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Abstract. We propose a tool for automated truncation of differential
trails in ciphers using modular addition, bitwise rotation, and XOR (ARX).
The tool takes as input a differential trail and produces as output a set of
truncated differential trails. The set represents all possible truncations
of the input trail according to certain predefined rules. A linear-time
algorithm for the exact computation of the differential probability of a
truncated trail that follows the truncation rules is proposed. We further
describe a method to merge the set of truncated trails into a compact
set of non-overlapping truncated trails with associated probability and
we demonstrate the application of the tool on block cipher Speck64.
We have also investigated the effect of clustering of differential trails
around a fixed input trail. The best cluster that we have found for 15
rounds has probability 2−55.03 (consisting of 389 unique output differ-
ences) which allows us to build a distinguisher using 128 times less data
than the one based on just the single best trail, which has probabil-
ity 2−62. Moreover, we show examples for Speck64 where a cluster of
trails around a suboptimal (in terms of probability) input trail results
in higher overall probability compared to a cluster obtained around the
best differential trail.

Keywords: Symmetric-key · Block ciphers · Differential cryptanalysis
· Truncated Differentials · ARX · Speck.

1 Introduction

Truncated differential cryptanalysis (TC) is a technique for analysing symmetric-
key cryptosystems proposed in [10]. It is a variant of differential cryptanalysis
(DC) [3] and has been used successfully against a number of cryptographic
algorithms such as IDEA, Skipjack and Salsa20 among others. Similarly to
differential cryptanalysis, truncated cryptanalysis traces the propagation of dif-
ferences through multiple rounds of a cipher. In contrast to DC, TC does not
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analyse full but truncated differences. A truncated difference is one in which only
some of the bits are specified i.e. fixed to given value 0 or 1, while the rest are
truncated i.e. not specified. A truncated bit is typically denoted by a ∗ symbol
implying that it may take any value.

In differential cryptanalysis a sequence of differences through several rounds
of a cipher is called a differential trail (or differential characteristic). When only
the input and output differences (and not the intermediate differences) of a dif-
ferential trail are specified the resulting object is called a differential. The anal-
ogous concepts in truncated differential cryptanalysis are truncated differential
trails and truncated differentials, both being composed of truncated differences.

As in DC, the objective of TC is to find a truncated differential (trail) with a
sufficiently high probability p over R rounds. The latter is called a distinguisher
as it distinguishes the cipher from a random permutation, which has probability
lower than p. In its most general form, the attack principle of TC is the same as
in DC. Namely, the distinguisher is used to attack R+ r rounds for some value
of r, by guessing the last r round keys, inverting the permutation and checking
if the output truncated difference after R rounds matches the one computed
after the inversion under the guessed key/s. The success and complexity of a TC
attack crucially depends on the ability to find high probability truncated trails
and differentials.

ARX (standing for Addition-Rotation-XOR) is a class of cryptographic al-
gorithms designed using three simple arithmetic operations: modular addition,
bitwise rotation and XOR. These algorithms are typically easy to describe and
implement and are very efficient, especially in software. At the same time they
have been notoriously difficult to analyse due to intricate dependencies between
the various operations [11]. As a result a significant body of research has been
dedicated to the development of tools and techniques for the automated analysis
of ARX.

One of the first automated techniques for constructing differential trails for
ARX-based designs is due to De Cannière et al. [7]. It uses the idea of generalized
bit conditions to find collisions in the hash function SHA1. A few related auto-
mated techniques have been subsequently proposed by Leurent [12], Stevens [20]
and Mendel et al. [17]. Similarly, all of them have been applied to hash func-
tions. Dedicated tools for searching for differential paths in (pure) ARX ciphers
have been proposed by Liu et al. [16], Huang et al. [9] and Biryukov et al.
[5, 6]. Finally, several authors have modelled the differential search problem in
terms of Boolean satisfiability or mixed-integer linear programming and have
proposed the use of off-the-shelf SAT or MILP solvers to find solutions in an
automated way. Some results in this direction are by Mouha et al. [18], Fu et
al. [8], Sun et al. [21, 22, 22] and Song et al. [19]. The problem of clustering
of differential characteristics has been researched in [1, 19, 4], where the authors
apply SMT solvers or dedicated tools to enumerate characteristics belonging to
a given differential.

In this paper we extend the set of existing tools for analysis of ARX. More
specifically, we propose a new automated tool for constructing truncated differ-
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ential trails for ARX from existing non-truncated ones and computing their exact
probability. The main idea is to truncate every bit from the input non-truncated
trail (i.e. transforming all 0 and 1 bits into a ∗), according to certain predefined
propagation rules. The rules ensure that the truncated ∗ bit will propagate until
the last round of the input trail so that the resulting truncated trail will remain
valid and of non-zero probability for any assignment of the ∗. As a result, from
an input trail we obtain a set of trails represented by a single truncated trail
that has probability at least as high as the probability of the initial trail. In ad-
dition, we propose a method to construct a cluster of non-overlapping truncated
trails composed of all possible truncations of the input (up to the propagation
rules) together with its associated probability. In contrast to [1, 19, 4] the trails
in the constructed clusters do not necessarily belong to the same differential.
They have compact representation due to which the analyst is able to trace the
propagation of multiple trails at the same time.

We propose two sets of truncation rules: simple rules (Section 3) and re-
laxed rules (Section 6). The simple rules do not consider dependencies between
consecutive bits within the same round (i.e. within the same modular addition
operation). Consequently, with the simple rules, truncated bits with different
labels are independent from each other and can take values 0 and 1 with equal
probability. In contrast, the relaxed rules are a generalization of the simple rules
that is applicable also in cases in which bits within the same round are dependent
on each other. In that case truncated bits with different labels are dependent on
each other (often in complex ways) and may take values 0 and 1 with different
probability.

Both for the simple and for the relaxed truncation rules the only assumption
we rely on is the Markov assumption i.e. treating rounds as independent. In
particular, we do not assume that individual non-truncated trails belonging to
the same truncated trail have equal probability. Indeed, in general they don’t
and this is taken care of by the proposed tool.

The tool is useful for constructing truncated differential distinguishers which
have lower data complexity than the traditional ones based on the best non-
truncated trail. Its application is demonstrated on block cipher Speck64, for
which we report clusters of truncated trails produced from the optimal non-
truncated trails on up to 15 rounds. The latter is the highest number of rounds
covered by a single trail with probability 2−62 higher than random 2−64. For 15
rounds in particular, we report a set of 24 truncated trails, encoding 135 non-
truncated trails, the top 22 of which have probability ≥ 2−64 and cumulative
probability 2−59.05. The latter improves the probability of the single optimal trail
by a factor of about 8 at the expense of considering multiple trails. A summary
of those results is given in Table 1.

In the context of the existing tools mentioned earlier, the proposed tool
bears similarity to the generalized conditions idea introduced in [7] and extended
in [12]. Indeed the set of truncated and fixed bits is a subset of the full set of
(extended) generalized conditions. Several features set our tool apart from [7,
12]. First, by limiting ourselves to just a very small subset of the generalized
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conditions we are able to compute the exact probability of a single truncated
trail in linear time in its length. Second, due to the same reason we are also able
to transform a set of overlapping truncated trails into a set of disjoint truncated
trails. The latter is critical for being able to compute the probability of a cluster
of truncated trails, which on its turn is critical in estimating the data complexity
of an attack. Finally, ours is a dedicated tool for finding truncated trails, while
the mentioned tools have been applied in the context of collision search in hash
functions.

Table 1. Truncation of optimal trails for Speck64. Legend: R number of rounds;
∆in (#) input differences to the ADD at first round (# number of trails with such
input); #Ttr number of truncated trails produced by the tool; #Tntr number of non-
truncated trails in the truncated cluster Ttr (in brackets are the number of trails with
Pr ≥ 2−64); Pmin and Pmax resp. minimum and maximum trail Pr in the set Tntr (log2
scale); Ptr total Pr of the truncated cluster (log2 scale); log2(S/N) = 64−| log2(Ptr)|−
log2(#Tntr); Numbers in brackets in col. 7, 8 based on top trails in Tntr with Pr ≥ 2−64.
The columns mat.S/N and mat.Ptr are the signal-noise and probabilities of the optimal
truncation, approximated with a Matsui-search tool, whose probability limit was chosen
in such a way as to make computation time feasible on a small scale server PC with a
few hours of computation.

R ∆in (#) #Ttr #Tntr Pmin Pmax Ptr S/N mat.S/N mat.Ptr

(log2) (log2) (log2) (log2) (log2) (log2)
5 02000012 02000002 (1) 3 20 −15 −10 −7.58 52.10 33.13 −3.70
6 00008202 00001202 (1) 6 48 −23 −15 −12.02 46.40 32.31 −6.46
6 00401042 00400240 (1) 3 20 −20 −15 −12.58 47.10 33.37 −8.92
7 92400040 10420040 (1) 3 40 −27 −21 −18.00 40.68 24.42 −13.10
7 40924000 40104200 (1) 6 48 −29 −21 −18.02 40.40 24.47 −13.05
7 C0924000 40104200 (1) 6 48 −29 −21 −18.02 40.40 24.49 −13.06
8 00008202 00001202 (2) 6 144 −42 −29 −25.00 31.83 20.94 −16.63
8 92400040 10420040 (3) 28 576 −40 −29 −23.37 31.46 21.28 −16.23
8 40924000 40104200 (3) 25 544 −41 −29 −23.40 31.51 21.28 −16.23
9 00008202 00001202 (1) 3 48 −44 −34 −30.65 27.76 20.25 −23.33
9 80240000 00040080 (1) 3 20 −39 −34 −31.58 28.10 20.87 −27.39
9 80208080 00048080 (1) 2 12 −43 −34 −32.24 28.18 20.93 −28.85
9 00802400 80000400 (1) 6 30 −46 −34 −31.58 27.51 20.86 −27.33

10 80208080 00048080 (1) 6 30 −50 −38 −35.58 23.51 20.35 −32.69
11 00000090 00000010 (1) 3 5 −45 −42 −40.75 20.93 20.19 −40.00
12 00000090 00000010 (1) 5 24 −53 −46 −43.60 15.81 11.07 −40.12
12 00008202 00001202 (1) 3 5 −49 −46 −44.75 16.93 11.59 −42.35
13 00008202 00001202 (1) 5 24 −57 −50 −47.60 11.81 10.22 −45.57
14 20200008 20200001 (1) 6 48 −64 −56 −53.02 5.40 5.06 −51.07
14 00008202 00001202 (1) 15 112 (99) −67 −56 (−52.41) (4.79) 4.70 −50.68
14 92400040 10420040 (1) 6 24 −63 −56 −53.60 5.81 5.70 −51.37
14 40924000 40104200 (1) 5 24 −63 −56 −53.60 5.81 4.97 −52.06
15 92400040 10420040 (1) 24 135 (22) −74 −62 (−59.05) (0.49) 0.37 −58.54
15 40924000 40104200 (1) 15 112 (22) −73 −62 (−59.05) (0.49) 0.37 −58.54
15 00040924 20040104 (1) 6 48 (16) −70 −62 (−59.42) (0.58) 0.50 −58.79
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The outline of the paper is as follows. We begin with preliminaries in Sect. 2,
followed by exposition of the rules for truncation in Sect. 3. In Sect. 4 and
Sect. 5 is presented respectively a tool for automated truncation of differential
trails in ARX and a tool for merging a set of truncated trails into a set of non-
overlapping truncated trails. A set of relaxed truncation rules is described in
Sect. 6. Results from the application of those tools to block cipher Speck64
are given in Sect. 7. Statistical analysis of the distinguishing advantage using
truncated distinguishers is given in Sect. 8. In Sect. 9 we discuss an improved
truncated distinguisher for 15 rounds of Speck64. The exposition concludes with
Sect. 10. Notations and abbreviations are listed in Table 2.

Table 2. Symbols and notation.

Symbol Meaning
n Word size in bits
⊞ or ADD Addition modulo 2n

≪, ≫ Left, right bitwise rotation
∧, ∨ Logical AND, OR
x or ¬x Logical NOT
⊕ Binary exclusive-OR (XOR)
α, β, γ n-bit XOR or truncated differences
αi The i-th bit of α (α0 is LSB, αn−1 is MSB)
(αβγ)i The i-th bits of α, β, γ as 3-bit string
∗ Truncated bit (can be both 0 and 1)
∗̃ Dependent truncated bit (can be both 0 and 1)
· Fixed bit (can be either 0 or 1)
T, τ Truncated trail
T, t Sets of truncated trails
#T or |T| Size of the set T
Pr Probability
DP Differential probability
S/N Signal-to-Noise Ratio

2 Preliminaries

In this section we present notations, definitions and theorems that are relevant
to the subsequent parts of the paper.

By xdp+ is denoted the XOR differential probability (DP) of ADD and is
defined below.

Definition 1. xdp+ is the probability with which input XOR differences α, β
propagate to output XOR difference γ through the operation ADD, computed over
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all n-bit inputs a, b:

xdp+(α, β, γ) = 2−2n #{(a, b) : ((a⊕ α) + (b⊕ β))⊕ (a+ b) = γ} . (1)

The following lemma provides the condition under which xdp+ is non-zero:

Lemma 1 (Lemma 3 [15]). The probability xdp+(α, β, γ) is non-zero if:

αi ⊕ βi ⊕ γi =

{
0 if (i = 0) ,

αi−1 if (αi−1 = βi−1 = γi−1) ∧ (i > 0)
. (2)

Proof. Lemma 3 [15].

The next theorem provides a formula for the computation of xdp+.

Theorem 1 (Algorithm 2 [15]). If xdp+(α, β, γ) is non-zero then its exact
value is computed according to the following formula:

xdp+(α, β, γ) = 2−n+k+1 : k = #{i ≥ 1 : (αi−1 = βi−1 = γi−1)} . (3)

Proof. Algorithm 2 [15].

Theorem 1 essentially states that the probability xdp+ decreases by a factor of
1/2 for every bit position i at which the three bits of the differences αi, βi and
γi are not equal, excluding the most significant bit (MSB) (hence the +1 in the
power).

A bit in a truncated differential trail can either be fixed, denoted by the dot
symbol · or truncated, denoted by the star symbol ∗. A fixed bit has value either
0 or 1. A truncated bit can take on both values 0 and 1. More precisely, if a
bit in a truncated differential trail is truncated, then the trail is valid (i.e. of
non-zero probability) for both assignments of this bit.

3 Rules for Truncation

Truncation is performed according to three simple rules. They make truncation
feasible over multiple rounds of a cipher, where the ARX operations are sequen-
tially applied one after another. We describe those rules next, together with the
rationale behind them.

Rule 1. Let (α, β, γ) be a differential through ADD. Allow at most one truncated
bit in (αβγ)i at all bit positions i except the least significant bit (LSB) and allow
no truncated bits at the LSB:

(αβγ)i ∈

{
{(· · ·)} , i = 0 ,

{(· · ·), (· · ∗), (· ∗ ·), (∗ · ·)} , n > i > 0
. (4)
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The rationale behind Rule 1 is to make truncation feasible over multiple
ADD operations iterated in sequence as in an ARX algorithm. If we allow more
than one truncated bit per bit position in Rule 1 then the number of ∗ bits quickly
explodes in the number of rounds. Consequently it becomes infeasible to keep
track of the truncated bits across multiple rounds i.e. to maintain information
as to which ∗ bit at round r is related to which ∗ bit/s at round r − 1. Note
that the final goal is to end up with a truncated differential trail which results in
non-zero probability non-truncated trail for any assignment of the ∗ bits. Finally
and most importantly due to Rule 1 it is possible to efficiently (in linear time)
compute the differential probability of a truncated differential through a single
ADD.

Rule 2. Let (α, β, γ) be input/output differences through XOR so that α⊕β = γ.
Allow at most one truncated bit in (αβ)i at all bit positions:

(αβ)i ∈ {(··), (·∗), (∗·)} : n > i ≥ 0 . (5)

Similarly to Rule 1, the rationale behind Rule 2 is to make it feasible to keep
track of the dependency between ∗ bits over sequences of XOR operations. For
example if αi = · and βi = ∗ then the output of XOR is αi ⊕ ∗ = ∗. Thus the
output star ∗ is either equal to the input star ∗ or to its negation depending
on the value of αi which is fixed. In contrast, if both input bits are truncated
i.e. αi = ∗ and βi = ∗ then the output is a ∗ bit that is dependent on the inputs
in a (relatively) complex way.

Rule 3. Let (α, β, γ) be a truncated differential through ADD respecting Rule 1.
If, at position i− 1, two bits are fixed and equal while the third is truncated or
all three bits are fixed and equal to each other, then all bits at position i must
be fixed:

((αi−1 = βi−1 = ·) ∧ (γi−1 = ∗))∨
((βi−1 = γi−1 = ·) ∧ (αi−1 = ∗))∨
((αi−1 = γi−1 = ·) ∧ (βi−1 = ∗))∨
(αi−1 = βi−1 = γi−1 = ·) =⇒ (αβγ)i = (· · ·) . (6)

Rule 3 is a consequence of the xdp+ non-zero condition (Lemma 1). It ensures
that a non-zero probability differential (trail) remains of non-zero probability for
all assignments of the ∗ bits after truncation. More specifically, if e.g. αi−1 =
βi−1 = · and γi−1 = ∗ then we treat the ∗ value of γi−1 as being equal to
αi−1 in order to check that this is a valid truncation i.e. that the differential
remains of non-zero Pr for both assignments of γi−1. This is the case only if
αi ⊕ βi ⊕ γi ⊕ αi−1 = 0, otherwise the truncation is invalid (cf. Lemma 1).

The described rules allow stars in all bit positions (even several stars per
round) and in all rounds, except in the input differences. In practice however a
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star at a given position, for example round j, bit i, might violate one of the rules
as it propagates to the last round. If that is the case, then bit (j, i) remains fixed.
As a result the number of ∗ bits is relatively small. Another related consequence
is that more stars appear in the last rounds since at those positions there is
smaller chance to break any of the rules.

Rule 1, Rule 2 and Rule 3, when used in combination, make it possible to
compute the DP of a truncated differential trail in linear time in the length of
the trail.

We note that the proposed rules can be relaxed in several directions. In par-
ticular, one may relax Rule 2 by allowing two ∗ bits to enter the XOR operation.
Rule 3 can be relaxed to allow a ∗ bit at a position that follows a position with
equal fixed bits. Indeed we describe such a set of relaxed rules in Section 6. Such
relaxations naturally allow to capture more signal (larger cluster of differential
trails) at the expense of added complexity for keeping track of ∗ dependencies
across rounds.

4 Differential Trail Truncation

The truncation algorithm takes a non-truncated trail as input and produces as
output all its truncated variants that comply to Rules 1, 2 and 3. The input trail
can be found by using one of the existing tools mentioned earlier e.g. [16, 9, 6].

Denote the input trail by τ . The i-th bit at round j is denoted τ ji for 0 ≤ i <
n, 0 ≤ j < R and it can either be truncated or not. The algorithm explores both
possibilities recursively in a depth-first search manner. Once a bit is truncated
i.e. τ ji ← ∗, it is propagated to the last round of the trail. The propagation
through the ADD and XOR operations is performed according to Rules 1, 2, 3.
Propagation through the bitwise rotation operation is done by simply rotating
the ∗ bit by the corresponding rotation amount. If propagation fails for a given
bit (i.e. a rule is violated), the algorithm backtracks and explores the next
possibility or the next bit position. A pseudocode description of this procedure
is given in Appendix A, Algorithm 1.

The differential probability (DP) of a truncated differential trail that follows
Rules 1, 2, 3 through a single ADD operation can be computed in linear time.
The procedure represents a slight modification of the one for xdp+ (Theorem 1)
and is outlined next.

Let (α, β, γ) be a differential through ADD. In the non-truncated case the
probability p of this differential decreases by a factor of 1/2 for every bit position
i at which αi−1 = βi−1 = γi−1 does not hold (cf. Theorem 1). The modification of
this rule concerns the cases in which there is a ∗ at some bit positions. Let i−1 be
such a position other than the MSB i.e. (αβγ)i−1 ∈ {(··∗), (·∗·), (∗··)} and i ̸= n.
Without loss of generality assume that (αβγ)i−1 = (∗··) i.e. αi−1 = ∗. By Rule 3
it is ensured that the bits at the next position are all fixed i.e. (αβγ)i = (···). Two
cases are possible. In the first case βi−1 = γi−1 and the probability is multiplied
by 1 if αi−1 = βi−1 and by 1/2 if αi−1 ̸= βi−1 Therefore the total probability p is
multiplied by 1+1/2 = 3/2 in this case. In the second case βi−1 ̸= γi−1 and the
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probability decreases by 1/2 for both values of αi−1. Thus the total probability
p is multiplied by 1/2 + 1/2 = 1 (i.e. p remains unchanged) in this case. When
i = n and there is a ∗ at i− 1 (MSB), the probability p is multiplied by 2 as the
value at the MSB does not change the (non-truncated) DP (cf. Theorem 1).

The differential probability of a truncated trail that follows Rules 1, 2, 3
can be computed in linear time in the length of the trail. Consider a conceptual
ARX cipher with round function composed of a single ADD operation followed by
a linear part composed of XOR-s and bitwise rotations. Let τ = (τ0 . . . τR−1) be
a truncated differential trail over R rounds such that the differential transition
at round 0 ≤ j < R represents input/output differences to ADD i.e. τ j =
(αj , βj , γj). The DP of a single non-truncated differential (αj , βj , γj) at round
j can be computed bitwise with bit i conditioned on bit i− 1 using Theorem 1
as follows:

xdp+(αj , βj , γj) = pj0

n−1∏
i=1

pji : pji = DP[(αβγ)ji | (αβγ)
j
i−1] , (7)

where pj0 = DP[(αβγ)j0]. Therefore, under the Markov assumption, the probabil-
ity of the trail τ is computed as DP[τ ] =

∏R−1
j=0 pj0

∏n−1
i=1 pji .

Notice that the probabilities pji in the expression for DP[τ ] can be computed
in any order (for a fixed τ). When computing the DP of a truncated trail τ , we
are ordering the terms pji by the dependency of the ∗ bits in consecutive rounds.
Then we compute each term for both possible values 0 and 1 of the ∗ bit denoted
resp. (pji )0 and (pji )1 and we sum the two products.

For example suppose that τkr = ∗ for some round k and bit r and that this ∗
bit propagates to subsequent rounds, up to the final one, at positions τk+1

s , . . .,
τR−1
t . Suppose also that these are the only ∗ bits in τ . The truncated DP of τ

then is computed as:∏
(i,j)/∈

{(k,r),(k+1,s)...(R−1,t)}

pji

(
(pkr )0(p

k+1
s )0 . . . (p

R−1
t )0 + (pkr )1(p

k+1
s )1 . . . (p

R−1
t )1

)
(8)

In equation (8), we are essentially splitting the trail τ into bitwise subtrails,
where each subtrail contains ∗ bits that are directly dependent on each other.
Note that Rules 1, 2, 3 ensure that there are no dependencies between the ∗
bits belonging to different subtrails. In other words, if a ∗ bit is part of a given
subtrail, then it can not be part of other subtrails.

An example 6 round truncated trail on Speck32 generated with Algorithm 1
is shown in Appendix D, Table 4. It has probability 2−11.16 and has been pro-
duced from an optimal 6 round trail on Speck32 with probability 2−13. The
shown truncated trail has 4 independent ∗ bits and therefore encodes 16 non-
truncated trails. The dependency between the ∗ bits is shown in the equivalent
label representation in the third column of the table. The 4 independent trun-
cated bits are denoted by the labels a,b,c,d. Another example of a strongly
truncated trail produced from a suboptimal trail for Speck32 and encoding 512
non-truncated trails is shown in Appendix D Table 5.
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5 Merging of Truncated Trails

In the general case an input non-truncated trail may have more than one possible
truncation. Therefore the set of all possible (up to Rules 1, 2, 3) truncated trails
produced from a given non-truncated trail by Algorithm 1 may contain duplicate
non-truncated trails. In this section we describe a method to transform this set
into a set of truncated trails that are disjoint i.e. do not contain any duplicates.

As described earlier, a truncated difference (TD) α represents a set of non-
truncated differences defined by the ∗ bit positions in its truncated represen-
tation. We say that two TD α and α′ are disjoint, denoted as α ∩ α′ = ∅, if
their corresponding sets are disjoint i.e. if they do not have any common non-
truncated differences. Note that α and α′ are disjoint if there is at least one
bit that is fixed and of opposite value in each TD i.e. ∃i : 0 ≤ i < n : (αi =
·) ∧ (α′

i = ·) ∧ (αi ̸= α′
i).

If the set represented by α is fully contained in the set represented by α′ then
we say that α is a subset of α′ denoted as α ⊂ α′. If α and α′ are not subsets
of each other and are not disjoint i.e. if (α ̸⊂ α′) ∧ (α ̸⊃ α′) and α ∩ α′ ̸= ∅
then we say that α and α′ are partially overlapping (PO). The latter implies
that some, but strictly not all, differences that are in α are also in α′ and vice
versa. Note that if α and α′ are PO then there exists at least one bit position i
at which (αi = ∗)∧ (α′

i = ·) and there exists at least one bit position j at which
(αj = ·) ∧ (α′

j = ∗), where clearly i ̸= j.
The terms disjoint, subset and partially overlapping have analogous meaning

for the cases of truncated differentials through ADD (α, β, γ) and of truncated
trails τ = ((α0, β0, γ0), (α1, β1, γ1) . . .) composed of ADD truncated differentials.

The merging algorithm takes as input a set T of truncated trails T that are
all pairwise disjoint and a truncated trail τ to be merged with T. The output is
an updated set T composed of disjoint truncated trails and containing all (non-
truncated) trails from τ that were not initially in T. For each truncated trail
T in T, the algorithm checks three cases. If τ is already in T i.e. τ ⊂ T then
output T and terminate. If τ and T are disjoint i.e. τ ∩ T = ∅ then move on to
the next trail in T or add τ to T if all trails in T have been processed. Finally,
if T is a subset of τ i.e. T ⊂ τ or if T and τ are partially overlapping, then split
τ into a set of truncated trails t (explained below). The set t is such that all its
elements are pairwise disjoint and each trail from t is disjoint to T. With this the
procedure is finished for the trail T and moves on to the next trail in T where it
performs the same steps for each trail in the set t. The process terminates either
when the set t becomes empty (i.e. the initial trail τ has been fully absorbed
into T) or when all trails from T have been processed, in which case the set t is
added to T. In both cases the updated set T is returned. Pseudocode description
of this procedure is given in Algorithm 2.

A step that needs clarification in the described procedure is how the trail
τ is split into pairwise disjoint trails t that are also disjoint to T. Let T =
((α0, β0, γ0), (α1, β1, γ1) . . .) and τ = ((a0, b0, c0), (a1, b1, c1) . . .). By design we
know that either T ⊂ τ or T, τ : PO. In either case there must be at least one
bit position i and round j for which the bit in T is fixed and the same bit in τ
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is truncated. Let αj
i be one such bit i.e. (αj

i = ·)∧ (aji = ∗). We construct a new
trail τ ′ by setting aji to the opposite value of αj

i i.e. aji = 1⊕ αj
i . Note that this

makes τ ′ disjoint from T since it differs in one fixed bit. We add τ ′ to t and we
discard the original trail τ . By doing so we don’t lose any information since τ for
aji = αj

i is already in T and τ for the opposite value aji = 1⊕αj
i is in t. If T and

τ happen to differ also in another bit, say (βk
l = ·) ∧ (bkl = ∗) then we set aji to

the value in T: aji = αj
i and we set bkl to the negated value in T: bkl = 1⊕βk

l . We
add this new trail τ ′′ to t. Now t contains τ ′ and τ ′′ which are pairwise disjoint
since they differ in aji . At the same time they are also disjoint from T since they
differ from T respectively in aji and bkl . This procedure is executed iteratively
for all positions in which τ is fixed and T is truncated.

In Algorithm 2 there are two nested for-loops – the outer over T, the inner
over t, where the size of t is at most the number of non-truncated trails in τ .
Therefore the complexity of the algorithm is quadratic in max(#T,#t), where
#T is the number of truncated trails in T and #t is the number of non-truncated
trails in τ .

6 Relaxed Rules

In this Section we will generalize the truncation rules provided in Section 3
by allowing truncations with dependent truncated bits ∗̃, i.e. bits whose value
depends (non-linearly) on previous bits’ assignments and for which Lipmaa-
Moriai conditions are automatically satisfied.

Rule 1 naturally generalizes to this setting by allowing at most one dependent
truncated bit per bit position except for the LSB. Other truncation rules are as
follows.

Rule 4. Let (α, β, γ) be input/output differences through XOR so that α⊕β = γ.
Then

αβi = (··) =⇒ (γi = · )
αβi = {(·∗), (∗·), (∗∗), (∗̃∗), (∗∗̃), (∗̃∗̃)} =⇒ (γi = ∗̃)

where, in the latter case the dependent truncate bit γi = ∗̃ is equal to αi ⊕ βi.

Rule 5. Let (α, β, γ) be a truncated differential through ADD respecting Rule 1.
If, at position i − 1 and i two bits are fixed and not equal, then we can freely
truncate the remaining third bit at position i:(

(αi−1 ̸= βi−1 = ·) ∨ (αi−1 ̸= γi−1 = ·) ∨ (βi−1 ̸= γi−1 = ·)
)
∧(

(αi ̸= βi = ·) ∨ (αi ̸= γi = ·) ∨ (βi ̸= γi = ·)
)
∧
(
γi = ·

)
=⇒ (αβγ)i = {(· · ∗), (· ∗ ·), (∗ · ·)} .

Rule 5 is a consequence of the xdp+ non-zero condition (Lemma 1), i.e. there
are no conflicts at position i if at position i− 1 and i two bits are not equal.
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Rule 6. Let (α, β, γ) be a truncated differential through ADD respecting Rule 1.
If, at position i − 1, two bits are fixed and equal while the third is truncated,
then at position i we allow the truncation of bit γi:

((αi−1 = βi−1 = ·) ∧ (γi−1 = {∗, ∗̃})) ∨ ((βi−1 = γi−1 = ·) ∧ (αi−1 = {∗, ∗̃})) ∨
( (αi−1 = γi−1 = ·) ∧ (βi−1 = {∗, ∗̃}) ) =⇒ (αβγ)i = (· · ∗̃)

Rule 6 is a consequence of the xdp+ non-zero condition (Lemma 1). To
make explicit the dependence relation we assume, without loss of generality that
((αi−1 = βi−1 = ·) ∧ (γi−1 = ∗)) and (αβγ)i = {(· · ∗̃). Hence the truncated bit
γi depends on the value of the truncated bit γi−1 as

γi = ∗ · (αi−1 ⊕ γi−1)⊕ αi ⊕ βi ⊕ αi−1 (9)

where ∗ represents a (new) independent truncated bit. Recalling that a transition
is impossible if and only if (αi−1 = βi−1 = γi−1) ∧ (αi ⊕ βi ⊕ γi ⊕ αi−1) = 1,
two alternatives are possible when we expand equation 9:

– γi−1 = αi−1 : then (αi−1 ⊕ γi−1) = 0 and (αi ⊕ βi ⊕ γi ⊕ αi−1) = 0;
– γi−1 ̸= αi−1 : then (αi−1 ⊕ γi−1) = 1 and γi = ∗, in accordance to Rule 5.

Fixed bits and truncated bit assignments can be modelled as outputs of
multivariate Boolean functions f(x0, .., xm) ∈ F2[x0, ..xm]. More precisely, fixed
bits · are represented by constant functions f(x0, .., xm) = 0, 1, an independent
∗ bit can be seen as the output of a degree-one monomial f(x0, .., xm) = xi,
while ∗̃ bits correspond in general to non-linear functions, e.g. f(x0, .., xm) =
x0x1x2 + x3 + 1. Within this model, relaxed truncation rules allow to compute
Boolean function fαi

, fβi
, fγi

representations of the (fixed or truncated) bits
αi, βi, γi.

However there are some technicalities: i) the Boolean polynomial ring F2[x0, ..xm]
in which truncated bit functions are defined should have enough variables to
truncate (independently) all bits in the input trail, hence, in general, we assume
m = (#of rounds)×(block-size)

2 − 1; ii) when a bit is truncated with a ∗ or we need
a new independent ∗ bit like in Rule 6, to ensure independence of their assign-
ments, the corresponding Boolean function representing such truncated bit is set
to be equal to a never-used independent variable xi with 0 ≤ i ≤ m.

From now on we will refer to bits by meaning the corresponding Boolean mul-
tivariate function representing its assignment. Thus, XOR and AND operations
used in above rules naturally map to addition and multiplications of Boolean
functions.

An example of truncation using relaxed rules and multivariate Boolean func-
tions for a 6 round trail can be found in Appendix G, Table G.

Differential Probability Computation. Since different bit assignments for trun-
cated bits are represented by unique solutions to a multivariate system of equa-
tions, in order to correctly compute the overall accumulated weight of non-
truncated trails obtained by expanding a truncated one, we need to compute
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the truth tables of each Boolean functions and filter out duplicate solutions.
Then, we can compute the weight as usual by using the Lipmaa-Moriai algo-
rithm. This results in an O(n · 2m0) space-time algorithm for computing the
accumulated weight of all expanded non-truncated trails given a truncated one
where n is the number of unique Boolean functions appearing in the truncated
representation and m0 is the number of independent variables appearing in all
such functions (in fact, the working polynomial ring can, without loss of gener-
ality, be the smaller F2[x0, ..xm0

]).

Implementation and Experimental Results. We implemented the relaxed rules in
C++ and we were able to truncate in few seconds all trails reported in Table
1 except 2 cases with 15 rounds due to memory limitations. For some of these
input trails, we expanded all obtained truncations and we computed, using the
above algorithm, the accumulated weight of each corresponding non-truncated
trails cluster. We then identified the best and the worst truncation in terms of
its corresponding cluster weight and we computed the accumulated probability
of all unique trails given by expanding all truncations available (we note that
different truncated trails, when expanded, may overlap in some non-truncated
trails). Some experimental results can be found in Table 6.

Table 3. Trail clustering obtained by truncating trails for Speck64 using relaxed rules.
R denotes the number of rounds; ∆in denotes the input difference of the truncated
optimal weight trail seed; #Ttr denotes the number of different truncations obtained;
#Tntr denotes the number of unique non-truncated trails obtained by expanding all
#Ttr truncations; #Bntr denotes the number of unique non-truncated trails obtained
by expanding the best truncation in terms of cumulative weight; Pmin and Pmax are the
cumulative probability of the worst and best truncated trail among all #Ttr truncations
(here Pmax correspond to the cumulative weight of all; Pntr denotes the cumulative
weight of all #Tntr non-truncated trails; Finally, the last column is the S/N ratio of
the best truncated trail, i.e. S/N = 64− log2(#Bntr) + Pmax.

R ∆in #Ttr #Tntr #Bntr Pmin Pmax PBntr S/N
(log2) (log2) (log2) (log2)

6 00008202 00001202 8823 7437 5589 −15 −10 −9.8 42.5
6 00401042 00400240 3102 2772 2310 −15 −11 −10.9 41.8
9 80240000 00040080 1281 1246 1127 −34 −30 −29.9 23.8

10 80208080 00048080 2745 2670 2415 −38 −34 −33.9 18.7

Comparison with Simple Rules (Sect. 3). The simple truncation rules described
in Sect. 3 allow for linear-time computation of the DP of a truncated trail. This
comes at the expense of missing much of the signal (many trails are not captured
by the truncation). In comparison, the relaxed rules capture a significantly larger
portion of the signal, but the computation of the DP in this case has exponential
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complexity in the number of truncated bits. Therefore one may use either the
simple or the advanced rules depending on the available computational resources.

7 Application to Speck64

Speck is a family of lightweight block ciphers proposed in [2]. The family has
five members corresponding resp. to the block sizes 32, 48, 64, 96 and 128 bits
and denoted by SpeckN, where N/2 is the word size in bits. In the remaining
part of this exposition we shall be concerned with Speck64 i.e. the variant with
32-bit words. Speck64 has two variants: 96-bit key and 26 rounds, and 128-bit
key and 27 rounds.

∆Xj ∆Y j

≫ 8

αj
βj

γj

Kj

≪ 3

∆Xj+1 ∆Y j+1

Fig. 1. The round function of Speck64
with differential inputs.

Denote by Xj and Y j the left and
right 32-bit input words to the j-th
round of Speck64 (0 ≤ j ≤ R) and
by Kj the 32-bit round key applied at
round j (0 ≤ j < R). The output
Xj+1, Y j+1 from round j is computed
as follows:

Xj+1 = ((Xj ≫ 8)⊞ Y j)⊕Kj ,
(10)

Y j+1 = (Y j ≪ 3)⊕Xj+1 , (11)

where ⊞ denotes addition modulo 2n for
n = N/2 = 32. The round function
of Speck64 with differential inputs is
shown in Fig. 1.

We have applied the tool for au-
tomated truncation (Algorithm 1) and
merging of truncated trails (Algo-

rithm 2) to the optimal (non-truncated) differential trails of Speck64 for up
to 15 rounds. The results are shown in Table 1. Explanation and analysis of the
data in the table follows.

The first column of Table 1 gives the number of rounds R. The second col-
umn shows the input difference ∆in of the input optimal trail followed by the
number of such trails with this input difference (in brackets). From the input
trail/s 3, a set of #Ttr non-overlapping truncated trails (column 3) is computed
by applying all possible truncations (up to Rules 1, 2, 3) and merging them.
The set Ttr contains #Tntr number of distinct non-truncated trails (column 4)
with probabilities ranging from Pmax and Pmin (columns 5, 6). The total prob-
ability of the truncated set Ttr is Ptr (column 7). The last column of Table 1
shows the log2 of the signal-to-noise ratio (S/N) computed as log2(S/N) =
64 − | log2(Ptr)| − log2(#Tntr) (we elaborate further on this parameter below).
3 There can be more than one input trail, provided that they share the same input

difference
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Numbers in brackets in the #Tntr column show the number of trails in the set
Tntr that have Pr ≥ 2−64 (the probability of a random output difference). Cor-
respondingly, the numbers in brackets in the last two columns are based on this
subset of trails of Tntr (as opposed to the full set Tntr).

The S/N ratio shown in the last column of Table 1 is the ratio between the
probability of the truncated set distinguisher Ptr and the probability of choosing
at random a ciphertext difference that belongs to the set Tntr: #Tntr · 2−64.
Note that all ciphertext differences composing the distinguisher are unique. To
ensure this, trails with the same output difference are ”merged” in one and
their probabilities are summed. The S/N ratio is an indicator of the strength
of the truncated differential set distinguisher. In particular, when S/N > 1 the
distinguisher can be used to distinguish the cipher from a random permutation.

The data in Table 1 indicates that the probability of the truncated differential
set Ptr is strictly higher than the probability of the underlying optimal non-
truncated trail Pmax. Consequently a truncated differential set distinguisher built
around the optimal non-truncated trail is better than just single optimal trail in
most cases (see next) in terms of data complexity.

The above conclusion has to be applied with caution. In particular, one has
to be careful when the probability of the truncated distinguisher approaches
the probability of the random event i.e. when Prtr ≈ #Tntr · 2−64 as then the
S/N can easily drop below 1. This indeed happens in the case of the 15 round
truncated distinguishers for Speck64 (see Table 1). If the full truncated sets
are used as distinguishers in those cases, the corresponding three S/N ratios are
2−1.42, 2−1.21 and 2−0.60 all of which are below 1. To increase them, one has
to consider only those non-truncated trails from the sets that have probability
≥ 2−64. For the three 15 round distinguishers from the table, these are the top
22, 22 and 16 trails respectively (as indicated by the numbers in brackets in the
Tntr column). By discarding all trails with Pr < 2−64 in those cases, the S/N
ratios are increased respectively to 20.49, 20.49 and 20.59 as shown in the table.

Another observation from the data in Table 1 is that some input trails have
higher truncation rate (more number of truncated bits) than others. The reason
for this is the specific structure of the trails with respect to Rules 1, 2 and 3.
More specifically, for some trails the rules are contradicted in smaller number of
bit positions (higher truncation rate) than in others.

For example from the input trail on 11 rounds, 3 truncated trails are produced
containing (only) 5 non-truncated ones. At the same time the first input trail
on 12 rounds (starting with the same input difference as the 11 round one) is
truncated into a set of 5 truncated trails containing 24 non-truncated. Upon
inspection we could see that the trail on 11 rounds has a very thick (i.e. low
probability) transition at round 5 (counting from 0) that costs 2−13, followed
by thin (i.e. high probability) transitions until the end. So one explanation of
the mentioned effect is that the thick transition breaks all rules up to round
5, while the following thin transitions don’t offer many options for truncation.
Interestingly the trail on 12 rounds is an extension of the one on 11 and the
better truncation rate there is due to the extra round added at the end.
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In the following section we provide a more detailed statistical analysis of
the distinguishing advantage of distinguishers built from clusters of differential
trails.

8 Distinguishing Advantage

Distinguishing from Random In this section we provide a probabilistic model for
distinguishers for Speck built from clusters of trails. In this setting, the attacker
does some pre-processing by analysing the cipher (i.e. collects trails, computes
their differential weights and clusters them by weights) and then queries an oracle
black-box, that can either be a speck-box, which returns Speck encryptions for
a uniformly chosen key, or a random-box, which returns random values.

Assume that in the pre-processing phase the attacker has collected disjoint
clusters of trails {Ci}i=0,...,l where Ci has weight wi (i.e. probability 2−wi) so
that a random trail belongs to it with probability pCi

.
Thus, if we’re in

– random-box then pCi =
|Ci|
264 ;

– speck-box then pCi
= |Ci| · 2−wi = |Ci| · 2−(w0+i), i = 0, 1, . . . , l, where w0

is the weight of the best differential trail.4 We consider trails with weight
increasing from the optimal one. Thus we express trail weights wi as wi =
w0+ i where w0 is the optimal weight and i ranges from 0 to a given bound.

The probability p to hit at least 1 ciphertext in a collection of clusters after
2N queries to the oracle is then equal to

p = 1− Pr(none of the ciphertexts is in any cluster) = 1− (1−
l∑

i=0

pCi)
2N

By approximating
(
1− 1

x

)n ≈ e−n/x, we can rewrite this probability as

1−

(
1−

l∑
i=0

pCi

)2N

= 1−
(
1

e

)2
N+log2(

∑l
i=0 pCi)

= 1−
(
1

e

)2N+k

Where for the speck-box we have

kspeck
.
= log2

(
l∑

i=0

pCi

)
= −w0 + log2

(
l∑

i=0

|Ci| · 2−i

)
while for the random-box we have

krand
.
= log2

(
l∑

i=0

pCi

)
= log2

(
l∑

i=0

|Ci|

)
− 64

4 In practical attacks the differential effect would increase these probabilities and make
the distinguisher better.
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It follows that if the attacker wants to hit with probability p a ciphertext in any
cluster, he then needs to make 2N queries, where N is equal to

N = log2 (− log(1− p))− k

and k is either kspeck or krand depending on his guess for the oracle box.
Note that both models random-box and speck-box are similar and differ

only in their terms k∗: in fact, the more these two values differ, the easier would
be to distinguish points belonging to one model or the other. We then define

kspeck − krand = −w0 + log2

(
l∑

i=0

|Ci| · 2−i

)
− log2

(
l∑

i=0

|Ci|

)
+ 64 = S/N

(which corresponds to the S/N definition we introduced in previous Sections)
and the higher this value is, the better we distinguish the two boxes. We assume
that there exists at least one trail of weight less than 64 for the reduced Speck64
(i.e. w0 < 64) and in order for the distinguisher to work we require S/N > 1
thus:

S/N l
.
= 64− w0 + log2

(
l∑

i=0

|Ci| · 2−i

)
− log2

(
l∑

i=0

|Ci|

)
> 1

From this inequality and given the histogram of cluster sizes |Ci| we can de-
rive the optimal l up to which we can grow our collection of signal ciphertexts.
The main criteria for the attacker is to minimize the amount of data for the dis-
tinguisher, i.e. minimizing N = log2 (− log(1− p))− kspeck (which is equivalent
to maximizing the collection weight l), while keeping S/N = kspeck − krand > 1.
The larger the gap 64− w0 the higher l the attacker can afford.

Statistical Distinguisher. Here we provide a statistical test to distinguish with a
certain confidence level α if the queried box is the random-box or the speck-box.
We can model our experiments using geometric distribution of parameter p, i.e.
Xrand, Xspeck ≈ Geo(p). 5

The two statistical alternative hypothesis can be then formulated as follows:

– H0: p = pspeck =
∑

i |Ci| · 2−wi , i.e. encryptions come from the speck-box.
– H1: p = prand =

∑
i |Ci| · 2−64, i.e. encryptions come from the random-box.

Given a certain confidence level α (e.g. α = 0.05) we want to compute a
threshold tα so that if the first matching ciphertext is found after X∗ = 2N

encryptions, we accept H0 if 2N ≤ tα, otherwise if 2N > tα we accept H1. We
then have the following
Pr(Reject H0 |H0) = Pr(X > tα | p = pspeck) =

∞∑
k=tα+1

(1− pspeck)
k−1pspeck

= (1− pspeck)
tαpspeck ·

∞∑
l=0

(1− pspeck)
l = (1− pspeck)

tα

5 For Speck, this is a consequence of the assumed Markov assumption.
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By requiring Pr(Reject H0 |H0) ≤ α, we have at least

tα =

⌈
lnα

ln (1− pspeck)

⌉
Thus, given such threshold tα, the probability of accepting H0 while being in
H1 would then be equal to

Pr(Accept H0 |H1) = Pr(X ≤ tα | p = prand) = 1− (1− prand)
tα

Best distinguishing confidence level α. We are interested in achieving the highest
distinguishing power possible within the statistical model outlined above. In
practice, for a given distinguisher with probabilities prand, pspeck, we would like
to choose a confidence level α which maximizes

f(α) = Pr(Accept H0 |H0)− Pr(Accept H0 |H1)

where we assume at least f(α) > 0. By expanding this definition, we get

f(α) = (1− prand)
tα − (1− pspeck)

tα = (1− prand)
lnα

ln (1−pspeck) − α = αc − α

where c = ln(1−prand)
ln(1−pspeck)

. So, a solution for f ′(α) = 0, would then be α = ( 1c )
1

c−1

and this is a local maximum if f ′′(α) = c · (c − 1)αc−2 < 0. Thus, since c > 0,
α = c

1
1−c is a local maximum when c < 1 or, equivalently, when pspeck > prand.

Experimental verification. We have experimentally verified the above probabilis-
tic and statistical model. More precisely, we have run a distinguishing attack on
Speck32 reduced to 9 rounds. We have collected a cluster of differentials with the
input difference (0211, 0a04) with a cumulative probability of at least 2−25.4.
These were gathered by first finding optimal full trails until weight 32, of which
there were 30 unique input/output pairs, and then calculating all the possible
trails until weight 40 on these input/output pairs to accommodate for the differ-
ential effect. This resulted in a S/N ratio of 1.7. Then, using the formula from the
previous section we can calculate the highest distinguishing α, which in this case
is α = 0.1825, which results in the threshold tα = 226.16. Using tα we can also
calculate the probability of false positives for the random permutation box given
tα samples, i.e. Pr(Accept H0 |H1), which is equal to 0.408. The distinguishing
gap is 0.8175− 0.408 = 0.4095 which is clearly significant.

In our experiment we have used two boxes (Speck32 with 9 rounds and the
random permutation). For the test with the Speck box, we encrypt tα random
input pairs with the fixed input difference, and record a success if any of the
output differences is equal to one specified by our differentials. For the random
box we use Speckey32 with 40 rounds (as that should emulate a random per-
mutation), and similarly we encrypt tα pairs of samples with the same input
difference, and record a success if any of the two differences are in our set of
output differences.
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We ran both the Speck32 and the random experiment 1000 times, and re-
ceived 892 successes for Speck32 (hinting at an even higher real differential
probability), and 404 successes for the random variant, verifying our statistical
model.

9 Best Distinguisher for Speck64

In this Section we will discuss the best distinguisher we have found for 15 rounds
of Speck64. Aiming at finding the most suitable one, we considered 4 optimal
trails of weight −62 found with Matsui’s search with input differences ∆0 =
(∆x0,∆y0) equal to (40004092, 10420040), (04092400, 20040104), (92400040,
40104200), (924000c0, 40104200), respectively.

Given an optimal 15 rounds trail, we split it in n + k rounds; by iteratively
setting k = 3, 4, 5 we compute the best feasible approximation of the differential
probability for the first n rounds while maximizing the S/N ratio obtained from
freely varying the difference transitions in the last k rounds.

Since computing the differential probability over n = 12, 11, 10 rounds (de-
pending on the value of k set) quickly becomes prohibitive as the minimum trail
weight limit decreases, we split the first n rounds in two chunks of j and n − j
rounds, respectively. Hence, by iteratively setting j = 3, . . . , n − 3 we indepen-
dently compute the two differential probabilities of these two chunks and we
select the best index j so that Pr (∆0 → ∆j) + Pr (∆j → ∆n) is minimum.

In order to approximate the differential probability of the two sub-trails ∆0 →
∆j and ∆j → ∆n, we use an SMT solver to find all trails with such input/output
differences and weight exceeding at most −25 with respect to their optimal
weight.

The trail that performed better within this framework is the one we report
in Appendix F Table 7 with parameters k = 3, n = 12 and j = 3. More precisely,
for the differential ∆0 → ∆3 we found 6 trails of total probability −10.954, while
for ∆3 → ∆12 we found 21022 trails of total probability −37.418. Thus

Pr (∆0 → ∆12) ≥ 2−48.372

We then proceed by collecting all possible k = 3 rounds trails with input
difference equal to ∆12 and weight less equal −12, as long as the total S/N
remains greater than 0: for ∆12 = (00080000, 00080000) we obtained 389 unique
∆15 of weight at least −16 with total weight −6.731 and S/N = 0.361. We
further slightly improve the total weight to −6.657 by computing the differential
probability of each 3 round trail found ∆12 → ∆15.

This, gives us a distinguisher of probability pspeck = 2−48.372−6.657 = 2−55.029

consisting of 389 unique ciphertexts.
Given that prand = 389

264 = 2−55.396, in light of the previous section, we obtain
the best confidence level α = c

1
1−c = 0.322 with c = ln(1−prand)

ln(1−pspeck)
= 0.775 which

in turn correspond to a distinguishing threshold tα = 255.576 and distinguishing
gap of 0.094, small but non-negligible.
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Best cluster around sub-optimal trail. It is natural to use the best trail as a
starting point for a trail cluster. However one may wonder if it always produces
the cluster with the highest total probability for a given S/N ratio. Interest-
ingly the answer is ”no”. In some cases the cluster around sub-optimal trail will
have higher distinguishing power than the one starting from the best trail. In
Appendix C we show this behaviour for clusters collected for Speck64 reduced
to 11 and 14 rounds. The plots showing this behaviour are in Figures C and 3.
For 11 rounds there is one best trail and there are numerous sub-optimal trails
with better clusters. For 14 rounds there are three best trails and there are two
sub-optimal trails which are better than two of them and very close to the very
best cluster. For 15 rounds sub-optimal trails always have weaker clusters but
the four available best trails differ significantly. This fact has helped us to build
the best distinguisher for 15 rounds Speck64 described above.

These results were obtained by exploring sub-optimal trails up to certain
weight bound beyond the best trail. This analysis shows that when deciding on
a number of rounds of a cipher it might be important to consider not only the
best differential, but the best differential cluster.

10 Conclusion

In this paper we described a new tool for the automated truncation of differ-
ential trails in ARX. The tool generates all possible truncations of an input
non-truncated trail (up to certain pre-defined rules) and outputs a set of non-
overlapping truncated trails with associated probability. The latter is strictly
greater than the probability of the input trail. The proposed tool is useful for
constructing truncated differential distinguishers which have lower data com-
plexity than the traditional ones based on the best non-truncated differential.
Interestingly, in some cases differential cluster around sub-optimal trail gives
better resulting distinguisher then when starting from the best trail.

The application of the tool was demonstrated on block cipher Speck64. More
specifically, truncated differential set distinguishers based on the optimal trail/s
on up to 15 (out of 24) rounds were reported. A natural future direction is the
application of the tool to other ARX algorithms. Beside other ciphers, the tool
could potentially be used in the area of ARX-based hash functions and sponge
permutations. In particular, it may be worth exploring its use in an initial pre-
processing phase that would facilitate the subsequent application of advanced
collision search tools such as e.g. [20, 17, 13, 14].
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A Differential Trail Truncation Algorithm

Algorithm 1 Truncation of Differential Trails in ARX
Input:

i : 0 ≤ i < n: bit position; j : 1 ≤ j < R: round position
τ : non-truncated trail on R rounds, where τ j

i is the i-th bit at round j
Output:
{τ}: all truncations of τ that follow Rule 1, Rule 2 and Rule 3

1: procedure truncate_trail
2: if j < R then
3: for truncate = true, false do
4: // truncate bit τ j

i

5: if truncate = true and τ j
i ̸= ∗ then

6: Truncate bit τ j
i ← ∗ and propagate to rounds j + 1, . . . , R− 1

7: if Rules 1,2 and 3 are not violated for any round then
8: Update τ with τ j , τ j+1 . . . τR−1

j

9: Call truncate_trail for next bit i+ 1 or next round j + 1
10: // do not truncate τ j

i : move to next bit
11: if truncate = false then
12: Call truncate_trail for next bit i+ 1 or next round j + 1
13: else
14: // Last round: return a truncated version of τ
15: return τ
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B Trail Absorption Algorithm

Algorithm 2 Absorb a new TD trail τ into exisiting set of trails T

Input:
T: set of disjoint TD trails; τ : new TD trail (possibly τ ∈ T)

Output:
T′: updated set of disjoint TD trails that contains all new (non-truncated) trails
from τ (possibly T = T′)

1: procedure tdiff_absorb_new_trail(T, τ)
2: // initialize a set t of TD trails with the input trail τ
3: t← ∅; add τ to t
4: for all T ∈ T do
5: if t = ∅ then
6: // all trails in t have been fully absorbed; return
7: return T
8: // absorb t into T and store the remainder in t′

9: t′ ← ∅
10: for all τ ∈ t do
11: // if τ contains trails not already in T, then split τ into TD trail subsets

to exclude duplicates using
12: if (T ⊂ τ ) ∨ (T, τ : PO) then
13: ttemp ← tdiff_madd_trails_make_disjoint(T, τ)
14: add ttemp to t′

15: // if τ ,T: disjoint, then all trails in τ are new, so add it
16: if (τ ,T): disjoint then
17: add τ to t′

18: // if τ is a subset of T =⇒ it contains no new trails, so do nothing
19: if (τ ⊂ T) then
20: continue
21: // overwrite t with the part of it that was not absorbed i.e. t′
22: t← t′

23: // t contains all trails not absorbed in T – add them to T and return
24: T′ ← T ∪ t
25: return T′
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C Clustering Around Sub-optimal Trails

Fig. 2. Trail probability and signal to noise ratio of clustering around 11 round seed
trails. The solid-lines are those of the best seed trails, while the dotted ones are sub-
optimal. The number near each vertex is the weight of the cluster up to this point.
Notice that some trails, after clustering around them, result in better probabilities than
the clustering around the best trail (for example, -42 near the start of the dotted green
line shows that there are two trails of weight -43 at this point). The legend indicates
the input differences to the cluster, in hexadecimal, with the probability of the seed
trail in parenthesis.
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Fig. 3. Trail probability and signal to noise ratio of clustering around 11 round seed
trails. The solid-lines are those of the best seed trails, while the dotted ones are sub-
optimal. The legend indicates the input differences to the cluster, in hexadecimal, with
the probability of the seed trail in parenthesis (log2).
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D Examples of 6 Round Truncated Trails for Speck32

Table 4. Example of a 6 round truncated trail for Speck32 with Pr = 2−11.16 ob-
tained from the optimal non-truncated trail with Pr = 2−13. The labelled represen-
tation (right) indicates the dependency between the stars in the star representation
(left). Numbers in brackets are the cumulative probabilities up to the corresponding
round (log2 scale). The trail is expressed in terms of a sequence of three 16-bit values
representing the two inputs and one output of the modular addition operation at each
round.

R Star representation Label representation Pr

0 0010001000000100 0010001000000100 (−4.00)
0000101000000100 0000101000000100
0010100000000000 0010100000000000

1 0000000001010000 0000000001010000 (−6.00)
0000000000010000 0000000000010000
0000000001000000 0000000001000000

2 1000000000000000 1000000000000000 (−6.00)
0000000000000000 0000000000000000
1000000000000000 1000000000000000

3 0000000100000000 0000000100000000 (−6.42)
1000000000000000 1000000000000000
100000*100000000 100000a100000000

4 0000000100000*10 0000000100000a10 (−8.83)
100000*100000010 100000a100000010
1000000000000000 1000000000000000

5 0000000100000000 0000000100000000 (−11.16)
1000*10000001010 1000a10000001010
100001*1000*1*10 100001d1000c1b10
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In Table 5 is shown an example of a strongly truncated trail (i.e. relatively
many truncated bits) on 6 rounds Speck32 produced from an initial suboptimal
trail. Capital letter labels represent the negated value of the corresponding small
letter label e.g. A = 1⊕ a.

Table 5. Example of a 6 round truncated trail for Speck32. The labelled representation
(right) indicates the dependency between the stars in the star representation (left).
Numbers in brackets are the cumulative probabilities up to the corresponding round.
Capital letter labels represent the negated value of the corresponding small letter label
e.g. A = 1 ⊕ a. The trail is expressed in terms of a sequence of three 16-bit values
representing the two inputs and one output of the modular addition operation at each
round.

R Star representation Label representation Pr

0 0000000000000000 0000000000000000 (0.00)
1000000000000000 1000000000000000
1000000000000000 1000000000000000

1 0000000100000000 0000000100000000 (−1.42)
1000000000000010 1000000000000010
1000000100000*10 1000000100000a10

2 0000*10100000010 0000a10100000010 (−6.09)
1000000100001*00 1000000100001a00
1000010000*1*110 1000010000c1b110

3 0*1*110100001000 0c1b110100001000 (−14.09)
1000000000***100 1000000000CAb100
*110110100010100 d110110100010100

4 0010100*11011010 0010100d11011010 (−22.51)
*1101101***00110 d1101101CAb00110
00111011001***00 00111011001gfe00

5 01***00001110110 01gfe00001110110 (−33.34)
100011***01****1 100011cab01GFed1
**11010110111001 ih11010110111001



Automated Truncation of Differential Trails and Trail Clustering in ARX 29

E Best 15 Round Distinguisher for Speck64 using Simple
Truncation Rules

For completeness we list the output differences that correspond to the 22 non-
truncated trails with Pr ≥ 2−64 that compose the 15 round truncated set dis-
tinguisher for Speck64 with probability 2−59.05 (Table 1) in Table 6.

Table 6. Output differences (in hexadecimal) corresponding to the 22 non-truncated
trails for 15 rounds of Speck64 with input difference (to the first round ADD) α0 =
92400040 β0 = 10420040. These trails are a subset of the 135 trails in the set Tntr in
the third to last line of Table 1.

i ∆OUT = (γ15 ∥ β15) log2 Pri
∑

i log2 Pri

0 0A080808 02084008 −62 −62.00
1 0A088808 02084008 −63 −61.42
2 0E080808 02084008 −63 −61.00
3 0A180808 02084008 −63 −60.69
4 1A080808 02084008 −63 −60.42
5 0A081808 02084008 −63 −60.19
6 0A080818 02084008 −63 −60.00
7 1A088808 02084008 −64 −59.91
8 0A089808 02084008 −64 −59.83
9 0A181808 02084008 −64 −59.75

10 0A081818 02084008 −64 −59.68
11 1E080808 02084008 −64 −59.61
12 0A188808 02084008 −64 −59.54
13 1A081808 02084008 −64 −59.48
14 0E081808 02084008 −64 −59.42
15 0A180818 02084008 −64 −59.36
16 1A080818 02084008 −64 −59.30
17 0A088818 02084008 −64 −59.25
18 1A180808 02084008 −64 −59.19
19 0E180808 02084008 −64 −59.14
20 0E080818 02084008 −64 −59.09
21 0E088808 02084008 −64 −59.05
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F Optimal 15 rounds Trail for best Speck64 Distinguisher

In Table 7 we report the optimal trail for Speck64 reduced to 15 rounds we
used in Section 9 to build a distinguisher with S/N > 1 and data complexity
equal to 2−55.03.

Table 7. Optimal 15 round trail for Speck64.

i ∆xi ∆yi Pri
∑

i Pri

0 40004092 10420040
1 82020000 00120200 −5 −5
2 00900000 00001000 −4 −9
3 00008000 00000000 −2 −11
4 00000080 00000080 −1 −12
5 80000080 80000480 −1 −13
6 00800480 00802084 −3 −16
7 80806080 848164a0 −6 −22
8 040f2400 20040104 −13 −35
9 20000820 20200001 −8 −43

10 00000009 01000000 −4 −47
11 08000000 00000000 −2 −49
12 00080000 00080000 −1 −50
13 00080800 00480800 −2 −52
14 00480008 02084008 −4 −56
15 0a080808 1a4a0848 −6 −62
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G Example of 6 rounds Truncated Trail for Speck64
using Relaxed Rules

R Truncated Trail Representation Truncated bit representations
0 00000000010000000001000001000010 a = x0

00000000010000000000001001000000 b = x1

00000000000000000001001000000010 c̃ = x1 · x2

d̃ = x1 · x2 · x3

1 00000010000000000000000000010010 ẽ = x1 · x2 · x3 · x4

00000010000000000000000000000010 f̃ = x1 · x2 · x3 · x4 · x5

00000000000000000000000000010000 g̃ = x1 · x2 · x3 · x4 · x5 · x6

h̃ = x1 · x2 · x3 · x4 · x5 · x6 · x7

2 00010000000000000000000000000000 ĩ = x1 · x2 · x3 · x4 · x5 · x6 · x7 · x8

00010000000000000000000000000000 j̃ = x1 · x2 · x3 · x4 · x5 · x6 · x7 · x8 · x9

00000000000000000000000000000000 k̃ = x1 · x2 · x3 · x4 · x5 · x6 · x7 · x8 · x9 · x10 + 1
l̃ = x0 · x11 + x0

3 00000000000000000000000000000000 m̃ = x0 · x11 · x12 + x1 · x12

10000000000000000000000000000000 ñ = x0 · x11 · x12 · x13 + x1 · x12 · x13

10000000000000000000000000000000 õ = x0 · x11 · x12 · x13 · x14 + x0 · x12 · x13 · x14

p̃ = x1 · x11 · x12 · x13 · x14 · x15+
4 00000000100000000000000000000000 x0 · x12 · x13 · x14 · x15

10000000000000000000000000000100 q̃ = x0 · x11 · x12 · x13 · x14 · x15 · x16+
1000000a100000000000000000000100 x1 · x12 · x13 · x14 · x15 · x16

r = x17

5 000001001000000a1000000000000000 s̃ = x17 · x17

1000000a100000000000000000100000 t̃ = x17 · x18 · x19

ṽũt̃s̃r1000q̃p̃õñm̃l̃0k̃j̃ĩh̃g̃f̃ẽd̃c̃b100000 ũ = x17 · x18 · x19 · x20

ṽ = x17 · x18 · x19 · x20 · x21

Table 8. Example of a 6 round truncated trail for Speck64 using relaxed rules. The
labelled representation (right) indicates the dependency between the stars in the trun-
cated representation (left). The trail is expressed in terms of a sequence of three 16-bit
values representing the two inputs and one output of the modular addition operation
at each round.


