out-of-many proofs, range proofs, representation proofs, and modified Chaum-
Pedersen proofs. As all these protocols are special honest-verifier zero knowledge,
the simulated proofs are indistinguishable from the real proofs generated in D e?!.
Hence Adv?! = 0.

Experiment Ds: This experiment modifies D; by replacing all encrypted
values and memos in transactions with challenger-generated recipient public ad-
dresses with encryptions of random values of appropriate lengths under keys
chosen uniformly at random, and by replacing recovery keys with uniformly ran-
dom values. Since the underlying authenticated symmetric encryption scheme
is IND-CCA and IK-CCA secure and we assume the decisional Diffie-Hellman
problem is hard, the adversarial advantage in distinguishing ledger output in the
Dy experiment is negligibly different from its advantage in the D; experiment.
Hence |AdvP®? — Adv™"| is negligible.

Experiment DS™: The D™ experiment is formally defined above. In par-
ticular, it differs from Dy by replacing consumed coin tags, serial number commit-
ment offset, and value commitment offsets with uniformly random values; and by
replacing output coin serial number and value commitments with random values.
In previous experiments (including D), tags are generated using a pseudoran-
dom function [7], and the other given values are generated as commitments with
masks derived from hash functions modeled as independent random oracles, so

28

the adversarial advantage in distinguishing ledger output in DSiI_n is negligibly
different from its advantage in the Dy experiment. Hence |AdVDSlm — Adv™2| is
negligible.

This shows that the adversary has only negligible advantage in the real
L-IND game over the simulation, where it can do no better than chance, which
completes the proof.

29

