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Abstract. The goal of secure multi-party computation (MPC) is to allow a set of parties to perform
an arbitrary computation task, where the security guarantees depend on the set of parties that are
corrupted. The more parties are corrupted, the less is guaranteed, and typically the guarantees are
completely lost when the number of corrupted parties exceeds a certain corruption bound.
Early and also many recent protocols are only statically secure in the sense that they provide no se-
curity guarantees if the adversary is allowed to choose adaptively which parties to corrupt. Security
against an adversary with such a strong capability is often called adaptive security and a significant
body of literature is devoted to achieving adaptive security, which is known as a difficult problem.
In particular, a main technical obstacle in this context is the so-called “commitment problem”,
where the simulator is unable to consistently explain the internal state of a party with respect
to its pre-corruption outputs. As a result, protocols typically resort to the use of cryptographic
primitives like non-committing encryption, incurring a substantial efficiency loss.
This paper provides a new, clean-slate treatment of adaptive security in MPC, exploiting the
specification concept of constructive cryptography (CC). A new natural security notion, called
CC-adaptive security, is proposed, which is technically weaker than standard adaptive security
but nevertheless captures security against a fully adaptive adversary. Known protocol examples
separating between adaptive and static security are also insecure in our notion. Moreover, our notion
avoids the commitment problem and thereby the need to use non-committing or equivocal tools. We
exemplify this by showing that the protocols by Cramer, Damgard and Nielsen (EUROCRYPT’01)
for the honest majority setting, and (the variant without non-committing encryption) by Canetti,
Lindell, Ostrovsky and Sahai (STOC’02) for the dishonest majority setting, achieve CC-adaptive
security. The latter example is of special interest since all UC-adaptive protocols in the dishonest
majority setting require some form of non-committing or equivocal encryption.

1 Introduction

1.1 Multi-Party Computation

Secure multi-party computation (MPC) is one of the most fundamental problems in cryptography. It
considers the setting where a set of parties wish to carry out a computation in a secure manner, where
security informally means that parties obtain the correct output of the computation, while at the same
time keeping their local inputs as private as possible.

A crucial step towards meaningfully designing and analyzing cryptographic protocols is to come up
with appropriate definitions of security. Formulating good definitions is highly non-trivial: the definition
should closely capture the aspects that we care about, while at the same time being simple and usable,
even minimal, avoiding as much as possible unnecessary artifacts.

There is a vast literature on security definitions in the field of MPC. Initial works [26, 41, 3, 8, 21]
considered the stand-alone setting, which examines only the protocol at hand and does not capture what
it means to use the protocol in a larger context, for the task of secure function evaluation [48, 49, 25]. It
was not until several years later, that definitions in so-called composable frameworks for general reactive
tasks were introduced [45, 9, 20, 38, 42, 33, 29]. Such definitions aim to capture all aspects of a protocol
that can be relevant, with respect to any possible application, hence the term universal composability [9].

An important aspect of security definitions for secure computation is the way in which the corrupted
parties are chosen. Here, two models are commonly considered. The static security model assumes that
the set of corrupted parties is fixed before the computation starts and does not change. In the more
general adaptive security model, the adversary may corrupt parties during the protocol execution, based
on information that has been gathered so far. Indeed, adaptive security captures important concerns
⋆ This work was partially carried out while the author was at ETH Zurich.



regarding cryptographic protocols that static security does not capture. These include scenarios where
attackers, viruses, or other adversarial entities can take advantage of the communication to decide which
parties to corrupt.

The currently considered standard MPC definition for adaptive security is the one introduced by
Canetti [9] in the UC framework. The UC-adaptive security definition follows the well-known simulation
paradigm, and is formalized by comparing the execution of the protocol in the real world, to an ideal
world that has the desired security properties by design. Intuitively, it guarantees that for any attack
in the real world performed by an adversary that can adaptively corrupt parties, the attack can be
equivalently performed in the ideal world, achieving a similar effect. This is formalized by the existence
of a single simulator that has to simulate the entire protocol execution, with respect to any environment
where the protocol is being executed.

1.2 The Commitment Problem in Adaptive Security

Despite the fact that the current standard notion has been the cornerstone of adaptive security in MPC
and has lead to the development of many beautiful cryptographic protocols and primitives, one could
argue that the definition is too strong.

To show this, consider the following example: Let π be any protocol for secure function evaluation
that is adaptively secure. Now, consider a modified protocol π̃, where each party i first commits to its in-
put using for example any (non-equivocable) perfectly hiding and computationally binding commitment
scheme and publishes the commitment. Then, all parties execute the protocol π. The commitments are
never again used, and in particular they are never opened. Intuitively, protocol π̃ should be adaptively
secure, since the commitments do not reveal any secret information (the commitments are even statis-
tically independent of the inputs!). However, protocol π̃ is no longer adaptively secure: we run into the
so-called commitment problem, where the simulator is unable to consistently explain the internal state of
the parties that are adaptively corrupted. This is because the simulator first has to publish a commitment
on behalf of each honest party without knowing its input, and later, upon corruption, output an internal
state on behalf of each party that is consistent with its input and the previously published commitment.

Common ways to address this issue include the use of non-committing encryption (see e.g. [12, 13]),
or the availability of secure erasable memory (see e.g. [4]), therefore incurring to a substantial efficiency
loss or an extra assumption.

However, at a more general level, this raises the question of whether one could have an alternative
security definition that is not subject to this issue, but still captures natural security guarantees under
adaptive corruption:

Is there a natural MPC security definition that captures security guarantees under adaptive corruption
and is not subject to the commitment problem?

There have been a number of works that aimed to solve this issue. A line of work [44, 46, 7] considers
simulators that have super-polynomial running time. Such approaches come at the price of being technical
or sacrificing composition guarantees. Another approach [1] disallows certain activation sequences by the
environment that cannot be simulated, avoiding some of the complications of the other approaches, but
sacrificing some guarantees by excluding certain attacks. A recent work [30] addressed this issue by
proposing a notion that formalizes guarantees that hold within a certain interval, between two events,
and requiring the simulation to work within each interval, without forcing the simulation to be consistent
between the intervals. Although this approach seems promising, the guarantees that are given turn out to
be too weak for MPC applications. In particular, the corruptions can only depend on “external” events,
and not on the outputs from the given resources.

1.3 Contributions

CC-Adaptive Security. Intuitively, an MPC protocol should provide, at any point during the protocol
execution, security guarantees to the set of honest parties at that point. That is, for every set of parties,
there is a guarantee as long as these parties are honest. This is exactly what CC-adaptive security
captures: we phrase the guarantees naturally as the intersection (i.e. conjunction) of the guarantees for
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every set of so-far honest parties. Informally, we require the same protocol to realize a possibly different
functionality FX for each subset X of parties. In each statement, there must exist a simulator that
correctly simulates the protocol execution, as long as the parties in X are honest, without having access
to the secret inputs and outputs of parties in X. As soon as a party in X gets corrupted, the guarantee
for this set is dropped. (However, guarantees for other so-far honest sets still remain.)

The corruptions are completely adaptive in the strong and usual sense, where the selection of which
parties become corrupted can be done based on information gathered during the protocol execution. The
more parties are corrupted, the less guarantees remain.

Technically, the commitment problem does not arise because the guarantees are dropped (i.e. the
simulation stops) at the point where a party in X gets corrupted. Therefore, the simulator does not need
to explain the secret state of a party in X. This is in contrast to previous adaptive security definitions,
which require the existence of a single simulator that explains all possible cases.

The described guarantees are naturally phrased within the constructive cryptography (CC) [37, 38, 39]
composable framework, where each guarantee corresponds to a set specification of systems, and the
conjunction of guarantees is simply the intersection of specifications. The protocol can then achieve all
these guarantees within a single construction statement.

Comparison with Standard Static and Adaptive Security. At a technical level, we show that
our new definition lies in-between the current standard UC-security definitions for static and adaptive
security, respectively. Interestingly, popular examples that separate the standard static and adaptive
security notions and do not exploit the commitment problem, also separate static from CC-adaptive
security, therefore giving evidence that CC-adaptive security gives strong adaptive security guarantees.
More concretely, we show the following.

Static vs CC-Adaptive Security. We first show that CC-adaptive security implies static security in
all settings. Moreover, we also show that CC-adaptive security is strictly stronger than static security:
for the case of passive corruption and a large number of parties, the protocol shown in [12] separates
the notions of static and CC-adaptive security, and in the case of active corruption and at least three
parties, the protocol shown in [10] makes the separation.

Adaptive vs CC-Adaptive Security. We show that UC-adaptive security is strictly stronger than CC-
adaptive security in all settings, by showing a protocol example based on the commitment problem.

Applications. We demonstrate the usefulness of our notion with two examples, showing that known
protocols achieve strong adaptive security guarantees without the use of non-committing or equivocal
encryption.

CDN Protocol. First, we show that the protocol by Cramer, Damgard and Nielsen [17] (CDN) based
on threshold (additively) homomorphic encryption (THE) achieves CC-adaptive security in the honest
majority setting. In the passive corruption setting, the protocol is described assuming solely the key setup
for the THE scheme, while in the active corruption setting, the protocol is described assuming in addition
a multi-party zero-knowledge functionality. This shows that the CDN protocol approach achieves strong
adaptive security guarantees as-is, even when using an encryption scheme that commits to the plaintext.

CLOS Protocol. Second, we show that the variant of the protocol by Canetti, Lindell, Ostrovsky and
Sahai [13] (CLOS) that does not use non-committing encryption, previously only proven statically secure,
actually achieves CC-adaptive security in the dishonest majority setting. This is achieved by showing
that the oblivious transfer from [25] achieves CC-adaptivity, and the CLOS compiler transforming passive
to active protocols preserves CC-adaptivity. Note that, to the best of our knowledge, all previous UC-
adaptive protocols in the dishonest majority setting required some form of non-committing or equivocal
encryption.

1.4 Further Related Work

The problem of MPC with adaptive security was first studied by Canetti, Feige, Goldreich and Naor
[12], and there is a large literature on MPC protocols with adaptive security. In the case of honest
majority, it was shown that classical MPC protocols are adaptively secure [5, 15, 47]. Using the results in
[32, 31], it was shown that these protocols achieve UC adaptive security with abort in the plain model,
or guaranteed output delivery in the synchronous model. A more efficient protocol was shown in [19],
following the CDN-approach based on threshold homomorphic encryption and assuming a CRS. In the
case of dishonest majority, the protocols achieve security with abort, and all known protocols assume
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some form of non-committing encryption or equivocation. The first work achieving adaptive security
for dishonest majority was the protocol by Canetti, Lindell, Ostrovsky and Sahai [13], assuming a CRS
setup. Since then, several subsequent works have improved its round and communication complexity (e.g.
[18, 23, 16, 6, 14]). The work by Garg and Sahai [24] considered adaptive security in the stand-alone
model without trusted setup.

The work by Garay, Wichs and Zhou [22] consider the notion of semi-adaptive security for two parties,
which considers guarantees for the case where one party is corrupted, and the other party is honest and
can be adaptively corrupted. In contrast, our security notion imposes guarantees also when both parties
start being honest.

2 Preliminaries: Constructive Cryptography

The basic concepts of the Constructive Cryptography framework by Maurer and Renner [38, 37, 39]
needed for this paper are quite natural and are summarized below.

2.1 Specifications and Constructions

A basic idea, which one finds in many disciplines, is that one considers a set Φ of objects and specifications
of such objects. A specification U ⊆ Φ is a subset of Φ and can equivalently be understood as a predicate
on Φ defining the set of objects satisfying the specification, i.e., being in U . Examples of this general
paradigm are the specification of mechanical parts in terms of certain tolerances (e.g. the thickness of a
bolt is between 1.33 and 1.34 millimeters), the specification of the property of a program (e.g. the set of
programs that terminate, or the set of programs that compute a certain function within a given accuracy
and time limit), or in a cryptographic context the specification of a close-to-uniform n-bit key as the set
of probability distributions over {0, 1}n with statistical distance at most ϵ from the uniform distribution.

A specification corresponds to a guarantee, and smaller specifications hence correspond to stronger
guarantees. An important principle is to abstract a specification U by a larger specification V (i.e., U ⊆ V)
which is simpler to understand and work with. One could call V an ideal specification to hint at a certain
resemblance with terminology often used in the cryptographic literature. If a construction (see below)
requires an object satisfying specification V, then it also works if the given object actually satisfies the
stronger specification U .

A construction is a function γ : Φ → Φ transforming objects into (usually in some sense more
useful) objects. A well-known example of a construction useful in cryptography, achieved by a so-called
extractor, is the transformation of a pair of independent random variables (say a short uniform random
bit-string, called seed, and a long bit-string for which only a bound on the min-entropy is known) into
a close-to-uniform string.

A construction statement of specification S from specification R using construction γ, denoted R γ−→
S, is of the form

R γ−→ S :⇐⇒ γ(R) ⊆ S.

It states that if construction γ is applied to any object satisfying specification R, then the resulting
object is guaranteed to satisfy (at least) specification S.

The composability of this construction notion follows immediately from the transitivity of the subset
relation:

R γ−→ S ∧ S γ′

−→ T =⇒ R γ′◦γ−−−→ T .

2.2 Resources and Converters

The above natural and very general viewpoint of specifications is taken in Constructive Cryptography,
where the objects in Φ are systems, called resources, with interfaces to the parties considered in the given
setting.

Resources. A resource R is a reactive system with interfaces. Formally, they are modeled as random
systems [36, 40], where the interface address and the actual input value are encoded as part of the input.
Then, the system answers with an output value at the same interface. One can take several independent
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resources R1, . . . , Rk, and form a new resource [R1, . . . , Rk], with the interface set being the union. This
resource is denoted as the parallel composition.

Converters. A converter models the local actions executed by a party at its interface, which can be
thought of as a system or protocol engine. Formally, converters are modeled as random systems with
two interfaces, an outside interface and an inside interface. At its inside, the converter gives input to the
party’s interface of the resource and at the outside it emulates an interface (of the transformed resource).
Upon an input at an outside interface, the converter is allowed to make a bounded number of queries to
the inside interfaces, before returning a value at the queried interface. Applying a converter induces a
mapping Φ → Φ. We denote the set of converters as Σ.

For a converter α and a resource R, we denote by αiR the resource obtained from applying the
converter to the resource at interface i. One can then see that converter attachment satisfies composition
order invariance, meaning that applying converters at distinct interfaces commutes. That is, for any
converters α and β, any resource R and any disjoint interfaces j, k, we have that αjβkR = βkαjR.

Distinguisher. A distinguisher D is a reactive system that interacts with a resource by making queries
at its interfaces, and outputs a bit. The advantage of D in distinguishing two resources R and T is defined
as

∆D(R, S) := Pr[D(S) = 1] − Pr[D(R) = 1].

2.3 Relaxations

Often a construction statement does not achieve a desired specification S, but only a relaxed version
of S. We capture this via so-called relaxations [39], which map specifications to weaker, or relaxed,
specifications. A relaxation formalizes the idea that we are often happy with resources being almost
as good as a target resource specification. For example, one could consider the relaxation that maps a
resource S to the set of resources that are indistinguishable from S.

Definition 1. Let Φ denote the set of all resources. A relaxation ϕ : Φ → 2Φ is a function such that
R ∈ ϕ(R), for all R ∈ Φ. In addition, for a specification R, we define Rϕ :=

∪
R∈R ϕ(R).

Relaxations satisfy two important properties. The first, is that S ⊆ Sϕ. And the second, is that if
R ⊆ S then Rϕ ⊆ Sϕ. This simplifies the modular analysis, as it means that one can typically consider
assumed resources that are completely ideal, or not relaxed. More concretely, from the statements R ⊆ Sϕ

and S ⊆ T ϕ′ , one can conclude that R ⊆ T ϕ◦ϕ′ .
In the following, we introduce a few generic types of relaxations [39, 30] that we will use throughout

the paper.

ϵ-Relaxation. We introduce a fundamental relaxation that captures computational security based on
explicit reductions. For that, we define a function ϵ that maps distinguishers to their respective advantage
in [0, 1]. The usual interpretation is that ϵ(D) is the advantage in the underlying computational problem
of the distinguisher which is modified by the reduction.

Definition 2. Let ϵ be a function that maps distinguishers to a real value in [0, 1]. We define the
ϵ-relaxation of a resource R as:

Rϵ := {S ∈ Φ | ∀D : ∆D(R, S) ≤ ϵ(D)}.

Until-Relaxation. Sometimes we want to consider guarantees that hold up to the point where a certain
event happens. This is formally modeled by considering an additional so-called monotone binary output
(MBO) [40], which is a binary value that can switch from 0 to 1, but not back. Such an MBO can for
example model that all inputs to the system are distinct (no collisions).

Definition 3. Let R be a resource, and let E be an MBO for the resource. We denote by untilE(R) the
resource that behaves like R, but halts when E = 1. That is, for any inputs from the point when E = 1
(and including the input that triggered the condition), the output is ⊥.
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The until-relaxation of a system R [30] consists of the set of all systems, that behave equivalently up
to the point where the MBO is set to 1.

Definition 4. Let R be a resource, and let E be an MBO for the resource. The E-until-relaxation of R,
denoted RE], is the set of all systems that have the same behavior as R until E = 1. That is,

RE] := {S ∈ Φ | untilE(R) = untilE(S)}.

Combined Relaxation. In this paper we are interested in the relaxation that corresponds to the
intuitive interpretation of “the set of all systems that behave equally until E = 1 given that the assumption
of ϵ is valid”. However, it was proven in [30] that the ϵ-relaxation and the until-relaxation do not generally
commute, i.e., (RE])ϵ ̸⊆ (Rϵ)E] and (RE])ϵ ̸⊇ (Rϵ)E], and therefore it is not clear whether any of the
two corresponds to the intuitive interpretation. Moreover, choosing one of these would partially limit the
composability of such statements. That is, if one construction assumes SE] to construct T , and another
one constructs Sϵ, then adjusting the first construction to use Sϵ is not trivial. Following the solution in
[30], we consider the next combined relaxation.

Definition 5. Let R be a resource, E be an MBO, and ϵ be a function mapping distinguishers to a real
value in [0, 1]. The (E , ϵ)-until-relaxation of R, denoted RE:ϵ, is defined as follows:

RE:ϵ :=
((

RE])ϵ
)E]

.

The combined relaxation benefits from the following desired properties, as shown in [30].

Lemma 1. Let R be a specification, E1, E2 be MBOs for the resource, and ϵ1, ϵ2 be functions mapping
distinguishers to a real value in [0, 1]. Then,

(RE:ϵ)E′:ϵ′
⊆ RE∨E′:ϵE∨E′ +ϵ′

E∨E′ ,

where ϵE∨E′(D) = ϵ(D ◦ untilE∨E′) is the advantage of the distinguisher interacting with the projected
(by the function untilE∨E′(·)) resource, and analogously for ϵ′

E∨E′ .

Lemma 2. Let R be a specification, E be an MBO for the resource, and ϵ be a function mapping
distinguishers to a real value in [0, 1]. Further let α be a converter, and let i be an interface of R. The
(E , ϵ)-until-relaxation is compatible with converter application and with parallel composition. That is,

1. αi
(
RE:ϵ) ⊆

(
αiR

)E:ϵα , for ϵα(D) := ϵ(Dαi), where Dαi denotes the distinguisher that first attaches
α at interface i of the given resource, and then executes D.

2. [RE:ϵ, S] ⊆ [R, S]E:ϵS , for ϵS(D) := supS∈S ϵ(D[·, S]), where D[·, S] denotes the distinguisher that
emulates S in parallel to the given resource, and then executes D.

3 Multi-Party Constructive Cryptography with Adaptive Corruption

In this section, we present our model for n-party constructions with adaptive corruption. In this setting,
we consider scenarios where an adversary may “hack” into the parties’ systems during the protocol
execution.

Multi-Party Resources. A multi-party resource for n parties is a resource with n + 2 interfaces: a
set P = {1, . . . , n} of n party interfaces, an adversary interface A and a free interface W [2]. The party
interfaces allow each party to have access to the resource. The adversary interface models adversarial
access to the resource. The free interface allows direct access by the environment to the resource1, and
is used to model aspects that are not used by the parties, but neither controlled by the adversary.

Examples of such resources are the available network resource (which allows parties to communicate
with each other), as well as the constructed computation resources (which allows the parties to perform
arbitrary computations of their secret inputs).
1 This is reminiscent of the environment access to the global setup in UC [11].
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Protocols. A protocol consists of a tuple of converters π = (π1, . . . , πn), one for each party. We denote
by πR the resource where each converter πj is attached to party interface j.

Basic Construction Notion. We say that a protocol π constructs specification S from specification
R, if and only if πR := {πR | R ∈ R} satisfies specification S, i.e., πR ⊆ S.

Definition 6. Let R and S be specifications, and let π be a protocol. We say that π constructs S from
R, if and only if πR ⊆ S.

The specifications πR and S are usually called the real world and the ideal world, respectively.
Typical constructions in the literature describe the ideal specification S with the so-called simulation-

paradigm. That is, by showing the existence of a simulator σ attached to the adversary interface of a
fixed ideal resource S, which can for example be a resource that computes a function over private inputs.
Note that this is just a particular way of defining the security guarantees in our framework. One can
express different types of ideal specifications, as we will show in our examples (see [34, 30] for further
examples in other settings).

Protocol Converters as Resources. In order to model adaptive corruptions in Constructive Cryp-
tography, we consider only trivial converters [39]. More concretely, we consider the class Σ of trivial
converters which only define a wiring between resource interfaces, and the protocol engines are then in-
terpreted as resources. In more detail, when writing a resource αiR consisting of a converter α attached
to interface i of resource R, we understand the converter α as a resource, for example denoted α̃, in
parallel with R. And we consider a trivial converter β for interface i that simply connects α̃ and R, i.e.,
we have αiR = πi

i [R, α̃]. We depict in Figure 1 this interpretation.

Fig. 1. On the left, the converter α is connected to a resource R. On the right, the interpretation where the
converter α is interpreted as a resource α̃ in parallel, with a trivial converter that connects interfaces.

Modeling Corruptions. Protocol converters as resources have, like any resource, an adversary interface
A and a free interface W . Corruption is modeled explicitly as an input to the resource via the free
interface W . Upon input corrupt at interface W , the resource adds additional capabilities at the adversary
interface A.2

One can then model different types of corruption. In order to model passive corruption, we require
that upon input corrupt at interface W , the resource makes accessible the entire local state at interface
A. One can then access the local state of the resource via interface A with an input leak. If active
corruption is considered, the adversary can in addition take over the inside and outside interfaces of the
protocol engine via the adversarial interface A. That is, any inputs given at the inside or outside interface
are first made available to A, who then decides what the values are.

4 CC-Adaptive Security

In an MPC protocol, the set of corrupted parties grows during the protocol execution, and at the same
time, the set of parties that benefit from security guarantees, i.e. the set of so-far honest parties, shrinks.

We propose a very natural way to understand such guarantees obtained from an MPC protocol with
adaptive corruption. The idea is to understand the guarantees as simultaneously achieving guarantees for
2 One could alternatively model that the input corrupt is given at the adversary interface A, with an additional

mechanism to ensure that the real and ideal world corruptions are the same; for example making available the
set of currently corrupted parties via the free interface W .
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every set of so-far honest parties. More concretely, we explicitly state one separate guarantee for every
subset X ⊆ P of the parties, and as long as parties in X are honest, the guarantee remains. That is, the
guarantee is dropped as soon as any party in X gets corrupted.

The corruptions are completely adaptive as usual, and the identity of the chosen parties to become
corrupted can be made based on information gathered during the protocol execution. The more parties
are corrupted, the less sets are so-far honest, and therefore less guarantees remain.

The described guarantees can naturally be captured within the constructive cryptography framework,
where each guarantee corresponds to a resource specification, and the conjunction of guarantees is simply
the intersection of specifications.

As we will show in Section 4.2, our notion of CC-adaptive security lies strictly in-between the standard
UC-security notions of static and adaptive security. Popular examples that separate static and adaptive
security and are not based on the commitment problem, also separate static and CC-adaptive security,
and examples based on the commitment problem separate our notion from UC-adaptive security; there-
fore showing that CC-adaptive security achieves a strong resilience against adaptive corruption, while at
the same time overcoming the commitment problem.

4.1 Definition of the Security Notion

As sketched above, our security notion gives a guarantee for every set of so-far honest parties. That is, we
give a explicit guarantee for each subset X ⊆ P of parties, which lasts as long as the subset X is honest,
irrespective of whether the other parties are honest or not. The guarantee provides privacy to the set of
parties in X, and is described as usual, by requiring the existence of a simulator (for this set X) that
correctly simulates the protocol execution. The simulator has to simulate without knowing the secret
inputs and outputs of parties in X, but since the guarantee holds irrespective of the honesty of other
parties, we allow the simulator to have access to the inputs of parties that are in X = P \ X. Moreover,
as soon as a party in X is corrupted, the guarantee for this set is lost (and therefore the simulation stops
at this point). However, guarantees for other so-far honest sets still remain.

Finally, we state the guarantees with respect to a (monotone3) adversary structure Z ⊆ 2P , meaning
that if too many corruptions happen, i.e., the set of corrupted parties exceeds the adversary structure,
all guarantees are lost.
Addressing Adaptive Concerns. We will see with the examples below that this security notion
captures the typical adaptive concerns: leaking sensitive information in the network, and also information
leaked from an internal state of a party.

The former is prevented since the adversary is fully adaptive and can corrupt parties based on
information seen in the network. Note, however, that when considering a small number of parties, and
in particular two parties, our definition is intuitively very close to that of static security. This is because
when X contains one party, the guarantee holds only for adversarial strategies that involve corrupting
the (single) party in X.4 (When the number of parties increases, many of the sets X contain a large
number of parties, and the guarantee holds even when the adversary adaptively corrupts parties among
these large sets. See Lemma 5.)

To see why the definition also limits the information leaked from an internal state, note that upon
corruption of party i, all guarantees where i /∈ X, still remain. In all those simulations the internal state
of party i must be explained (from the inputs of parties in X). Concretely, for X being the so-far honest
set, the state of party i does not reveal anything beyond what can be inferred from the current corrupted
set.
Avoiding the Commitment Problem. Intuitively, the commitment problem does not arise, because
the guarantees are lost (i.e. the simulation stops) at the point where a party in X gets corrupted. There-
fore, the simulator does not need to explain the secret state of any party in X. Moreover, for parties
that are in X, the simulator can consistently explain the secret state because it has access to the inputs
of these parties.

3 If Z ∈ Z and Z′ ⊆ Z, then Z′ ∈ Z.
4 However, note that for passive corruption and a small number of parties, static security intuitively provides

sufficiently strong guarantees, as the static adversary can always guess upfront which set of parties will be
corrupted.
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Let EX be the MBO indicating whether any party in X is corrupted. Moreover, let σX be a simulator
that has access to the inputs of all parties from the set X.5 Formally, any inputs given at interfaces from
parties in X, are forwarded to the adversary interface. Moreover, note that we only allow the simulator
to modify the inputs of actively corrupted parties.6

Further let EZ be the MBO that is set to 1 when the set of corrupted parties does not lie in Z. For the
common case of threshold corruption where the adversary structure contains all sets of up to t parties,
we denote Et the MBO that is set to 1 when more than t parties are corrupted.

We require that for each set of parties X, there must be a simulator σX that simulates the protocol
execution until any party in X is corrupted, or the adversary structure is no longer respected, i.e., until
EX ∨ EZ = 1.

Definition 7. Protocol π CC-adaptively constructs specification S from R with error ϵ and adversary
structure Z, if for each set X ⊆ P, there exists (an efficient) simulator σX , such that πR ⊆ (σXS)EX ∨EZ :ϵ.
In short, πR satisfies the following intersection of specifications:

πR ⊆
∩

X⊆P
(σXS)EX ∨EZ :ϵ

Moreover, we say that π CC-adaptively constructs S from R with error ϵ up to t corruptions if
πR ⊆

∩
X⊆P(σXS)EX ∨Et:ϵ.

The following lemma shows that this type of construction statement benefits from desirable compo-
sition guarantees.

Lemma 3. Let R, S, T be specifications, and let π, π′ be protocols. Further let Z ⊆ 2P be a monotone
set. Then, we have the following composition guarantees:

πR ⊆
∩

X⊆P
(σXS)EX ∨EZ :ϵ ∧ π′S ⊆

∩
X⊆P

(σ′
X

T )EX ∨EZ :ϵ′
=⇒ π′πR ⊆

∩
X⊆P

(σ′
X

σXT )EX ∨EZ :ϵ̃,

for ϵ̃ := supX⊆P{(ϵπ′)EX ∨EZ + (ϵ′
σ

X
)EX ∨EZ }, where (ϵπ′)EX ∨EZ is the advantage of the distinguisher

that first attaches π′ to the given resource, and then interacts with the projected resource, and same for
(ϵ′

σ
X

)EX ∨EZ .
Furthermore, we have

πR ⊆
∩

X⊆P
(σXS)EX ∨EZ :ϵ =⇒ π[R, T ] ⊆

∩
X⊆P

(σX [S, T ])EX ∨EZ :ϵT ,

for ϵT (D) := supT ∈T ϵ(D[·, T ]), where D[·, T ] is the distinguisher that emulates T in parallel to the
given resource, and then executes D.

Proof. The proof can be found in Section A.

4.2 Comparison to Traditional Notions of Security

In this section we show how to phrase the standard notions of static and adaptive security within our
framework, and further show that our new definition lies in-between the two standard notions of static
and adaptive security.
Static Security. In the standard notion of static security, the set of protocol engines that are corrupted
is fixed before the computation starts and does not change. The possible corruption sets are modelled
by a given adversary structure Z ⊆ 2P . Given a set Z ∈ Z, we denote by πZR the real-world resource,
where the set of protocol engines πi, i ∈ Z, are corrupted. The security definition requires the existence
of a simulator σZ that simulates the protocol execution and has control over the inputs and outputs from
corrupted parties. As usual, in the passive case, the simulator can read these values, while in the active
case, it can also change them.
5 Our basic approach of stating a guarantee per set X allows to consider many different definitions, depending

on which information is accessible to the simulator. We choose to solely leak the inputs of parties in X, since
this seems to be the minimal necessary information to overcome the commitment problem.

6 Allowing the simulator to modify the inputs of honest parties in X results in an unnecessarily weak notion.
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Definition 8. Protocol π statically constructs specification S from R with error ϵ and adversary structure
Z, if for each possible set of corrupted parties Z ∈ Z, there exists a simulator σZ such that πZR ⊆ (σZS)ϵ,
where πZ indicates that protocol converters πi, i ∈ Z, are corrupted, and σZ indicates that the simulator
has control over the inputs and outputs of parties in Z.

Lemma 4. CC-adaptive security implies static security.

Proof. Let π be a protocol that constructs S from specification R with error ϵ and adversary structure
Z, with CC-adaptive security. We prove that π also satisfies static security with the same parameters.
Fix a set Z ∈ Z. Consider the particular corruption strategy, where parties in Z are corrupted at the
start of the protocol execution, and no more corruptions happen.

In this case, EZ ∨ EZ = 0, because no party in Z is corrupted, and the set of corrupted parties lies
within Z. Therefore, for the case where X = Z, there must exist a simulator σZ (with access to the
inputs and outputs of parties in Z, which are corrupted) that satisfies πZR ⊆ (σZS)E

Z
∨EZ :ϵ = (σZS)ϵ.

In the following, we show that known examples of protocols that separate the standard notions of
static and adaptive security [12, 10], also separate static and CC-adaptive security, both in the case of
passive as well as active corruption.

Lemma 5. For passive corruption and a large number of parties, CC-adaptive security is strictly stronger
than static security.

Proof. We consider the classical example from Canetti et al. [12]. Consider a secure function evalua-
tion protocol with guaranteed output delivery where parties evaluate the function that outputs ⊥. The
adversary structure contains sets of up to t = O(n) parties.

The protocol π proceeds as follows: A designated party D secret shares its input to a randomly
selected set of parties U (out of all parties except D) of small size κ parties using a κ-out-of-κ sharing
scheme, where κ is the security parameter. Then, D makes the set U public (e.g. by sending the set to
all parties). Subsequently, all parties output ⊥.

It is known that π achieves static security. This is because an adversary not corrupting D only learns
D’s secret if U happens to be the predefined set of corrupted parties, which occurs with probability
exponentially small in κ. More concretely, for each Z ∈ Z not containing D, the probability that U = Z

is
(

n−1
κ

)−1 = neg(κ). (Note that in the case where U ̸= Z, the simulator trivially succeeds simply by
emulating the shares as random values.)

Now we show that π does not achieve CC-adaptive security. Consider the singleton set X = {D},
containing only the designated party. Note that U does not contain D, since D chooses a set of κ parties
randomly from the set of parties without D. The adversary can then corrupt the set of parties in U to
find out D’s secret without corrupting D. Note that the simulator has access to all inputs from parties
in X, but has no access to D’s input. Formally, the simulator σX has to output shares for parties in U
that add up to D’s input, without knowing the input, which is impossible.

Lemma 6. For active corruption, CC-adaptive security is strictly stronger than static security, as long
as there are at least three parties.

Proof. We consider the example from Canetti et al. [10] with three parties D, R1 and R2. D has as input
two bits b1, b2 ∈ {0, 1}, and R1, R2 have no input. The ideal resource evaluates the function f that, on
input (b1, b2), it outputs b1 to R1, b2 to R2 and ⊥ to D. The adversary structure contains {D, R1}.

The protocol π proceeds as follows: at step 1 D sends b1 to R1. After that, at step 2 D sends b2 to
R2. Finally, at step 3 each Ri outputs the bit that they received from D and terminates, and D outputs
⊥ and terminates.

It was proven that π achieves static security: for the set Z = {D}, the simulator gets the values s′
1

and s′
2 from the adversary interface, and it sends (b′

1, b′
2) to the ideal resource, who forwards each b′

i

to Ri. It is easy to see that this simulator perfectly simulates the protocol execution. The case where
Z = {D, R1} is similar.

For the set Z = {R1}, the simulator obtains the output b1 from the ideal resource, so it can simply
forward this bit to the adversary interface. Again, it is easy to see that the simulation is successful.

Now let us argue why the above protocol does not satisfy CC-adaptive security. To show that, consider
the singleton set X = {R2}, containing only party R2. We will show that the adversary can break
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correctness of the protocol, by 1) learning the value s1 that is sent to R1, and 2) depending on the value
received after step 1 from the so-far honest D, possibly corrupt D and modify the value that is sent to
R2 at step 2. More concretely, the adversary strategy is as follows: Initially corrupt R1, and learn the
value s1 from D. If s1 = 1, then corrupt D and choose the value s′

2 = 0 as the value that is sent to R2
at step 2. With this strategy, in the real-world protocol, whenever s1 = 1, R2 never outputs 1.

Consider the case where the input to D is (s1, s2) = (1, 1). As argued above, in the real-world R2
outputs 0. However, since D is honest at step 1, the simulator σX (even with knowledge of the input of
D) has no power to change the input of D. Therefore, D inputs (1, 1) to the ideal resource, and therefore
the output of party R2 is 1.

Adaptive Security. In the standard notion of UC-adaptive security, the ideal-world is described as a
single specification that consists of a simulator –with passive or active capabilities (i.e. can read, or also
change the inputs and outputs of corrupted parties)– attached to the adversary interface of a fixed ideal
resource. Moreover, guarantees are given as long as the corrupted parties respect the adversary structure.

Definition 9. Protocol π UC-adaptively constructs specification S from R with error ϵ and adversary
structure Z, if there is a simulator σ, such that πR ⊆ (σS)EZ :ϵ.

Lemma 7. UC-adaptive security implies CC-adaptive security.

Proof. Let π be a protocol that constructs S from specification R with error ϵ and adversary structure
Z, with standard adaptive security. We prove that π also satisfies CC-adaptive security. For each set
X ⊆ P, we have that there exists a simulator σX such that πR ⊆ (σXS)EZ :ϵ. This is because one can
consider the simulator σX that ignores the inputs from parties in X and simulates according to the
UC-adaptive simulator σ. Moreover, we have that

(σXS)EZ :ϵ ⊆ (σXS)EX ∨EZ :ϵ,

because EZ = 1 implies EX ∨ EZ = 1. Therefore, we have the following:

πR ⊆ (σS)EZ :ϵ ⊆
∩

X⊆P
(σXS)EX ∨EZ :ϵ.

Lemma 8. For passive corruption and any number of parties, CC-adaptive security does not imply
UC-adaptive security.

Proof. Consider a secure function evaluation protocol where parties evaluate the function that outputs
⊥. The adversary structure contains sets of up to t = 2 parties. The protocol π proceeds as follows:
A designated party D computes a commitment of its private input, using a (non-equivocable) perfectly
hiding and computationally binding commitment scheme and makes this commitment public. Then, all
parties output ⊥.

The protocol does not achieve standard adaptive security. Consider the corruption strategy where D
is corrupted “after” he sent his commitment. The simulator then first has to come up with a commitment
without knowing D’s input, and then, upon corruption, learns D’s input and has to output randomness
consistent with D’s input. Since the commitment is non-equivocable, this is not possible. That is, the
simulation strategy runs into the commitment problem.

It is easy to see that π satisfies CC-adaptive security. This is because for any set X not containing
D, the simulator can read D’s input, so the simulation is straightforward. On the other hand, for any
set X containing D, the simulation is only required until the point in time where D becomes corrupted
(without including the answer to the corruption query, i.e., there is no need to output D’s private state).

5 Some Ideal Resource Specifications

In this section we introduce some typical ideal specifications that will be used in later sections, such as the
network model, broadcast and MPC. We consider the setting with open authenticated and asynchronous
channels, where the adversary can choose to drop messages. As a consequence, the ideal building blocks
for broadcast and MPC that we consider achieve so-called security with abort.
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5.1 Communication Primitives

Network Model. We consider a multi-party communication network with point-to-point asynchronous
authenticated channels among any pair of parties, in line with the Fauth functionality in [9]. Asynchronous
means that the channels do not guarantee delivery of the messages, and the messages are not necessarily
delivered in the order which they are sent. Authenticity ensures that a recipient will only receive a
message from a sender if the sender actually sent the message. In the case of adaptive corruptions, this
authenticity requirement holds as long as both sender and recipient are honest. In particular, a dishonest
sender is allowed to modify the messages that have been sent, as long as they have not been delivered to
the recipient yet. We denote N the complete network of pairwise authenticated channels (see Section C).

Broadcast with Abort. In our protocols, we assume that parties have access to an authenticated broad-
cast channel with abort[27], which guarantees that no two honest parties receive different messages, and
does not guarantee delivery of messages. We denote the broadcast specification BC a broadcast channel
that allows any party to broadcast. Such a broadcast resource can be constructed with standard adaptive
security and arbitrary number of corruptions in the communication network N using the protocol by
Goldwasser and Lindell [27].7 See Section C for a detailed description.

5.2 MPC with Abort

We briefly describe an ideal resource MPC capturing secure computation with abort (and no fairness).
The resource has n + 2 interfaces, n party interfaces, an adversary interface A and a free interface W .
Via the free interface, the resource keeps track of the set of corrupted parties. The resource allows each
party i to input a value xi, and then once all honest parties provided its input, it evaluates a function
y = f(x1, . . . , xn) (corrupted parties can change their input as long as the output was not evaluated).
The adversary can then select which parties obtain output and which not.

Initialization
1: x1, . . . , xn ← ⊥
2: y, y1, . . . , yn ← ⊥
3: C = ∅

Party Interfaces
1: On input (input, x) at interface i ∈ [n], if xi = ⊥, set xi = x. Output ⊥ at interface i. Moreover, if

xj ̸= ⊥ for each j /∈ C, then set y = f(x1, . . . , xn).
2: On input output at interface i ∈ [n], output yi at interface i.

Adversary Interface
1: On input (deliver, j), j ∈ [n], at interface A, set yj = y. Output ⊥ at interface A.
2: On input (input, x, i) at interface A, if i ∈ C and y = ⊥, then set xi = x. Output ⊥ at interface A.
3: On input (leak, j), j ∈ C, at interface A, output xj at interface A.
4: On input leakOutput, at interface A, output y at interface A.

Free Interface
1: On input (corrupt, i) at interface W , set C = C ∪ {i}. Output ⊥ at interface W .

Resource MPCf

5.3 Multi-Party Zero-Knowledge

Let R be a binary relation, consisting of pairs (x, w), where x is the statement, and w is a witness to
the statement. A zero-knowledge proof allows a prover to prove to a verifier knowledge of w such that
R(x, w) = 1. In our protocols we will consider the multi-party version, which allows a designated party i

7 Note that in broadcast with abort, even when the sender is honest, it is allowed that parties output ⊥.
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to prove a statement towards all parties according to relation R. Such a resource ZKi,R can be seen as
a special instance of MPC with abort MPCf resource, where the function f simply takes as input (x, w)
from the designated party i, and no input from any other party, and outputs x in the case R(x, w) = 1,
and otherwise ⊥. We denote ZKR the parallel composition of ZKi,R, for i ∈ [n].

Such a resource can be constructed assuming BC and a CRS even with standard adaptive security for
arbitrary many corruptions (see e.g. [13]). Alternatively, the resource can be constructed less efficiently
solely from BC for the case where t < n/2 (see e.g. [47] with [32]).

5.4 Oblivious Transfer

An oblivious transfer resource involves a designated sender s, with input (x1, . . . , xℓ), and a designated
receiver with input i ∈ {1, . . . , ℓ}. The output for the receiver is xi, and the sender has no output. For
our purposes, we can see the resource as a special instance of MPC with abort MPCf resource, where the
function f simply takes as input (x1, . . . , xℓ) from the designated sender s, an input i from the designated
receiver r, and no other inputs, and it outputs xi to the receiver, and no output to any other party.

6 Application to the CDN Protocol

In this section we show that the protocol by Cramer, Damgard and Nielsen [17] based on threshold (ad-
ditively) homomorphic encryption essentially achieves MPC with abort and with CC-adaptive security,
in the communication network N of authenticated asynchronous channels. With similar techniques, one
could achieve MPC with guaranteed output delivery and with CC-adaptive security in a synchronous
communication model (assuming a broadcast specification).

The CDN protocol is perhaps the iconic example that suffers from the commitment problem, and
the goal of this example is to conceptually distil out at which steps the protocol is subject to relevant
adaptive attacks, and conclude that the CDN-approach of broadcasting encrypted inputs in the first
step and computing on ciphertexts, actually achieves strong adaptive security guarantees, even when the
encryption commits to the plaintext. We showcase the applicability of our definition with two versions
of CDN, for passive corruption below, and active corruption in Section D.

Finally, note that the protocol is typically described assuming a synchronous network, where the
protocol advances in a round to round basis, and messages send at round r are assumed to arrive by
round r + 1. However, our assumed network N is asynchronous. To address this, we follow the standard
approach of executing a synchronous protocol over an asynchronous network (see [32]). The idea is simply
that each party waits for all round r messages before proceeding to round r + 1. The consequence is
that the CDN protocol, which achieves full security under a synchronous network, achieves security with
abort under an asynchronous network.

6.1 Passive Corruption Case

The protocol relies on an adaptively secure threshold homomorphic encryption scheme (see for example
the scheme by Lysyanskaya and Peikert [35], which is based on the Paillier cryptosystem [43]). In such
a scheme, given the public key, any party can encrypt a message. However, decrypting the ciphertext
requires the collaboration of at least t + 1 parties, where t is a parameter of the scheme. The scheme
is additively homomorphic in the sense that one can perform additions on ciphertexts without knowing
the underlying plaintexts (see Section B).

For a plaintext a, let us denote a an encryption of a. Given encryptions a, b, one can compute (using
homomorphism) an encryption of a + b, which we denote a � b. Similarly, from a constant plaintext α
and an encryption a one can compute an encryption of αa, which we denote α � a. For concreteness, let
us assume that the message space of the encryption scheme is the ring R = ZN , for some RSA modulus
N .

Let us first describe a version of the protocol for the passive case (see the section below for a complete
description in the active case). The protocol Πpcdn starts by having each party publish encryptions of its
input values. Then, parties compute addition and multiplication gates to obtain a common ciphertext,
which they jointly decrypt using threshold decryption. Any linear operation (addition or multiplication
by a constant) can be performed non-interactively, due to the homomorphism property of the threshold
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encryption scheme. Given encryptions a, b of input values to a multiplication gate, parties can compute
an encryption of c = ab as follows:

1. Each party i chooses a random di ∈ ZN and distribute encryptions di and dib to all parties.
2. Parties compute a � (�idi) and decrypt it using a threshold decryption.
3. Parties set c = (a +

∑
i di) � b � (�idib).

The main problem that arises when dealing with standard adaptive security, even in the passive case,
is that of the commitment problem: the simulator has to first output encryptions on behalf of the so-far
honest parties during the input stage, and then if one of these honest parties is later corrupted, the
simulator learns the real input of this party and must reveal its internal state to the adversary. However,
the simulator is now stuck, since the real input is not consistent with the encryption output earlier. To
overcome this issue, protocols usually make use of non-committing encryption schemes. An exception
to this, is the protocol by Damgard and Nielsen [19], which is a variant of the CDN protocol that even
achieves standard adaptive security, and overcomes the commitment problem by assuming a CRS which
is programmed in a very clever way.

We show that this issue does not arise when aiming for CC-adaptive security. Technically, for each
subset of parties X ⊆ P, the simulator only needs to lie about the inputs of parties in X, since it knows
the inputs of the other parties. Moreover, the simulation is only until the point where a party in X gets
corrupted, and so we do not need to justify the internal state of this party. We propose CC-adaptive
security as a natural security goal to aim for, providing strong security guarantees against adaptive
corruption, and at the same time overcoming the commitment problem. Conceptually, this example
shows that the CDN-approach achieves such strong adaptive security guarantees, without the need to
use non-committing encryption tools or erasures. Note that in the passive case, the protocol assumes
solely a setup for threshold homomorphic encryption, whereas the protocol in [19] requires in addition
a CRS.

Key Generation. As usual, we model the setup for the threshold encryption scheme with an ideal
resource KeyGen that generates its keys. The resource KeyGen simply generates the public key ek and
private key dk = (dk1, . . . , dkn) for the threshold encryption scheme, and outputs to each party i the
public key ek and its private key share dki, and to the adversary the public key ek.

Theorem 1. Protocol Πpcdn CC-adaptively constructs MPCf from [N , KeyGen], with error ϵ and up to
t < n/2 passive corruptions, where ϵ reduces distinguishers to the corresponding advantage in the security
of the threshold encryption scheme and is described in the proof.

Proof. Let R = [N , KeyGen] and S = {MPCf }. Fix a set X ⊆ P. We need to show that there is a
simulator σX such that ΠpcdnR ⊆ (σXS)EX ∨Et:ϵ. At any point in time, if the event EX ∨ Et = 1, the
simulator halts. The simulator works as follows.

Key Generation. The simulator σX simulates this step by invoking the simulator for the threshold
encryption scheme. Let ek denote the public key, and dki denote the decryption key share for party i. It
then outputs ek at the adversary interface.

Network Messages. The simulator simulates each step of the protocol, given that all messages before
that step have been delivered by the adversary i.e., the simulator receives all the corresponding deliver
messages at the adversary interface. If not, it simply keeps waiting. The messages in the steps below are
output to the adversary at the corresponding steps, upon receiving the corresponding leak messages at
the adversary interface.

Input Stage. For each party i that is honest at this step and gave input to the ideal resource, σX
outputs an encryption ci on behalf of this party at the adversary interface. If i ∈ X , then the simulator
does not know its input, and computes the ciphertext ci = Encek(0) as an encryption of 0. Otherwise,
i /∈ X and the simulator knows its input xi, so it computes xi = Encek(xi) as the ciphertext.

For each party i that is corrupted at this point, the simulator knows its input xi, and forwards this
input to the ideal resource.

Addition Gates. This step can be simulated in a straightforward manner, performing local homomor-
phic operations on behalf of each honest party.
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Multiplication Gates. Let a and b denote the ciphertexts input to the multiplication gate. The sim-
ulator σX can execute the honest protocol. That is, it generates a random value di on behalf of each
honest party i, and locally computes di = Encek(di), and dib = di � b. It then outputs the pair of cipher-
texts to the adversary interface. For each corrupted party at this step, the simulator obtains the pair of
ciphertexts di and dib.

Upon receiving the pairs of ciphertexts from all parties, compute the ciphertext a � (�idi), and
simulate an honest threshold decryption protocol of this ciphertext. That is, the simulator outputs a
decryption share of the ciphertext to the adversary interface. Upon computing t + 1 decryption shares,
reconstruct the plaintext. Let a +

∑
i di be the reconstructed plaintext. Then, compute the ciphertext

c = (a +
∑

i di) � b � (�idib).

Output. The simulator inputs to the ideal resource (deliver, j), for each party j that obtains an output
in the protocol. It also obtains the output with the instruction leakOutput. Then, upon obtaining an
output y from the ideal resource, use the simulator of the (adaptively secure) threshold decryption
protocol to compute decryption shares on behalf of the honest parties (see [35], where one can simply
choose as the inconsistent party one of the parties in X).

Corruptions. On input a command leak, at interface A.i, if i is corrupted, the simulator outputs the
internal state of party i. Note that this is easily done since for parties not in X, the simulator has access
to its input. And if any party in X gets corrupted, the corresponding MBO is triggered, EX = 1, and
the simulator halts.

We now prove that ΠpcdnR ⊆ (σXS)EX ∨Et:ϵ, for the simulator σX described above. For that, we first
describe a sequence of hybrids.

Hybrid H1. In this system, we assume that the simulator has access to all inputs from the parties. It then
executes the real-world protocol, except that the key generation and the decryption are executed using
the respective simulators for the threshold encryption scheme. By security of the threshold encryption
scheme, we have that untilEX ∨Et

(
ΠpcdnR

)
is ϵ1-close to untilEX ∨Et

(H1). That is:

untilEX ∨Et

(
ΠpcdnR

)
⊆ (untilEX ∨Et

(H1))ϵ1 ,

where ϵ1 is the advantage of the distinguisher (modified by the reduction) to the security of the
threshold encryption scheme. Moreover, by definition we have that untilEX ∨Et (H1) ∈ H

EX ∨Et]
1 . Therefore:

untilEX ∨Et

(
ΠpcdnR

)
⊆

(
H

EX ∨Et]
1

)ϵ1
⇐⇒ ΠpcdnR ⊆ HEX ∨Et:ϵ1

1 .

Hybrid H2. The simulator in addition sets the input encryption of the honest parties in X at the Input
Stage to an encryption of 0. By semantic security of the threshold encryption scheme, and following the
same reasoning as above, we have that H1 ∈ HEX ∨Et:ϵ2

2 , where ϵ2 is the advantage of the distinguisher
(modified by the reduction) to the semantic security of the encryption scheme. Moreover, the hybrid
specification {H2} corresponds exactly to the ideal specification (σXS).

Combining the above steps, we have that ΠpcdnR ⊆ (σXS)EX ∨Et:ϵX , where ϵX = ϵ1 + ϵ2. Therefore,
choosing the function ϵ where ϵ(D) = supX⊆P{ϵX(D)}, the statement follows. ⊓⊔

7 Application to the CLOS Protocol

In this section, we show another application of our new definition, with the iconic CLOS protocol [13],
which is based on the classical GMW protocol [25].

We show that the CLOS protocol can be used to achieve a CC-adaptively secure protocol for arbitrary
number of active corruptions, assuming a CRS resource, and the existence of enhanced trapdoor permu-
tations. Note that, since CC-adaptivity implies static security, and some form of setup is required even
for static security, then it is impossible to achieve CC-adaptivity in the plain model (where only the net-
work is assumed) for the dishonest majority setting. However, note that in contrast to the UC-adaptive
version of the CLOS protocol, the construction does not require the use of augmented non-committing
encryption. In fact, to the best of our knowledge, all UC-adaptively secure protocols in the dishonest
majority setting require some form of non-committing encryption.
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Theorem 2. Assume that enhanced trapdoor permutations exist. Then, there exists a non-trivial8 pro-
tocol that CC-adaptively constructs MPCf from [N , CRS], for appropriate error ϵ (as defined by the steps
below) and for any number of active corruptions.

We only sketch the proof of the above theorem. We follow the steps of the CLOS protocol. First,
a construction of a passively secure protocol assuming the asynchronous communication network N is
shown. This construction is achieved by first constructing an ideal oblivious transfer (OT), and then
designing a secure computation protocol assuming an ideal OT. The following lemma shows that the
protocol Πot of [25] achieves CC-adaptive security. We describe the protocol and the proof of the following
lemma in Section E.

Lemma 9. Assume that enhanced trapdoor permutations exist. Then, Πot CC-adaptively constructs OT
from N , for error ϵ (described in the proof), and for any number of passive corruptions.

Given that UC-adaptive security implies CC-adaptive security by Lemma 7, and there is a UC-
adaptively secure MPC protocol assuming an ideal OT resource [13], we have the following lemma:

Lemma 10. There exists a non-trivial protocol that CC-adaptively constructs MPCf from [N , OT], with
no error, and for any number of passive corruptions.

As a corollary of the above two lemmas and the composition guarantees from Lemma 3, we have:

Corollary 1. Assume that enhanced trapdoor permutations exist. There exists a non-trivial protocol that
CC-adaptively constructs MPCf from N , for error ϵ (defined by the composition Lemma 3 and error from
Lemma 9), and for any number of passive corruptions.

Second, we use the CLOS compiler that transforms any passively secure protocol operating in the
network N , to an actively secure protocol assuming in addition an ideal commit-and-prove CP resource
(see Section F for a description). One can see that the compiler preserves the adaptivity type in the sense
that if the passive protocol is CC-adaptively secure, the compiled protocol is CC-adaptively secure.

Corollary 2. Let Π be a multi-party protocol and let Π ′ be the protocol obtained by applying the CLOS
compiler. Then, the following holds: if Π CC-adaptively constructs MPCf from N for error ϵ and any
number of passive corruptions, then Π ′ CC-adaptively constructs MPCf from [N , CP] for error ϵ′ defined
in the proof and any number of active corruptions.

Proof (Sketch). The proof in CLOS (Proposition 9.6) shows that a malicious adversary cannot cheat in
the compiled protocol because the resource CP checks the validity of each input received. In particular,
they show that for any adversary interacting in the compiled protocol Π ′, there is a passive adversary
interacting in protocol Π that simulates the same view.

More precisely, the proof shows that the specification ΠτN and Π ′[N , CP] are the same, where τ is
the translation converter attached at the adversary interface, which translates from the adversary in Π ′

to the adversary in Π. (Typically the translation is called a simulator, and it happens between a real
resource and an ideal resource. Here, the translation is between two real resources.)

Fix a set X ⊆ P. Since Π CC-adaptively constructs MPCf from N for error ϵ and any number of
passive corruptions, we have that ΠN ⊆ (σXMPCf )EX :ϵ.

Using Lemma 2, this implies the desired result:

Π ′[N , CP] = ΠτN ⊆ τ(σXMPCf )EX :ϵ ⊆ (τσXMPCf )EX :ϵ′ := (σ′
X

MPCf )EX :ϵ′
,

where ϵ′ = ϵτ . ⊓⊔

It was also shown in [13] that CP can be constructed with UC-adaptive security assuming a zero-
knowledge resource ZK and broadcast BC. Given that ZK can be constructed assuming a resource CRS
and broadcast BC, and BC can be constructed from N , the authors conclude that CP can be constructed
from CRS and N . Therefore, since UC-adaptive security implies CC-adaptive security, Lemma 7 shows:
8 The ideal specification does not require any of the simulators to deliver the messages to the parties. This implies

that a protocol that “hangs” (i.e., never sends any messages and never generates output) securely realizes any
ideal resource, which is uninteresting. Following [13], we therefore let a non-trivial protocol be one for which
all parties generate output if the adversary delivers all messages and all parties are honest.
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Corollary 3. There exists a non-trivial protocol that CC-adaptively constructs CP from [N , CRS], for
error ϵ (as in [13]), and for any number of active corruptions.

From Corollaries 1, 2 and 3, and the composition Lemma 3 we achieve the theorem statement.
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Supplementary Material

A Proof of Lemma 3

The proof of the lemma follows from the properties of the ϵ-relaxation and the until-relaxation, and is
in line with the composition theorem for interval-wise relaxations in [30].

We start from the first property, which shows sequential composition. That is, if π constructs S from
R with error ϵ, and π′ constructs T from S with error ϵ′, then one can construct T from R with a new
error ϵ̃, corresponding essentially to the sum of ϵ and ϵ′.

πR ⊆
∩

X⊆P
(σXS)EX ∨EZ :ϵ ∧ π′S ⊆

∩
X⊆P

(σ′
X

T )EX ∨EZ :ϵ′
=⇒ π′πR ⊆

∩
X⊆P

(σ′
X

σXT )EX ∨EZ :ϵ̃,

for ϵ̃ := supX⊆P{(ϵπ′)EX ∨EZ + (ϵ′
σ

X
)EX ∨EZ }, where (ϵπ′)EX ∨EZ is the advantage of the distinguisher

that first attaches π′ to the given resource, and then interacts with the projected resource, and analogously
for (ϵ′

σ
X

)EX ∨EZ .
Let X ⊆ P be a set. From the first part, Lemma 2 and composition order invariance, we have:

π′πR ⊆ π′ (
(σXS)EX ∨EZ :ϵ) ⊆

(
(π′σXS)EX ∨EZ :ϵπ′

)
⊆

(
(σXπ′S)EX ∨EZ :ϵπ′

)
.

Moreover, from the second part we have:

(σXπ′S) ⊆ σX

(
(σ′

X
T )EX ∨EZ :ϵ′

)
⊆ (σXσ′

X
T )EX ∨EZ :ϵ′

σ
X .

Combining both statements and using Lemma 1 yields:

π′πR ⊆
(

(σXσ′
X

T )EX ∨EZ :ϵ′
σ

X

)EX ∨EZ :ϵπ′

⊆ (σXσ′
X

T )EX ∨EZ :ϵ̃.

The second property ensures that the construction notion achieves parallel composition. That is, if
π constructs S from R, then it also constructs [S, T ] from [R, T ].

πR ⊆
∩

X⊆P
(σXS)EX ∨EZ :ϵ =⇒ π[R, T ] ⊆

∩
X⊆P

(σX [S, T ])EX ∨EZ :ϵT ,

for ϵT (D) := supT ∈T ϵ(D[·, T ]), where D[·, T ] denotes the distinguisher that emulates T in parallel
to the given resource, and then executes D.

Let X ⊆ P be a set. From composition order invariance and Lemma 2, we have:

π[R, T ] = [πR, T ] ⊆ [(σXS)EX ∨EZ :ϵ, T ] ⊆ [σXS, T ]EX ∨EZ :ϵT =
(
σX [S, T ]

)EX ∨EZ :ϵT
.
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B Threshold Homomorphic Encryption

We recall the definition of a threshold encryption scheme. A threshold encryption scheme with standard
adaptive security can be found in [35], based on the Paillier cryptosystem.

Definition 10. A homomorphic threshold encryption scheme consists of five algorithms:

– (Key generation) The key generation algorithm is parameterized by (t, n) and outputs (ek, dk) =
Keygen(t,n)(1κ), where ek is the public key, and dk = (dk1, . . . , dkn) is the list of secret keys.

– (Encryption) There is an algorithm Enc, which on input public key ek and plaintext m, it outputs
an encryption m = Encek(m; r) of m, with random input r.

– (Partial decryption) There is an algorithm that, given as input a decryption key dki and a ciphertext,
it outputs di = DecSharedki(c), a decryption share.

– (Reconstruction) Given t+1 decryption shares {di}, one can reconstruct the plaintext m = Rec({di}).
– (Additively Homomorphic) There is an algorithm which, given public key ek and encryptions a and

b, it outputs a uniquely-determined encryption a + b. We write a + b = a � b. Likewise, there is an
algorithm performing substraction: a − b = a � b.

– (Multiplication by constant) There is an algorithm, which, given public key ek, a plaintext a and a
ciphertext b, it outputs a uniquely-determined encryption a · b. We write a · b = a � b.

C Description of Communication Primitives

C.1 Network Model

We first describe a single-message authenticated channel AUTHi,j from party i to party j. A multi-
message authenticated channel is then accordingly obtained via parallel composition of single-message
resources. The resource has n + 2 interfaces, n party interfaces, an adversary interface A and a free
interface W .

The channel expects an input message m at interface i, which is stored upon receipt. The adversary
can learn the message that is input, and can choose to deliver the message by making it available at
interface j. Moreover, if party i is corrupted, it can inject a new message, as long as the message has not
been delivered yet.

Initialization
1: mi, mj ← ⊥
2: CorruptSender = 0

Party Interfaces
1: On input (send, m) at interface i, if mi = ⊥, set mi = m. Output ⊥ at interface i.
2: On input receive at interface j, output mj at interface j.
3: On any input at interface k ∈ [n] \ {i, j}, output ⊥ at the same interface.

Adversary Interface
1: On input leak at interface A, output mi at interface A.
2: On input deliver at interface A, set mj = mi. Output ⊥ at interface A.
3: On input (inject, m) at interface A, if CorruptSender = 1 and mj ̸= ⊥, set mi = m.

Free Interface
1: On input (corrupt, i) at interface W , set CorruptSender = 1. Output ⊥ at interface W .

Resource AUTHi,j

Let N be the complete network of pairwise authenticated channels, i.e., the parallel composition of
AUTHi,j , for i, j ∈ [n].
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C.2 Broadcast with Abort

The resource has n + 2 interfaces, n party interfaces, an adversary interface A and a free interface W .
As a first step, we model a broadcast resource BCi where party i is the sender. We then define the
broadcast specification BC that allows any party to broadcast as the specification containing the parallel
composition of broadcast resources BCi, for each i ∈ [n].

The broadcast specification BC we consider corresponds to that of broadcast with abort [27], and does
not guarantee delivery of messages. It only guarantees that no two uncorrupted parties will receive two
different messages.

As pointed out by Hirt and Zikas [28], traditional broadcast protocols do not construct the stronger
broadcast functionality which simply forwards the sender’s message to all parties, since they are sub-
ject to adaptive attacks, where the adversary can corrupt an initially honest sender depending on the
broadcasted message, and change the broadcasted message. Therefore, we consider the “relaxed” version,
which allows an adaptively corrupted sender to change the message sent, as long as the message was not
delivered to any party.

Initialization
1: m∗ = ⊥
2: m1, . . . , mn ← ⊥
3: CorruptSender = 0

Party Interfaces
1: On input (bc, m) at interface i, if m∗ = ⊥, set m∗ = m. Output ⊥ at interface i.
2: On input receive at interface j ∈ [n], output mj at interface j.

Adversary Interface
1: On input leak at interface A, output m∗ at interface A.
2: On input (deliver, j), j ∈ [n], at interface A, set mj = m∗. Output ⊥ at interface A.
3: On input (inject, m) at interface A, if CorruptSender = 1 and mj = ⊥ for all j ∈ [n], set m∗ = m.

Free Interface
1: On input (corrupt, i) at interface W , set CorruptSender = 1. Output ⊥ at interface W .

Resource BCi

D CDN Protocol: Active Corruption Case

To handle the case of active corruption, the CDN protocol makes use of a broadcast primitive to ensure
consistency of distributed messages among the parties, and also zero-knowledge proofs at the appropriate
steps of the protocol. As a side remark, we note that the original CDN protocol used a multi-party
zero-knowledge proof based on Σ-protocols, where the challenge is chosen by a small randomly-selected
committee. This step is subject to crucial adaptive attacks, since the adversary can trivially wait until
the committee is selected and corrupt all members. With this step, the protocol would not satisfy CC-
adaptive security. However, we will show that the protocol, assuming an ideal multi-party zero-knowledge
resource (with abort) does achieve CC-adaptive security. Note that this resource guarantees consistency
on whether the designated prover succeeded in the proof, and therefore also can be used as a broadcast
resource. Therefore, in the protocol we do not need to assume the broadcast specification BC or the
network N (these are used to construct ZK). As noted in Section 5.3, such a resource may be instantiated
even with standard adaptive security from N for t < n/2, or more efficiently from bilateral zero-knowledge
proofs, assuming a CRS.

Multi-Party Zero-Knowledge Relations. We state the protocol assuming ZKR resources for appro-
priate relations. More concretely, we are interested in zero-knowledge proofs for three types of relations,
parameterized by a threshold encryption scheme with public key ek:
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1. Proof of Plaintext Knowledge: The statement consists of ek, and a ciphertext c. The witness consists
of a plaintext m and randomness r such that c = Encek(m; r).

2. Proof of Correct Multiplication: The statement consists of ek, and ciphertexts c1, c2 and c3. The
witness consists of a plaintext m1 and randomness r1, r3 such that c1 = Encek(m1; r1) and c3 =
m1 · c2 + Encek(0; r3).

3. Proof of Correct Decryption: The statement consists of ek, a ciphertext c, and a decryption share d.
The witness consists of a decryption key share dki, such that d = Decdki(c).
Let us denote ZK the specification containing the parallel composition of ZKpopk, ZKpocm and ZKpocd.

Protocol Description. We describe the protocol engine formally below. The (sub)-interfaces of the
converter are self-explanatory and are connected to the resource that the interface is naming. For example,
in.ZKpopk, indicates the inside sub-interface of the converter that is connected to resource ZKpopk.

Moreover, as noted above, the assumed resources have security with abort. The protocol steps are
executed sequentially, where messages from step r are computed only if all messages from step r −1 have
been received, in line with the standard way of executing a synchronous protocol in an asynchronous
network (see [32]).

Key Setup
1: On input the public key ek and secret key share dki at interface in.keygen, store them.

Input Distribution
1: On input xi at interface out, compute xi = Encek(xi; r) and input (xi, (xi, r)) at interface in.ZKpopk.
2: On input xj at interface in.ZKpopk, assign this ciphertext as the input ciphertext of party j. Otherwise,

assign a default ciphertext.
Addition Gates Input: a, b. Output: c.
1: Locally compute c = a � b.

Multiplication Gates Input: a, b. Output: c.
1: Sample a random plaintext di and compute the ciphertexts di = Encek(di; r1) and

dib = di � b � Encek(0; r3). Then, output the triple ((di, b, dib), (r1, r3)) at interface in.ZKpocm.
2: On input (dj , b, djb) at interface in.ZKpocm, add j to the set S. That is, S is the set of parties that

succeeded in the proof.
3: Compute a �

(
�i∈Sdi

)
. Then, execute the Threshold Decryption sub-protocol on this ciphertext. Let

a +
∑

i∈S
di be the decrypted plaintext.

4: Compute c =
(
a +

∑
i∈S

di

) � b �
(
�i∈Sdib

)
.

Output
1: Upon obtaining c′, the output ciphertext of the circuit, execute the Threshold Decryption sub-protocol

on c′.
Threshold Decryption Input: ciphertext c. Output: y.
1: Compute a decryption share si = DecSharedki (c). Then, input ((ek, c, si), dki) at interface in.ZKpocd.
2: Upon receiving (ek, c, sj) from t + 1 different parties at interface in.ZKpocd, compute y = Rec({sj}).

Protocol Πcdn(i)

The following theorem states that the protocol Πcdn achieves CC-adaptive security in the model
assuming a threshold encryption setup and multi-party zero-knowledge resource. The main difference in
the proof with respect to the passive protocol, is that the simulator extracts the inputs from corrupted
parties from the inputs to the zero-knowledge resource, and also checks that the values received from the
adversary interface satisfy the appropriate zero-knowledge relations.
Theorem 3. Protocol Πcdn CC-adaptively constructs MPCf from [ZK, KeyGen], with error ϵ and up to
t < n/2 active corruptions, where ϵ reduces distinguishers to the corresponding advantage in the security
of the threshold encryption scheme and is described in the proof.
Proof. Let R = [ZK, Keygen] and S = {MPCf }. Fix a set X ⊆ P. We need to show that there is a
simulator σX such that ΠcdnR ⊆ (σXS)EX ∨Et:ϵ. At any point in time, if the event EX ∨ Et = 1, the
simulator halts. The simulator works as follows.
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Key Generation. The simulator σX simulates this step by invoking the simulator for the threshold
encryption scheme. Let ek denote the public key, and dki denote the decryption key share for party i. It
then outputs ek at the adversary interface.

Network Messages. The simulator simulates each step of the protocol, given that all messages before
that step have been delivered by the adversary i.e., the simulator receives all the corresponding deliver
messages at the adversary interface. If not, it simply keeps waiting. The messages below in the steps
below are output to the adversary at the corresponding steps, upon receiving the corresponding leak
messages at the adversary interface.

Input Stage. For each party i that is honest at this step and gave input to the ideal resource, σX
outputs an encryption ci on behalf of this party at the adversary interface. If i ∈ X , then the simulator
does not know its input, and computes the ciphertext ci = Encek(0) as an encryption of 0. Otherwise,
i /∈ X and the simulator knows its input xi, so it computes xi = Encek(xi) as the ciphertext. It then
outputs the ciphertext ci, indicating that the zero-knowledge proof was successful.

For each party i that is corrupted at this point, the simulator obtains (c, w) and checks that the witness
w, consisting of a plaintext x and randomness r, satisfy the proof of plaintext knowledge relation, i.e.,
that c = Encek(x; r). It this holds, forward x to the ideal resource.

Addition Gates. This step can be simulated in a straightforward manner, performing local homomor-
phic operations on behalf of each honest party.

Multiplication Gates. Let a and b denote the ciphertexts input to the multiplication gate. The sim-
ulator σX can execute the honest protocol. That is, it generates a random value di on behalf of each
honest party i, and locally computes di = Encek(di), and dib = di � b. It then outputs the pair of
ciphertexts to the adversary interface, indicating that the proof of correct multiplication is valid. For
each corrupted party at this step, the simulator obtains (as input of the zero-knowledge proof of correct
multiplication) the statement containing the ciphertexts ci

1, c2 := b and ci
3 as the statement, and as

witness the plaintexts di, and randomness r1 and r3. The simulator checks that ci
1 = Encek(di; r1), and

ci
3 = di � c2 + Encek(0; r3). If this holds, accept the pair of ciphertexts from party i.

Upon receiving the pairs of ciphertexts from all parties, let S be the set of accepted parties. Then,
compute the ciphertext a � (�i∈Sci

1), and simulate an honest threshold decryption protocol on this
ciphertext. Let a +

∑
i∈S di be the reconstructed plaintext. Then, compute the ciphertext c = (a +∑

i∈S di) � c2 � (�i∈Sci
3).

Output. The simulator inputs to the ideal resource (deliver, j), for each party j that obtains an output
in the protocol. It also obtains the output with the instruction leakOutput. Then, upon obtaining an
output y from the ideal resource, use the simulator of the (adaptively secure) threshold decryption
protocol to compute decryption shares on behalf of the honest parties (see [35], where one can simply
choose as the inconsistent party one of the parties in X).

Corruptions. On input a command leak, at interface A.i, if i is corrupted, the simulator outputs the
internal state of party i. Note that this is easily done since for parties not in X, the simulator has access
to its input. And if any party in X gets corrupted, the corresponding MBO is triggered, EX = 1, and
the simulator halts.

We prove that ΠcdnR ⊆ (σXS)EX ∨Et:ϵ via a sequence of hybrids.

Hybrid H1. Here, we assume that the simulator has access to all inputs from the parties. It then executes
the real-world protocol, except that in the zero-knowledge proofs, when the simulator has to output a
proof on behalf of an honest party it simply outputs a valid response without checking the witness from
the honest party. It is trivial to see that the real-world specification is the same as H1, since honest
parties always send a valid witness to ZK.

Hybrid H2. We modify the above hybrid to also change the key generation and the decryption, which
are now executed using the respective simulators for the threshold encryption scheme. By security of the
threshold encryption scheme, we have that untilEX ∨Et

(H1) is ϵ1-close to untilEX ∨Et
(H2). With the same

argument as in the passive case, we have that:

untilEX ∨Et
(H1) ∈

(
H

EX ∨Et]
2

)ϵ1
⇐⇒ H1 ∈ HEX ∨Et:ϵ1

2 .
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Hybrid H3. This hybrid is the same as above, except that the simulator sets the input encryption
of the honest parties in X during the Input Stage as an encryption of 0. By semantic security of the
threshold encryption scheme, we have that H2 ∈ HEX ∨Et:ϵ2

3 , where ϵ2 is the advantage of the distinguisher
(modified by the reduction) to the semantic security of the encryption scheme. Moreover, the hybrid H2
corresponds exactly to the ideal specification (σXS).

Combining the above steps, we have that ΠcdnR ⊆ (σXS)EX ∨Et:ϵX , where ϵX = ϵ1 + ϵ2. Therefore,
choosing the function ϵ where ϵ(D) = supX⊆P{ϵX(D)} concludes the proof.

⊓⊔

E Protocol and Proof of Lemma 9

The oblivious transfer protocol Πot from [25] is presented below. We describe the protocol in the n-party
setting, where two of the parties, the sender s and the receiver r exchange the usual messages, and other
parties do not perform any instructions.

Converter for Sender s

1: On input (x1 . . . , xℓ) at out, choose a trapdoor permutation f over {0, 1}κ, and its inverse f−1. Then,
output f to in.net.r.

2: On input (y1 . . . , yℓ) at in.net.r, output (b1, . . . , bℓ) := (x1 ⊕B(f−1(y1)), . . . , xℓ ⊕B(f−1(yℓ))) to
in.net.r, where B(·) is a hard-core predicate for f .

Converter for Receiver r

Set f ′ = ⊥.
1: On input i at interface out, if f ′ ̸= ⊥, choose y1, . . . , yi−1, r, yi+1, . . . , yℓ ∈R {0, 1}κ, and compute

yi = f(r), and output (y1, . . . , yℓ) at interface in.net.s.
2: On input f at interface in.net.s, set f ′ = f .
3: On input (b1, . . . , bℓ), output bi ⊕B(r) at out.

Protocol Πot

We prove that the protocol achieves CC-adaptive security against any number of passive corruptions.

Lemma 9. Assume that enhanced trapdoor permutations exist. Then, Πot CC-adaptively constructs OT
from N , for error ϵ (described in the proof), and for any number of passive corruptions.

Proof. Fix a set X ⊆ P. We divide four cases, depending on whether the sender s or the receiver r are
in the set X, and show that ΠotN ⊆ (σXOT)EX :ϵ. In all cases, the simulator halts at the point where a
party in X is corrupted.

Case 1: s /∈ X and r /∈ X. This case is trivial, since the simulator knows the inputs to both parties,
and can therefore locally simulate all steps.

Case 2: r ∈ X. σX generates f, f−1 as in the protocol, outputs f at the adversary interface A. It
then generates y1, . . . , yi−1, yi, yi+1, yℓ randomly, where yj ∈R {0, 1κ}. Output y1, . . . , yℓ at interface A.
Finally, compute each bit bi = xi ⊕B(f−1(yi), i ∈ [1, ℓ]. Output b1, . . . , bℓ at interface A, input x1, . . . , xℓ

to OT and deliver the output to the receiver.
Corruptions. At any point in time, on input leak from A output the sender’s secret state.

Simulation is perfect in this case. Since f is a permutation, choosing z at random and computing yi =
f(r), as occurs in the real protocol, gives a uniform random yi. Moreover, the equality bi = xi⊕B(f−1(yi))
is satisfied. Therefore, both real and ideal systems behave the same until the event EX triggers. This
means that ΠotN ⊆ (σXOT)EX :0.

Case 3: s ∈ X. σX generates f, f−1 as in the protocol, outputs f at the adversary interface A. It then
generates y1, . . . , yi−1, r, yi+1, yℓ randomly, where yj ∈R {0, 1κ}, and yi = f(r). Output y1, . . . , yℓ at
interface A. Finally, input i at OT, and obtain xi. Then, compute b1, . . . , bi−1, bi+1, bℓ as uniform bits,
and set bi = xi ⊕ B(f−1(yi). Output b1, . . . , bℓ at interface A.
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Corruptions. On input leak from A before Step 2, if the receiver r is corrupted, output the input i.
If the corruption is after Step 2, output y1, . . . , yℓ.

The only difference between the real and ideal world, is in the third message b1, . . . , bℓ. The bit bi

is identical in both worlds, and is set to xi ⊕ B(f−1(yi)). For the other bits bj , j ̸= i, the simulation
chooses them uniformly, while the protocol chooses them as xj ⊕ B(f−1(yj)). However, since B(·) is a
hard-core predicate and yj is uniform random, these are distinguishable up to the hard-core property.

Therefore, we have that until EX = 1, the real system is the same as the ideal system, up to the
security of the hard-core predicate. That is, ΠotN ⊆ (σXOT)EX :ϵhc , where ϵhc is the advantage for the
distinguisher modified by the reduction in distinguishing the hard-core bit from uniform.

Case 4: s ∈ X and r ∈ X. In this case, the simulator σX simply generates f, f−1 as in the protocol,
outputs f at the adversary interface A. It then generates y1, . . . , yℓ, where yj ∈R {0, 1}κ and outputs
this to interface A, and also sets the second messages b1, . . . , bℓ where bj ∈R {0, 1} and outputs this to
interface A.

This case can be argued similarly as the previous case. ⊓⊔

F Commit-and-Prove Resource

The commit-and-prove resource [13] is a generalization of the commitment resource. It is parameterized
by a relation R and a designated party i, the committer. It consists of two phases. In the first phase,
party i can commit to a value w, and all parties receive a “committed” message. In the second phase,
instead of opening the value, the resource receives some value x, and checks whether R(x, w) = 1. If so,
it outputs x to all parties, and otherwise it ignores the input. In fact, the resource allows the committer
to commit to multiple values, and the relation can depend on all these values.

We denote the resource CPR the parallel composition of resources CPi,R for each designated party
i ∈ [n], and omit writing the relation when it is clear from the context.

Local Variable
w is initially an empty list.
Q = ∅.

Commit Phase
1: On input (commit, id, w) at interface i, append w to w and output ⊥ at interface i.
2: On input id at interface j ̸= i, if a value with this id was committed, make the receipt available to the

adversary, who then can choose to deliver the message at interface j.
3: On input id at the adversary interface, if a value with this id was committed, output receipt at

interface j.

Prove Phase
1: On input (prove, id, x) at interface i, if R(x, w) = 1, add (id, x) to Q.
2: On input id at interface j ̸= i if a pair (id, x) was stored, make x available to the adversary, who then

can choose to deliver the message at interface j.
3: On input id at the adversary interface, if a pair (id, x) was stored, output x at the same interface.

Resource CPi,R
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