
A Configurable Crystals-Kyber Hardware
Implementation with Side-Channel Protection

Arpan Jati1,2, Naina Gupta1, Anupam Chattopadhyay1, and Somitra Kumar Sanadhya3

1 NTU, Singapore
2 IIIT-Delhi, India

3 IIT, Jodhpur, India
{arpan,anupam}@ntu.edu.sg
{naina003}@e.ntu.edu.sg
{somitra}@iitj.ac.in

Abstract. In this work, we present a configurable and side channel resistant
implementation of the post-quantum key-exchange algorithm Crystals-Kyber.
The implemented design can be configured for different performance and area
requirements leading to different trade-offs for different applications. A low area
implementation can be achieved in 5269 LUTs and 2422 FFs, whereas a high
performance implementation required 7151 LUTs and 3730 FFs. Due to a deeply
pipelined architecture, a high operating speed of more than 250 MHz could be
achieved on 28nm Xilinx FPGAs. The side channel resistance is implemented
using a carefully chosen set of techniques resulting in a low overhead of less
than 5%. To the best of our knowledge, this work presents the first side-channel
attack protected configurable accelerator for Crystals-Kyber. Furthermore, one
of the configuration choices results in the smallest hardware implementation of
Crystals-Kyber known in literature.

Keywords: cryptography · post-quantum · key-exchange · cryptoprocessor · Ky-
ber · fault-resistance · SCA

1 Introduction

The idea of building computers based on the principles of quantum mechanics for
solving computational problems originated in the works of Deutsch and Feynman [12,14].
However, significant progress in their physical realization took place only in the last
decade because of breakthroughs in stability of entanglement and the development of
new materials [4]. This is already reflected through the demonstrations by Quantum
computers, achieving insurmountable computational advantage over classical ones [2].
It has been conjectured that in the coming years, practical quantum computers will exist
which will be able to break most of the currently used cryptographic systems [19].

In light of the above, there is a serious effort across the world to adopt new crypto-
graphic primitives to resist an adversary, having access to large-scale quantum computer.
These works are collectively driven by a standardization process for Post-Quantum
Cryptography (PQC), by National Institute of Standards and Technology (NIST). NIST
published a call for proposals in December 2016 [25]. The purpose of the proposal was

2 Arpan Jati, Naina Gupta , Anupam Chattopadhyay, and Somitra Kumar Sanadhya

to standardize some quantum-safe key-exchange, public-key encryption and signature
schemes. As a response, 69 designs were submitted for public review out of which 26
designs were shortlisted for second round. For the third round, 7 candidates were chosen
as finalists and 8 candidates were considered as alternate.

PQC primitives originate from hard mathematical problems that cannot be solved by
a Quantum computer in polynomial time. These hard problems span a diverse range of
fields such as hash functions [10,5], coding theory [21,23], lattices [26,15], etc. Among
these, lattice-based cryptography has emerged to be a promising candidate for PQC
with majority of the finalists belonging to the class of structured-lattice problem. This
is due to the strong theoretical security guarantees obtained from constructions based
on the hardness of some lattice problems. The significant theoretical work in [22,29]
has led to the development of several lattice based cryptographic constructions over
the years. Consequently, there is already a rich body of literature studying various im-
plementations [1,32,11,17] and side-channel attacks [28,27,13,16,9] on lattice-based
PQC schemes. However, considering various implementation alternatives, there needs
to be a comprehensive analysis on design trade-offs, configurability and side-channel
resistant PQC implementations. This is exactly what we address in this work. More
specifically, we focus on implementing the module learning-with-errors (MLWE) al-
gorithm CRYSTALS-Kyber[8], which is one of the finalists for NIST PQC public-key
encryption. However, some of our design modules are generic and can be easily ported
across other lattice-based PQC primitives.

1.1 Contributions

In this work, we present the design for a configurable Module-LWE based hardware
implementation with fault and side channel leakage resistance. The contributions of this
paper are as follows.

(i) We present detailed implementation results for CRYSTALS-Kyber-1024 for both
CPA and CCA secure variants. We also provide results for all the parameters of
CRYSTALS-Kyber for CCA secure version.

(ii) We present and compare results for two implementations while utilizing two different
SHA3 implementations one leading to a high-performance design and other one
leading to a low-area design.

(iii) Using extensive resource sharing (arithmetic operations as well as control signals,
FSMs) and a smaller SHA3 Core, we are able to achieve a reduction of about 70% and
50% in terms of LUTs and FFs than state-of-the-art hardware implementation. Thus,
to the best of our knowledge, this paper presents smallest hardware implementation
of Crystals-Kyber requiring only 5269 LUTs and 2422 FFs.

(iv) We have added multiple fault countermeasures to the overall design. The individual
countermeasures are designed to have high performance and minimal overheads
while providing good fault resistance. The utilized techniques are designed to com-
pliment each other and further enhance the security. We also present in Section 4.1,
new fast hashing based checksum construction with good differential characteristics;
which can be used to detect maliciously injected faults with high probability.

Configurable Crystals-Kyber with Side-Channel Protection 3

(v) Fault countermeasures using inverted/complementary logic and state counters are
also implemented and designs for secured FSM’s for fetch and execute operations
are provided in Section 4.1.

(vi) The implementation is highly configurable in terms of side-channel countermeasures.
The specific countermeasures can be enabled depending on the application.

2 Preliminaries

In this section, we briefly discuss the post quantum key exchange protocol CRYSTALS-
Kyber. For more detailed description, the interested reader is referred to [8].

2.1 Notations

Throughout the paper, we use bold lower-case letters to represent vectors with coefficients
in time domain (e.g. e) and lower-case italicized letters to denote polynomials (e). A hat
over the top of a symbol is used to represent coefficients in the frequency domain (ê).
Whereas bold upper-case letters are used to represent Matrices (e.g. A). R defined as
R = Z[X]/(Xn + 1) denotes the ring of integer polynomials modulo (Xn + 1), where
n is a power of 2. Rq is the polynomial ring with coefficients modulo q. Let X be a
probability distribution over R, then x←$X means that x has been sampled according
to X . Further, ψn

k is used to denote an array of n elements where each element has been
chosen independently at random from the centered binomial distribution with parameter
k.

TRNG + HASH

PRNG1

seed for Â seed for s, e

NTT

Sampled s, e

ŝ, ê

t̂ = Â ◦ ŝ+ ê

Â

Encode

pk, sk

PRNG2

ŝ

pk

seed for Â

TRNG + HASH

seed for r, e1, e2

NTT

r̂

PRNG2

Sampled r, e1, e2

u = INTT(Â
T
◦ r̂) + e1

m

v = INTT(t̂
T ◦ r̂) + e2 + Decompress(Decode(m))

e2e1

PRNG1

Â
T

t̂
T

DecompressDecompress

Decode

c1, c2

skc1, c2

Decompress

u, v

m = Encode(Compress(v− INTT(ŝT ◦ NTT(u))))

ŝT

r̂

pk

c1, c2

Decode

Decode Decode

Alice (Server) Bob (Client)

Fig. 1: CRYSTALS-Kyber Protocol Description

4 Arpan Jati, Naina Gupta , Anupam Chattopadhyay, and Somitra Kumar Sanadhya

2.2 Protocol Description

The goal of a key-encapsulation mechanism (KEM) is to generate a shared secret key
between two distrusting parties. The following three algorithms are used to carry out the
actual KEM procedure:

1. KeyGen() : Using randomly generated seeds, Alice first creates a Matrix A sampled
from a uniformly random distributed and two vectors (s, e) sampled from a centered
binomial distribution. She then computes t = As+ e. The seed used to sample A
and the computed vector t encoded as public key (pk) is sent to Bob for use in En-
capsulation. Further, vector s encoded as secret key (sk) is stored for Decapsulation
process later. The vector e is a random masking noise used to hide the secret key.

2. Encaps(pk) : Bob samples vectors (r, e1) and polynomial e2 from the centered bino-
mial distribution. Using these two vectors and the public key of Alice, Bob computes
vector u = AT r+e1. Bob also generates v = (tTr)+ e2+Decompress(Decode(m))
using Alice’s public key and the message m. Bob then computes the ciphertext c
using u and v and sends this to Alice.

3. Decaps(sk,c) : Alice can now generate the message m using the ciphertext c and the
stored secret key sk.

The overall description of the CRYSTALS-Kyber protocol is shown in Figure 1.

3 Architecture and Design Rationale

We implemented CRYSTALS-Kyber by breaking down the overall major steps (keygen,
encaps and decaps) into smaller instructions. Similar to a general-purpose CPU our
design also has fetch, decode and execute units as major components. But, certain
features are quite different to accelerate a post quantum algorithm. One such major
difference is that the instructions are quite large in terms of the area as well as the
number of clock-cycles required. Some of the instructions take a few thousand clock-
cycles. As a result the fetch and decode units, which require a few clock-cycles are
implemented without pipelining. We will discuss about the different components of the
high level architecture shown in Fig. 2 in the following sections.

3.1 Fetch and Decode Units

The fetch unit reads the instructions from an external RAM based on the signals from
the execute unit. Some of the instructions may need an immediate address/data which is
stored next to the instruction. The fetch unit handles this requirement transparently. It
also accepts next instruction addresses and jumps to the given address when required. The
decode unit decodes the instruction and generates separate enable signals (instruction
decoder enable - idc-enables) for each instruction. It also generates I/O port indexes to
be used by the switch-matrix in the register units.

Configurable Crystals-Kyber with Side-Channel Protection 5

re
g
id
x A

Control Logic,
Sequencer,

Address Generation,
& Clock Gating

Dual Port - Switch Matrix

lo
ad

st
or
e 1

6

re
g
id
x B

re
g
id
x C

clk

PORTA[8]

PORTB[8]

PORTC[8]

register-k

lo
ad

st
or
e 8

ga
u
ss
ia
n
sa
m
p
lin
g

b
in
om

ia
l
sa
m
p
lin
g

ad
d
/
su
b

ge
n
m
at
ri
x

n
tt
/i
n
tt

co
m
pr
es
s/
to
m
sg

d
ec
om

pr
es
s

PORTA[16]

PORTB[16]

PORTC[16]

register-p

8-Bit × 384

16-Bit × 256

id
c
en
ab
le
s

In
st
ru
ct
io
n

M
o
d
u
le
s

global fault

System
RAM

32-Bit × 8K

Instruction
RAM

16-Bit × 1K

Fetch Unit Decode Unit
(supports prefetch

and jump)
(gen. instr. enables
and issue ports)

Instruction
RAM

16-Bit × 1K

Instruction
RAM

16-Bit × 1K

Instruction
RAM

16-Bit × 1K

control signals

addresses and enables

register fault

Execution
Unit

Fig. 2: Overall Architecture of the Proposed Design

3.2 Instruction and Data RAM

Among the two popular memory architectures Harvard and von Neumann, the Harvard
architecture typically leads to better performance. This is because it has separate signal
path for instructions and data. Such an architecture allows for simultaneous access to the
instruction and data memory, wherein, the instruction memory can be changed, while
a long-running instruction is executing and utilizing the data memory. This allows for
easier use as a cryptographic accelerator. This is why, in our design instruction and data
memories are kept separate. The instruction memory is a 2 KiB (8-bit × 1024) simple
dual port RAM and the data memory is a 32 KiB (32-bit × 8192) dual-port memory.

6 Arpan Jati, Naina Gupta , Anupam Chattopadhyay, and Somitra Kumar Sanadhya

3.3 Execution Unit

The execution unit is the largest and the most important part of the processor. The con-
trol/logic is instantiated within the execution unit. Also, all the modules for instructions
are instantiated in the execution unit itself. The major building blocks for the execution
unit and their functions are described below. The execution sequence is shown in A.

Register Modules Registers can be accessed by instructions for both read and write
operations. As shown in Figure 3, a register module contains a set of registers which
can be individually addressed and connected to any of the ports. The 3 ports can be
used simultaneously and they work independent of each other. The functionality is
achieved by using a dual-port bus-matrix which allows any register to be selected and
connected to any of the ports. One of the major challenges while designing this unit

register-n

PORTA[16]

PORTB[16]

PORTC[16]

idxPORTA[3]

Control
Logic

4 - dual-port RAMs
3 - I/O Ports

Dual Port Bus
Switch Matrix

R0 R1 R.. Rn

Registers RAMs

idxPORTB[3]

idxPORTC[3]

bad config

clk

Fig. 3: Implementation for the different register modules.

was the large number of connections in the switch-matrix. As every module needs to
be connected to the Load-Store units, the multiplexer becomes very large leading to
very long critical paths across multiple LUTs (used for MUXes). As the bus-matrix
is an inherently combinatorial circuit, adding a large number of registers will cause
reduced timing performance. As a result, we decided to allow for up-to 8 registers, but,
implementing the least number of registers as possible is recommended (in our design
we were able to implement all the algorithms using only 4 registers). If more registers
are needed, pipelining may be needed to maintain good performance.

Load-Store Units The load-store units and the associated instructions are one of the
most used parts of the processor. This is because any data coming in and out of the
processor has to pass through it. There are two load-store units, one each for the 16-bit
poly and the 8-bit keys/encoded/compressed data.

We chose to create a 32-bit memory using two 16-bit dual-port memories with
different write-enable lines. This allows us to read/write a maximum of 64-bits of data

Configurable Crystals-Kyber with Side-Channel Protection 7

per clock cycle. Using such a memory layout, we were able to perform two transfers
per-clock for both the 8-bit and 16-bit load store units resulting in optimal performance
for this unit. Further, the specific nature of Kyber NTT allows us to access two consec-
utive coefficients simultaneously, using a 32-bit dual-port memory allows for optimal
utilization of the NTT pipeline.

3.4 NTT Module

Zeta(s) RAM
(16-bit x 128)

SYSTEM RAM
512 Byte (Dual Port)

32-bit × 128

addrA p

doA

doB

weA p

weB p

Dual Butterfly +
Barrett Reduce

d
o

B
t

d
o

A
t

32

ad
d
r z

et
a

to execution
unit

TEMPORARY RAM
512 Byte (Dual Port)

32-bit × 128

Address Generation Control, Logic and Delay

ad
d
r A

t

ad
d
r B

t

w
e A

t

w
e B

t

address

control

doA t

doB t

d
o

A
p

d
o

B
p

diA s

diB s diB t

diA t

32
3232

32

32
16

32 32

addrB p

SYSRAM

TMPRAM

SOURCE

SYSRAM

TMPRAM

TMPRAM

SYSRAM

TMPRAM

SYSRAM

SYSRAMSYSRAM

DEST

Layer 1

copy

Layer 2

data-flow

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7

Fig. 4: Pipelined NTT Module.

Figure 4 shows the overall architecture of the Kyber NTT module. The NTT module
can perform both forward and inverse transforms using the same hardware just by chang-
ing some control signals. The core part of the NTT module highlighted in the figure
contains logic for control, address generation, a temporary RAM to store intermediate
results and a ROM to store roots of unity (zetas). Given the NTT specification for Kyber,
it is clear that two butterfly operations can be executed in parallel. So, by utilizing a
32-bit dual port memory we can access the inputs for two operations per clock cycle.
In order to store the results we use a similar temporary RAM. This allows us to fully
process a NTT layer (outer loop) containing 256 coefficients in 64 clock cycles. The
layers can be executed continuously, and after the end of each layer we can switch
direction, i.e. reading data from temporary RAM and storing the results in the global
RAM. This memory architecture, along-with fully pipelined data-paths, allow us to

8 Arpan Jati, Naina Gupta , Anupam Chattopadhyay, and Somitra Kumar Sanadhya

complete the NTT operation in (64+δ)*7+ε clock cycles. As we have seven layers, the
final result remains in the temporary RAM, a further 64+ε cycles are utilized to write
back this to the required location in system RAM. A final reduction is applied when the
data is written back. The pipeline delay δ is 7 in this implementation. A dual butterfly is
implemented with reduction circuits connected with multiplexers and working with a
latency of 6 clock cycles. The address generation circuit generates addresses for all the
butterfly operations, it also generates addresses for the Zeta(s) ROM.

k = 1;

for (len = 128; len >= 2; len >>= 1) { // layers [1-7]

for (start = 0; start < 256; start = j + len) {

zeta = zetas[k++];

for (j = start; j < start + len; ++j) {

t = fqmul(zeta, r[j + len]);

r[j + len] = r[j] - t;

r[j] = r[j] + t;

}

}

}

Listing 1.1: NTT used in Kyber

3.5 Multiplications and Reductions

In a typical lattice-based based scheme, two form of reductions - Montgomery and
Barrett are required. Both the reductions are very resource intensive units in a hardware
design as they require three multiplication operations. Interestingly, a Barrett reduction
can be performed using shift and addition operations as well[1]. Further, Montgomery
reductions can be avoided altogether. Thus, in our design, we used a similar approach by
Xing and Li [32] for Barrett Reduction. In order to minimize overall resource utilization

IN A

IN B

RED OUT

MUL OUT

∗

DSP

4− stage pipelined
Barrett Reduction

Fig. 5: Pipelined Multiply and Reduction Circuit

(especially DSPs), we implemented a single module (multiply and reduction) to provide
three different modes - multiply two coefficients, multiply two coefficients and then
perform barrett reduction or just perform a barrett reduction. All the three modes are
used depending on the module. For e.g., multiplication in decompress can be achieved
using mode 1, multiplication followed by a reduction in NTT butterfly can be achieved
using mode 2, etc. Further, we added several pipeline stages to reduce the overall critical
path. Figure 5 shows the overall pipelined multiply and reduction circuit.

Configurable Crystals-Kyber with Side-Channel Protection 9

3.6 Hash Functions

An implementation of Kyber requires several types of hash operations (for exam-
ple SHA3-512, SHA3-256, SHAKE256, etc.), each of them is based around either
SHA3 [7,6] or AES. We have implemented an outer wrapper which can perform all the
required hash operations, while utilizing a common SHA3 core. In this implementation
we use two versions of SHA3 core with very different area and performance character-
istics. One is a high performance round based implementation while the other is a low
area co-processor based implementation.

3.7 Compress and Polytomsg

From a hardware pespective, apart from some bit-select operations poly compress,
polyvec compress and poly tomsg modules require following two main operations:

1. Conditionally subtract q represented as a - q if a >= q, else a
2. t = (((polynomial coefficient << shift val) + KYBER Q / 2) / KYBER Q) & shift val

As mentioned, the two operations that require hardware resources are common in
all the three modules. We combined the logic and FSMs for all the three modules into a
single unit saving about 34% LUTs and 54.5% FFs compared to all the modules being
implemented as a separate unit. Similar strategy is used wherever possible for other
modules as well.

4 Fault and Side Channel Protection

Protecting the design against side channel attacks is challenging as any such measure
typically leads to increase in area and reduction in performance. Later in this section, we
discuss how a combination of multiple techniques leads to a significantly secure design
with minimal overheads and high performance.

4.1 Fault Protection

Over the years, several countermeasures have been proposed to protect against fault
attacks targeted towards a multitude of designs and surfaces [3,30]. The following section
discusses about the proposed checksum construction and the different countermeasures
implemented to protect different attack targets.

Fault Detection Hashes Error detection techniques such as CRC (cyclic redundancy
check) are used widely to verify the integrity of data stored on disk or transferred over
networks. Similarly, parity checks by means of Hamming Codes are good for error
detection. But, usage of such methods is not justified as they are designed for correction
of random errors and not maliciously injected faults. For example, if a fault is injected
in the input, the propagation of error to the checksum is not guaranteed. Hence, we
designed some low-latency checksum functions. These functions are used in multiple

10 Arpan Jati, Naina Gupta , Anupam Chattopadhyay, and Somitra Kumar Sanadhya

S
4

S
4

S
4

S
4

S

S

4
S

S
4

B A

(a) 16×8 Fault Detection Hash

S
4

S
4

S
4

(b) 8 × 4 Fault Detection
Hash

Fig. 6: Fast Hash Functions for Fault Detection: The current implementation primarily
uses the 16×8 hash for instruction-pointer and memory protection. The 8×4 version
can also be used for different applications, at the cost of reduced protection.

modules to ensure that random single or multi-bit faults leads to error conditions with
high probability.

Figure 6 shows two constructions which have been specifically designed to detect
faults with high probability. The basic idea behind the design is that whenever a single
or multiple bits change on the input side, the output bits should change unpredictably,
with high probability while ensuring uniformity. Such a design can be adapted from
block cipher constructions with good differential properties. A good example can be
AES, unfortunately, the AES-128 round function is complex and has high latency and
area requirements. Hence, using a lightweight cipher is a better option. The designed
hashes use the SPN (Substitution Permutation Network) structure, but with drastically
reduced rounds and XOR for compression. The substitution layer uses the PRESENT

SBOX because of its known good properties.
In order to identify good functions for fault detection, we designed and analyzed

several possible candidates. Some performed well and some were highly unsuitable. One
of the techniques for analyzing a function was to see how differential bias propagates
through it. We considered only the single and double bit fault-models for the candidates.
Figure 7 shows the results for the function shown in Figure 6a. The histograms are
calculated in two steps:

– Performing differential propagation analysis and computation of a bias distribution
table for all the input bits. This results in a table containing 8 columns corresponding
to the output bits, and 16 rows for the single bit inputs. We used 105 random inputs
per-bit in the computation. The expected value should be 0.5 for all the entries.

– We subtract 0.5 from all the values in the table and get absolute values for all the
entries. The histogram is then generated using all the values from this table.

It is clear from Figure 7a and 7c that the histograms corresponding to the point A
has many significant peak with high probabilities (close to 0.25), they also have many

Configurable Crystals-Kyber with Side-Channel Protection 11

peaks throughout the probability axis. This means that for certain inputs there is some
probability that the fault will not uniformly propagate. The Figures 7b and 7d corre-
sponding to the complete function shows much better results. This limited analysis does
not guarantee suitability for all applications, but it demonstrates good fault propagation
results.

Both the hashes can be implemented within 4 levels of logic using 6-input LUTs.
This allows the design to be fast enough for our purposes. Even stronger hashes can be
constructed, but, the latency and long critical paths, make them harder to use without
pipelining.

0 5 ·10−2 0.1 0.15 0.2 0.25

0

20

40

Probability

C
ou

nt

(a) Single bit at point. A

0 5 ·10−2 0.1 0.15 0.2 0.25

0

10

20

30

Probability

C
ou

nt

(b) Single bit at output.

0 5 ·10−2 0.1 0.15 0.2 0.25

0

100

200

300

Probability

C
ou

nt

(c) Double bits at point A.

0 5 ·10−2 0.1 0.15 0.2 0.25

0

100

200

Probability

C
ou

nt

(d) Double bits at the output.

Fig. 7: Differential Bias Histograms for Single and Double Bit Random Faults.

Protecting Critical Signals using Complementary Duplicate Logic Having multiple
copies of the same circuit with equality checks protects an implementation from random
fault as it is much harder to fault two signals simultaneously [3]. Such a countermeasure
requires twice the area and memory resources. But, most LWE algorithms are quite
complex and require large memories to store polynomials. Hence, addition of redundancy
(especially in logic) should only be used sparingly. Therefore, only protecting critical
signals like state, instruction, jump, etc. using duplicate logic is a good option. Although
this will help prevent fault attacks, using inverted duplicate logic will add on to the
overall fault resistance. Inverted logic is the implementation of some logic using ‘1’
instead of ‘0’ and vice versa. This makes insertion of faults more difficult as now two
signals have to be faulted but with opposite polarity.

12 Arpan Jati, Naina Gupta , Anupam Chattopadhyay, and Somitra Kumar Sanadhya

Differential Control Using the same technique, the signals done and enable can also be
protected avoiding instruction skip (for example by setting done signals).

Protecting the Instruction Pointer This is one of the most common targets for fault
injection. The ability to skip/manipulate instructions (especially conditional jumps) allow
attackers to thwart many software based protection schemes. To protect against such
attacks we use two countermeasures:

– Hashing: We add an hash to the instruction pointer using the above mentioned
16×8 function. The hash is written every time the value is updated, and the hash
value is verified at every clock cycle.

– Inverted Logic: To further protect the instruction pointer, we also implemented
a duplicate pointer with inverted logic. Every time the pointer needs a increment,
the value is inverted incremented and inverted again: ptrn+1 <= ˜ (˜ptrn +1). The
inverted logic also contains the hash function checks.

Both these circuits are evaluated at every clock cycle and they generate error signals
whenever a fault state occurs. Figure 8 shows the instruction pointer update function.

Fetch State
Logic

Increment
Logic

state

state

Checksum

Instr Ptr

Checksum

Instr Ptr

Checksum
Verify

Checksum
Verify

fetch stop

do fetch

jmp nxt

fault

instr ptr

Fetch State
Logic

INSTRUCTION POINTER

Increment
Logic

6= 6=

Fig. 8: Instruction Pointer Update: Fault Countermeasures

Protection against Control Flow (FSM state) Modification Proper execution of
internal state machines are critical to the overall operation of any processor. If the
attacker can manipulate the current state register or next state calculations/registers for
FSMs, security of the design would be compromised. Similar to instruction pointer
manipulations, any software countermeasures can be rendered useless. We, use duplicate
inverted logic state machines with concurrent matching on all critical FSMs in the
cryptoprocessor. Figure 9 shows the corresponding implementation.

Protection against Memory Faults Any fault injected to the data memory leads to
incorrect results. There are many results on a wide variety of cryptographic constructions,
where even a single bit error leads to the recovery of the entire state or secret keys.

Configurable Crystals-Kyber with Side-Channel Protection 13

State FSM

State FSM

st
at
e

st
at
e

jm
p
nx
t

jm
p
nx
t

do
fe
tc
h

do
fe
tc
h

6=

en

6=
6=

en

Checksum
Verify

EQP Logic

EQK Logic

done

fetch valid

inst chk

inst

imm data chk

imm data

decode fault

fetch fault

Checksum
Verify

D Q

clk

halt

global
fault

6=

Fig. 9: Execution State FSM: Fault Countermeasures

Similarly, faults in instruction memory can lead to arbitrary code execution. This can
also be used to mount several attacks.

For instruction and data memory extra error detection data (result of a hash) is stored
along-with the memory itself. Basically, with every 16-bits of data 8 extra bits of hash
are stored. Any load operation from the memory verifies the data integrity before passing
the data to other modules. Likewise, during write operations to the memory, the error
detection data is calculated and stored. This ensures any access to the external memory
is secure and fault-attack resistant.

Additional Protection: Instruction Cycle Count As all the instructions in the imple-
mentation are constant time and take the same number of clock cycles. Counters can be
used to ensure that they indeed do take the correct number of clock cycles. This ensures
once an instruction module starts execution, it completes fully and is not skipped in
between. For example the NTT instruction requires 570 clock cycles, any injected fault
to the numerous control logic signals can cause it to end prematurely, possibly with
minimal change to the operands, leading to attacks. Even though one can use techniques
like duplication and inverted logic for all the modules and all state machines, such
a design would lead to a significant increase in area. By ensuring clock-cycle count
correctness, we protect against this powerful attack vector with relatively cheap/minimal
hardware resources.

Fault Tolerance: Equality Instructions The two instructions EQ 8 and EQ 16 have
been added to help in the implementation of software based fault countermeasures. These
instructions compare two register values and generate a reset signal whenever there is a
mismatch. So, in software/assembly, the implementation can perform an operation twice
(using different memory/register) and then compare the results to ensure correctness. For
example, Listing 1.2 shows a code snippet to use the equality instruction EQ 16 for the
safe execution of getnoise operator to generate the centred binomial distribution.

LOAD8_32 Rk0, 0 // noise (from memory 0-31)

LOAD8_32 Rk1, 0 // noise (from memory 0-31)

14 Arpan Jati, Naina Gupta , Anupam Chattopadhyay, and Somitra Kumar Sanadhya

GET_NOISE Rp0, Rk0, 0 // poly_gno(Rp0, noise, 0)

GET_NOISE Rp1, Rk1, 0 // poly_gno(Rp1, noise, 0)

EQ_16 Rp0, Rp1 // verify the two results

JP_M // jump to error when mismatch

. . .

Listing 1.2: Example assembly listing for verifying the output of getnoise. Errors in
EQ 16 would reset the module.

Fault Tolerance: Direct Memory Access Isolation Although many of the instructions
can be allowed to access the external memory, we chose to maintain isolation, even at
the cost of reduction in performance. Only four instructions LOAD x, STORE x, NTT and
GEN MAT are permitted to load and store data to and from the external RAM. This is done
in order to prevent fault attacks during the execution of a cryptographic operation. More
specifically whenever data is read, the checksum is also calculated/validated; similarly,
during every write operation, a new checksum is calculated and written to the memory
with the data to be used during verification later. This protects the data in memory from
maliciously injected faults. This isolation simplifies both the instruction set design and
the overall architecture.

4.2 True Random Number Generator

Designing a good true random number generator is challenging and requires several
considerations. There are several techniques to generate true random numbers in FPGA,
many techniques like metastability, delay lines, have been used for this purpose. In this
work, we use, ring oscillator based TRNG’s because they offer good performance on a
wide variety of platforms. We have implemented designed and tested a TRNG with 32
rings using a design similar to the one presented in [31]. The secure element is followed
by a shift register. All the modules share this common source of randomness whenever
required.

4.3 Side Channel Protection

Many countermeasures such as masking[18,20], threshold implementation [24] etc. have
been developed over the years to protect against side-channel attacks. But, most of the
secure countermeasures are expensive or difficult to apply on certain schemes. As a
MLWE implementation contains several large modules there is a large attack surface for
SPA/DPA, so adding specific countermeasures would be difficult and expensive. In this
work, the following lightweight countermeasures are used to provide a good balance
between performance and security:

Random Delays: Delays added to the instruction scheduler can make the power analysis
very difficult. This is especially true for FPGA implementations where the Signal to
Noise Ratio (SNR) is typically very low for good quality automated trace alignment
techniques like Dynamic Time Warping. This random delay (dummy clock cycles)

Configurable Crystals-Kyber with Side-Channel Protection 15

is generated from the common/system Ring-Oscillator based TRNG. A 4-bit output
(value 0-15) is used per instruction; this range can be adjusted during synthesis, as per
requirements.

Address Randomization: We implemented a randomization scheme for I/O operations.
For example, during ADDx, SUBx, GET NOISEx and many other instructions; the order of
operation does not matter. Hence, we used a permutation for addresses randomization
initially created at system start-up/reset using random data and the fisher-yates-shuffle
technique. The permutation is updated during the random wait cycles at the end of every
instruction.

Instruction Randomization: It is well known that processors can execute instructions in
an out-of-order fashion. In fact, most most modern processors use this for performance
optimization. In order to make SCA significantly much more difficult, we introduce and
implement an instruction called INSTRND. This instruction takes a parameter N. Upon
execution this instruction gives the processor a hint that the next N instructions can be
executed in any order. The processor then randomly generates the order and executes
accordingly. This causes the side channel traces to be out of alignment by a large margin,
making differential analysis very difficult. This instruction was specifically implemented
to allow us to improve security greatly without having to resort to expensive instruction
buffers, queues and complex processing. Appendix B shows example usage for the
instruction.

5 Implementation Results

This section presents performance evaluation and comparison with other implementa-
tions. We used Xilinx Vivado 2020.1 for synthesis, placement and routing. The results are
presented for two FPGAs Xilinx Artix-7 XC7A35T-2 (28nm). The timing and utilization
results are quite sensitive to the synthesis and implementation strategy as well as the
timing constraints. We used default strategies for both synthesis and implementation.

5.1 Results

Table 1 shows implementation results for all the individual modules. These modules are
executed by the execution unit depending on the instruction. As mentioned previously, we
have combined multiple modules into one unit in order to optimize resource usage. For
such modules, we have provided combined area (for e.g. Poly Basemul + Poly Reduce),
but the clock cycles may differ depending on the operation. They are mentioned in a
separate row in the table. Further, the logic for sampling is included in the wrapper
module only. For instance, Generate Matrix module is responsible for invoking the
shared SHA3 core and performing uniform sampling on the output to generate the matrix
coefficients. Similarly, Get Noise module performs the centered binomial distribution on
the output of SHA3 core to generate polynomial coefficients. Further, we have provided
separate results for the two different versions of SHA3 core in the table. As can be seen

16 Arpan Jati, Naina Gupta , Anupam Chattopadhyay, and Somitra Kumar Sanadhya

Table 1: Implementation results for individual modules.

Component Clock Frequency Area Utilization

Cycles XC7A35T LUTs FFs BRAM DSP

Processor Modules (latency) (MHz) 18K

Fetch Unit 1 349 106 123 0 0
Decode Unit 1 467 44 45 0 0
Execute Unit (logic & control) - 258
- Load-Store (8-Bit) 16 - 192 394 59 54 0 0
- Load-Store (16-Bit) 128 336 37 19 0 0
- 8-bit regs 1 265 232 12 2 0
- 16-bit regs 1 258 360 12 2 0
- Generate Matrix 4623 270 246 133 0 0
- Get Noise 194 329 96 29 0 0
- Combined SHA3/SHAKE 98 333 74 29 0 0
- Poly Add + Sub 131 302 155 110 0 0
- Poly Basemul 773 298 248 197 0 0

+ Poly Reduce 137 - - - - -
- Polyvec compress 237 292 343 257 0 0

+ Poly Compress 141 - - - - -
+ Poly ToMsg 140 - - - - -

- Poly Decompress 132 327 232 93 0 0
+ Polyvec Decompress 197 - - - - -

- Poly FromMsg 129 313 89 80 0 0
+ Poly FromBytes 260 - - - - -

- Poly ToBytes 260 319 110 78 0 0
- multiply and reduction 6 260 262 334 0 2
- 16-bit Equality - 306 65 95 0 0
- 8-bit Equality - 363 33 48 0 0
- NTT/INTT 570 312 230 175 1 0

- SHA3 Co-processor Based - 256 1497 665 1 0
- SHA3 Round Based - 261 3380 1979 0 0

from the table, SHA3 requires a large majority of the resources even the low-area core
compared to the other modules.

The 16-bit register unit, shown in Fig. 3 requires a lot of multiplexers to switch the
four BRAM based memories among all the three ports dynamically. As a result, it has
the longest critical path. Apart from this, the SHA3 and the reduce modules also have
similar path delays. So, the overall design is limited to run at around 250 MHz.

Table 2 shows the comparison between clock cycles required for different operations
(Generate Matrix, Get Noise, etc.) using the two variants of SHA3. It is interesting to
note the significant difference in number of clock cycles between the two variants. Most

Configurable Crystals-Kyber with Side-Channel Protection 17

of the clock cycles are required for the SHA3 Permutation to finish its execution. In order
to generate the initial random bytes (64 bytes) using SHA3-512, almost 54× more clock
cycles will be required in case of a low-area implementation. Even though, clock cycles
for a SHA3 modules is quite high, the overall time required to perform the key-exchange
is in the order of a few milliseconds. But, as the implementation is quite low-area it can
be useful for many low-end devices with limited resources.

Table 2: Clock-cycles comparison for the two variants of SHA3 used.
Processor Modules Co-processor Based Round Based

- Generate Matrix 252336 4623
- Get Noise 5399 194
- Combined SHA3/SHAKE 5304 98

Table 3: Clock-cycles comparison for the three variants of Kyber. The clock-cycles and
time are reported for different variants as Keygen/Encaps/Decaps.

Kyber SHA3 Round Based SHA3 Co-processor Based

Parameter Clock Cycles (×103) Time(µS) Clock Cycles (×103) Time(µS)

2 / Kyber-256 13.8/17.2/22.1 53.6/66.7/85.6 323/378/342 1294/1514/1369
3 / Kyber-512 26.6/30.9/37.8 103/119/146 666/733/688 2667/2932/2753
4 / Kyber-1024 43.8/48.8/57.2 170/189/224 1148/1236/1172 4593/4944/4691

5.2 Performance and Comparison

Table 3 presents the clock cycles and time required for different parameters of CRYSTALS-
KYBER for both round based and co-processor based implementation. As can be seen
from the table, for n = 4, our high performance implementation takes 170µs, 189µs and
221µs for keygen, encaps and decaps operations respectively. Whereas, our low area
implementation requires 4.59ms, 4.94ms and 4.69ms respectively. Similarly, when n =
3, round based implementation requires 103µs, 119µs and 146µs for keygen, encaps
and decaps operations. Whereas, co-processor based implementation requires 2.66ms,
2.93ms and 2.75ms respectively. Table 4 shows the performance comparison of our
design with state-of-the-art implementations of CRYSTALS-KYBER. In terms of area,
the high performance implementation requires, 7151 LUTs and 3730 FFs. Whereas by
using a smaller SHA3 core the area reduces to 5269 LUTs and 2422 FFs, resulting in a
reduction of 26.3% and 35% respectively.

Comparison with Compact Kyber Implementation (Xing & Li) [32] The authors
of [32] present a compact implementation targeted towards low-cost FPGA’s. The

18 Arpan Jati, Naina Gupta , Anupam Chattopadhyay, and Somitra Kumar Sanadhya

Table 4: Performance and Comparison for Kyber-1024. SHA3-RB corresponds to im-
plementation using Round based SHA3 Core, whereas SHA3-CB denotes Co-processor
based SHA3 Core. The clock-cycles and time are reported for different operations as
Keygen/Encaps/Decaps.
Kyber Time Area

Variant Freq. Cycles Time LUT FF RAM DSP
(MHz) (×103) (µS)

This Work

CPA-SHA3-RB 258 43.4/47.7/9.4 168/185/36.39 7151 3730 5.5 2
CCA-SHA3-RB 258 43.8/48.8/57.2 170/189/224 7151 3730 5.5 2
CPA-SHA3-CB 250 1081/1085/9.4 4324/4341/37.6 5269 2422 6.5 2
CCA-SHA3-CB 250 1148/1236/1172 4593/4944/4691 5269 2422 6.5 2

Related Works

CCA (Xing & Li [32]) 161 9.4/11.3/13.9 58.2/67.9/86.2 7412 4644 3 2
CCA (Dang et. al. [11]) 210 -/5.7/7.4 -/27.4/35.2 12183 12441 15 8
CCA (Huang et. al. [17]) 192 -/107.1/135.6 -/558/706 132918 172489 202 548
CCA (Alkim et. al. [1]) 59 2203/2619/2429 37339/44390/41169 1842 1634 32 18

implementation is well optimized for both area and performance and has well-designed
pipelines and instruction sequences. The authors implemented Kyber core operations in
a highly interleaved manner, allowing them to execute multiple operations in parallel.
This optimization strategy resulted in a low overall execution time of 67.9 µs for a client.
The high-performance SHA3 takes only 26 clock cycles, thus, enabling the execution of
other operations (such as NTT which requires 512 clock cycles) in parallel. This was
utilzed in [32] to make the design compact. Using a low-area SHA3 would result in a
similar performance as our low area implementation. This is because one invocation of
a low-area SHA3 permutation requires about 5K clock cycles. Hence, in this case, the
operations in the pipeline would have to wait longer as the hash latency is too long.

Compared to this, our design allows for a significantly more flexible execution of
instructions, while arriving at the same result. This flexibility allows us to randomize the
execution sequence in many places (as discussed in section 4.3) and hence achieving
improved side-channel protection.

Comparison with Parallel Kyber Implementation (Dang et. al.) [11] The authors of
[11] report multiple results on multiple platforms. For this comparison, we consider the
results on similar FPGA platforms. The authors primarily focused on performance, by
utilizing multiple invocations of core modules, leading to much improved performance
at the cost of significantly increased area. Because of this, the implementation is better
suited to high end devices. In comparison to our high-performance implementation, their
design requires 5032 more LUTs whereas comparing with our low-area implementation,
it requires 6914 more LUTs.

Configurable Crystals-Kyber with Side-Channel Protection 19

Comparison with Kyber Implementation (Huang et. al.) [17] The authors in this
work present Kyber results for a pure hardware based implementation of Kyber. The
authors used BRAMs to link multiple modules, thus requiring about 202 BRAMs. Their
implementation requires a very large amount of area (18×) and clock cycles (2.19×)
compared to our high-performance design.

Comparison with RISCV-based Kyber Implementation (Alkim et. al.) [1] The au-
thors in [1] present instruction extensions for RISCV to implement Kyber. In their
implementation, the SHA3 was software based and was the limiting factor for perfor-
mance. As a result, if we compare the keygen operation, their design is 219× and 8.13×
slower than our high-performance and low-area implementations respectively.

6 Conclusion

In this work, we presented a configurable hardware implementation of Crystals-Kyber.
We present and compare results for two different implementations utilizing different
versions of SHA3 core. To the best of our knowledge, we report the smallest hardware
implementation of Kyber requiring only 5269 LUTs and 2422 FFs. Thus, making it
suitable for multiple low-end devices. Compared to the currently known most compact
hardware implementation, our smallest design resulted in a reduction of about 70% and
50% LUTs and FFs. Both our designs can run at an operating frequency of about 250
MHz. Further, we added multiple side-channel countermeasures consuming less than
5% of the total area.

References

1. Alkim, E., Evkan, H., Lahr, N., Niederhagen, R., Petri, R.: Isa extensions for finite field
arithmetic. IACR Transactions on Cryptographic Hardware and Embedded Systems pp. 219–
242 (2020)

2. Arute, F., Arya, K., Babbush, R., et al: Quantum supremacy using a programmable supercon-
ducting processor. Nature pp. 505–510 (2019)

3. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s apprentice
guide to fault attacks. Proceedings of the IEEE 94(2), 370–382 (2006)

4. Bauer, B., Wecker, D., Millis, A.J., Hastings, M.B., Troyer, M.: Hybrid quantum-classical
approach to correlated materials. Physical Review X 6(3), 031045 (2016)

5. Bernstein, D.J., Hopwood, D., Hülsing, A., Lange, T., Niederhagen, R., Papachristodoulou,
L., Schneider, M., Schwabe, P., Wilcox-O’Hearn, Z.: SPHINCS: practical stateless hash-
based signatures. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 368–397. Springer (2015)

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak hardware implementation,
https://keccak.team/hardware.html

7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak. In: Annual international
conference on the theory and applications of cryptographic techniques. pp. 313–314. Springer
(2013)

8. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M., Schwabe, P.,
Seiler, G., Stehlé, D.: Crystals-kyber: a cca-secure module-lattice-based kem. In: 2018 IEEE
European Symposium on Security and Privacy (EuroS&P). pp. 353–367. IEEE (2018)

https://keccak.team/hardware.html

20 Arpan Jati, Naina Gupta , Anupam Chattopadhyay, and Somitra Kumar Sanadhya

9. Bruinderink, L.G., Pessl, P.: Differential fault attacks on deterministic lattice signatures. IACR
Transactions on Cryptographic Hardware and Embedded Systems pp. 21–43 (2018)

10. Buchmann, J., Dahmen, E., Hülsing, A.: XMSS-a practical forward secure signature scheme
based on minimal security assumptions. In: International Workshop on Post-Quantum Cryp-
tography. pp. 117–129. Springer (2011)

11. Dang, V.B., Farahmand, F., Andrzejczak, M., Mohajerani, K., Nguyen, D.T., Gaj, K.: Imple-
mentation and benchmarking of round 2 candidates in the nist post-quantum cryptography
standardization process using hardware and software/hardware co-design approaches. IACR
Cryptol. ePrint Arch. 2020, 795 (2020)

12. Deutsch: The Fabric of Reality: The Science of Parallel Universes and Its Implications.
Penguin Books (1998)

13. Espitau, T., Fouque, P.A., Gerard, B., Tibouchi, M.: Loop-abort faults on lattice-based signa-
ture schemes and key exchange protocols. IEEE Transactions on Computers 67(11), 1535–
1549 (2018)

14. Feynman, R.: Simulating physics with computers. International Journal of Theoretical Physics
21(6-7), 467–488 (1998)

15. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptography: A sig-
nature scheme for embedded systems. In: International Workshop on Cryptographic Hardware
and Embedded Systems. pp. 530–547. Springer (2012)

16. Howe, J., Khalid, A., Martinoli, M., Regazzoni, F., Oswald, E.: Fault attack countermeasures
for error samplers in lattice-based cryptography. In: 2019 IEEE International Symposium on
Circuits and Systems (ISCAS). pp. 1–5. IEEE (2019)

17. Huang, Y., Huang, M., Lei, Z., Wu, J.: A pure hardware implementation of crystals-kyber pqc
algorithm through resource reuse. IEICE Electronics Express pp. 17–20200234 (2020)

18. Itoh, K., Takenaka, M., Torii, N.: Dpa countermeasure based on the “masking method”. In:
International Conference on Information Security and Cryptology. pp. 440–456. Springer
(2001)

19. Juskalian, R.: Practical quantum computers. MIT Technology Review (March/April 2017),
https://www.technologyreview.com/s/603495/10-breakthrough-technologies-
2017-practical-quantum-computers/

20. Kim, H., Hong, S., Lim, J.: A fast and provably secure higher-order masking of aes s-box.
In: International Workshop on Cryptographic Hardware and Embedded Systems. pp. 95–107.
Springer (2011)

21. Mceliece, R.J.: A Public-Key Cryptosystem Based On Algebraic Coding Theory. Deep Space
Network Progress Report 44, 114–116 (1978)

22. Nguyen, P.Q., Stern, J.: The two faces of lattices in cryptology. In: Cryptography and lattices,
pp. 146–180. Springer (2001)

23. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob. Control
and Inf. Theory 15(2) (1986)

24. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-channel
attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) Information and Communications
Security. pp. 529–545. Springer (2006)

25. NIST: Submission requirements and evaluation criteria for the post-quantum cryptography
standardization process. http://csrc.nist.gov/groups/ST/post-quantum-crypto/
documents/call-for-proposals-final-dec-2016.pdf

26. Peikert, C.: Lattice cryptography for the internet. In: International Workshop on Post-Quantum
Cryptography. Springer (2014)

27. Pessl, P., Prokop, L.: Fault attacks on cca-secure lattice kems. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems pp. 37–60 (2021)

https://www.technologyreview.com/s/603495/10-breakthrough-technologies-2017- practical-quantum-computers/
https://www.technologyreview.com/s/603495/10-breakthrough-technologies-2017- practical-quantum-computers/
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/ call-for-proposals-final-dec-2016.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/ call-for-proposals-final-dec-2016.pdf

Configurable Crystals-Kyber with Side-Channel Protection 21

28. Primas, R., Pessl, P., Mangard, S.: Single-trace side-channel attacks on masked lattice-based
encryption. In: International Conference on Cryptographic Hardware and Embedded Systems.
pp. 513–533. Springer (2017)

29. Regev, O.: Quantum computation and lattice problems. SIAM Journal on Computing 33(3),
738–760 (2004)

30. Sedmak, R.M., Liebergot, H.L.: Fault tolerance of a general purpose computer implemented
by very large scale integration. IEEE Transactions on Computers (6), 492–500 (1980)

31. Wold, K., Tan, C.H.: Analysis and enhancement of random number generator in fpga based
on oscillator rings. International Journal of Reconfigurable Computing 2009, 4 (2009)

32. Xing, Y., Li, S.: A compact hardware implementation of CCA-secure key exchange mecha-
nism CRYSTALS-KYBER on FPGA. IACR Transactions on Cryptographic Hardware and
Embedded Systems pp. 328–356 (2021)

Appendix A Execution Sequence

Figure 10 shows the execution sequence of the processor. The processor starts by fetching
an instruction from the instruction memory. The decoder then decodes the instruction
and provides control signals and register port indexes. These control signals then enable

Fetch
Instruction

Decode
Instruction

Select
Instruction

Enable
Clock

Start
Execution

Done ?

Reset
Internal
State

Set Next
Instruction
Address

Jump?

NoNo

1 2 3 4 4

5
N+5

N+5

YesRandom
Delay

Yes

N+5+∆

Fig. 10: Execution Sequence

the specific instruction module instance and start the clock for it. Following this, the
instruction module is reset (this is not needed for some instructions) and the execution
starts. The execution unit then waits for the specific instruction to complete. When
the instruction is complete, status is updated and jump requirements are evaluated and
calculated. Any error/fault will set the error flag which causes the execution to stop. If no
error is encountered, the address is incremented. The execution unit then optionally waits
for a random delay delta (∆) time to prevent side-channel attacks. The new instruction is
fetched only after the ∆ clock cycles. This process repeats itself until a halt instruction
(all zero) is encountered.

22 Arpan Jati, Naina Gupta , Anupam Chattopadhyay, and Somitra Kumar Sanadhya

Appendix B Assembly listing for the Crystals-Kyber Keygen
operation

The following code listing shows the instructions for Kyber-1024 Keygen operation.

/*

< Memory 32 KiB >

< Organisation >

[0 - 1024]-keys

[1034 - 3072]-skpv

[3072 - 5120]-pkpv

[5120 - 7168]-matrix

[8192 - 9760]-public keys

[10240-11776]-secret keys

*/

// START KYBER KEYGEN

LOAD8_32 Rk0, 0

SHA3 Rk1, Rk0

STORE8_64 Rk1, 128

INSTRND 2

GEN_MAT Rk1, 0

LOAD8_32 Rk2, 160

INSTRND 4

GET_NOISE Rp0, Rk2, 0

GET_NOISE Rp1, Rk2, 1

GET_NOISE Rp2, Rk2, 2

GET_NOISE Rp3, Rk2, 3

STORE16_256 Rp0, 1024

STORE16_256 Rp1, 1536

INSTRND 4

STORE16_256 Rp2, 2048

STORE16_256 Rp3, 2560

NTT 1024

NTT 1536

NTT 2048

NTT 2560

// ------------ 0

STORE16_1024 Rv0, 5120

LOAD16_256 Rp2, 1024

REDUCE Rp3, Rp2

STORE16_256 Rp3, 1024

LOAD16_256 Rp2, 5120

BASEMUL Rp0, Rp2, Rp3

LOAD16_256 Rp2, 1536

REDUCE Rp3, Rp2

STORE16_256 Rp3, 1536

LOAD16_256 Rp2, 5632

BASEMUL Rp1, Rp2, Rp3

ADD Rp3, Rp0, Rp1

LOAD16_256 Rp2, 2048

REDUCE Rp1, Rp2

STORE16_256 Rp1, 2048

LOAD16_256 Rp2, 6144

BASEMUL Rp0, Rp2, Rp1

ADD Rp1, Rp3, Rp0

LOAD16_256 Rp2, 2560

REDUCE Rp0, Rp2

STORE16_256 Rp0, 2560

LOAD16_256 Rp2, 6656

BASEMUL Rp3, Rp2, Rp0

ADD Rp2, Rp1, Rp3

REDUCE Rp0, Rp2

GET_NOISE Rp1, Rk2, 4

STORE16_256 Rp1, 7168

NTT 7168

LOAD16_256 Rp1, 7168

ADD Rp2, Rp0, Rp1

REDUCE Rp0, Rp2

STORE16_256 Rp0, 3072

// ------------ 1

STORE16_1024 Rv1, 5120

LOAD16_256 Rp3, 1024

LOAD16_256 Rp2, 5120

BASEMUL Rp0, Rp2, Rp3

LOAD16_256 Rp3, 1536

LOAD16_256 Rp2, 5632

BASEMUL Rp1, Rp2, Rp3

ADD Rp3, Rp0, Rp1

LOAD16_256 Rp1, 2048

LOAD16_256 Rp2, 6144

BASEMUL Rp0, Rp2, Rp1

ADD Rp1, Rp3, Rp0

LOAD16_256 Rp0, 2560

LOAD16_256 Rp2, 6656

BASEMUL Rp3, Rp2, Rp0

ADD Rp2, Rp1, Rp3

REDUCE Rp0, Rp2

GET_NOISE Rp1, Rk2, 5

STORE16_256 Rp1, 7168

NTT 7168

LOAD16_256 Rp1, 7168

ADD Rp2, Rp0, Rp1

REDUCE Rp0, Rp2

STORE16_256 Rp0, 3584

// ------------ 2

STORE16_1024 Rv2, 5120

LOAD16_256 Rp3, 1024

LOAD16_256 Rp2, 5120

BASEMUL Rp0, Rp2, Rp3

LOAD16_256 Rp3, 1536

LOAD16_256 Rp2, 5632

BASEMUL Rp1, Rp2, Rp3

ADD Rp3, Rp0, Rp1

LOAD16_256 Rp1, 2048

LOAD16_256 Rp2, 6144

BASEMUL Rp0, Rp2, Rp1

ADD Rp1, Rp3, Rp0

LOAD16_256 Rp0, 2560

LOAD16_256 Rp2, 6656

BASEMUL Rp3, Rp2, Rp0

ADD Rp2, Rp1, Rp3

REDUCE Rp0, Rp2

GET_NOISE Rp1, Rk2, 6

STORE16_256 Rp1, 7168

NTT 7168

LOAD16_256 Rp1, 7168

ADD Rp2, Rp0, Rp1

REDUCE Rp0, Rp2

STORE16_256 Rp0, 4096

// ------------ 3

STORE16_1024 Rv3, 5120

LOAD16_256 Rp3, 1024

LOAD16_256 Rp2, 5120

BASEMUL Rp0, Rp2, Rp3

LOAD16_256 Rp3, 1536

LOAD16_256 Rp2, 5632

BASEMUL Rp1, Rp2, Rp3

ADD Rp3, Rp0, Rp1

LOAD16_256 Rp1, 2048

Configurable Crystals-Kyber with Side-Channel Protection 23

LOAD16_256 Rp2, 6144

BASEMUL Rp0, Rp2, Rp1

ADD Rp1, Rp3, Rp0

LOAD16_256 Rp0, 2560

LOAD16_256 Rp2, 6656

BASEMUL Rp3, Rp2, Rp0

ADD Rp2, Rp1, Rp3

REDUCE Rp0, Rp2

GET_NOISE Rp1, Rk2, 7

STORE16_256 Rp1, 7168

NTT 7168

LOAD16_256 Rp1, 7168

ADD Rp2, Rp0, Rp1

REDUCE Rp3, Rp2

STORE16_256 Rp3, 4608

// PUBLIC KEY WRITEBACK

LOAD16_256 Rp0, 3072

LOAD16_256 Rp1, 3584

LOAD16_256 Rp2, 4096

TO_BYTES Rk3, Rp0

STORE8_384 Rk3, 8192

TO_BYTES Rk3, Rp1

STORE8_384 Rk3, 8576

TO_BYTES Rk3, Rp2

STORE8_384 Rk3, 8960

TO_BYTES Rk3, Rp3

STORE8_384 Rk3, 9344

STORE8_32 Rk1, 9728

// SECRET KEY WRITEBACK

LOAD16_256 Rp0, 1024

LOAD16_256 Rp1, 1536

LOAD16_256 Rp2, 2048

LOAD16_256 Rp3, 2560

TO_BYTES Rk3, Rp0

STORE8_384 Rk3, 10240

TO_BYTES Rk3, Rp1

STORE8_384 Rk3, 10624

TO_BYTES Rk3, Rp2

STORE8_384 Rk3, 11008

TO_BYTES Rk3, Rp3

STORE8_384 Rk3, 11392

HALT

// END-OF-KEYGEN

	A Configurable Crystals-Kyber Hardware Implementation with Side-Channel Protection

