
Do you feel a chill? Using PIR against chilling effects for
censorship-resistant publishing∗

Miti Mazmudar

University of Waterloo

Waterloo, ON, Canada

miti.mazmudar@uwaterloo.ca

Stan Gurtler

University of Waterloo

Waterloo, ON, Canada

tmgurtler@uwaterloo.ca

Ian Goldberg

University of Waterloo

Waterloo, ON, Canada

iang@uwaterloo.ca

ABSTRACT
Peer-to-peer distributed hash tables (DHTs) rely on volunteers to

contribute their computational resources, such as disk space and

bandwidth. In order to incentivize these node operators of privacy-

preserving DHTs, it is important to prevent exposing them to the

data that is stored on the DHT and/or queried for. Vasserman et

al.’s CROPS aimed at providing plausible deniability to server nodes

by encrypting stored content. However, node operators are still

exposed to the contents of queries. We provide an architecture

that uses information-theoretic private information retrieval to effi-

ciently render a server node incapable of determining what content

was retrieved in a given request by a user. We illustrate an integra-

tion of our architecture with the aforementioned system. Finally,

we simulate our system and show that it has a small communication

and performance overhead over other systems without this privacy

guarantee, and smaller overheads with respect to the closest related

work.

KEYWORDS
Censorship-resistant publishing, query privacy, private information

retrieval

1 INTRODUCTION
Censorship-resistant systems allow users access to online content

when direct access to such content is restricted by a nation-state

adversary, namely a censor. For instance, Tor [9] is an anonymity

network that supports users in accessing websites that are censored

by nation-states. Censorship-resistant publishing systems allow

publishers to submit their work onto multiple servers, also called

nodes, such that a censor cannot take down or tamper with the

published content. Several censorship-resistant publishing systems

have been proposed to date, such as Vasserman et al.’s CROPS [32],

Waldman andMazières’ Tangler [34] and Stubblefield andWallach’s

Dagster [30].

Node operators within the censor’s region of influence may be

legally obliged to report any prohibited content that is stored on

their machines, or that is requested by users in queries. Many node

operators would thus rather not learn the content that they are

storing or the content of the queries that they are receiving. For in-

stance, the Signal messaging app is designed to minimize the types

of users’ data and metadata that are stored in the Signal servers, so

that obliging with legislative requests for users’ data can only cause

minimal privacy harms to its users [27]. The aforementioned sys-

tems support node operators in plausibly denying any knowledge

of the content that they store, by encrypting chunks of publishers’

∗
This is an extended version of our paper that appeared in the 20th ACMWorkshop

on Privacy in the Electronic Society (WPES ’21) [22].

documents and storing key material separately from these chunks.

Within Vasserman et al.’s CROPS, these chunks are indexed by

hashes of keywords that describe the document. However, as the

keywords’ hashes are exposed in clients’ queries, these node op-

erators can no longer plausibly deny knowing what content was

queried.

Censorship-resistant publishing systems have largely focused on

securing the supply of documents for users. Frequently, the goal is

to ensure that for each document, at least one server is available to

provide any user a copy of that document. As long as node operators

learn what document was requested, a censor may coerce them into

revealing this information. Consequently, node operators may be

discouraged from contributing their storage and bandwidth for such

systems. Users who recognize this flawmay not allow themselves to

even seek documents— a form of self-censorship known as a chilling
effect. In these cases, censorship-resistant publishing systems have

still failed to make the document available to all users, because

they did not secure the demand of documents. Thus, exposing the

contents of queries to node operators disincentivizes both node

operators and users from using these types of systems.

Private information retrieval (PIR) is designed to solve the prob-

lem of retrieving a row from a database on a server, without re-

vealing the index of that row to the server. Information-theoretic

PIR (IT-PIR) in particular typically requires multiple replicas of the

database. The user sends different queries to each server holding

a replica, such that as long as less than a threshold fraction of the

servers collude, they do not learn anything about the contents of

the query, and the user can reconstruct the desired row from the

servers’ responses [8, 12].

To motivate our key insights on using PIR within censorship-

resistant publishing systems, we examine their structure. Censorship-

resistant publishing systems are commonly built atop structured

peer-to-peer (P2P) networks, as they support redundancy and do

not suffer from a single point of failure. (Tor onion services, in

contrast, do not afford these two properties, as we will discuss in

Section 4, and are orthogonal to our goals. We remark that we do

not aim to provide client anonymity, but rather plausible deniabil-

ity for node operators.) Even though individual nodes can store

content cheaply, for the two aforementioned reasons, structured

P2P networks remain relevant today for developing decentralized

file storage and routing systems, such as IPFS [15]. Structured P2P

networks link peer nodes’ identifiers to the content that they store

and use distributed hash tables (DHTs) for routing search and in-

sertion queries. DHTs, such as Kademlia [21] and Chord [29], are

analogous to conventional hash tables, with the exception that the

entire key-value store is systematically split across nodes in the

P2P network, such that queries can be conducted efficiently.

1

Miti Mazmudar, Stan Gurtler, and Ian Goldberg

P2P networks have been known to suffer from attacks by ma-

licious users who aim to prevent a legitimate user from obtain-

ing a correct copy of their desired content [19, 28]. Related re-

search [3, 5, 10] shows that if only a small fraction of nodes in the

P2P network are malicious, it is possible to group joining peers

into quorums such that, with high probability, all quorums in the

network will only contain a bounded fraction of malicious nodes.

This result is known as the goodness invariant. Young et al. [36] de-

velop protocols for efficient, robust communication across quorums

that prevent spamming attacks, whereas Backes et al. [4] extend

the former’s protocols to support conducting DHT queries without

revealing the query content to any in-path nodes.

Our key insight lies in observing that IT-PIR can be instantiated

over quorums in the DHT. Carefully analyzing and setting the

parameters involved, we leverage the DHT goodness invariant to

satisfy the IT-PIR non-collusion assumption. We present an IT-PIR

architecture that can be integrated with an existing censorship-

resistant publishing system, such as CROPS, to enable clients to

retrieve documents from the DHT privately. Specifically, neither

the target node, nor any in-path nodes, learn which document was

retrieved. In addition to our enhancement of using PIR to protect

the nodes from learning which document is being retrieved, we use

Young et al.’s protocols for robust communication across quorums,

and Backes et al.’s protocols to hide the content of routing queries

from intermediate nodes.

We beginwith a description of the building blockswe use, namely

PIR, DHTs, and censorship-resistant publishing systems, in Sec-

tion 2. We discuss robust DHTs, including related work in query

privacy over DHTs, in Section 3, and describe our threat model in

Section 4. We then present the following contributions:

• Weprovide an architecture, similar to that of regular DHTs in

structured P2P networks, such that a user can retrieve a doc-

ument from the network without revealing what document

was retrieved to the target node that stores the document,

nor to any in-path nodes. We also illustrate an integration

of this interface with that of an existing censorship-resistant

publishing system (Section 5).

• We detail the security parameters of our system and show in

our analysis that our system works when the DHT quorums

have less than
1

4
malicious nodes (Section 6).

• We include a message and communication complexity anal-

ysis of our system and find that it has a low communication

complexity in comparison to the best-known scheme for

privately retrieving a document from a node in a DHT [4]

(Section 7).

• We simulate the communication complexity of our system

and find that it is explained by our complexity analysis. We

also simulate the latency and throughput overheads of our

system, to demonstrate its viability for deployment (Sec-

tion 8).

Finally, though we have presented our interface in the context

of a censorship-resistant publishing system, we discuss general

deployment of our interface in Section 9, while highlighting other

use cases and addressing bootstrapping issues. We conclude in

Section 10.

2 BACKGROUND AND RELATEDWORK
In this section, we describe the building blocks used in our system.

We begin with a brief description of private information retrieval

and factors affecting our choice of a PIR scheme. Second, we provide

a brief overview of DHTs, including existing literature on attacks in

DHTs. Third, we delve into censorship-resistant publishing systems,

with a focus on plausible deniability, and motivate our interface,

which prevents exposing node operators to the content of queries.

2.1 Private Information Retrieval
Private information retrieval (PIR) allows public databases, held

by one or more untrusted servers, to be queried by clients while

guaranteeing that the servers cannot learn which index of the data-

base was accessed. Computational PIR (CPIR) schemes require the

computational hardness assumptions of certain cryptographic prob-

lems, and can be used even when only one server stores the entire

database. On the other hand, information-theoretic PIR (IT-PIR)

schemes do not require any computational hardness assumptions;

however, they can only be implemented when multiple servers

have copies of the database [8].

In IT-PIR schemes, the client constructs one query for each server

such that using the responses to these queries, it can reconstruct

the desired row of the database. A certain threshold number of

these servers must not share the queries they receive with each

other, as otherwise, they could reconstruct the desired row and

identify it, just as the client does. This is known as the non-collusion
assumption. Chor’s IT-PIR scheme [8] requires all nodes to respond

correctly to the client’s query, for the latter to be able to reconstruct

the desired row, and thus does not tolerate any malicious nodes.

Byzantine-robust IT-PIR schemes, such as that of Goldberg [12]

support efficient reconstruction of the correct row, while allowing

a fraction of servers to be offline and out of those that are online

and provide responses, a fraction can provide incorrect responses.

Although Aguilar-Melchor et al.’s [1] and Angel et al.’s [2] CPIR

schemes have lower computational complexity than prior schemes,

they incur a high computational overhead over the aforementioned

IT-PIR schemes.

Thus, if one can reasonably argue that the aforementioned non-

collusion assumption holds true, then IT-PIR schemes are prefer-

able to CPIR schemes. First, they outperform the latter in terms

of computational overhead, and second, they do not require any

computational hardness assumptions. We detail in Section 5 why

the non-collusion assumption for IT-PIR can be reasonably made

within our context, leading us to use IT-PIR. We use Goldberg’s

IT-PIR scheme [12] as it is robust against failing and Byzantine

nodes, both of which exist in P2P networks.

2.2 DHTs
A file that is to be stored in a structured P2P network has a collision-

resistant one-way hash, typically of its contents, as its identifier.

A node on structured P2P networks also has a truncated one-way

hash as its identifier; such a node stores all files whose identifiers,

when truncated, are equal to the identifier of the node. As no single

entity stores all of the content on the network, peer-to-peer net-

works do not suffer from a single point of failure. Each node in a

structured P2P network maintains a routing table, which consists of

2

Do you feel a chill? Using PIR against chilling effects for censorship-resistant publishing

node identifiers and their routing information for a small number

of other nodes in the DHT. In order to search for or insert a file,

nodes obtain the routing information for the relevant node identi-

fiers by querying one of its neighbours and then querying one of

that neighbour’s neighbours, and so on, through iterative routing.

(Recursive routing, on the other hand, has the node’s neighbour

itself looking up the next neighbour that is closest to the target

node, and so on. We do not consider recursive routing as providing

privacy guarantees over routing queries in recursive routing sys-

tems is fundamentally difficult, as Backes et al. [4] point out.) The

maximum number of nodes that a given node needs to contact is

known as the path length (ℓ). DHTs guarantee that the path length

is logarithmic in the number of nodes in the network.

DHTs have been known to be vulnerable to many attacks that

prevent a user from obtaining a copy of a file. Existing censorship-

resistant publishing systems do not consider these attacks, and thus,

do not integrate defenses that have been proposed against such

attacks. A censor can easily exploit these attacks, which we moti-

vate below, to break the availability of files stored on the overlay

censorship-resistant publishing system.

If nodes are allowed to choose their own node identifiers, then a

censor may simply join the system as a set of legitimate nodes, at

various node addresses that would be storing prohibited documents.

It can then simply drop all future requests that it obtains for storing

or retrieving prohibited content. The censor can also direct its new

nodes to join at addresses that are close to a target honest node,

and cause this node’s routing requests to be directed to its nodes,

instead of other honest nodes. This is known as an eclipse attack,

which restricts honest nodes’ view of the network.

As a defence against these attacks, P2P networks can require

existing nodes to assign a random identifier to incoming nodes.

However, malicious nodes may still attempt to join and leave the

network until they are placed at suitable network addresses, to

influence honest nodes’ routing table entries in a Byzantine join at-

tack. Several researchers [5, 10] have proposed protocols to allocate

joining nodes into quorums, such that by repeatedly rejoining, any

malicious nodes do not increase their chances of being cast into a

group with a majority of other such malicious nodes. We explicate

Awerbuch and Schiedeler’s cuckoo rule (CR) [3], as well as Sen and

Freedman’s improvement over this rule, namely the commensal

cuckoo rule (CCR) [26], in Section 3.

To resolve routing requests across quorums, nodes in a quorum

can reply back with the network addresses of the nearest quorum

to the target address, akin to iterative routing in regular DHTs.

However, malicious nodes in such quorums may respond back

with incorrect routing table entries, or inundate honest nodes in

other quorums with fake requests. Young et al. [36] present two

robust communication protocols to support nodes in efficiently

communicating across these quorums, while being able to either

detect or prevent spamming attacks. However, these protocols only

provide integrity guarantees over the routing information within

a quorum-based DHT. They do not provide confidentiality of the

routing query content; the node address being queried is known to

nodes on the path to the target node and to the target node itself.

The censor may thus compel all nodes in its region, as they may

serve as in-path nodes to other nodes, to reveal the node addresses

looked up by users in its region. It can then possibly harm these

users for attempting to contact external nodes that serve prohibited

content. Backes et al. [4] improve on Young et al.’s protocols by

hiding the queried key from all in-path nodes, thereby providing

query privacy (QP). As we discuss in the next subsection, honest

node operators benefit from learning as little as possible about the

key that was queried.

We describe Awerbuch and Schiedeler’s CR strategy, Sen and

Freedman’s CCR strategy, Young et al.’s Robust Communication

Protocols, and Backes et al.’s Query Privacy protocols in Section 3.

Our interface uses these protocols to harden existing censorship-

resistant publishing systems against these attacks.

2.3 Censorship-resistant publishing
Censorship-resistant publishing (CRP) systems, such as Waldman

and Mazières’ Tangler [34], Waldman et al.’s Publius [35], and

Vasserman et al.’s CROPS [33], support publishing and retrieving

documents in the face of a censor that may attempt to take down

prohibited content. Censors may outright block any censorship-

resistant publishing (CRP) systems within their administrative re-

gion. We assume that blocking the system entirely would impose

an undesirably large social or economic cost to the censor. This is

the collateral damage assumption, and we revisit it in Section 4.

CRP systems are built atop DHTs formed by machines that are

located across different administrative regions, each of which con-

tributes disk space and bandwidth. However, DHTs by themselves

do not ensure the confidentiality, integrity, or availability of the

content stored on them; CRPs include mechanisms to publish and

retrieve documents while providing these three crucial properties.

To increase the availability of the content stored on them, CRP sys-

tems store redundant copies of documents or of their parts across

the underlying DHT. In Publius [35], secret sharing is used to pro-

duce shards or shares of documents, such that the document can

be reconstructed using a threshold number of shares. Publishing

a single document in Tangler [34] necessitates replicating multi-

ple other existing documents within the system, again through

secret sharing. To store a document within CROPS, several replicas

are created, and split into chunks using erasure coding, which is

similar to secret sharing in terms of the aforementioned reconstruc-

tion guarantee. The lack of a single point of failure and support

for redundant storage render DHTs attractive, with respect to the

availability property, for censorship-resistant publishing.

All of the aforementioned systems encrypt documents to pre-

serve their confidentiality, before breaking them down into shards

for redundancy. Encryption supports node operators in plausibly
denying knowledge of what content they store. Consider a censor

that legally obliges all node operators in its region to report any

prohibited content that they store. In Vasserman et al.’s CROPS, a

node that stores an erasure-coded chunk of a document does not

learn anything about it, based on the hardness assumption of the

cryptographic hash used to index the chunk.

Importantly, CROPS helps users easily discover content on the

system through keywords, while preserving plausible deniability

over the stored content and ensuring its integrity. To publish a

document, the publisher specifies relevant keywords for it. After

encrypting the document and performing erasure coding on the

ciphertext document, the publisher creates replicas of two manifest

3

Miti Mazmudar, Stan Gurtler, and Ian Goldberg

1CR. A joining node p is assigned a random address, which lies

in some k-region of a quorum QT .
1CCR. Primary join: Along with step 1CR, quorumQT ensures

that it has received at least k − 1 secondary joins before letting

node p join.

2CR. All other nodes with addresses in this k-region are relo-

cated to other random k-regions.
2CCR. Secondary join: Instead of step 2CR, k ′ = k · ∥QT ∥/s̄
nodes with addresses in the quorum QT are relocated to other

random quorums (where s̄ is the desired average quorum size).

Figure 1: Descriptions of cuckoo rule (CR) [3] and commen-
sal cuckoo rule (CCR) [26].

files, namely the content and key manifests. A cryptographic hash

of one important keyword, along with the replica number, is used

to index the manifest replicas. Each manifest file is signed by the

publisher to preserve its integrity. The content and key manifests

separate the material required to locate the erasure-coded chunks

(cryptographic hashes of the chunk content) from that required to

obtain a plaintext document (symmetric key for decryption). (The

manifests also contain cryptographic hashes to verify the integrity

of the ciphertext document, which is reconstructed from erasure-

coded shares, as well as of the plaintext document.) Nodes that

store one of a key or a content manifest replica need to obtain the

other one, and sufficient erasure-coded chunks, in order to obtain

the plaintext document that the replicas refer to.

As the client’s query includes keyword hashes, the censor may

legally oblige the node operator to reveal all queries that it received.

The censor may then determine if any of the keyword hashes in a

query match those of prohibited keywords [14, 18], using rainbow

tables. It may also require the node operator to report the network

addresses of all users, and possibly harm the users who attempted

to fetch prohibited content. Thus, simply providing plausible de-

niability over stored content is insufficient; node operators should

also be prevented from learning what content is being retrieved.
We address this problem by allowing a client to privately retrieve

either erasure-coded chunks or manifests (collectively known as

files from here on). Although we focus on CROPS as a use case

for our system, we provide private file retrieval for censorship-

resistant publishing systems in general. As we discuss in Section 9,

our interface may also be used with other CRP systems and DHT-

based applications.

3 ROBUST DHTS
In this section, we describe protocols to form quorums (Awerbuch

and Schiedeler’s CR [3], Sen and Freedman’s CCR [26]), to route

queries robustly across quorums (Young et al.’s RCP [36]), as well

as to conduct these routing queries privately (Backes et al.’s QP [4]).

The QP protocols can also be applied to conduct file retrieval queries

privately, and so we also outline the advantages of our DHTPIR

sytem over those.

Forming quorums: Awerbuch and Scheideler [3] propose a

cuckoo rule joining strategy, wherein incoming nodes cause existing

nodes at nearby addresses to be kicked out (or cuckooed) to other

addresses, as shown in Figure 1. A virtual address space of size n is

split into quorums, which are split further into k-regions that span

a fraction
k
n of the address space.

Awerbuch and Schiedeler show that for a given global bound on

the ratio of malicious to honest nodes (say ϵ), their strategy results

in approximately equally sized quorums of s = O(logn) nodes (the
balancing condition), where the ratio of malicious to honest nodes

in each quorum is upper-bounded by a value greater than ϵ (the

correctness condition). However, their result is asymptotic, and so

left an open question of whether it holds for networks with realistic

numbers of peers.

We implemented a simulator for the cuckoo rule in Rust, and

determined that for reasonable numbers of peers in the network (say

10 million), there is a severe tradeoff between ϵ and s: to maintain

the correctness of relatively small quorums (s < 100), the network

can only withstand a very small fraction of adversary-controlled

nodes (ϵ < 1

1000
). Having large quorums of 100 peers or more makes

the distributed protocols required within Young et al.’s schemes

expensive.

Sen and Freedman [26] performed a similar simulation and their

findings echo ours. Additionally, they find that the aforementioned

tradeoff worsens for large network sizes; that is, small quorums

in larger networks can only withstand much smaller fractions of

malicious nodes. To address this issue, they propose a commensal
cuckoo joining strategy, which modifies each of the two aforemen-

tioned steps of the cuckoo rule, as shown in Figure 1. In their joining

strategy, the desired average quorum size is set beforehand (to s̄),
in contrast with other schemes that require it to increase with the

network size. We use the commensal cuckoo rule strategy to form

quorums in our join protocol. We discuss its security implications

within our threat model in Section 6.

Robust routing across quorums: Young et al. [36] propose

two efficient robust communication protocols (RCP) that prevent

spamming attacks from nodes in other quorums by using a thresh-

old signature scheme. In order to communicate with a node in a

target quorum, the client node must obtain a time-stamped proof of

robust communication from one of the neighbours of that quorum,

in the form of a threshold signature of the neighbouring quorum.

Young et al.’s deterministic RCP-I scheme prevents spamming at-

tacks by imposing a high communication cost for the client; the

client communicates with each of the s nodes in each of ℓ quorums

on the path to the target quorum, for s · ℓ nodes in total. Their prob-

abilistic RCP-II scheme enables the target quorum’s nodes to detect
such an attack, and only requires the client to communicate with an

expectedO(s +ℓ) nodes. RCP schemes include distributed protocols

for synchronizing the quorum’s cryptographic state whenever a

new node joins the quorum.

Query privacy across quorums: Backes et al. [4] present two
query privacy (QP) protocols, namely QP-I and QP-II, which build

on Young et al.’s RCP-I and RCP-II protocols respectively to hide

the node address key being queried from all nodes in all quorums

in path to the target quorum. They develop a protocol based on

oblivious transfer (OT) rather than PIR, in order to restrict a client

from privately obtaining routing information from any intermediate

quorum about multiple neighbouring quorums through a single

valid query.

4

Do you feel a chill? Using PIR against chilling effects for censorship-resistant publishing

Table 1: Contrasting our scheme with existing ones for pri-
vate and robust communication in a DHT.D is the total size
(in bytes) of the files stored at each node in an s-node quo-
rum. RR = robust routing; QP = In-path query privacy; PR =
availability and, if so, communication complexity of private
file retrieval.

System RR QP PR
Base DHT - - -

Young et al.’s RCP [36] - -

Backes et al.’s QP [4] w/o last hop -

Backes et al.’s QP [4] w/ last hop D

DHTPIR (our system) 2s
√
D

However, as they observe, their OT protocol requires the queried

node to send the entry-wise encrypted data store over which the

OT query is to be conducted back to the client. In their use case,

this data store is simply the small routing table maintained at each

DHT node, which contains O(logn) routing records for a network

of size n. To privately retrieve a file stored in the file store of the

target quorum, Backes et al. suggest optionally extending this same

OT protocol with one more hop to the target quorum. However,

doing so would require sending the entire encrypted file store back

to the client, resulting in a large communication complexity.

To retrieve a file from a quorum of s nodes, which holds a data-

base of sizeD bytes, Backes et al.’s scheme incurs a communication

complexity of D, whereas our scheme only has a complexity of

2s
√
D. In Table 1 we contrast the properties provided by Young et

al., Backes et al., and our schemes to DHT clients and compare the

communication complexity for Backes et al.’s and our scheme in

providing private file retrieval. We compute the range of values of

D for which our system performs better in Section 7.

4 THREAT MODEL
As mentioned earlier, we build our system atop DHTs as they sup-

port redundant storage of documents and do not suffer from a

single point of failure, which renders them suitable for censorship-

resistant publishing. (Tor and Tor onion services are orthogonal

to our work, as discussed in the non-goals below.) Our adversary

is a single nation-state censor that has an administrative region

of influence; other parts of the world are deemed safe. We con-

sider the case of multiple such censors below. We assume that this

nation-state cannot simply censor the entire system or host an

alternative, as blocking the system entirely would impose an unde-

sirably large social or economic cost to the censor. We recognize

that this collateral-damage assumption may not hold for powerful

nation-state adversaries: such an adversary could coerce its popula-

tion to simply use a publishing system that is not privacy protective.

However, we believe that it is a reasonable assumption that may

hold for many nation-states. We require the same cryptographic

hardness assumptions as Backes et al. [4], namely the GDH problem

for threshold signatures and the DDH problem for the OT protocol.

Our adversary’s goals are to determine which document was

retrieved in a particular content retrieval request and to prevent the

operator from responding correctly to a request. Our adversary has

several capabilities that it can exploit towards furthering its goals.

First, the censor may observe the network traffic within its region

of influence, possibly using deep packet inspection techniques on

any plaintext data. Second, the censor can search for sensitive

content by posing as a client and can map files to virtual addresses

of nodes that store them. Third, the censor’s control over nodes in

the network is bounded; in particular, for a network with n honest

nodes, the censor may insert up to ϵ · n malicious nodes, where

ϵ ≈ 0.02. The censor may remove these nodes from the network in

the future, and have them rejoin the network, which would allow

the node to join a different quorum.

Multiple nation-state censors may be interested in censoring

different content or content retrieval requests across nodes within

their respective regions of influence. Since nodes operated by one

nation-state censor may collude with those operated by another

censor, we require that the ratio of nodes controlled by all these

censors, to non-controlled nodes, is less than ϵ . These nodes may

behave as Byzantine nodes by, for example, responding to routing

requests with incorrect responses, in an attempt to misdirect a

client’s routing request towards other Byzantine nodes. They may

also collude and share the content retrieval requests that they obtain,

or forward them to the censor. These censor-controlled nodes may

also simply fail, by not replying to queries. Furthermore, they may

attempt to inundate honest nodes with routing or content request

messages at the application layer.

Finally, the censor cannot dynamically compromise existing

nodes; that is, it cannot coerce honest nodes within its region of

influence to act as Byzantine or failing nodes. It may not compel

honest nodes to retain (and share) the content retrieval requests

they receive. (Note that honest nodes in a given quorum would be

geographically distributed in arbitrary administrative regions and

may be out of the censor’s region of influence.) The censor may

not block communication between honest nodes.

Our interface provides the following guarantees in the face of

this adversary:

• Minimizing data within the content of document retrieval

queries — honest server operator nodes and small coalitions

of Byzantine nodes within a quorum do not learn which

document was retrieved.

• Correct responses to document retrieval requests — a doc-

ument retrieval request will be answered correctly, even if

censor-controlled nodes provide incorrect or no responses.

Non-goals:We do not provide any additional protections over

content publishing requests. Although we use RCP’s spam-limiting

feature to prevent DoS amplification for the DHTPIR protocol mes-

sages, protecting nodes from general DoS attacks is orthogonal to

this work. We do not aim to protect the client’s identity, and thus,

we also do not prevent adversaries from targeting clients, such as by

traffic analysis. Regarding the first goal, although nodes controlled

by the adversary that lie within the quorum from which the file

is fetched also cannot learn which file was retrieved by colluding

among themselves, they may collude with nodes from other quo-

rums. By learning the set of quorums from which files were fetched,

they may determine which document was fetched, in a quorum

fingerprinting attack; we do not aim to protect against this attack,

as DHTPIR aims to protect server nodes, and not directly clients.

DHTPIR may be instantiated over Tor onion services to pro-

vide client anonymity. However, Tor itself does not support the

5

Miti Mazmudar, Stan Gurtler, and Ian Goldberg

CROPS

DHTPIR

QUORUM PIRQP

RCP

Figure 2: API interfaces required by, and provided by, our
DHTPIR interface. The bold red ellipse represents our inter-
face, and the grey ellipses show the layers of APIs required
by our interface. Thewhite ellipse represents an existing sys-
tem within which our interface can be used in order to pro-
vide document retrieval privacy, in addition to the robust
routing and in-path privacy provided by the lower layers.

redundant storage of documents that is afforded by peer-to-peer

networks like DHTs. Although Tor onion services may have mul-

tiple physical servers serving the same onion service, all servers

must share a private key, putting them under shared administrative

control. In this sense, Tor onion services suffer from a single point

of failure, unlike DHTs. As node operators of Tor onion services

learn which document was retrieved through a given document

retrieval request, they do not have plausible deniability over the

content of such requests. Tor exit node operators have been blamed,

and even charged, for retrieving content that a client had retrieved

through their node [11]; privacy-enhancing technologies that pre-

vent the operators from being exposed to the information they store

or forward may decrease such risks.

5 OUR DESIGN
We first begin with an overview of our interface for integrating

private file retrieval to DHT-based censorship-resistant publishing

systems. We begin with a description of the building blocks that our

interface requires, and then describe our implementation of this

interface, while analyzing possible Byzantine behaviour. Through

this analysis, we motivate the constraints that our instantiations of

the building blocks must follow.

5.1 Building blocks

Our interface can be used within censorship-resistant publishing

systems, such as Vasserman et al.’s CROPS [33], to insert files into

quorums through the DHTPIRputFile function and to query quo-

rums privately for files through the DHTPIRfindFile function, both
provided by our DHTPIR API. Functions in the DHTPIR interface

invoke existing protocols in layers, depicted in Figure 2. A list of

all API functions can be found for reference in Appendix A.

We use Backes et al.’s query privacy (QP) protocol to privately

fetch the desired quorum’s routing information; the corresponding

function constitutes the QP API layer. (This protocol internally

invokes Young et al.’s RCP schemes.) We provide a QUORUM API

layer to support inter-quorum communication, given the target

quorum’s routing information. We use Goldberg’s IT-PIR algorithm

to privately fetch files from the target quorum; functions to generate,

perform, and process PIR queries form the PIR API layer. We rely on

Sen and Freedman’s commensal cuckoo-hashing technique [26] to

establish quorums across the DHT; that is, to assign node addresses

and quorum neighbours to new nodes joining it. We briefly describe

functions at the QP, QUORUM, and PIR layers below.

QP layer: The client uses the QPgetTargetQuorum function to

obtain the routing information of the target quorum while preserv-

ing the confidentiality of the file’s identifier from all nodes in the

DHT. This function executes Backes et al.’s RCP-qp-I or RCP-qp-II

algorithms for the input file identifier id . This function obtains the

target quorums’ nodes’ network addresses [A1, · · ·As] and public

encryption keys [PK1, · · · PKs] from one of the quorum’s neigh-

bours. It also obtains a proof ϕ of robust communication from that

neighbour. The proof shows that the given client node sent a legit-

imate request to contact the target quorum, through a signature

over the node’s network address (A), its public key (PK) and a times-

tamp ts (ϕ in our notation is equivalent to Sℓ−1
for a query path

length ℓ in Backes et al.’s notation). Finally, this function returns a

verification key VK , obtained from the target quorum’s neighbour,

which allows the client to verify messages signed by a threshold

number of nodes in the target quorum.

QUORUM layer: The client uses the QUORUMsendQuery func-

tion for sending an encrypted message to each of the nodes in a

target quorum and obtaining a reply from them, given the nodes’

addresses ([A1, · · ·As]) and public keys [PK1, · · · PKs] as well as a
proof of robust communication ϕ. This function can also be con-

figured to send a single message to an arbitrary quorum node,

retrying with different nodes until it obtains a valid reply. The re-

cipient nodes in the target quorum listen for messages from other

nodes in the QUORUMqueryListener function. Depending on the

flags in the message, a recipient node may be delegated to forward

different values back to its peers and send a response from these

peers back to the client node. All honest nodes regularly execute a

Byzantine agreement protocol among themselves to guarantee that

they agree on the state of the database (including a perfect hash

function as we discuss later) stored at other honest nodes.

PIR layer: We observe that all nodes in a quorum share the same

database of files; we provide an overview of the join protocol that

enables this shared state at the end of this section. The client uses

the PIRgetQueryVectors and PIRrecreateFile functions to generate

and process IT-PIR queries while the target quorum’s nodes use

the PIRperformQuery function to perform the IT-PIR query itself.

Perfect hash functions (PHFs) [6] are often used within PIR schemes

to map a set of keywords for documents stored at server nodes

to a set of indices, such that the client can simply compute the

desired index if it knows the keyword. The client obtains the PHF

f beforehand using the DHTPIRfindFile function, and then passes

it as an input to the PIRgetQueryVectors function, along with the

desired file identifier id and the number of (server) nodes s . This
function computes the index at which the desired file will be stored,

by computing the value of f for the key id , and obtains an index i .
It then creates s query vectors such that when responses to these

vectors are combined in the PIRrecreateFile function, they will

result in file i of the PIR database.

6

Do you feel a chill? Using PIR against chilling effects for censorship-resistant publishing

Figure 3: Layers of protocols used within our work. Quo-
rums are numbered and shown in purple ovals. Node p from
quorum 1 wishes to fetch a file that is stored by quorum
8. Routing table (RT) entries maintained by quorum 1 are
shown by dotted lines. Quorum 1 uses the QP protocol to
query quorum 7 (grey background lines), whose RT entry it
knows. Quorum 7 then provides the RT entries for quorum
8, which is queried again through QP. PHF and PIR requests
and responses are shown in solid lines; node p fetches the
PHF from quorum 8, and then sends a PIR request to each
node in quorum 8, from which it obtains a PIR response, to
reconstruct the file.

The PIRrecreateFile function reconstructs the file from s PIR
query responses using Goldberg’s EasyRecover algorithm [12,

Fig.3]. We show in Section 6 that the preconditions for using this ef-

ficient algorithm are met. The PIRperformQuery function computes

a matrix multiplication of the query vector with a block-wise field

representation of the database, using Goldberg’s IT-PIR routine [12,

Fig.2].

5.2 Our interface
We present our functions for searching for a file, namely DHT-
PIRfindFile, and inserting a file, namely DHTPIRputFile, shown in

Algorithms 1 and 2, respectively. Both of these functions expect

at least an identifier for the file to be inserted or searched. These

functions use this identifier to locate the file within the DHT (as

in regular DHTs), with the exception that in our case, we wish to

locate all nodes in a quorum; that is, a set of nodes in the DHT,

all of which will store the file. Specifically, both functions execute

the Query Privacy API function QPgetTargetQuorum with this

identifier (id) to obtain network addresses and long-term public

keys of the quorum’s s nodes ([(A1, PK1), · · · (As , PKs)]), a proof
ϕ of robust communication from a quorum linked to the target

quorum, and finally, a verification key VK to verify messages that

are signed by a threshold of the target quorum nodes (lines 2–4).

We motivate rest of these functions by starting with a simple

protocol for each function and then optimizing its communication

Algorithm 1 Our file search function

1: function DHTPIRfindFile(id)
2: dest← QPgetTargetQuorum(id)
3: [(A1, PK1), · · · (As , PKs)]∥ϕ∥VK ← dest

4: nodes← [(A1, PK1), · · · (As , PKs)]
5: msg← “SEARCH_PHF_PARAMS”

6: reply ∥ sig← QUORUMsendQuery(ϕ, nodes, msg)

7: PHF ∥ ts← reply

8: if verifySig(reply, sig, VK) == False then
9: return Error: “Could not verify PHF shares.”

10: end if
11: if ts + Current time > T then
12: return Error: “Got Expired PHF”

13: end if
14: queries← PIRgetQueryVectors(id , PHF, s)
15: msg← “SEARCH_PIR_QUERIES” || queries

16: blocks← QUORUMsendQuery(ϕ, nodes, msg)

17: file← PIRrecreateFile(blocks)
18: return file

19: end function

complexity. While designing the optimized protocols, we ensure

that we meet the goals mentioned in Section 4, namely, we guaran-

tee that an honest node, or a bounded-size coalition of Byzantine

nodes in a quorum, cannot learn the content of a client’s file re-

trieval query. We also meet the second aforementioned goal, that

is, such a coalition of Byzantine nodes cannot cause a legitimate

search or insertion query to be executed incorrectly or dropped.

Additionally, we explore what actions a Byzantine client node can
perform and consequently, we equip honest nodes with signature

verification and rate-limiting mechanisms to detect Byzantine client

nodes that attempt to overwhelm them with DHTPIR messages.

File retrieval:We illustrate the file retrieval process in Figure 3.

To conduct a search query, the client needs to identify the index of

its file in the target quorum’s nodes’ database. To do so, it obtains

the perfect hash function (PHF) used in that quorum; we detail this

step shortly. Through a call to the PIRgetQueryVectors function,
the client computes the index of the desired file identifier id using

the PHF and constructs s PIR query vectors (lines 14–15). It sends

one vector to each node and obtains all PIR responses through the

QUORUMsendQuery function (line 16). The client reconstructs the

file using these PIR responses through the PIRrecreateFile function
(line 17). We parameterize the threshold for the IT-PIR scheme

as follows (references for these and subsequent constraints to the

relevant inequalities are included in Section 6).

Constraints for threshold of IT-PIR scheme:

1. Byzantine nodes in a quorum cannot reconstruct a PIR
response through collusion (inequality 6).

2. Honest nodes can efficiently reconstruct the desired file,

when a given fraction of nodes per quorum is Byzantine

(inequality 7).

Naively, the client could obtain the PHF by simply querying each

node in the target quorum and majority filtering the received re-

sponses. Since all target nodes must agree on a PHF for indexing

7

Miti Mazmudar, Stan Gurtler, and Ian Goldberg

the database, ostensibly the client could query one target node for

the PHF. (We describe PHF computation while discussing our file

insertion function.) However, this delegate node may be Byzantine

and may simply not respond. In this case, through the QUORUM-
sendQuery function, the client retries sending the message to a

different node until it receives a reply (lines 5–6). (Again, we ob-

serve that eventually the sending node will reach an honest node

as only a minority of nodes in the quorum are Byzantine.)

A Byzantine delegate node may also collude with other Byzan-

tine nodes to send a PHF that is built after excluding certain files’

indices from the input set, or after swapping some files’ indices

around. Thus, the client should receive a confirmation from enough

honest nodes in the quorum that a valid PHF was returned. There-

fore, the delegate node obtains signature shares over a hash of the

PHF and sends the threshold signature back to the client. As the

client knows the quorum verification key VK , it can verify this

signature (lines 6–10). Yet, a Byzantine node may simply return a

valid PHF and signature shares that reflect the state of the database

in the past. To guarantee freshness, we require the delegate node

to concatenate a timestamp with the PHF, before computing the

signature shares (lines 11–13). We parameterize the threshold for

Young et al.’s threshold signature scheme as follows.

Constraints for Young et al.’s threshold signature scheme (in-

equality 2):

3. Byzantine nodes cannot produce enough valid signature

shares through collusion.

4. Byzantine nodes cannot prevent the reconstruction of a

signature by simply failing to respond.

File insertion:We present our file insertion function in Algo-

rithm 2. Intuitively, for inserting a file into the target quorum, the

client needs to send its copy to each node in the target quorum. To

preserve the confidentiality and integrity of the file content, con-

sider a baseline wherein the client encrypts the file to each of the

target nodes, given their public keys PKc . Again, as an optimization,

it could send the file to only one of the nodes that acts as a delegate

node and forwards the file to all other nodes in the quorum. We

deploy the same technique as for the PHF, to ensure that these

nodes get the correct file, namely, the delegate node should return

threshold signature shares over a hash of the file to the client (line

6). The client ensures that the signature is over the expected hash

of the file (lines 7–9) and verifies it using the quorum’s verification

key VK (lines 10–12).

A Byzantine delegate node may send the file to only a minimum

number of honest nodes in the quorum such that it can compose

a threshold signature over the hash of the file, to reply seemingly

honestly to the client. When the nodes synchronize their data store

through a Byzantine agreement protocol, it can deny having ob-

tained such a file, and thus render the honest nodes as malicious or

de-synchronized [7]. We specifically parameterize the fraction of

Byzantine nodes as follows.

Constraint for desynchronization attack [7]:

5. The number of honest nodes that retain this file at the

end of the aforementioned attack is sufficient to run the

Byzantine agreement protocol correctly (inequality 5)

Algorithm 2 Our file insertion function

1: function DHTPIRputFile(id, F)
2: dest← QPgetTargetQuorum(id)
3: [(A1, PK1), · · · (As , PKs)]∥ϕ∥VK ← dest

4: nodes← [(A1, PK1), · · · (As , PKs)]
5: msg← “INSERT_FORWARD” || F
6: reply || sig← QUORUMsendQuery(ϕ, nodes, msg)

7: if reply , Hash(F) then
8: return Error: “Did not get the correct hash of the file

in response.”

9: end if
10: if verifySig(reply, sig, VK) == False then
11: Error: “Could not verify the signature of the remote

quorum.”

12: end if
13: return
14: end function

Finally, we remark that a minority of Byzantine nodes that re-

ceive any file may not store it at all; instead, they may simply

compute the requisite hashes for insertion queries and drop all

search queries. Within our model, we assume that all honest nodes

follow all protocols correctly and therefore, that they store the files.

Thus, given our goodness invariant holds, enough honest nodes will

reply back with correct response blocks to future search queries,

such that the impact of the lazy Byzantine nodes is nullified.

PHF updates: The target quorum’s nodes can recompute a PHF

after each file insertion, or in occasional batches, at the cost of

temporary file retrieval misses until the insertion protocol fully

completes. We remark that the PHF computation cost is very small

— approximately 0.25 µs per file in the database. Therefore, if nodes

receive a file retrieval request while re-computing the PHF, the

impact on latency due to the PHF computation is negligible, as evi-

denced in our latency simulation experiments. In other words, the

PHF recomputation does not necessitate a period of quiescence or

low network churn. After recomputing the PHF, each node should

recompute its own signature share over the PHF and broadcast it to

other nodes in the quorum. Any node that is chosen as a delegate

node may then respond with the updated PHF and signature shares.

Byzantine client node:We have assumed so far that the client

behaves as an honest node, that is, it runs theQUORUMsendQuery
function correctly. However, the client may spam a target quorum’s

nodes through an incorrect execution of this function. We now

describe rate-limiting mitigations for spamming attacks within the

recipient node’s QUORUMqueryListener function.
The receiving node expects each incoming message to contain a

valid proof. This check extends to file insertion messages forwarded

by a delegate node, thereby preventing a Byzantine delegate node

from inundating other nodes with fake insertion messages. As

mentioned within the QP layer description in Section 5.1, a valid

proof should consist of a signature σ of a neighbouring quorum

over the new node’s network address A, its public key PK , and
a timestamp ts . The receiving node only accepts a proof that is

obtained within a predetermined time interval T of the timestamp

ts from the network address A.

8

Do you feel a chill? Using PIR against chilling effects for censorship-resistant publishing

Table 2: Notation for security constraints

n Number of peers in the network

ϵ Network-wide ratio of Byzantine nodes to honest nodes

s Total number of peers in a quorum

h Honest peers in a quorum that reply to an IT-PIR query

b Byzantine peers in a quorum (includes failing nodes)

t Max colluding peers for IT-PIR queries [12]

τ Threshold for Young et al.’s threshold signature scheme [36]

With these restrictions, a Byzantine client can only spam a re-

ceiving node within a time interval of T units from the timestamp

in the proof, and may only do so by sending messages with the

network address that is in the proof. Furthermore, the receiving

node ensures that a valid proof will only be processed once for

each different flag in the accompanying message within the time

intervalT . This check allows for an honest node to use a valid proof

to conduct one insertion query and one search query with a target

quorum.

Join protocol:We provide a brief overview of the join protocol

here and explicate it further, along with the leave protocol, in Ap-

pendix B. We use Sen and Freedman’s commensal cuckoo rule [26]

to assign addresses to primary and secondary joining nodes. We

use threshold signatures within Young et al.’s robust communica-

tion protocols [36] to securely notify quorums of these joins, and

to securely transfer the stored database to these nodes. We also

describe the leave protocol in Appendix B. As we run Kate and

Goldberg’s distributed key generation (DKG) scheme [17] within

the join and leave protocols to redistribute a secret throughout

the quorum, we must ensure that its pre-requisite is met. We thus

obtain the following constraint:

Constraint for DKG [17]:

6. The fraction of Byzantine nodes per quorum should sat-

isfy the upper bound for the DKG protocol (inequality 3).

6 SECURITY PARAMETERS ANALYSIS
In this section, we show that as long as the fraction of Byzantine

nodes per quorum is less than
1

4
, constraints 1–6, which were iden-

tified in the previous section, hold. We present the notation used

in our analysis in Table 2. We first establish some invariants using

this notation.

Invariants: Out of s peers in a quorum, a large number of h
peers provide honest replies whereas the rest of the peers, say b,
are Byzantine and either fail to provide a reply or provide incorrect

replies. Thus, we have that s = h + b. This equation holds in each

quorum of s nodes in the network, which may have varying sizes.

However, the particular value of s is irrelevant for the following
calculations, and thus we normalize our equations by dividing by

s and denote the resulting fractions by appending a subscript 0 to

the original symbols, yielding the following, where b0 < h0:

h0 = 1 − b0 (1)

RCP constraints: The threshold for Young et al.’s threshold

signature scheme, namely τ , is bound by constraints 3 and 4, as

follows.

b0 < τ0 ≤ h0 = 1 − b0 (2)

The DKG protocol used by Young et al.’s scheme imposes the fol-

lowing bound on b0 (constraint 6):

s ≥ 3b + 1⇔ 1 ≥ 3b0 +
1

s (3)

These threshold signature shares are used to indicate a change of the

state of the quorum upon insertion of a file. As a node is delegated to

forward file insertion requests to all other nodes, we must prevent

the desynchronization attack that was described in Section 5 to

motivate constraint 5. We detail this attack here.

A Byzantine node might only forward such a request to its fel-

low Byzantine nodes and the minimum number of honest nodes

required to obtain a threshold signature (τ −b nodes in our case) and
then collude with other Byzantine nodes to pretend that it never

obtained such a file. In this case, only τ − b nodes retain a copy of

the new file whereas the remaining s − (τ − b) do not have such

a copy. For the Byzantine agreement protocol that synchronizes

the state of the data store across different nodes to be successful, a

majority of nodes must retain a copy of the newly inserted file. That

is, we must have τ −b > s − (τ −b). Equivalently, after substituting
equation 1, we obtain τ0 > b0 +

1

2
.

As this inequality tightens the lower bound in inequality 2, we

obtain the following range for τ0:

b0 +
1

2
< τ0 ≤ 1 − b0 (4)

This inequality is satisfiable as long as:

b0 <
1

4
(5)

Note that any admissible value of b0 that satisfies inequality 5 also

satisfies inequality 3.

IT-PIR: In our notation, at most t nodes can collude without

being able to reconstruct the desired row of a database from an

IT-PIR query. As all of the b Byzantine nodes in a quorum may
collude, constraint 1 requires that t can only be as small as the

number of Byzantine nodes:

t ≥ b (6)

Second, Goldberg shows that if the following condition holds, a

client can guarantee efficient reconstruction of the desired row

from the responses of the s peers, b of which may be Byzantine and

thus send incorrect responses, so to satisfy constraint 2, we need:

h > s+t
2
⇔ h0 >

1+t0

2
(7)

Substituting equation 1 and simplifying, we get:

1 > 2b0 + t0 (8)

Therefore, as expected, with an increase in the fraction of Byzantine

peers, the IT-PIR threshold should decrease in order to reconstruct

the message, without any other changes. Inequalities 6 and 8 con-

strain the range of this threshold, as follows.

1 − 2b0 > t0 ≥ b0 (9)

For a value of t0 that satisfies inequality 9 to exist, the difference

between the upper and lower bounds of that inequality should be

strictly greater than
1

s , as follows.

1 > 3b0 +
1

s (10)

9

Miti Mazmudar, Stan Gurtler, and Ian Goldberg

Any admissible b0 that satisfies the strictest inequality for Young

et al.’s protocols, that is, inequality 5, also satisfies the strictest

inequality for Goldberg’s IT-PIR scheme, that is, inequality 10. Our

requirement that the fractions of Byzantine nodes in each quorum

be strictly less than
1

4
is therefore sufficient for the requirements of

Young et al.’s robust quorums, and also Goldberg’s IT-PIR scheme.

Quorum size/ϵ trade-off: For a network with at most n nodes,

the desired average size of quorums formed through the commensal

cuckoo rule can be set beforehand to s̄ . The adversary can only

insert at most ϵ · n nodes into this network and re-join these nodes,

as per the join protocol in Appendix B, in an attempt to overwhelm

a quorum. Increasing the target s̄ allows us to increase ϵ at the

expense of a greater intra-quorum communication cost.

We extend Sen and Freedman’s [26] simulation and we estimate

the maximum value of ϵ that can allow only b0 <
1

4
of each quorum

to be malicious. We conduct the simulations across a range of

network sizes (n) and over 100K rounds of re-join attempts. We

find that small networks (n = 6400, 12800) can sustain ϵ up to 0.03,

while maintaining a desired average quorum size of s̄ = 25 and

reaching a maximum observed quorum size of s = 74. When larger

networks (n = 10 · 2λ | λ = 18, 19, 20) were configured with a

slightly smaller target average quorum size of s̄ = 20, the maximum

observed quorum size was less than 75, and can withstand ϵ up to

0.02. Therefore, even for large network sizes, we conclude that the

commensal cuckoo rule can construct reasonably sized quorums

that satisfy the b0 <
1

4
constraint.

7 COMPLEXITY ANALYSIS
In this section, we analyze the performance of our system in terms of

its message and communication complexity for the client and server

nodes, for file insertions and retrievals. In terms of computation

complexity, our PIR-based [12] file retrieval function only requires

efficient Lagrange interpolation for the client. Recent improvements

in optimizing Lagrange interpolation [31] can be utilized in an

implementation of our scheme, to allow for fast reconstruction of

files from blocks returned by the s nodes of the target quorum.

Before the client can send search or insertion queries, it needs to

obtain the routing information of the target quorum through the

QPgetTargetQuorum function. The message complexity incurred

by the client in this call depends on whether RCP-I or RCP-II is

chosen; as discussed in Section 2, RCP-I has a deterministic message

complexity of O(s · ℓ) whereas RCP-II has a randomized expected

message complexity of O(ℓ + s).
First, we show that the message complexity of our insertion

and search algorithms is O(s). As ℓ will be O(logn) in expectation

and quorums are of size s = Θ(logn), O(s) = O(ℓ), the message

complexity to run the whole protocol is determined by which of

the two aforementioned protocols is chosen. Second, we compare

the message complexity for the target quorum to participate in our

PIR-based protocol to the case when the quorum participates in

Backes et al.’s OT-based one.

When an honest node in the target quorum is delegated to insert

a file or respond with a PHF, it exchanges a round of messages with

other nodes in the quorum (2 · (s − 1) = O(s) messages) to obtain

threshold signatures over the file or PHF hashes. Consider the

baseline discussed previously in Section 5 wherein for file insertion,

the client simply sends the file to all nodes, without requiring any

acknowledgements back, or, for PHF retrieval, the client expects a

PHF back from all nodes. As compared to this baseline, the target

quorum incurs an identical message complexity, namelyO(s) for the
entirety of file insertion, or for PHF retrieval; the messages are sent

within the quorum, instead of to the client. However, the client may

send the file or PHF request messages to multiple Byzantine nodes

that drop them, and thus keep resending them until it reaches an

honest node. Modelling the number of times that a node needs to be

sampled, without replacement, until a single honest node is found,
as a negative hypergeometric distribution, the expected number of

nodes contacted is upper bounded by
1

h0

. Thus the client incurs a

lower message complexity (by a factor of h0), for file insertion and

PHF retrieval, than the baseline.
1

In the next step for file retrieval, the client sends s PIR query

vectors, each of size

√
D [12]. The client thus sends a total of

s
h + s

messages and thus the message complexity for the client for file

retrieval is O(s). As each PIR query vector is of size

√
D, the total

communication complexity of the messages sent by the client will

be s ·
√
D + s = O(s ·

√
D).

Suppose that each node in the target quorum stores FQ doc-

ument chunks, each of which is L bytes long, that is, a total of

D = FQ · L bytes. Botelho et al.’s perfect hash function construc-

tion [6] for indexing these chunks allows the delegate node to send

the PHF in κ · FQ bytes, where .243 < κ < .3375. Each PIR re-

sponse is of size

√
D bytes [12]. When all Byzantine nodes send

PIR responses, along with the honest nodes, the quorum incurs a

worst-case communication complexity of s ·
√
D bytes. Note that the

large PIR responses outweigh the small PHFs for the communica-

tion complexity of the target quorum for reasonably sized quorums

and numbers of stored files per quorum.

In contrast, consider Backes et al.’s proposed extension to their

OT-based QP-RCP protocols, so that OT is used to retrieve the file

itself privately from the data store in the target quorum. In this

case, a delegate node responds back with the entry-wise encrypted

data store that is FQL bytes long as well as a total of 2 · FQ + 1 OT

parameters, each of a small constant length γ bytes. For our scheme

to incur a lower communication complexity for the target quorum

than Backes et al.’s, we must have:

s ·
√
D + κ · FQ < D + (2FQ + 1) · γ

As κ ≪ 2 · γ ≪ L, we drop the terms containing κ and γ , to obtain:

D = FQ · L > s2
(11)

The expected number of files per quorum (expected value of FQ)

will be the total number of files in the network (say FN) divided by

the number of quorums (
n
s), yielding

sFN
n . Substituting this value

for FQ into inequality 11, we get the following lower bound on

the number of files in the network for our scheme to have a lower

communication complexity for quorums, than Backes et al.’s:

FN >
sn

L
(12)

1
As the client waits to obtain a response before retrying with another node, it incurs a

higher expected latency in our new scheme than the baseline. The client may send the

file in parallel to multiple delegate nodes for insertion queries, significantly increasing

its chances of reaching an honest node, and reducing the latency at the cost of a higher

message complexity. Similarly, it may query several nodes in parallel for the PHF, each

of which will return the signature over the PHF, for search queries.

10

Do you feel a chill? Using PIR against chilling effects for censorship-resistant publishing

As s ≪ L, our scheme requires less communication complexity for

quorums than Backes et al.’s private file retrieval variant, when any

reasonably large numbers of files are stored in the network.

8 EVALUATION
The communication and computation costs for retrieving a file for

our system should scale when the number of nodes or users that

connect to the P2P network (n) increases, as well as when the num-

ber of files that are stored in the network (FN) increases. We have

implemented a simulation of our system in order to evaluate these

costs for the client and target quorums’ nodes in our system. We

briefly describe our simulation, and then we focus on experiments

that demonstrate the scalability of our system with FN , although

our simulations show that these costs for our system scale well

with both n and FN . We also remark that the communication and

computation costs for publishing documents remain reasonably

low. Our simulation code and output, as well as additional graphs,

can be found at https://git-crysp.uwaterloo.ca/dhtpir/simulations.

Simulation setup: In our simulation, one node serves as the

client and creates FN randomly generated document chunks, each

of size 1 KiB. It stores each chunk on the quorum identified by the

ID of that chunk. The client then attempts to retrieve each chunk

from the network. We individually simulate each of the layers used

within our system: we start with a simple DHT-based P2P network

— a Base DHT that implements file insertion and retrieval. For all

other layers in our simulation, we instantiate q = 100 quorums,

each of which has s = 10 nodes. (We simulated our interface for

(q, s) ranging from (10, 5) to (2000, 16); we discuss results of the

(100, 10) case as it is representative of this range.)

The next layer is a simulation of Young et al.’s probabilistic robust

communication protocol (RCP-II) to efficiently route queries across

quorums. That is, our RCP simulation supports file insertion and

retrieval queries by replacing the routing protocol in the Base DHT

simulation with the RCP-II protocol. (We remark that none of the

nodes in our simulation behaves in a Byzantine manner.) We then

simulate Backes et al.’s QP extension to Young et al.’s RCP-II proto-

col, to conduct private routing queries, in the RCP+QP simulation.

Finally, we include two protocol simulations that enable clients

to privately retrieve files. We simulate our own DHTPIRfindFile

and DHTPIRputFile functions within the DHTPIR simulation. We

also simulate the closest related work, namely extending Backes et

al.’s OT protocol for the last hop to the target quorum, in order to

privately retrieve a chunk from it; we refer to this protocol simu-

lation as LastHop. We delegate one node from the target quorum

to conduct the OT-based protocol for LastHop, and use threshold

signatures just as with RCP-QP-II.

For our performance simulation, we use the following estimates

of network and computation speeds. We set the network bandwidth

to 50Mb/s, and the round-trip time (RTT) to 150ms. We estimate

the PIR computations to run at the rate of 0.25 s per GB of database,

whereas encryption operations run at 1GB/s (about 3 cycles/byte

for AES-NI). For all experiments, we increased FQ roughly exponen-

tially, that is, FQ ∈ {10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000}.

(A total of FN = FQ · q chunks are stored in the network.)

Communication complexity: We plot the total communica-

tion complexities over 25 runs for theDHTPIR, LastHop and RCP+QP

10 20 50 100 200 500 1.0k 2.0k 5.0k 10.0k
Number of chunks per quorum (Fq)

(100 quorums, 10 nodes per quorum)

103

104

105

106

107

108

To
ta

l n
um

be
r o

f b
yt

es
 e

xc
ha

ng
ed

pe
r q

ue
ry

Total communication complexity per query vs.
number of chunks per quorum

RCP+QP+LastHop
RCP+QP+DHTPIR, 1 core
RCP+QP
RCP
Base

Figure 4:Measurement of the total communication complex-
ity of one query for one chunk, including the request and
the response, as the number of chunks stored in each quo-
rum increases roughly exponentially. This plot shows the
average communication complexity over 25 runs of the sim-
ulation. Note the logarithmic scales. Error bars are shown,
but they are too small to see.

simulations in Figure 4. For the LastHop simulation, as explained

earlier, the OT request sent by the client is constant in size with

respect to increasing FQ , whereas the OT setup and response sent

by the delegate node is proportional to FQ in size. Thus, the total

communication complexity of the LastHop simulation increases

linearly in FQ in Figure 4.

In contrast, DHTPIR provides a smaller communication complex-

ity for file retrieval responses, at the cost of a larger communication

complexity for the corresponding requests. The total communica-

tion complexity overhead of DHTPIR over RCP includes the cost

for the PHF request, PIR request and PIR response. This overhead

increases by approximately the asymptotic amount (s ·
√
FQ · L) of

bytes discussed in Section 7, as expected.

Performance simulations: We measure the latency of DHT-

PIR and LastHop simulations to retrieve a file. We also measure

their throughput in terms of number of simultaneous clients’ file

retrieval requests that can be handled by the entire system. (Wemea-

sure the latency and throughput of routing requests for RCP+QP, as
routing requests are the bottleneck for that protocol, which has no

privacy protection for the actual retrieval.) We plot the latencies of

these three systems as FQ increases in Figure 5a. Both LastHop and

DHTPIR incur two additional round trips over RCP+QP: to obtain

PHF or OT parameters and then to obtain a PIR or OT response.

However, as LastHop includes the entire database (up to ≈ 10MB in

the figure) within the OT response, we can see in Figure 5a that as

the number of chunks per quorum (FQ) increases, LastHop incurs

a linearly increasing latency overhead over RCP+QP. On the other

hand, for DHTPIR, as the PIR requests and responses only grow

proportional to

√
FQ , we do not observe a significant increase in

latency due to computational costs or communication costs, over

the range of FQ in Figure 5a.

We plot the throughput of RCP+QP, LastHop, and DHTPIR as FQ
increases in Figure 5b. For LastHop, as only a single delegate node

in the target quorummay compute the OT response (and computing

11

https://git-crysp.uwaterloo.ca/dhtpir/simulations

Miti Mazmudar, Stan Gurtler, and Ian Goldberg

10 20 50 100 200 500 1.0k 2.0k 5.0k 10.0k
Number of chunks per quorum (Fq)

(100 quorums, 10 nodes per quorum)

0

1

2

3

4

5

La
te

nc
y

pe
r q

ue
ry

 re
qu

es
t

(in
 s)

Latency per query vs.
number of chunks per quorum

RCP+QP+LastHop
RCP+QP+DHTPIR, 1 core
RCP+QP

10 20 50 100 200 500 1.0k 2.0k 5.0k 10.0k
Number of chunks per quorum (Fq)

(100 quorums, 10 nodes per quorum)

103

104

105

Th
ro

ug
hp

ut
 o

f t
he

 sy
st

em
(in

 #
lo

ok
up

s/
s)

Throughput vs. number of chunks per quorum

RCP+QP
RCP+QP+DHTPIR, 2 cores
RCP+QP+DHTPIR, 1 core
RCP+QP+LastHop

Figure 5:Measurement of the (a) latency and (b) throughput,
as the number of chunks stored in each quorum increases
roughly exponentially. These plots show the average latency
and throughput over 25 runs of the simulation. Note the log-
arithmic y-axis in (b). Error bars are shown, but they are too
small to see.

threshold signatures is much faster), multiple nodes can process dis-

tinct OT requests in parallel. For DHTPIR, each node participates in

computing the PIR response for a single PIR request; adding another

core allows for parallel processing of multiple distinct PIR requests.

(Adding more cores has quickly diminishing effects, however, as

the network speed soon becomes the bottleneck.)

We can see in Figure 5b that DHTPIR experiences a small con-

stant drop in its throughput over RCP, until FQ ≈ 2000 — it stays

network-limited in this range — beyond which, adding another core

results in a significant improvement in throughput, which can be

extrapolated to expand with database size. Thus, DHTPIR affords

opportunities to optimize its throughput for nodes that store large

databases, through multi-core processing. (We do not consider pro-

cessing a single PIR request across multiple cores or threads; though

efficient parallelizable matrix multiplication algorithms can be used

to achieve even greater throughput for DHTPIR [20].) Even though

each node in LastHop can process multiple distinct OT requests in

parallel, it incurs a large reduction in throughput as compared to

RCP, proportional to the size of the database (FQ · L). As LastHop
is significantly network limited, adding more cores would not in-

crease its throughput. DHTPIR thus achieves a throughput that is

about two orders of magnitude larger than LastHop and this gap

widens with database size.

Our performance simulations show that DHTPIR incurs almost

no change in latency and only a modest drop in throughput over

the baseline RCP+QP simulation (which again does not protect

the privacy of the queries from the target quorum at all), across

increasing database sizes. DHTPIR shows a marked improvement

in latency and throughput across larger databases over LastHop,

and scales significantly better in comparison. Our simulation thus

provides us reasonable grounds to believe in the efficiency of a

DHTPIR implementation.

9 DEPLOYMENT
Although we have focused on CROPS in order to motivate our

interface, an implementation of our interface can be used to pub-

lish and privately retrieve a block of data within other publishing

systems, such as in Tangler. Moreover, designers of an upcoming dis-

tributed file storage system, namely the Interplanetary File System

(IPFS), have proposed establishing quorums [16] as well as privately

fetching content from nodes using Young et al. and Backes et al.’s

systems [13], among other privacy features [23]. As our design in-

tegrates the aforementioned systems, it would be a useful starting

point to implementing such proposals to provide plausible deniabil-

ity for server nodes. Our design can also support other applications

that are built atop DHTs, such as distributed health and medical

data repositories. A system like ours is also useful to integrate into

DHTs used for commercial settings, to minimize the amount of

potentially sensitive data nodes can collect.

In the CRP setting, we rely on the developers of the underly-

ing CRP system to provide methods to bootstrap a user with the

complete client-side software, which would include a DHTPIR im-

plementation. For instance, a service like GetTor [24] can be used

to deliver the software. To join the network, DHT-based systems

typically require a new node to contact a node from a small list of

permanently online nodes [25], which is included in the software

package. These nodes are trusted to provide correct routing infor-

mation; that is, to not conduct an eclipse attack. For a CRP system

that uses DHTPIR, including the quorum verification keys of these

nodes’ current quorums with this list allows a new node to detect

and prevent an eclipse attack, through the robust communication

protocols. Similarly, we also rely on popular adoption of the un-

derlying CRP system. For instance, the system can be seeded with

popular, non-prohibited content, thereby inflicting a high collateral

damage onto the censor if the entire system were to be banned.

10 CONCLUSION
Censorship-resistant publishing systems are built atop DHTs and

enable users to store sensitive documents onto multiple server

nodes in different administrative regions, such that a censor cannot

easily take down or tamper with the published content. Server

node administrators may be compelled by censors to reveal the

documents retrieved by a given user. We propose an interface that

uses information-theoretic private information retrieval (IT-PIR) to

prevent node operators from being exposed to information about

which document was retrieved.

12

Do you feel a chill? Using PIR against chilling effects for censorship-resistant publishing

We integrate existing work on hardening peer-to-peer networks

so that quorums of nodes only contain at most a certain fraction of

Byzantine nodes; we allow the censor to run such colluding Byzan-

tine nodes. Our key insight lies in using quorums as a coalition of

server nodes that store a set of files over which IT-PIR queries can be

performed. We simulate our system and find that its total communi-

cation cost is up to two orders of magnitude smaller than the closest

related work, while simultaneously achieving lower latency and

higher, parallelizable throughput, all of which scale reasonably with

the database size. We hope that our design spurs further research

and development efforts into building robust censorship-resistant

publishing systems.

ACKNOWLEDGMENTS
We thank the Royal Bank of Canada and NSERC grant CRDPJ-

534381 for funding this work. This research was undertaken, in

part, thanks to funding from the Canada Research Chairs program.

This work benefitted from the use of the CrySP RIPPLE Facility at

the University of Waterloo.

REFERENCES
[1] Carlos Aguilar-Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier Killijian.

2016. XPIR: Private Information Retrieval for Everyone. Proceedings on Privacy
Enhancing Technologies 2016, 2 (2016), 155–174.

[2] Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. 2018. PIR with Com-

pressed Queries and Amortized Query Processing. In 2018 IEEE Symposium on
Security and Privacy (SP). IEEE, 962–979.

[3] Baruch Awerbuch and Christian Scheideler. 2009. Towards a Scalable and Robust

DHT. Theory of Computing Systems 45, 2 (2009), 234–260. https://doi.org/10.

1007/s00224-008-9099-9

[4] Michael Backes, Ian Goldberg, Aniket Kate, and Tomas Toft. 2012. Adding Query

Privacy to Robust DHTs. In 7th ACM Symposium on Information, Computer and
Communications Security (Seoul, Korea) (ASIACCS ’12). 30–31.

[5] Ingmar Baumgart and Sebastian Mies. 2007. S/Kademlia: A practicable approach

towards secure key-based routing. In 2007 International Conference on Parallel
and Distributed Systems. IEEE, 1–8.

[6] Fabiano C. Botelho, Rasmus Pagh, and Nivio Ziviani. 2013. Practical Perfect

Hashing in Nearly Optimal Space. Information Systems 38, 1 (2013), 108–131.

https://doi.org/10.1016/j.is.2012.06.002

[7] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance. In

Proceedings of the Third Symposium on Operating Systems Design and Implemen-
tation.

[8] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. 1998. Private

Information Retrieval. Journal of the ACM 45, 6 (1998), 965–981. https://doi.org/

10.1145/293347.293350

[9] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The Second-

generation Onion Router. In Proceedings of the 13th USENIX Security Symposium
(San Diego, CA). 21–21.

[10] Amos Fiat, Jared Saia, and Maxwell Young. 2005. Making Chord Robust to

Byzantine Attacks. In Proceedings of the 13th Annual European Conference on Al-
gorithms (Palma de Mallorca, Spain) (ESA’05). Springer-Verlag, Berlin, Heidelberg,
803–814.

[11] Eva Galperin. 2017. Access Now and EFF Condemn the Arrest of Tor Node Oper-

ator Dmitry Bogatov in Russia. https://www.eff.org/deeplinks/2017/04/access-

now-and-eff-condemn-arrest-tor-node-operator-dmitry-bogatov-russia.

[12] Ian Goldberg. 2007. Improving the Robustness of Private Information Retrieval.

In 2007 IEEE Symposium on Security and Privacy (SP ’07). IEEE, 131–148.
[13] gpestana. 2018. Privacy preserving DHTs. https://github.com/gpestana/notes/

issues/8.

[14] Anne Henochowicz. 2015. The Human Side of Censorship: Keyword Filtering

and Censorship Directives on the Chinese Internet. In Proceedings of the 5th
USENIX Workshop on Free and Open Communications on the Internet (FOCI 2015).
Washington D.C., USA. https://www.usenix.org/sites/default/files/conference/

protected-files/foci15_slides_henochowicz.pdf

[15] Michelle Hertzfield, Jessica Schilling, and Oli Evans. 2019. How IPFS Works -

IPFS Documentation. https://docs.ipfs.io/introduction/how-ipfs-works/.

[16] jbenet. 2015. IPFS Feedback. https://github.com/ipfs/notes/issues/318.

[17] Aniket Kate and Ian Goldberg. 2009. Distributed Key Generation for the Internet.

In 29th IEEE International Conference on Distributed Computing Systems. 119–128.
https://doi.org/10.1109/ICDCS.2009.21

[18] Jeffrey Knockel, Masashi Crete-Nishihata, Jason Q. Ng, Adam Senft, and Je-

didiah R. Crandall. 2015. Every Rose Has Its Thorn: Censorship and Surveillance

on Social Video Platforms in China. In Proceedings of the 5th USENIX Work-
shop on Free and Open Communications on the Internet (FOCI 2015). Washington

D.C., USA. https://www.usenix.org/system/files/conference/foci15/foci15-paper-

knockel.pdf

[19] J. Liang, N. Naoumov, and K. Ross. 2006. The Index Poisoning Attack in P2P

File Sharing Systems. In Proceedings IEEE International Conference on Computer
Communications (INFOCOMM). 1–12. https://doi.org/10.1109/INFOCOM.2006.

232

[20] Wouter Lueks and Ian Goldberg. 2015. Sublinear Scaling for Multi-Client Private

Information Retrieval. In Financial Cryptography and Data Security. 168–186.
[21] Petar Maymounkov and David Mazières. 2002. Kademlia: A Peer-to-Peer Infor-

mation System Based on the XOR Metric. In Peer-to-Peer Systems, Peter Druschel,
Frans Kaashoek, and Antony Rowstron (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 53–65.

[22] Miti Mazmudar, Stan Gurtler, and Ian Goldberg. 2021. Do you feel a chill? Using

PIR against chilling effects for censorship-resistant publishing. In 20th ACM
Workshop on Privacy in the Electronic Society.

[23] mgoelzer. 2018. [Protocol Design] How to create a fully private DHT. https:

//github.com/libp2p/developer-meetings/issues/6.

[24] The Tor Project. 2020. What is GetTor? https://gettor.torproject.org/.

[25] Jessica Schilling, Chris Waring, and Bertrand Falguiere. 2020. Modify the boot-

strap peers list. https://docs.ipfs.io/how-to/modify-bootstrap-list/.

[26] Siddhartha Sen and Michael J. Freedman. 2012. Commensal Cuckoo: Secure

Group Partitioning for Large-Scale Services. ACM SIGOPS Operating Systems
Review 46, 1 (2012), 33–39. https://doi.org/10.1145/2146382.2146389

[27] Signal. 2016. Grand jury subpoena for Signal user data, Eastern District of

Virginia. https://signal.org/bigbrother/eastern-virginia-grand-jury/.

[28] A Singh, T-WNgan, P Druschel, and DSWallach. 2006. Eclipse Attacks on Overlay

Networks: Threats and Defenses. In Proceedings IEEE International Conference on
Computer Communications (INFOCOMM). IEEE, 1–12.

[29] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-

ishnan. 2001. Chord: A Scalable Peer-to-peer Lookup Service for Internet Ap-

plications. In Proceedings of the 2001 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications (San Diego, California,

USA) (SIGCOMM ’01). 149–160.
[30] Adam Stubblefield and Dan S. Wallach. 2002. Dagster: Censorship-Resistant

Publishing Without Replication. Technical Report. Rice University.
[31] Alin Tomescu, Robert Chen, Yiming Zheng, Ittai Abraham, Benny Pinkas,

Guy Golan Gueta, and Srinivas Devadas. 2020. Towards Scalable Threshold

Cryptosystems. In 2020 IEEE Symposium on Security and Privacy (SP).
[32] Eugene Y. Vasserman, Victor Heorhiadi, Nicholas Hopper, and Yongdae Kim. 2012.

One-Way Indexing for Plausible Deniability in Censorship Resistant Storage. In

Proceedings of the 2nd USENIX Workshop on Free and Open Communications on
the Internet. USENIX, Bellevue, WA.

[33] Eugene Y. Vasserman, Victor Heorhiadi, Yongdae Kim, and Nicholas J. Hopper.

2011. Censorship resistant overlay publishing. Technical Report 11-027. University
of Minnesota.

[34] Marc Waldman and David Mazières. 2001. Tangler: A Censorship-Resistant

Publishing System Based On Document Entanglements. In Proceedings of the
ACM Conference on Computer and Communications Security. ACM, 126–135.

[35] Marc Waldman, Aviel D. Rubin, and Lorrie Faith Cranor. 2000. Publius: A robust,

tamper-evident, censorship-resistant, web publishing system. In Proceedings of
the 9th USENIX Security Symposium. USENIX, 59–72.

[36] Maxwell Young, Aniket Kate, Ian Goldberg, and Martin Karsten. 2013. Towards

Practical Communication in Byzantine-resistant DHTs. IEEE/ACM Transactions
on Networking 21, 1 (2013), 190–203.

A API FUNCTIONS USED AND PROVIDED
As described in Section 5, our interface can be usedwithin censorship-

resistant publishing systems, such as Vasserman et al.’s CROPS [33],

to insert files into quorums through the DHTPIRputFile function

and to query quorums privately for files through the DHTPIRfind-

File function, both provided by our DHTPIR API. Functions in the

DHTPIR interface in turn invoke existing QP (which itself invokes

RCP), QUORUM, and PIR protocols in a layered manner, as shown

in Figure 2. A list of all API functions can be found for reference in

Table 3.

13

https://doi.org/10.1007/s00224-008-9099-9
https://doi.org/10.1007/s00224-008-9099-9
https://doi.org/10.1016/j.is.2012.06.002
https://doi.org/10.1145/293347.293350
https://doi.org/10.1145/293347.293350
https://www.eff.org/deeplinks/2017/04/access-now-and-eff-condemn-arrest-tor-node-operator-dmitry-bogatov-russia
https://www.eff.org/deeplinks/2017/04/access-now-and-eff-condemn-arrest-tor-node-operator-dmitry-bogatov-russia
https://github.com/gpestana/notes/issues/8
https://github.com/gpestana/notes/issues/8
https://www.usenix.org/sites/default/files/conference/protected-files/foci15_slides_henochowicz.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/foci15_slides_henochowicz.pdf
https://docs.ipfs.io/introduction/how-ipfs-works/
https://github.com/ipfs/notes/issues/318
https://doi.org/10.1109/ICDCS.2009.21
https://www.usenix.org/system/files/conference/foci15/foci15-paper-knockel.pdf
https://www.usenix.org/system/files/conference/foci15/foci15-paper-knockel.pdf
https://doi.org/10.1109/INFOCOM.2006.232
https://doi.org/10.1109/INFOCOM.2006.232
https://github.com/libp2p/developer-meetings/issues/6
https://github.com/libp2p/developer-meetings/issues/6
https://gettor.torproject.org/
https://docs.ipfs.io/how-to/modify-bootstrap-list/
https://doi.org/10.1145/2146382.2146389
https://signal.org/bigbrother/eastern-virginia-grand-jury/

Miti Mazmudar, Stan Gurtler, and Ian Goldberg

Table 3:Overview of the functions in each layer of the interfaces presented in Section 5. The layer name is included as the first
word of the function name and is capitalized.

Function Arguments Output Description

DHTPIRputFile
File identifier id
File F

None Privately inserts a file F with the ID id . Replaces
the native putFile function.

DHTPIRfindFile File identifier id File F Privately finds a file with the ID id . Replaces the
native findFile function.

QPgetTargetQuorum File identifier id Proof of robust commu-

nication: ϕ
Target nodes’ network

addresses: [A1 · · ·As]
and public keys:

[PK1 · · · PKs]
Quorum verification

key: VK

Obtain the output information for the closest

quorum that stores the file with the ID id , with-
out any intermediate node learning the ID.

QUORUMsendQuery Proof: ϕ
Target nodes’ network

addresses: [A1 · · ·As]
and public keys:

[PK1 · · · PKs]
Messages: [M1 · · ·Ms]

Received messages:

[R1 · · ·Rs]
Used for securely sending a message to a target

quorum and receiving replies from it.

QUORUMqueryListener None None (replies internally

to received messages)

Used for securely receiving messages from

nodes in other quorums and sending replies

to them, possibly after coordinating with other

nodes in own quorum.

PIRgetQueryVectors File identifier id
Perfect hash function f
Number of nodes s

Query vectors

[q1 · · ·qs]
Computes s query vectors, one for each server

that holds a database indexed by the output of

a perfect hash function f , in order to obtain a

file at index id .

PIRrecreateFile File blocks [f1 · · · fs] D Returns a file F that is reconstructed from the s
input blocks.

PIRperformQuery Query vector q Response block d Queries the node’s file store for the input query

q, and returns a response block d .

B JOIN PROTOCOL
A new node p interacts with multiple quorums as it joins the net-

work; we illustrate the join protocol through the sequence diagram

in Figure 6. When a new node joins the network, it first contacts

a bootstrapping peer q, which is a part of quorum Q1 for instance,

and sends its public key PKp . Peer q then sends network addresses

and public keys of its peers, signed by quorum Q1, thereby allow-

ing node p to send this bootstrapping message to node q’s peers.
Nodes in the quorum Q1 collectively generate a random address

using their shares of the quorum’s shared secret s . They generate a

cryptographic hash of the new node’s public key PKp , and include

a timestamp for freshness. Treating this hash as a group element,

they raise it to the power of their share, and send it to the new node.

Node p combines these shares to obtain a random address idp .
To contact the target quorum QT that spans address idp , node p

obtains a valid proof of communication by running the QPgetTar-

getQuorum function. This function may be run with either RCP-I

or RCP-II as the underlying communication protocol, though there

are two small changes when it is run for primary or secondary joins.

First, the lookup messagemp also includes its securely assigned vir-

tual address idp and a string to demarcate the message as a primary

(or secondary) join, on top of the node’s network addressAp , public
key PKp and a timestamp ts . We need to distinguish primary joins

from a secondary join, as a new Byzantine node could masquerade

as a secondary join to avoid causing the eviction of other Byzantine

nodes in its target quorum. Second, for a primary join, as node

p does not belong to a quorum, the bootstrapping peer’s quorum

Q1 produces a threshold signature over the message mp , which

is denoted by [mp]1 within our diagram. Through this function,

node p then proceeds to contact multiple quorums, to ultimately

obtain the usual response; that is, a threshold signature overmp
by the nearest neighbour of the target quorum, namely quorum

QT−1, as well as network addresses and public keys of nodes in

the target quorum ((Ai , PKi)
s
i=1

), and the verification key of the

target quorumVKT . Node p then forwards the messagemp and the

threshold signature [mp]T−1 to the target quorum.

The target quorum verifies the threshold signature [mp]T−1,

using the verification key of its neighbour quorumVKQT−1
, as usual.

When the signed message contains the primary join flag, a node

14

Do you feel a chill? Using PIR against chilling effects for censorship-resistant publishing

in QT must first vet the join, as proposed within the commensal

cuckoo rule (step 1CCR in Figure 1). That is, each node first ensures

that the quorum has had at least k − 1 secondary joins since the last

primary join into the quorum. Here, k is set such that an average

of k nodes are cuckoo-ed out in a k-region that spans a fraction
k
n

of the address space. (In case this check fails, the target quorum

replies back with a signed failure message that is bound to the

input messagemp . Node p repeats the aforementioned process with

the bootstrapping peer, until it reaches a new target quorum that

allows the primary join.) Nodes inQT then compute the number k ′

of its nodes that must be evicted from it and rejoin another quorum,

following Sen and Freedman’s commensal cuckoo rule. They then

recompute the size of its quorum based on k ′. Finally, each node

in QT generates a messagemst that consists of the database hash,

the new quorum size, and a timestamp. Each node computes its

signature share over this message, and forwards it to one delegate

node, say node j. This delegate node derives a shared secret with

node p, using the latter’s public encryption key and its own private

key SKj and uses this shared secret to encrypt the database to node

p. Node j merges the threshold signature shares to a threshold

signature ρT and forwards it along with the messagemst and the

encrypted database, to the new node p.
The new node verifies the threshold signature ρT using the

quorum verification key VKT that it obtained earlier. It ensures

freshness of the messagemst by checking its timestamp. It uses

the peer node j’s public encryption key PKj that it obtained earlier

to establish the same shared secret sk , and decrypts the encrypted

database in the message. It computes a hash of this database and

checks it with the hash contained within the message, to detect if

peer j maliciously sent an incorrect copy of the database. (In this

case, it sends (mp , [mp]T−1) to another node of the target quorum.)

The new node runs Kate and Goldberg’s distributed key genera-

tion (DKG) scheme [17], in conjunction with the remaining nodes

of the target quorum, to derive a signing key share for itself and

verification key shares for these nodes. This scheme requires that

the fraction of Byzantine nodes per quorum should be less than a

third, as explicted in constraint 6. The threshold for this threshold

signature scheme should be maintained to satisfy constraints 3

and 4. Thus, after a certain number of new node insertions, a new

signing/verification key may need to be generated and the neigh-

bouring quorums would need to be informed of the verification

key. The target quorum also updates its routing table entries to

include the network address Ap and public key PKp of the new

node, and excludes addresses and keys of the k ′ old nodes. The

RCP-II protocol involves informing the quorum’s neighbours of

these updates in the routing table entries; we defer the reader to

Section IV-C in Young et al.’s paper for details [36].

The nodes to be evicted from the target quorum do not partici-

pate in the DKG. After computing these threshold signatures, each

node in the target quorum proceeds to evict k ′ of its nodes as fol-
lows. They generate a random node address, in a similar manner as

before, compute a cryptographic hash of it, and expand this hash

to construct k ′ new random addresses for the nodes to be evicted.

They then identify which nodes in the quorum should be evicted,

based on their current addresses and the new set of addresses. For

each evicted node, the target quorum generates a messagemi and

threshold signature [mi]T over it;mi is identical to the messagemp
in structure for all fields, but differs in that its string flag indicates

a secondary join. Each evicted node follows a similar process as

the new node did with the bootstrapping quorum, in order to com-

municate with its new target quorum. (Such nodes may now safely

delete their databases.) It runs the QPgetTargetQuorum function

as node p did earlier in the protocol, and forwardsmp as well as

a threshold signature by the neighbour of its new target quorum,

[mi]S−1 to the new target quorum QS . The quorum QS accepts all

incoming secondary joins and secondary joins do not result in fur-

ther cuckoos. So, with the exception of the corresponding check for

primary joins and the generation of IDs, and signed join messages

(idi ,mi , ρi), this quorum and the secondary joining node repeat

the process of sharing the database, and generating (∥QS ∥ + 1) new

key shares.

Leave protocol: If a node decides to leave a quorum (outside of

a primary join), then it can send a time-stamped message which is

signed by its own private signing key. The remaining nodes may

then need to re-run the DKG protocol, or regenerate the quorum’s

signing/verification key, depending on the current value of the

threshold for the threshold signature scheme.

15

Miti Mazmudar, Stan Gurtler, and Ian Goldberg

Bootstrapping
Quorum Q1

New node p Target quorum QT
Peer j

Secondary join
Target quorum QS

Join network ∥PKp

idp ← Hash(ts ∥PKp)
sk1

mp ← Ap ∥ PKp ∥ ts∥

“primary_join” ∥idp
ρ1 ← [mp]1

mp , ρ1

[mp]T−1, (Ai , PKi)
s
i=1
,

VKT ← QPTQ(mp , ρ1)

mp , [mp]T−1

Verify ([mp]T−1,

VKT−1)

Verify ∥sec. joins∥

is k − 1

k ′ ← ⌈k · ∥QT ∥/s⌉

∥QT ∥ ← ∥QT ∥ − k
′ + 1

mst ← Hash(DB),

∥QT ∥, ts
ρT ← [mst]T
sk ← derive (SKj , PKp)

CT ← Encsk (DB)
idi ← Hash(ts ∥PKp)

skT

mi ← Ai ∥ PKi ∥ ts ∥
“secondary_join” ∥ idi
ρi ← [mi]T

k ′

i=1

CT ,mst , ρT

Verify (ρT , VKT)

sk ← derive (SKp , PKj)

DB ← Decsk (CT)

Hash(DB)

?

∈mst Gen. ∥QT ∥ key

shares using DKG [17] Remaining nodes (k ′ + 1..s)

State transferState transfer { ∥QT ∥ }

Secondary join nodes (1..k ′)

[mi]S−1, (Aj , PKj)
s
j=1
,

VKS ← QPTQ(mi , si)

mi , [mi]S−1

Verify ([mi]S−1,

VKS−1)

State transfer {∥QS ∥}

Figure 6: A new node p informs nodes in the bootstrapping quorum Q1 of its public key PKp in a bootstrapping message. This
quorum then generates a random identifier idp using its shared secret sk1, creates a primary join routing lookup messagemp
which includes idp , and quorum 1’s threshold signature overmp , denoted by [mp]1.Q1 then forwards (mp , [mp]1) to node p. Node
p then contacts the target quorum QT that spans idp , by passing its message and signature to the QPgetTargetQuorum (QPTQ)
function.QT verifies this signature as usual, and only accepts this primary join if it has had sufficient secondary joins since the
last primary join. If so, each node in QT computes the number of nodes that must be kicked out from it (k ′), and updates the
quorum size. All nodes then compute threshold signatures over a timestamped message that includes a hash of the database
and the new quorum size. A delegate peer j forwards this message and shares to node p, along with a copy of the database that
is encrypted to PKp . In parallel with node p processing this message, all nodes in QT construct random IDs for the nodes to
be evicted (id1..id

′
k) just as quorum Q1 did for node p, and identify which nodes should be evicted based on these IDs (nodes

1–k ′). They also generate signature shares over secondary join lookup messages, as nodes in quorum Q1 did for the primary
join node p. In the meantime, node p verifies the signature and the integrity of the database. Along with the remaining nodes,
node p runs the DKG protocol to generate a new signature share and QT verification key shares. The evicted nodes (nodes
1–k ′) then contact their respective target quorums (quorumQS here) through the QPTQ function as before, using (mi , [mi]S−1).
After signature verification, all nodes in the target quorum engage in an identical state transfer process with node i as before.
Similarly, they also run the DKG protocol with node i to establish new key shares.

16

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Private Information Retrieval
	2.2 DHTs
	2.3 Censorship-resistant publishing

	3 Robust DHTs
	4 Threat model
	5 Our Design
	5.1 Building blocks
	5.2 Our interface

	6 Security Parameters Analysis
	7 Complexity analysis
	8 Evaluation
	9 Deployment
	10 Conclusion
	Acknowledgments
	References
	A API functions used and provided
	B Join protocol

