
Simple Constructions from (Almost) Regular One-Way Functions

Noam Mazor∗

School of Computer Science
Tel-Aviv University
noammaz@gmail.com

Jiapeng Zhang
Department of Computer Science
University of Southern California

jiapengz@usc.edu

September 16, 2021

Abstract

Two of the most useful cryptographic primitives that can be constructed from one-way func-
tions are pseudorandom generators (PRGs) and universal one-way hash functions (UOWHFs).
In order to implement them in practice, the efficiency of such constructions must be considered.
The three major efficiency measures are: the seed length, the call complexity to the one-way
function, and the adaptivity of these calls. Still, the optimal efficiency of these constructions
is not yet fully understood: there exist gaps between the known upper bound and the known
lower bound for black-box constructions.

A special class of one-way functions called unknown-regular one-way functions is much better
understood. Haitner, Harnik and Reingold (CRYPTO 2006) presented a PRG construction with
semi-linear seed length and linear number of calls based on a method called randomized iterate.
Ames, Gennaro and Venkitasubramaniam (TCC 2012) then gave a construction of UOWHF
with similar parameters and using similar ideas. On the other hand, Holenstein and Sinha
(FOCS 2012) and Barhum and Holenstein (TCC 2013) showed an almost linear call-complexity
lower bound for black-box constructions of PRGs and UOWHFs from one-way functions. Hence
Haitner et al. and Ames et al. reached tight constructions (in terms of seed length and the
number of calls) of PRGs and UOWHFs from regular one-way functions. These constructions,
however, are adaptive.

In this work, we present non-adaptive constructions for both primitives which match the
optimal call-complexity given by Holenstein and Sinha and Barhum and Holenstein. Our con-
structions, besides being simple and non-adaptive, are robust also for almost-regular one-way
functions.

Keywords: pseudorandom generator; universal one-way hash function.

∗Research supported by Israel Science Foundation grant 666/19 and the Blavatnik Interdisciplinary Cyber Research
Center at Tel-Aviv University.

1

1 Introduction

A wide class of cryptographic primitives can be constructed from one-way functions, which is the
minimal assumption for cryptography. Informally, a function f is called a one-way function if it is
easy to compute, but hard to invert by polynomial-time algorithms. Two important primitives that
can be constructed from one-way functions are pseudorandom generators (PRGs) [Yao82, BM84]
and universal one-way hash functions (UOWHFs) [NY89]. These two primitives are useful for
constructing even more powerful primitives such as encryption, digital signatures and commitments.
Thus, an improvement in the efficiency of constructions for PRGs and UWOHFs would have an
effect on other primitives. Yet, the optimal efficiency of these two basic primitives is not fully
understood.

There are several important efficiency measures to account for when considereing PRGs and
UOWHFs. For PRG constructions, one aims to minimize the seed length and the number of calls
to the one-way function f . For UOWHF constructions, there is a need to minimize the key length
and the number of calls to f . Besides these two measurements, another important parameter is
the adaptivity of the calls. That is, if the inputs for the one-way function are independent of the
output of previous calls, then the construction can be implemented in parallel. By contrast, if the
calls are adaptive, one must make them sequentially.

Constructions. Much progress was done since the notion of PRGs has been introduced. The
first construction of pseudorandom generators was given by Blum and Micali [BM84] based on
the assumption that a specific function is hard to invert. This construction was generalized by
Yao [Yao82] to work with any one-way permutation. Since then, many subsequent works made
effort to construct PRGs based on arbitrary one-way functions. Notably, through introducing
the randomized iterate1 method, Goldreich, Krawczyk and Luby [GKL93] gave a PRG construction
from any unknown-regular one-way function. The notion of regular one-way function is a refinement
of a one-way permutation: A one-way function f is called regular if for every n and x, x′ with
|x| = |x′| = n it holds that

∣∣f−1(f(x))
∣∣ =

∣∣f−1(f(x′))
∣∣. We say that the function is unknown-

regular if the regularity parameter,
∣∣f−1(f(x))

∣∣, may not be a computable function of n. More
recently, the randomized iterate method was further studied by [HHR06b, YGLW15a], who reached
a construction of PRGs from any unknown-regular one-way functions, while having O(n log n) seed
length and making O(n/ log n) calls to the one-way function. [YLW15] improved the seed length
up to ω(n) by using a transformation that converts any unknown-regular function into a function
that is known-regular on its image.

For arbitrary one-way function, a seminal work by H̊astad, Impagliazzo, Levin and Luby
[HILL99] gave the first PRG construction. Since then, the efficiency has been improved by many
works ([HHR06a, Hol06, HRV13, VZ12]). Currently, the state-of-the-art construction of PRGs due
to [VZ12] uses O(n3) bits of random seed and O(n3) adaptive calls to the one-way function, or
alternatively seed of size O(n4) with non-adaptive calls [HRV13, VZ12].2

The constructions of UOWHFs use similar ideas to the constructions of PRGs. Still, the
best PRGs constructions from arbitrary one-way functions are more efficient than the best known
UOWHFs constructions. Rompel [Rom90] gave the first UOWHF construction from arbitrary one-

1For a one-way function f and pairwise independent hash functions h1, . . . , hk, the k-th randomized iteration of
f is f ◦ hk ◦ · · · ◦ f ◦ h1 ◦ f .

2We ignore low order terms for this introduction.

2

way functions. The efficiency was improved by [HHR+10], who gave a construction of UOWHF
using O(n6) adaptive calls with a key of size O(n7). Constructing a UOWHF using O(n3) calls to
the one-way function is still an interesting open question.

The efficiency of UOWHF based on an unknown-regular one-way function is similar to the
efficiency of the unknown-regular based PRGs. Interestingly, this was shown by [AGV12] using the
same method of randomized iterate, resulting in a construction that uses Θ(n) key length and Θ(n)
calls. We stress that when the regularity of f is known (i.e., can be computed efficiently given n),
there are much more efficient constructions for both PRGs and UOWHFs ([GL89, GIL+90, NY89,
YGLW15a]).

Lower bounds. The lower bounds for black-box constructions are relatively far from the upper
bounds. In this line of work, there are two incomparable types of results. The first type, due
to [GGKT05] is stated with terms of the stretching and compression of the PRG and UOWHF,
respectively. Specifically, [GGKT05] showed that any black-box PRG construction G : {0, 1}m →
{0, 1}m+s from f must use Ω(s/ log n) calls to f . Similarly, any black box UWOHF construction
with input size m and output size m − s must use Ω(s/ log n) calls. In the second type of results
[HS12] showed that any black-box PRG construction from f must use Ω(n/ log n) calls to f , even
for 1-bit stretching. [BH13] showed similar results for 1-bit compressing UWOHF.

As mentioned, there is a substantial gap between the aforementioned lower and upper bounds.
One explanation for that gap is that all of the above lower bounds hold even when the one-way
function f is unknown-regular. For this case, these bounds are known to be tight with the mentioned
above constructions, which are based on randomized iterations. These constructions, however, are
adaptive.

1.1 Our Contribution

In this paper, we give non-adaptive constructions of tight call complexity for PRGs and UOWHFs
from unknown-regular one-way functions. Both of our constructions are quite simple and are very
similar to each other. Same as previous results, the security of our constructions holds also if
f is only almost-regular ([YGLW15a]), which means that for every |x| = |x′|, the ratio between∣∣f−1(f(x))

∣∣ and
∣∣f−1(f(x′))

∣∣ is only bounded by a polynomial in |x| (compared to a ratio of 1, in
the case of regular functions).

The seed (or key) length in our construction for PRGs (or UOWHFs respectively) is O(n2),
compared to Õ(n) bits in the previous adaptive constructions. This seems unavoidable and raises
an interesting open question.3

1.1.1 Our constructions and results

In this section, we present our constructions. The results here are stated for regular one-way
functions but can be naturally expanded to almost-regular functions, as stated in Sections 3 and 4.
The main crux of the construction is the following observation. For regular f and i.i.d uniform
random variables X1, X2 over {0, 1}n, given any fixing of f(X1), both the entropy and min-
entropy of the pair X1, f(X2) are exactly n. To see the above, recall that for regular f with

3By [HS12], Ω(n) calls are necessary for any black-box construction. Since for non-adaptive constructions the
uniformly random calls seem the only reasonable way to use the one-way function, such construction needs at least
Ω(n2) input bits. We admit it is only a vague explanation.

3

(unknown) regularity parameter r, it holds that there are exactly r possible values for X1 given
f(X1), and exactly 2n/r possible values for f(X2). Thus, the regularity parameter r “cancels
out” when considering the number of possible values (given f(X1)) of the pair X1, f(X2), which is
r · 2n/r = 2n. In the PRG construction, we exploit this fact by using a universal family of hash
functions H (and the Goldreich-Levin therorem) in order to extract pseudo-uniform bits. In the
UOWHF construction, we use similar ideas in order to compress the pair X1, f(X2) without creating
too many collisions. For both constructions, we need additional properties from the universal family
H that we ignore for this introduction. See more details in Sections 3 and 4. We next present the
constructions. The main ideas of the proofs for the following theorems are described in Section 1.2.

A simple construction of PRGs from regular one-way functions. We start with a descrip-

tion of our PRG construction. Let H =
{
h : {0, 1}2n → {0, 1}n+logn

}
be a family of 2-universal

hash functions. For a regular one-way function f : {0, 1}n → {0, 1}n and an integer t ∈ N,4 the

generator Gt : H× {0, 1}n(t+1) → H× {0, 1}t·(n+logn) is given by

Gt
(
h, x1, . . . , xt+1

)
= (h, h(x1, f(x2)), . . . , h(xt, f(xt+1)))

We show that for every polynomial t, the distribution Gt(H, X1, . . . , Xt) is pseudorandom. Note
that the input length of Gt is |h|+n · (t+1) and the output length is |h|+ t · (n+log n). By making
t = Θ(n/ log n) calls, we show that Gt is indeed a pseudorandom generator.

Theorem 1.1. [Main theorem for PRG, informal] Let f : {0, 1}n → {0, 1}n be an unknown-regular
one-way function and let t(n) ≥ n/ log n + 1 be some polynomial. Then, Gt is a PRG with seed
length O(n2 + n(t(n) + 1)). Furthermore, Gt makes t(n) non-adaptive calls to f .

A simple construction of UOWHFs from regular one-way functions. Now we introduce
the construction of the UOWHFs. It is a well-known fact that in order to construct UWOHF, it is
sufficient to construct a function for which it is hard to find a collision for a random input. Let f

be a one-way function, let t be a parameter and let H =
{
h : {0, 1}2n → {0, 1}n−logn

}
be a family

of hash functions. We define the function Ct : H× {0, 1}n·t → H× {0, 1}(t−1)·(n−logn)+2n as

Ct (h, x1, . . . , xt) = (h, f(x1), h(x1, f(x2)), . . . , h(xt−1, f(xt)), xt)

The main difference of this construction from the PRG one is that h is now a shrinking function.
In addition, we also output f(x1) and the very last input of Ct. As before, since the output length
of UOWHFs has to be shorter than the input length, we have to make up for the additional output
(f(x1), xt) by taking t to be Θ(n/ log n).

The OUWHF can now be defined using Ct. Let k = log |H|+ n · t and for a string z ∈ {0, 1}k,
let Cz be the function defined by Cz(w) = Ct(w ⊕ z) for every w ∈ {0, 1}k. Our main theorem for
this part is stated as follows.

Theorem 1.2. [Main theorem for UOWHF, informal] Let f : {0, 1}n → {0, 1}n be an unknown-
regular one-way function and let t(n) ≥ n/ log n + 2 be some polynomial. Then, {Cz}z∈{0,1}k is a

family of universal one-way hash functions with key length k = O(n2 + n · t(n)) and output length
O(n2 + n · t(n)). Furthermore, for every z ∈ {0, 1}k, Cz makes t non-adaptive calls to f .

4The assumption that f is length-preserving is made for simplicity, and is not crucial for our constructions.

4

1.2 Proof Overview

Here we give a short overview of our proofs. For both constructions, the proof boils down to
showing that each input pair xi, xi+1 induces a weak version of the desired primitive. For PRG, the
main part of the security proof is showing that given f(x1) and h, it is hard to distinguish between
h(x1, f(x2)) and a uniform string. For UOWHF, we prove the security by showing that given
h, x1, x2, it is hard to find a collision h, x′1, x

′
2 to the function C(h, x1, x2) = h, f(x1), h(x1, f(x2)).

Note that it may be easy to find x′2 6= x2 with f(x′2) = f(x2). To solve this, we further demand
that f(x′2) 6= f(x2).5 To show that this is enough, we prove that any collision in our UOWHF must
contain a collision in the above form, for at least one input pair. Below we give short descriptions
of the main ideas in more details.

The PRG construction. We start by sketching the security proof for the PRG. Let X1 and
X2 be uniform random variables over {0, 1}n, and let h be a hash function, uniformly sampled

from a universal family of hash functions H =
{
h : {0, 1}2n → {0, 1}n+logn

}
. Recall that we want

to show that given h and f(X1), it holds that h(X1, f(X2)) is computationally indistinguishable
from uniform n+ log n bits. For simplicity, assume that we are only interested in proving that the
distinguish advantage is at most n−c, for some constant c > 1.

The main observation is that for regular f , given f(X1), the pair X1, f(X2) has exactly n bits
of min-entropy. Thus, by the leftover hash lemma, the n−O(c log n) first bits of h(X1, f(X2)) are
n−c/2 statistically close to uniform. To argue that the suffix of h(X1, f(X2)) looks uniform, we
show that g(x1, y) = h, f(x1), h(x1, y)1,...,n−O(c logn) is a one-way function,6 and thus we can use
Goldreich-Levin in order to extract additional O(c log n) pseudorandom bits from X1, f(X2).

The UOWHF construction. We now sketch the security proof for the UOWHF. Let H be a

universal family of hash functions H =
{
h : {0, 1}2n → {0, 1}n−logn

}
. We show that given random

h and uniformly sampled x1 and x2 from {0, 1}n, it is hard to find (x′1, x
′
2) 6= (x1, x2) such that

f(x1) = f(x′1), f(x2) 6= f(x′2) and yet h(x1, f(x2)) = h(x′1, f(x′2)). For x1, x2 ∈ {0, 1}n and h ∈ H
we define

Gh,x1,x2 :=
{

(x′1, y) : h(x1, f(x2)) = h(x′1, y) ∧ f(x1) = f(x′1) ∧ y ∈ Im(f)
}
.

That is, the set Gh,x1,x2 contains all the pairs (x′1, f(x′2)) for which h, x′1, x
′
2 collides with h, x1, x2.

The main observation here is that, since h outputs n−log n bits, and there are exactly 2n pairs (x′1, y)
such that y ∈ Im(f) and f(x′1) = f(x1), the expected size of Gh,x1,x2 is at most 2n/2n−logn = n.
Thus, we can use an algorithm A that finds a collision in the above function in order to invert f :
Given input y, we choose random x1, x2 ∈ {0, 1}n and plant y in Gh,x1,x2 . That is, we choose a
random h conditioned on the event that h(x1, f(x2)) = h(x′1, y) for some x′1 ∈ f−1(f(x1)). Since
there are about n such pairs, we can hope that the planted pair (x′1, y) will be output by A with
good probability.

However, we need to find x′1 for which the pair (x′1, y) has a good probability to be output by
A. To do that, we also use A in order to find a pre-image x′1 of f(x1), and then show that x′1 has a

5For this reason we need to output the last input xt in our UOWHF construction.
6Actually, we need to show that the function g is hard to invert on outputs sampled from a specific distribution.

This is sufficient for applying the Goldreich-Levin theorem, see Lemma 2.5.

5

good probability to be output again by A.7 For more details, see Section 4.

1.3 Additional Related Work

Arbitrary one-way functions. In [HHR+10], the notion of inaccessible entropy (introduced
in [HRVW09]) was used in order to construct UOWHF. Similar techniques were later used in
[HHR06a] to construct PRG, where the notion of inaccessible entropy was replaced with next-block
pseudoentropy. This construction was later simplified by [VZ12], who also improved the seed length
with the cost of adaptivity. Lately, [ACHV19] pointed out that the notions of accessible entropy
and next-block pseudoentropy are deeply related to each other.

Regular one-way functions. As mentioned above, the construction from regular one-way func-
tions are more efficient. Beside almost-regular, a few refinements of regularity were considered
in past works. [BM12] showed a construction for UOWHF that uses O(ns6(n)) key-length under
the assumption that f−1(f(x)) is concentrated in an interval of size 2s(n). [YGLW15b] considered
unknown-weakly-regular functions. The last are functions for which the set of inputs with maximal
number of siblings is of fraction at least n−c for some constant c. For such functions, [YGLW15b]
presented PRG with O(n log n) seed-length and O(n2c+1) calls. [YGLW15a] considered known-
almost-regular and unknown-weakly-regular functions. For the last, [YGLW15a] showed a tight
construction of UOWHF based on the randomized iterate method.

1.4 Paper Organisation

Formal definitions are given in Section 2. The PRG construction and proof of Theorem 1.1 are in
Section 3. The UOWHF construction and proof of Theorem 1.2 are in Section 4.

2 Preliminaries

2.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables, and lowercase for values
and functions. For n ∈ N, let [n] := {1, . . . , n}. Given a vector s ∈ {0, 1}n, let si denote its
i-th entry, and s1,...,i denote its first i entries. For s, w ∈ {0, 1}∗ we use s ◦ w to denote their
concatenation and for s, w ∈ {0, 1}n, we use s⊕ w ∈ {0, 1}n to denote their bit-wise XOR.

The support of a distribution P over a finite set S is defined by Supp(P) := {x ∈ S : P (x) > 0}.
For a (discrete) distribution D let d← D denote that d was sampled according to D. Similarly, for
a set S, let s ← S denote that s is drawn uniformly from S. For a function f : {0, 1}n → {0, 1}n,
let y ← f({0, 1}n) denote that y sampled from the following distribution: sample x uniformly from
{0, 1}n, and let y = f(x). Let Im(f) := {f(x) : x ∈ {0, 1}n} be the image of f . The statistical
distance (also known as, variation distance) of two distributions P and Q over a discrete domain X
is defined by SD(P,Q) := maxS⊆X |P (S)−Q(S)| = 1

2

∑
x∈S |P (x)−Q(x)|. The min-entropy of a

distribution X, denoted by H∞(X) is defined by H∞(X) := − log(maxx∈Supp(X) {Pr [X = x]}).
Let poly denote the set of all polynomials, and let PPT stand for probabilistic polynomial time.

A function ν : N → [0, 1] is negligible, denoted ν(n) = neg(n), if ν(n) < 1/p(n) for every p ∈ poly

7Such a “collision based” argument was also used in [AGV12].

6

and large enough n. Lastly, we identify a matrix M ∈ {0, 1}n×m with a function M : {0, 1}n →
{0, 1}m by M(x) := x ·M , thinking of x ∈ {0, 1}n as a vector with dimension n.

2.2 One-Way Functions

We now formally define basic cryptographic primitives. We start with the definition of one-way
function.

Definition 2.1 (One-way function). A polynomial-time computable function f : {0, 1}∗ → {0, 1}∗
is called a one-way function if for every probabilistic polynomial time algorithm A, there is a negligible
function ν : N→ [0, 1] such that for every n ∈ N

Pr
x←{0,1}n

[
A(f(x)) ∈ f−1(f(x))

]
≤ ν(n)

For simplicity we assume that the one-way function f is length-preserving. That is, |f(x)| = |x|
for every x ∈ {0, 1}∗. This can be assumed without loss of generality, and is not crucial for our
constructions.

In this paper we focus on almost-regular one-way functions, formally defined below.

Definition 2.2 (Almost-regular function). A function family f = {fn : {0, 1}n → {0, 1}n} is
β-almost-regular for β ≥ 0 if for every n ∈ N and x ∈ {0, 1}n it holds that

2n

|Im(f) |
· n−β ≤

∣∣f−1(f(x))
∣∣ ≤ 2n

|Im(f) |
· nβ.

f is almost-regular if there exists β ≥ 0 such that f is β-almost-regular, and regular if it is 0-almost-
regular.

Note that we do not assume that the regularity of f can be computed efficiently. That is, we
only assume that f is unknow-(almost)-regular.

Immediately from the definition of a one-way function, we get the following simple observation.

Claim 2.3. For every one-way function f : {0, 1}n → {0, 1}n there exists a negligible function ν(n)
such that for every input x ∈ {0, 1}n it holds that

∣∣f−1(f(x))
∣∣ ≤ 2n · ν(n).

2.3 Pseudorandom Generators

In Section 3 we use one-way functions in order to construct PRGs. The later are formally defined
below.

Definition 2.4 (Pseudorandom generator). Let n be a security parameter. A polynomial-time
computable function G : {0, 1}n → {0, 1}m(n) is called a pseudorandom generator if for every n > 0
it holds that m(n) > n and, for every probabilistic polynomial time algorithm D, there is a negligible
function ν : N→ [0, 1] such that for every n > 0,∣∣∣∣∣ Pr

x←{0,1}n
[D(G(x)) = 1]− Pr

x←{0,1}m(n)
[D(x) = 1]

∣∣∣∣∣ ≤ ν(n).

A key ingredient in the construction of PRG from one-way function is the Goldreich-Levin
hardcore predicate. The following lemma follows almost directly from [GL89].

7

Lemma 2.5. Let n be a security parameter. Let f : {0, 1}n → {0, 1}n be a function, and D a
distribution on {0, 1}n, such that for every PPT A

Pr
x←D

[
A(f(x)) ∈ f−1(f(x))

]
= neg(n).

Then for every PPT P,

Pr
x←D,r←{0,1}n

[P(f(x), r) = GL(x, r)] ≤ 1/2 + neg(n)

where GL(x, r) := 〈x, r〉 is the Goldreich-Levin predicate.

Proof. By the proof of Goldreich-Levin [GL89], for every p ∈ poly there is an oracle-aided PPT al-
gorithm A such that for every algorithm P and x with

Pr
r←{0,1}n

[P(f(x), r) = GL(x, r)] ≥ 1/2 + 1/p(n)

it holds that

Pr
[
AP(f(x)) = x

]
≥ 1/p2(n).

Thus, it holds for every p ∈ poly that

Pr
x←D

[
Pr

r←{0,1}n
[P(f(x), r) = GL(x, r)] ≥ 1/2 + 1/p(n)

]
= neg(n)

which implies that

Pr
x←D,r←{0,1}n

[P(f(x), r) = GL(x, r)] ≤ 1/2 + 1/p(n) + neg(n)

for every p ∈ poly. �

The next lemma, stated in [Yao82], is useful for showing that a sequence of bits is pseudorandom.
The proof of the lemma is given in Appendix A.

Lemma 2.6 (Distinguishability to prediction). There exists an oracle-aided PPT algorithm P such
that the following holds. Let Q be a distribution over {0, 1}∗ × {0, 1}n, let D be an algorithm and
α ∈ [0, 1] such that,

Pr
(x,y)←Q,z←{0,1}n

[D(x, z) = 1]− Pr
(x,y)←Q

[D(x, y) = 1] ≥ α.

Then there exists i ∈ [n] such that

Pr
(x,y)←Q

[
PD(x, y1,...,i−1) = yi

]
≥ 1/2 + α/n.

8

2.4 Universal One Way Hash Function

Lastly, we formally define UOWHF.

Definition 2.7 (Universal one-way hash function). Let k be a security parameter. A family of

functions F =
{
fz : {0, 1}n(k) → {0, 1}m(k)

}
z∈{0,1}k

is a family of universal one-way hash functions

(UOWHFs) if it satisfies:

1. Efficiency: Given z ∈ {0, 1}k and x ∈ {0, 1}n(k), fz(x) can be evaluated in time poly(n(k), k).

2. Shrinking: m(k) < n(k).

3. Target Collision Resistance: For every probabilistic polynomial-time adversary A, the proba-
bility that A succeeds in the following game is negligible in k:

(a) Let (x, state)← A(1k) ∈ {0, 1}n(k) × {0, 1}∗.
(b) Choose z ← {0, 1}k.

(c) Let x′ ← A(state, z) ∈ {0, 1}n(k).

(d) A succeeds if x 6= x′ and fz(x) = fz(x
′).

A relaxation of the target collision resistance property can be done by requiring the function to
be collision resistant only on random inputs.

Definition 2.8 (Collision resistance on random inputs). Let n be a security parameter. A function

f : {0, 1}n → {0, 1}m(n) is collision resistant on random inputs if for every probabilistic polynomial-
time adversary A, the probability that A succeeds in the following game is negligible in n:

1. Choose x← {0, 1}n.

2. Let x′ ← A(x) ∈ {0, 1}n.

3. A succeeds if x 6= x′ and f(x) = f(x′).

The following lemma states that it is enough to construct a function that is collision resistant
on random inputs, in order to get UOWHF.

Lemma 2.9 (From random inputs to targets, folklore). Let n be a security parameter. Let

F : {0, 1}n → {0, 1}m(n) be a length-decreasing function. Suppose F is collision-resistant on ran-
dom inputs. Then {Fy : {0, 1}n → {0, 1}m}y∈{0,1}n, for Fy(x) := F (y ⊕ x), is a family of target
collision-resistant hash functions.

2.5 2-Universal Hash Families

2-universal families are an important ingredient in our constructions. In this section, we formally
define this notion, together with some useful properties of such families.

Definition 2.10 (2-universal family). A family of function F =
{
f : {0, 1}n → {0, 1}`

}
is 2-

universal if for every x 6= x′ ∈ {0, 1}n it holds that Prf←F [f(x) = f(x′)] = 2−`.
A universal a family is explicit if given a description of a function f ∈ F and x ∈ {0, 1}n, f(x)

can be computed in polynomial time (in n, `). Such family is constructible if it is explicit and there
is a PPT algorithm that given x, x′ ∈ {0, 1}n outputs a uniform f ∈ F , such that f(x) = f(x′).

9

An important property of 2-universal families is that they can be used to construct a strong
extractor. This is stated in the leftover hash lemma:

Lemma 2.11 (Leftover hash lemma [ILL89]). Let n ∈ N, ε ∈ [0, 1], and let X be a random variable

over {0, 1}n. Let H =
{
h : {0, 1}n → {0, 1}`

}
be a 2-universal hash family with

` ≤ H∞(X)− 2 log 1/ε. Then,

SD((H,H(X)), (H,U`)) ≤ ε

for U` being the uniform distribution over {0, 1}` and H being the uniform distribution over H.

The family of all binary matrices of size n×`,
{
m : m ∈ {0, 1}n×`

}
, is a constructible 2-universal

family. This family has an additional property that is useful in the proof. This property is defined
below.

Definition 2.12 (Approximately flat family). A family of functions H =
{
h : {0, 1}2n → {0, 1}`

}
is approximately-flat if for every set Y ⊆ {0, 1}n, x1, x2 ∈ {0, 1}n and y1 ∈ Y it holds that,

Pr
h←H

[∃y2 ∈ Y s.t. h(x1, y1) = h(x2, y2)] ≥ 2−10 ·min
{
|Y| · 2−`, 1

}
.

The proof of the next lemma is in Appendix A.

Lemma 2.13. For every `, n ∈ N such that ` ≤ n, the family
{
m : m ∈ {0, 1}n×`

}
is approximately-

flat.

2.6 Useful Inequalities

The following well-known inequalities will be useful later on.

Lemma 2.14 (Jensen Inequality). Let X be a distribution over R and let f : R → R be a convex
function. It holds that

f(E [X]) ≤ E [f(X)]

Lemma 2.15 (Cauchy–Schwarz inequality). Let n ∈ N and a1, . . . , an ∈ R be numbers. Then,

(
∑
i∈[n]

ai)
2 ≤ n ·

∑
i∈[n]

a2
i

Lastly, the following lemma will be useful in the security proof of the UOWHF. Let A be an
algorithm such that for every x, the output of A(x) is in some small set Sx. Then the lemma
roughly states the event of two executions of A returning the same value is not too rare.

Lemma 2.16. Let Ω ⊆ {0, 1}n and X be some set, let X be a distribution over X , and let S : X →
P (Ω) be a function that maps elements in X to subsets of Ω. Let A be an algorithm, such that for
every x ∈ X , A(x) ∈ S(x)∪{⊥}. Assume that for every u ∈ Ω, it holds that 0 < Prx←X [u ∈ S(x)] ≤
`/ |Ω|, and that Prx←X [A(x) ∈ S(x)] ≥ p. Then∑

u∈Ω

Pr
x←X

[A(x) = u] Pr
x←X

[A(x) = u | u ∈ S(x)] ≥ p2/`.

.

10

Proof. Using Cauchy–Schwarz inequality, it holds that:∑
u∈Ω

Pr
x←X

[A(x) = u] Pr
x←X

[A(x) = u | u ∈ S(x)] =
∑
u∈Ω

Pr
x←X

[A(x) = u]2 / Pr
x←X

[u ∈ S(x)]

≥
∑
u∈Ω

Pr
x←X

[A(x) = u]2 · |Ω| /`

≥

(∑
u∈Ω

Pr
x←X

[A(x) = u]

)2

/`

≥ p2/`.

�

3 The PRG Construction

In this section we prove the security of our PRG construction. We start with a description of the
construction. Let f : {0, 1}n → {0, 1}n be an almost-regular one-way function, let t be a parameter

and let H =
{
m : m ∈ {0, 1}2n×(n+logn)

}
be the 2-universal family induced by the set of matrices

of size 2n× (n+ log n).8 The generator G : H× {0, 1}n(t+1) → H× {0, 1}t·(n+logn) is given by

G
(
h, x1, . . . , xt+1

)
= (h, h(x1, f(x2)), . . . , h(xt, f(xt+1))) .

The main theorem of this part is as follows.

Theorem 3.1. [Main theorem for PRG] Let f : {0, 1}n → {0, 1}n be an almost-regular one-way
function and let t(n) ≥ n/ log n + 1 be some polynomial. Then G is a PRG with seed length
O(n2 + n(t+ 1)). Furthermore, G uses t non-adaptive calls to f .

Note that the stretch of G is t · log n − n, which is tight with [GGKT05] for large values of t.
We now prove Theorem 3.1. Our main lemma states that given h and f(x1), the hash h(x1, f(x2))
looks uniform for a computationally bounded algorithm.

Lemma 3.2. Let f : {0, 1}n → {0, 1}n be an almost-regular one-way function. For any PPT algo-
rithm D, it holds that∣∣∣∣∣∣∣ Pr

x1←{0,1}n,h←H,
u←{0,1}n+logn

[D(h, f(x1), u) = 1]− Pr
x1,x2←{0,1}n,

h←H

[D(h, f(x1), h(x1, f(x2))) = 1]

∣∣∣∣∣∣∣ = neg(n)

We prove Lemma 3.2 below, but first we use it in order to give the proof of Theorem 3.1, which
is straight-forward.

Proof of Theorem 3.1. Let f and t be as in Theorem 3.1. By construction G makes t calls to f .
Additionally, t(n + log n) > n(t + 1) when t ≥ n/ log n + 1. We are left to show that the output

8By taking H =
{
hm : m ∈ {0, 1}2n×(log2 n+logn) , h ∈ G

}
where G =

{
g : {0, 1}2n → {0, 1}n−log2 n

}
is arbitrary

2-universal family, and hm(z) := h(z) ◦m(z), the seed of length can be reduced up to O(n · t).

11

of G is indistinguishable from uniform. The proof is by a hybrid argument. Let H be a uniform
random variable over H, and X1, . . . , Xt+1 be i.i.d. uniform random variables over {0, 1}n. Assume
toward a contradiction that there is a PPT algorithm D̂ that can distinguish G(H,X1, . . . , Xt+1)
from uniform. Then we show that the following algorithm D contradicts Lemma 3.2.

Algorithm 1 (The distinguisher D).

Input: h ∈ H, y ∈ {0, 1}n , z ∈ {0, 1}n+logn.

Operation:

1. Sample `← [t].

2. Sample x1, . . . x`−1 ← ({0, 1}n)`−1 and u← {0, 1}(t−`)n logn.

3. Compute w := h, h(x1, f(x2)), . . . , h(x`−2, f(x`−1)), h(x`−1, y), z, u.

4. Execute D̂(w) and output its output.

For each ` ∈ [t+ 1], let the distribution Hyb` be defined as

Hyb` :=
(
H,H(X1, f(X2)), . . . ,H(X`−1, f(X`)), U(t+1−`)n·logn

)
where U(t+1−`)n·logn is the uniform distribution over {0, 1}(t+1−`)n·logn. That is, Hyb` is equal to
G(H,X1, . . . , Xt+1) on the first ` − 1 blocks, and uniform on the rest. Observe that for every
fixing of ` in the algorithm, the distribution of w for input h← H, y ← f(Un), z ← {0, 1}n+logn is
exactly as the distribution Hyb`. Similarly, the distribution of w for input h← H, y ← f(Un) and
z = h(X ′, Y ′) for X ′ ← f−1(y) and Y ′ ← f({0, 1}n) is exactly as the distribution Hyb`+1. Thus,
it holds that,∣∣∣∣∣∣∣ Pr

x1←{0,1}n,h←H,
u←{0,1}n+logn

[D(h, f(x1), u) = 1]− Pr
x1,x2←{0,1}n,

h←H

[D(h, f(x1), h(x1, f(x2))) = 1]

∣∣∣∣∣∣∣ (1)

=

∣∣∣∣∣1/t ·
t∑

`=1

(
Pr

w←Hyb`

[
D̂(w) = 1

]
− Pr
w←Hyb`+1

[
D̂(w) = 1

])∣∣∣∣∣
= 1/t ·

∣∣∣∣ Pr
w←Hyb1

[
D̂(w) = 1

]
− Pr
w←Hybt+1

[
D̂(w) = 1

]∣∣∣∣
= 1/t ·

∣∣∣∣∣ Pr
w←{0,1}log|H|+(n+logn)·t

[
D̂(w) = 1

]
− Pr
w←G(H,X1,...,Xt+1)

[
D̂(w) = 1

]∣∣∣∣∣ .
Where the last equality holds since Hybt+1 ≡ G(H,X1, . . . , Xt+1) and Hyb1 is the uniform distri-
bution. We conclude by Lemma 3.2 that the advantage probability of D̂ is negligible. �

3.1 Proving Lemma 3.2

In the rest of this section we prove Lemma 3.2. Fix β ≥ 0, any β-almost-regular one-way function
f : {0, 1}n → {0, 1}n and n ∈ N. Recall that we want to show that h(x1, f(x2)) looks uniform to

12

computationally bounded algorithms, given h and f(x1). By the leftover hash lemma, every prefix
p(x1, x2) of the above hash h(x1, f(x2)) is somewhat close to uniform. In order to show that the
suffix looks uniform as well, we prove that the concatenation of h, f(x1) and p(x1, x2) is a one-way
function, and then use Goldreich-Levin. The next claim states that the described function is indeed
one-way on part of its domain.

Claim 3.3. For every i ∈ [n+ log n], let gi : H×{0, 1}n×{0, 1}n → H×{0, 1}n×{0, 1}i−1 be the
following function

gi(h, x1, y) := (h, f(x1), h(x1, y)1,...,i−1) .

Then it holds that for every PPT A and every function i = i(n)

Pr
h←H,x1,x2←{0,1}n
z=(h,x1,f(x2))

[
A(gi(z)) ∈ g−1

i (gi(z))
]

= neg(n). (2)

Proof. Assume toward contradiction that the claim does not hold. That is, there exists PPT algo-
rithm A, a function i(n) and a constant d ∈ N such that

Pr
h←H,x1,x2←{0,1}n
z=(h,x1,f(x2))

[
A(gi(z)) ∈ g−1

i (gi(z))
]
≥ n−d (3)

for infinitely many n ∈ N. Fix such n and consider the following algorithm Â. In the following we
show Â can be used to invert f .

Algorithm 2 (The inverter Â).

Input: h ∈ H, y ∈ {0, 1}n, z ∈ {0, 1}n−(4d+2β) logn.

Operation:

1. For every w ∈ {0, 1}(4d+2β+1) logn and j ∈ [n+ log n]:

(a) Let (h, x, y′) be the output of A(h, y, (z ◦ w)1,...,j−1).

(b) If f(x) = y, output x.

That is, Â tries to invert y using A and only a prefix of h(x1, f(x2)). It does so by iterating
over all the possible values of the missing input bits h(f−1(y), f(x2))n−(4d+2β) logn+1,...,n+logn and

every possible index j ∈ [n + log n]. Clearly Â runs in a polynomial time. Let x1 be some
preimage of y and let x2 be some element in {0, 1}n. Note that when the guess w is equal to
h(x1, f(x2))n−(4d+2β) logn+1,...,n+logn, and when the index j is equal to i, the value of h, y, (z ◦
w)1,...,j−1 computed by the algorithm is equal to the output of gi(h, x1, f(x2)). Thus, by definition

it is clear that the success probability of Â is better than A’s. Formally, we get that,

Pr
h←H,x1,x2←{0,1}n

[
Â(h, f(x1), h(x1, f(x2))1,...,n−(4d+2β) logn) ∈ f−1(f(x1))

]
(4)

≥ Pr
x1,x2←{0,1}n

[
A(gi(h, x1, f(x2))) ∈ g−1

i (gi(h, x1, f(x2)))
]

≥ n−d.

13

Next, we show that Â can guess the value of h(x1, f(x2))1,...,n−(4d+2β) logn. Indeed, recall that
by the β-almost-regularity of f , given any fixing of f(x1), the min-entropy of x1, f(x2) is at least
n − 2β log n. Thus, by the left-over hash lemma, h(x1, f(x2))1,...,n−(4d+2β) logn is n−d/2 close to
uniform given h and f(x1). Combining the above with Equation (4),

Pr
h←H,x1←{0,1}n,u←{0,1}n−(4d+2β) logn

[
Â(h, f(x1), u) ∈ f−1(f(x1))

]
(5)

= E
y←f({0,1}n)

 Pr
h←H,x1←f−1(y),

u←{0,1}n−(4d+2β) logn

[
Â(h, y, u) ∈ f−1(f(x1))

]

≥ E
y←f({0,1}n)

 Pr
h←H,x1←f−1(y),

x2←{0,1}n

[
Â(h, y, h(x1, f(x2))1,...,n−(4d+2β) logn) ∈ f−1(f(x1))

]
− n−d/2

= Pr

h←H,x1,x2←{0,1}n

[
Â(h, f(x1), h(x1, f(x2))1,...,n−(4d+2β) logn) ∈ f−1(f(x1))

]
− n−d/2

≥ n−d/2.

Finally, let Inv be the algorithm that given f(x1) samples h← H and u← {0, 1}n−(4d+2β) logn,
and executes Â. By Equation (5) Inv inverts f(x1) successfully with probability at least n−d/2 for
uniformly sampled x1 ∈ {0, 1}n, for infinitely many n ∈ N, which is a contradiction. �

We are now ready to prove Lemma 3.2. The proof is straight-forward from Claim 3.3 together
with Lemmas 2.5 and 2.6.

Proof of Lemma 3.2. Assume toward a contradiction that Lemma 3.2 does not hold. That is, there
exists PPT algorithm D and a constant c ∈ N such that∣∣∣∣∣∣∣ Pr

x1←{0,1}n,
h←H,u←{0,1}n+logn

[D(h, f(x1), u) = 1]− Pr
x1,x2←{0,1}n,

h←H

[D(h, f(x1), h(x1, f(x2))) = 1]

∣∣∣∣∣∣∣ ≥ n−c (6)

for infinitely many n ∈ N. We assume without loss of generality that for infinitely many n ∈ N it
holds that

Pr
x1←{0,1}n,

h←H,u←{0,1}n+logn

[D(h, f(x1), u) = 1]− Pr
x1,x2←{0,1}2n,

h←H

[D(h, f(x1), h(x1, f(x2))) = 1] ≥ n−c (7)

as otherwise we can flip the output of D. By Lemma 2.6 there is a oracle-aided PPT algorithm P
such that for infinitely many n ∈ N and i = i(n) it holds that

Pr
x1,x2←{0,1}2n,

h←H

[
PD(h, f(x1), h(x1, f(x2))1,...,i−1) = h(x1, f(x2))i

]
≥ 1/2 + n−c−4.

Recall that, by definition, h, f(x1), h(x1, f(x2))1,...,i−1 = gi(x1, f(x2)). Additionally, by our choice
of the family H, h(x1, f(x2)))i is the GL predicate of the function gi(x1, f(x2)).9 Thus, the above
contradicts Claim 3.3 and lemma 2.5. �

9Note that if i ≤ n − ω(logn) there is no need in GL. Indeed, by the leftover hash lemma, the first bits of h are
statisticly close to uniform.

14

4 The UOWHF Construction

In this section we prove the security of our UOWHF construction. We start with a full description
of the construction. Let f : {0, 1}n → {0, 1}n be an almost-regular one-way function, let t be a

parameter and let H =
{
m : m ∈ {0, 1}2n×(n−logn)

}
be the 2-universal family induced by the set

of matrices of size 2n× (n− log n).10

The function C : H× {0, 1}n·t → H× {0, 1}(t−1)·(n−logn)+2n is given by

C
(
h, x1, . . . , xt

)
= h, f(x1), h(x1, f(x2)), . . . , h(xt−1, f(xt)), xt.

Let k = log |H|+ n · t. For a string z ∈ {0, 1}k, let Cz(w) := C(w ⊕ z). Our main theorem for this
part is stated as follows.

Theorem 4.1. [Main theorem for UOWHF] Let f = f : {0, 1}n → {0, 1}n be an almost-regular
one-way function and let t(n) ≥ n/ log n + 2 be some polynomial. Then Fk = {Cz}z∈{0,1}k is a

family of universal one-way hash functions with key length k = O(n2 + n · t(n)) and output length
O(n2 + n · t(n)). Furthermore, for every z ∈ {0, 1}k, Cz uses t non-adaptive calls to f .

In the rest of this section we prove Theorem 4.1. Note that by Lemma 2.9 in order to prove
Theorem 4.1, it is enough to show that it is hard to find a collision of C for a random input. The
main lemma of this part is the following one, which essentially states that no efficient algorithm
can find a collision in a simpler function, Ĉ(h, x1, x2) = h, f(x1), h(x1, f(x2)). Note that Ĉ is not
UOWHF, as it is not shrinking, and, as we are only interested in collisions (h, x′1, x

′
2) in which

f(x2) 6= f(x′2).

Lemma 4.2. Let f : {0, 1}n → {0, 1}n be an almost-regular one-way function. For every PPT al-
gortihm A, it holds that,

Pr
h←H,x1,x2←{0,1}n,
(x′1,x

′
2)←A(h,x1,x2)

[
f(x1) = f(x′1) ∧ f(x2) 6= f(x′2) ∧ h(x1, f(x2)) = h(x′1, f(x′2))

]
≤ neg(n).

We prove Lemma 4.2 below, but first let us prove the security of C using Lemma 4.2. The proof
is by reduction, stated in the next claim. Informally, we show that an algorithm that breaks the
security of C can be used in order to find a collision in the function Ĉ defined above.

Claim 4.3. There exists an oracle-aided PPT algorithm A such that the following holds. Let f be
a one-way function, t ∈ poly and C be the function described above. Let n ∈ N, α ∈ [0, 1] and let
ColFinder be an algorithm such that

Pr
w←H×({0,1}n)t,w′←ColFinder(w)

[
w′ 6= w ∧ C(w) = C(w′)

]
= α.

Then,

Pr
h←H,x1,x2←{0,1}n,

(x′1,x
′
2)←AColFinder(h,x1,x2)

[
f(x1) = f(x′1) ∧ f(x2) 6= f(x′2) ∧ h(x1, f(x2)) = h(x′1, f(x′2))

]
≥ α/t− ν(n),

where ν is a negligible function, depending only on f and t.

10Any approximately-flat, constructible, and 2-universal hash family will suffice. Such a family with a smaller size,
if exists, can be used in order to reduce the key length up to O(n · t).

15

The proof of Theorem 4.1 is now immediate.

Proof of Theorem 4.1. Let f, t and Cz be as in Theorem 4.1. It is clear that Cz is efficiently
computable for every z ∈ {0, 1}k, and that C is shrinking since log |H|+ n · t > log |H|+ (t− 1) ·
(n− log n) + 2n for t ≥ n/ log n+ 2.

Next, we show that it is collision-resistant for random input. Assume toward contradiction that
there exists a PPT ColFinder and p ∈ poly such that

Pr
w←H×({0,1}n)t,
w′←ColFinder(w)

[
w′ 6= w ∧ C(w) = C(w′)

]
≥ 1/p(n)

for infinitely many n ∈ N. Then, by Claim 4.3, for infinitely many n ∈ N it holds that

Pr
h←H,x1,x2←{0,1}n,

(x′1,x
′
2)←AColFinder(h,x1,x2)

[
f(x1) = f(x′1) ∧ f(x2) 6= f(x′2) ∧ h(x1, f(x2)) = h(x′1, f(x′2))

]
≥ 1/(t · p(n))− ν(n)

≥ 1/(2t · p(n)).

Note that by the choice of t, 1/(2t · p(n)) is not negligible, and that since both A and ColFinder are
efficent, AColFinder(·) can be efficiently implemented. Thus, the above contradicts Lemma 4.2. �

4.1 Proving Claim 4.3

We next prove Claim 4.3. The next simple claim will be useful in the proof, as it states that given
(h, x1, . . . , xt), with high probability there is no collision (h, x′1, . . . , x

′
t) of C in which for some

j ∈ [t] it holds that xj 6= x′j while f(xj) = f(x′j) and f(xj+1) = f(x′j+1).

Claim 4.4. For every one-way function f and polynomial t, there exists a negligible function ν
such that the following holds. For every x1, . . . , xt ∈ {0, 1}n,

Pr
h←H

[
∀j ∈ [t− 1], ∀x′j ∈ f−1(f(xj)) \ {xj} it holds that h(x′j , f(xj+1)) 6= h(xj , f(xj+1))

]
≥ 1− ν(n).

Proof. Fix x1, . . . , xt ∈ {0, 1}n, j ∈ [t − 1] and x′j ∈ f−1(f(xj)) \ {xj}. Since H is 2-universal, it
holds that

Pr
h←H

[
h(x′j , f(xj+1)) = h(xj , f(xj+1))

]
= n/2n.

By the union bound,

Pr
h←H

[
∃j ∈ [t− 1], x′j ∈ f−1(f(xj)) \ {xj} s.t. h(x′j , f(xj+1)) = h(xj , f(xj+1))

]
≤
∑

j∈[t−1]

∑
x′j∈f−1(f(xj))\{xj}

Pr
h←H

[
h(x′j , f(xj+1)) = h(xj , f(xj+1))

]
≤t(n) · |f−1(f(xj))| · n/2n.

Since f is a one-way function, by Claim 2.3 it holds that |f−1(f(xk))| ≤ 2n · neg(n), and thus the
claim follows. �

16

Proof of Claim 4.3. Let f , t n, α and ColFinder as in Claim 4.3. Let A be the following algorithm.

Algorithm 3 (The reduction A).

Input: h ∈ H, x1, x2 ∈ {0, 1}.
Oracle: ColFinder.

Operation:

1. Sample i← [t− 1], z1, . . . , zi−1, zi+2, . . . , zt ← {0, 1}n and set zi = x1, zi+1 = x2.

2. Apply ColFinder(h, z1, . . . , zt) to get (h′, z′1, . . . , z
′
t).

3. Output z′i, z
′
i+1.

We next show that with all but negligible probability over the choice of w = (h, x1, . . . , xt), the
following must hold. For every w′ = (h′, x′1, . . . , x

′
t) with w 6= w′ and C(w) = C(w′), there exists

some i ∈ [t− 1] such that f(xi) = f(x′i) and f(xi+1) 6= f(x′i+1). The lemma then follows easily.
Indeed, fix such w and w′. First note that since C(w) = C(w′), it holds that h = h′. Let j be

the first index for which xj 6= x′j , and observe that by the definition of C, j ∈ [t− 1]. We split into
cases:

• If f(xj) 6= f(x′j), then j > 1 (since C(w) = C(w′) implies that f(x1) = f(x′1)) and for
i = j − 1 it holds that f(xi) = f(x′i) and f(xi+1) 6= f(x′i+1).

• For the other case, assume that f(xj) = f(x′j). By Claim 4.4, with probability all but
negligible over the choice of w, it holds that, h(xj , f(xj+1)) 6= h(x′j , f(xj+1)), and thus it
must hold that f(xj+1) 6= f(x′j+1). We get that for i = j, it holds that f(xi) = f(x′i) and
f(xi+1) 6= f(x′i+1).

Since i is chosen uniformly in Algorithm 3, and since the distribution of h, z1, . . . , zt in Algorithm 3
is uniform for every i ∈ [t − 1] and uniformly chosen input h, x1, x2, we conclude that the success
probability of AColFinder is at least (α− neg(n))/t. �

4.2 Proving Lemma 4.2

We now prove Lemma 4.2. For the rest of this section, fix β ≥ 0, and a β-almost-regular one-way
function f . In order to prove the lemma, we show how to invert the one-way function f using an
algorithm that contradicts the lemma. Formally,

Claim 4.5. There exists PPT oracle-aided algorithm Inv such that the following holds. Let n ∈ N,
α ∈ [0, 1] and let A be an algorithm such that

Pr
h←H,x1,x2←{0,1}n,
(x′1,x

′
2)←A(h,x1,x2)

[
f(x1) = f(x′1) ∧ f(x2) 6= f(x′2) ∧ h(x1, f(x2)) = h(x′1, f(x′2))

]
= α.

Then,

Pr
x←{0,1}

[
InvA(f(x)) ∈ f−1(f(x))

]
≥ α2 · n−2β−2 · 2−12.

17

The proof of Lemma 4.2 is immediate from Claim 4.5, as Prx←{0,1}
[
InvA(f(x)) ∈ f−1(f(x))

]
must be negligible.

Proof of Lemma 4.2. Assume toward contradiction that there exists a PPT algorithm A and p ∈
poly such that

Pr
h←H,x1,x2←{0,1}n,
(x′1,x

′
2)←A(h,x1,x2)

[
f(x1) = f(x′1) ∧ f(x2) 6= f(x′2) ∧ h(x1, f(x2)) = h(x′1, f(x′2))

]
≥ 1/p(n)

for infinitely many n ∈ N. Then, by Claim 4.5 it holds that

Pr
x←{0,1}

[
InvA(f(x)) ∈ f−1(f(x))

]
≥ 1/p(n)2 · n−2β−2 · 2−10

for infinitely many n ∈ N, which is a contradiction to f being a one-way function.
�

The rest of this part is dedicated for proving Claim 4.5. Let n, α and A be as in Claim 4.5.
In the following we assume that A outputs a valid pair (x′1, x

′
2) with (f(x1) = f(x′1) ∧ f(x2) 6=

f(x′2) ∧ h(x1, f(x2)) = h(x′1, f(x′2))) or (⊥,⊥). For x1, x2 and h, we define,

Gh,x1,x2 :=
{

(x′1, y) ∈ f−1(f(x1))× Im(f) : h(x1, f(x2)) = h(x′1, y)
}
.

For ease of notation, we say that x ∈ Gh,x1,x2 if there exists y ∈ Im(f) such that (x, y) ∈
Gh,x1,x2 . Let Inv be the following algorithm. Note that Inv can be implemented efficiently, by the
constructibility of H.

Algorithm 4 (The inverter Inv).

Input: y ∈ Im(f) .

Oracle: A.

Operation:

1. Sample x1, x2 ← {0, 1}n and h← H.

2. Apply A(h, x1, x2) to get (x′1, x
′
2). If A outputs (⊥,⊥), output ⊥.

3. Sample h′ ← H such that h′(x1, f(x2)) = h′(x′1, y).

4. Apply A(h′, x1, x2) to get (x′′1, x). Output x.

That is, in order to invert its input y, Inv samples x1, x2 and h. It then uses A in order to find x′1
with f(x′1) = f(x1). Lastly, it samples h′ with h′(x1, f(x2)) = h′(x′1, y) and uses A in order to find
a collision to h′, x1, x2. By the choice of h′, a possible collision is (h′, x′1, f

−1(y)). We observe that
if A finds such a collision, Inv successfully inverted y.

18

For x1, x2 ∈ {0, 1}n, x′1 ∈ f−1(f(x)) and y ∈ Im(f) , let

pA(x1, x2, x
′
1, y) := Pr

h′←H

[
A(h′, x1, x2) ∈

{
x′1
}
× f−1(y) | h′(x1, f(x2)) = h′(x′1, y)

]
= Pr
h′←H

[
A(h′, x1, x2) ∈

{
x′1
}
× f−1(y) | (x′1, y) ∈ Gh′,x1,x2

]
and define pA(x1, x2,⊥, y) = 0. By the above observation, it holds that

Pr
x←{0,1}n

[
InvA(f(x)) ∈ f−1(f(x))

]
≥ E

h←H,x1,x2←{0,1}n
y←f({0,1}n)

(x′1,x
′
2)←A(h,x1,x2)

[
pA(x1, x2, x

′
1, y)

]
(8)

and thus it is enough to bound the latter. We bound it using the following two claims. The first
shows that it is enough to bound the probability that A outputs (x′1, ·). The second claim bounds
the last probability.

Claim 4.6. For every x1, x2 ∈ {0, 1}n and x′ ∈ f−1(f(x1)) the following holds.

E
y←f({0,1}n)

[
pA(x1, x2, x

′, y)
]
≥ Pr

h′←H

[
A(h′, x1, x2) = (x′, ·) | x′ ∈ Gh′,x1,x2

]
· n−β−1 · 2−10.

Proof. Fix x1, x2 ∈ {0, 1}n and x′ ∈ f−1(f(x1)), and for every h ∈ H, let A(h) := A(h, x1, x2) and
Gh := Gh,x1,x2 . Then, by the definition of pA, it holds that

E
y←f({0,1}n)

[
pA(x1, x2, x

′, y)
]

= E
y←f({0,1}n)

[
Pr

h′←H

[
A(h′) ∈

{
x′
}
× f−1(y) | (x′, y) ∈ Gh′

]]
= E

y←f({0,1}n)

[
Prh′←H

[
(x′, y) ∈ Gh′ ∧ A(h′) ∈ {x′} × f−1(y) | x′ ∈ Gh′

]
Prh′←H [(x′, y) ∈ Gh′ | x′ ∈ Gh′]

]

= E
y←f({0,1}n)

[
Prh′←H

[
A(h′) ∈ {x′} × f−1(y) | x′ ∈ Gh′

]
Prh′←H [(x′, y) ∈ Gh′ | x′ ∈ Gh′]

]

= E
y←f({0,1}n)

[
Pr

h′←H

[
A(h′) ∈

{
x′
}
× f−1(y) | x′ ∈ Gh′

]
· Prh′←H [x′ ∈ Gh′]

Prh′←H [(x′, y) ∈ Gh′]

]
.

Since by our assumption on A, for every (x′, y) with Pr
[
A(h) ∈ {x′} × f−1(y)

]
> 0 it holds that

(x′, y) 6= (x1, f(x2)), we get that for every such pair Prh′←H [(x′, y) ∈ Gh′] = n/2n.
Recall that the family H is approximately-flat. That is,

Pr
h′←H

[
∃y ∈ Im(f) s.t. h′(x1, f(x2)) = h′(x′, y)

]
≥ 2−10 ·min

{
|Im(f) | · 2−(n−logn), 1

}
.

19

Continue,

E
y←f({0,1}n)

[
pA(x1, x2, x

′, y)
]

=
∑

y∈Im(f)

Pr
x←{0,1}n

[f(x) = y] · Pr
h′←H

[
A(h′) ∈

{
x′
}
× f−1(y) | x′ ∈ Gh′

]
· 2n

n
· Pr
h′←H

[
x′ ∈ Gh′

]
≥

∑
y∈Im(f)

1

|Im(f) | · nβ
· Pr
h′←H

[
A(h′) ∈

{
x′
}
× f−1(y) | x′ ∈ Gh′

]
· 2n

n
· Pr
h′←H

[
x′ ∈ Gh′

]
=

1

|Im(f) | · nβ
· 2n

n
· Pr
h′←H

[
x′ ∈ Gh′

]
·
∑

y∈Im(f)

Pr
h′←H

[
A(h′) ∈

{
x′
}
× f−1(y) | x′ ∈ Gh′

]
=

2n

|Im(f) | · nβ+1
· Pr
h′←H

[
x′ ∈ Gh′

]
· Pr
h′←H

[
A(h′) = (x′, ·) | x′ ∈ Gh′

]
≥ 2n

|Im(f) | · nβ+1
· 2−10 ·min

{
|Im(f) | · 2−(n−logn), 1

}
· Pr
h′←H

[
A(h′) = (x′, ·) | x′ ∈ Gh′

]
≥ n−β−1 · 2−10 · Pr

h′←H

[
A(h′) = (x′, ·) | x′ ∈ Gh′

]
where the first inequality holds since f is β-almost-regular, and the second sinceH is approximately-
flat. �

The next claim uses Lemma 2.16 in order to show that in a random execution of Inv, A has a
good probability to output the same element x′1 in Items 2 and 4.

Claim 4.7. For every x1, x2 ∈ {0, 1} the following holds. Let αx1,x2 := Prh←H [A(h, x1, x2) 6= ⊥].∑
x′1∈f−1(f(x1))

Pr
h←H

[
A(h, x1, x2) = (x′1, ·)

]
· Pr
h′←H

[
A(h′, x1, x2) = (x′1, ·) | x′1 ∈ Gh′,x1,x2

]
≥ α2

x1,x2 · n
−β−1/4.

Proof. Fix x1, x2 ∈ {0, 1}n, and let αx1,x2 be as in Claim 4.7. Let α1 := Prh←H [A(h, x1, x2) = (x1, ·)]
and let α2 := Prh←H [A(h, x1, x2) /∈ {(x1, ·),⊥}]. Notice that αx1,x2 = α1 + α2.

Define Ã(h) to be the algorithm that outputs the first coordinate of A’s output (A(h, x1, x2)1)
if it is different from x1, or ⊥ otherwise. Let Gh := Gh,x1,x2 . Note that by the assumption on A, Ã

always outputs elements in S(h) = {x ∈ Gh,x1,x2 : x 6= x1}. We get that α2 := Prh←H

[
Ã(h) 6= ⊥

]
.

20

Let Ω = f−1(f(x1)) \ {x1}. It holds that,∑
x′1∈f−1(f(x1))

Pr
h←H

[
A(h, x1, x2) = (x′1, ·)

]
· Pr
h′←H

[
A(h′, x1, x2) = (x′1, ·) | x′1 ∈ Gh′,x1,x2

]
=
∑
x′1∈Ω

Pr
h←H

[
A(h, x1, x2) = (x′1, ·)

]
· Pr
h′←H

[
A(h′, x1, x2) = (x′1, ·) | x′1 ∈ Gh′,x1,x2

]
+ Pr
h←H

[A(h, x1, x2) = (x1, ·)] · Pr
h′←H

[
A(h′, x1, x2) = (x1, ·) | x1 ∈ Gh′,x1,x2

]
=
∑
x′1∈Ω

Pr
h←H

[
Ã(h) = x′1

]
· Pr
h′←H

[
Ã(h) = x′1 | x′1 ∈ Gh′,x1,x2

]
+ Pr
h←H

[A(h, x1, x2) = (x1, ·)] · Pr
h′←H

[
A(h′, x1, x2) = (x1, ·)

]
=
∑
x′1∈Ω

Pr
h←H

[
Ã(h) = x′1

]
· Pr
h′←H

[
Ã(h) = x′1 | x′1 ∈ S(h′)

]
+ α2

1,

where the second equality holds by definition of Ã and since x1 is always a member in Gh,x1,x2 . We
next show that ∑

x′1∈Ω

Pr
h←H

[
Ã(h) = x′1

]
· Pr
h′←H

[
Ã(h) = x′1 | x′1 ∈ S(h′)

]
≥ α2

2 · n−β−1. (9)

Indeed, assume that Ω is not empty, as otherwise the above holds trivially. We observe that for
every x ∈ Ω,

0 < Pr
h′←H

[
x ∈ S(h′)

]
≤ |Im(f) | · n/2n ≤ nβ+1/

∣∣f−1(f(x))
∣∣ ≤ nβ+1/ |Ω| . (10)

Thus we can use Lemma 2.16, with X = H in order to get Equation (9).
Combining the above, we conclude that∑

x′1∈f−1(f(x1))

Pr
h←H

[
A(h, x1, x2) = (x′1, ·)

]
· Pr
h′←H

[
A(h′, x1, x2) = (x′1, ·) | x′1 ∈ Gh′,x1,x2

]
≥ α2

2 · n−β−1 + α2
1.

The claim follows since either α1 or α2 is at least αx1,x2/2. �

We are now ready to prove Claim 4.5.

Proof of Claim 4.5. For fixed x1 and x2 let αx1,x2 be as in Claim 4.7. We start by showing that

Pr
x←{0,1}

[
InvA(f(x)) ∈ f−1(f(x))

]
≥ E

x1,x2←{0,1}n
[
α2
x1,x2

]
· n−2β−2 · 2−12. (11)

Indeed, by Equation (8),

Pr
x←{0,1}

[
InvA(f(x)) ∈ f−1(f(x))

]
≥ E

h←H,x1,x2←{0,1}n
y←f({0,1}n)

(x′1,x
′
2)←A(h,x1,x2)

[
pA(x1, x2, x

′
1, y)

]

= E
x1,x2←{0,1}n

 E
h←H,y←f({0,1}n),
(x′1,x

′
2)←A(h,x1,x2)

[
pA(x1, x2, x

′
1, y)

] ,
21

and thus it is enough to show that for every fixed x1, x2 ∈ {0, 1}n,

E
h←H,y←f({0,1}n),
(x′1,x

′
2)←A(h,x1,x2)

[
pA(x1, x2, x

′
1, y)

]
≥ α2

x1,x2 · n
−2β−2 · 2−12.

Indeed, recall that by definition, pA(x1, x2,⊥, y) = 0. Therefore,

E
h←H,y←f({0,1}n),
(x′1,x

′
2)←A(h,x1,x2)

[
pA(x1, x2, x

′
1, y)

]
=

∑
x′1∈f−1(f(x1))

Pr
h←H

[
A(h, x1, x2) = (x′1, ·)

]
· E
y←f({0,1}n)

[
pA(x1, x2, x

′
1, y)

]
≥

∑
x′1∈f−1(f(x1))

Pr
h←H

[
A(h, x1, x2) = (x′1, ·)

]
· Pr
h′←H

[
A(h′, x1, x2) = (x′1, ·) | x′1 ∈ Gh′,x1,x2

]
· n−β−1 · 2−10

≥ α2
x1,x2 · n

−2β−2 · 2−12.

Where the equality holds by the assumption that A always output a valid collision, or ⊥. The first
inequality holds by Claim 4.6 and the second by Claim 4.7.

We are now left to bound Ex1,x2←{0,1}n
[
α2
x1,x2

]
· n−2β−2 · 2−12. Observe that by definition

Ex1,x2←{0,1}n [αx1,x2] = α, and thus by the Jensen inequality, it holds that Ex1,x2←{0,1}n
[
α2
x1,x2

]
≥

α2, which concludes the proof. �

Acknowledgement

We are thankful to Iftach Haitner and Salil Vadhan for very useful discussions. We also thank the
anonymous reviewers for their comments.

References

[ACHV19] Rohit Agrawal, Yi-Hsiu Chen, Thibaut Horel, and Salil Vadhan. Unifying computa-
tional entropies via kullback–leibler divergence. In Annual International Cryptology
Conference, pages 831–858. Springer, 2019.

[AGV12] Scott Ames, Rosario Gennaro, and Muthuramakrishnan Venkitasubramaniam. The
generalized randomized iterate and its application to new efficient constructions of
uowhfs from regular one-way functions. In International Conference on the Theory
and Application of Cryptology and Information Security, pages 154–171. Springer,
2012.

[BH13] Kfir Barhum and Thomas Holenstein. A cookbook for black-box separations and a
recipe for uowhfs. In Theory of Cryptography Conference, pages 662–679. Springer,
2013.

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences
of pseudorandom bits. SIAM journal on Computing, 13(4):850–864, 1984.

22

[BM12] Kfir Barhum and Ueli Maurer. Uowhfs from owfs: Trading regularity for efficiency. In
International Conference on Cryptology and Information Security in Latin America,
pages 234–253. Springer, 2012.

[GGKT05] Rosario Gennaro, Yael Gertner, Jonathan Katz, and Luca Trevisan. Bounds on
the efficiency of generic cryptographic constructions. SIAM journal on Computing,
35(1):217–246, 2005.

[GIL+90] Oded Goldreich, Russell Impagliazzo, Leonid Levin, Ramarathnam Venkatesan, and
David Zuckerman. Security preserving amplification of hardness. In Proceedings [1990]
31st Annual Symposium on Foundations of Computer Science, pages 318–326. IEEE,
1990.

[GKL93] Oded Goldreich, Hugo Krawczyk, and Michael Luby. On the existence of pseudoran-
dom generators. SIAM Journal on Computing, 22(6):1163–1175, 1993.

[GL89] Oded Goldreich and Leonid A Levin. A hard-core predicate for all one-way functions.
In Proceedings of the twenty-first annual ACM symposium on Theory of computing,
pages 25–32, 1989.

[HHR06a] Iftach Haitner, Danny Harnik, and Omer Reingold. Efficient pseudorandom generators
from exponentially hard one-way functions. In International Colloquium on Automata,
Languages, and Programming, pages 228–239. Springer, 2006.

[HHR06b] Iftach Haitner, Danny Harnik, and Omer Reingold. On the power of the randomized
iterate. In Annual International Cryptology Conference, pages 22–40. Springer, 2006.

[HHR+10] Iftach Haitner, Thomas Holenstein, Omer Reingold, Salil Vadhan, and Hoeteck Wee.
Universal one-way hash functions via inaccessible entropy. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages 616–
637. Springer, 2010.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A Levin, and Michael Luby. A pseudoran-
dom generator from any one-way function. SIAM Journal on Computing, 28(4):1364–
1396, 1999.

[Hol06] Thomas Holenstein. Pseudorandom generators from one-way functions: A simple
construction for any hardness. In Theory of Cryptography Conference, pages 443–461.
Springer, 2006.

[HRV13] Iftach Haitner, Omer Reingold, and Salil Vadhan. Efficiency improvements in con-
structing pseudorandom generators from one-way functions. SIAM Journal on Com-
puting, 42(3):1405–1430, 2013.

[HRVW09] Iftach Haitner, Omer Reingold, Salil Vadhan, and Hoeteck Wee. Inaccessible entropy.
In Proceedings of the forty-first annual ACM symposium on Theory of computing,
pages 611–620, 2009.

[HS12] Thomas Holenstein and Makrand Sinha. Constructing a pseudorandom generator
requires an almost linear number of calls. In 2012 IEEE 53rd Annual Symposium on
Foundations of Computer Science, pages 698–707. IEEE, 2012.

23

[ILL89] Russell Impagliazzo, Leonid A Levin, and Michael Luby. Pseudo-random generation
from one-way functions. In Proceedings of the twenty-first annual ACM symposium
on Theory of computing, pages 12–24, 1989.

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic
applications. In Proceedings of the twenty-first annual ACM symposium on Theory of
computing, pages 33–43, 1989.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures.
In Proceedings of the twenty-second annual ACM symposium on Theory of computing,
pages 387–394, 1990.

[VZ12] Salil Vadhan and Colin Jia Zheng. Characterizing pseudoentropy and simplifying
pseudorandom generator constructions. In Proceedings of the forty-fourth annual ACM
symposium on Theory of computing, pages 817–836, 2012.

[Yao82] Andrew C Yao. Theory and application of trapdoor functions. In 23rd Annual Sym-
posium on Foundations of Computer Science (SFCS 1982), pages 80–91. IEEE, 1982.

[YGLW15a] Yu Yu, Dawu Gu, Xiangxue Li, and Jian Weng. (almost) optimal constructions of
uowhfs from 1-to-1, regular one-way functions and beyond. In Annual Cryptology
Conference, pages 209–229. Springer, 2015.

[YGLW15b] Yu Yu, Dawu Gu, Xiangxue Li, and Jian Weng. The randomized iterate, revisited-
almost linear seed length prgs from a broader class of one-way functions. In Theory
of Cryptography Conference, pages 7–35. Springer, 2015.

[YLW15] Yu Yu, Xiangxue Li, and Jian Weng. Pseudorandom generators from regular one-
way functions: New constructions with improved parameters. Theoretical Computer
Science, 569:58–69, 2015.

A Missing Proofs

A.1 Pseudorandom Generator

Lemma A.1 (Lemma 2.6, restated). There exists a PPT algorithm P such that the following holds.
Let Q be a distribution over {0, 1}∗ × {0, 1}n, and let D be an algorithm and α ∈ [0, 1] such that,

Pr
(x,y)←Q,z←{0,1}n

[D(x, z) = 1]− Pr
(x,y)←Q

[D(x, y) = 1] ≥ α.

Then there exists i ∈ [n] such that

Pr
(x,y)←Q

[
PD(x, y1,...,i−1) = yi

]
≥ 1/2 + α/n.

Proof of Lemma 2.6. Let Q,D and α be as in Lemma 2.6. We start by showing that D can be used
in order to distinguish yi from uniform bit given x, y1,...,i−1 for some index i ∈ [n]. Later we use

24

this fact in order to predict yi. Indeed, it holds that

α ≤ Pr
(x,y)←Q,z←{0,1}n

[D(x, z) = 1]− Pr
(x,y)←Q

[D(x, y) = 1]

≤
n∑
i=1

(
Pr

(x,y)←Q,z←{0,1}n
[D(x, y1,...,i−1, zi,...,n) = 1]− Pr

(x,y)←Q,z←{0,1}n
[D(x, y1,...,i, zi+1,...,n) = 1]

)
,

and thus there exists i ∈ [n] such that

ε := Pr
(x,y)←Q,b←{0,1}
z←{0,1}n−i

[D(x, y1,...,i−1, b, z) = 1]− Pr
(x,y)←Q,
z←{0,1}n−i

[D(x, y1,...,i−1, yi, z) = 1] ≥ α/n (12)

as we wanted to show. We now describe the predictor P. Consider the following algortihm.

Algorithm 5 (The predictor P).

Input: x ∈ {0, 1}∗ , y1,...,i−1 ∈ {0, 1}i−1.

Oracle: A distinguisher D.

Operation:

1. Sample b← {0, 1}, z ← {0, 1}n−i and execute D(x, y1,...,i−1, b, z).

2. If D output 1, output 1− b. Otherwise, output b.

We next show that the probability that P outputs yi is at least 1/2 + α/n.
Let p := Pr (x,y)←Q,

z←{0,1}n−i
[D(x, y1,...,i−1, yi, z) = 1]. It holds that

p+ ε = Pr
(x,y)←Q,b←{0,1}
z←{0,1}n−i

[D(x, y1,...,i−1, b, z) = 1]

= 1/2 · (Pr
(x,y)←Q,
z←{0,1}n−i

[D(x, y1,...,i−1, yi, z) = 1] + Pr
(x,y)←Q,
z←{0,1}n−i

[D(x, y1,...,i−1, 1− yi, z) = 1])

= 1/2 · (p+ Pr
(x,y)←Q,
z←{0,1}n−i

[D(x, y1,...,i−1, 1− yi, z) = 1])).

Thus, Pr (x,y)←Q,
z←{0,1}n−i

[D(x, y1,...,i−1, 1− yi, z) = 1] = p+ 2ε. Continue, the probability that P outputs

yi is given by

Pr
b←{0,1}n

[b = yi] · (1− p) + Pr
b←{0,1}n

[b = 1− yi] · Pr
(x,y)←Q,
z←{0,1}n−i

[D(x, y1,...,i−1, 1− yi, z) = 1]

= 1/2 · (1− p) + 1/2 · (p+ 2ε)

= 1/2 + ε

≥ 1/2 + α/n

as needed. �

25

A.2 Universal Hash Families

Lemma A.2 (Lemma 2.13, restated). For every `, n ∈ N such that ` ≤ n, the family
{
m : m ∈ {0, 1}n×`

}
is approximately-flat.

Proof of Lemma 2.13. Fix Y, x1, x2 and y1 as in Definition 2.12. We want to show that

Pr
M←{0,1}2n×`

[∃y2 ∈ Y s.t. M(x1, y1) = M(x2, y2)] ≥ 2−10 ·min
{
|Y| · 2−`, 1

}
.

We first assume that x1 6= x2, as otherwise the lemma holds trivially. Next, we observe that M
can be written as MX ∈ {0, 1}n×` and MY ∈ {0, 1}n×`, such that for every vectors x, y ∈ {0, 1}n it
holds that

M(x, y) = (x ·MX)⊕ (y ·MY). (13)

We want to bound the probability that there exists y2 ∈ Y such that M(x1, y1) = M(x2, y2), or
equivalently,

(x1 ⊕ x2) ·MX = (y2 ⊕ y1) ·MY . (14)

Since x1 6= x2, it holds that (x1 ⊕ x2) · MX is a uniform element in {0, 1}`. Thus, we are
interested in lower bounding the probability

Pr
MY←{0,1}n×`,z′←{0,1}`

[
∃y2 ∈ Y s.t. z′ = (y2 ⊕ y1) ·MY

]
= Pr

MY←{0,1}n×`,z←{0,1}`
[∃y2 ∈ Y s.t. z = y2 ·MY]

where the equality holds since z := z′⊕y1 ·MY is a uniform element in {0, 1}` which is independent
of MY . In the following we show that with probability at least 1/2 over the choice of MY , the size
of the set Y ·MY = {y ·MY : y ∈ Y} is at least min

{
|Y|/2, 2`/32

}
, from which the lemma follows.

To see the above, first notice that for every vector v ∈ {0, 1}n with v 6= 0, it holds that

Pr
MY

[v ·MY = 0] = 2−`

and thus,

E
MY

[|{y1 6= y2 ∈ Y : y1 ·MY = y2 ·MY}|] = E
MY

[|{y1 6= y2 ∈ Y : (y1 ⊕ y2) ·MY = 0}|] ≤ |Y|2 · 2−`.

By Markov inequality, we get that with probability at least 1/2 over the choice of MY , it holds that

|{y1 6= y2 ∈ Y : y1 ·MY = y2 ·MY}| ≤ 2 |Y|2 · 2−`. (15)

In the following we show that for every matrix MY for which Equation (15) holds, it holds that
Y ·MY ≥ min

{
|Y|/2, 2`/32

}
.

Indeed, consider a graph G, in which the set of vertices is Y, and the set of edges E is the set
{y1 6= y2 ∈ Y : y1 ·MY = y2 ·MY}. By assumption, |E| ≤ 2 |Y|2 · 2−`. Furthermore, it is not hard
to see that G is composed of disjoint cliques, and that the number of connected components in G

26

is exactly the size of Y ·MY . To bound the number of connected components of G, we first assume
that G has no more than |Y|/2 isolated vertices, as otherwise the bound trivially follows. We start
with removing the isolated vertices from G, to get a graph with at least |Y|/2 vertices and at most
2 |Y|2 · 2−` edges. Let k be the number of connected components in the graph, and let c1, . . . , ck
be the number of vertices in each component. Since ci > 1 for every i, the number of edges in the
i-th component is larger than c2

i /4. By Cauchy–Schwarz inequality,

(|Y| /2)2 ≤ (
∑
i∈[k]

ci)
2 ≤ k ·

∑
i∈[k]

c2
i ≤ 4k |E| ≤ 8k |Y|2 · 2−`,

which implies that k ≥ 2`/32, and the lemma follows. �

27

