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Abstract

Key dependent message (KDM) security is a security notion that guarantees confidentiality of
communication even if secret keys are encrypted. KDM security has found a number of applications in
practical situations such as hard-disk encryption systems, anonymous credentials, and bootstrapping
of fully homomorphic encryptions. Recently, it also found an application in quantum delegation
protocols as shown by Zhang (TCC 2019).

In this work, we investigate the KDM security of existing practical public-key encryption (PKE)
schemes proposed in the quantum random oracle model (QROM). Concretely, we study a PKE
scheme whose KEM is constructed by using Fujisaki-Okamoto (FO) transformations in the QROM.
FO transformations are applied to IND-CPA secure PKE schemes and yield IND-CCA secure key
encapsulation mechanisms (KEM). Then, we show the following results.

* We can reduce the KDM-CPA security in the QROM of a PKE scheme whose KEM is derived
from any of the FO transformations proposed by Hofheinz et al. (TCC 2017) to the IND-CPA
security of the underlying PKE scheme, without square root security loss. For this result, we
use one-time-pad (OTP) as DEM to convert KEM into PKE.

* We can reduce the KDM-CCA security in the QROM of a PKE scheme whose KEM is derived
from a single variant of the FO transformation proposed by Hofheinz et al. (TCC 2017) to
the IND-CPA security of the underlying PKE scheme, without square root security loss. For
this result, we use OTP-then-MAC construction as DEM to convert KEM into PKE. Also, we
require a mild injectivity assumption for the underlying IND-CPA secure PKE scheme.

In order to avoid square root security loss, we use a double-sided one-way to hiding (O2H) lemma
proposed by Kuchta et al. (EUROCRYPT 2020). In the context of KDM security, there is a technical
hurdle for using double-sided O2H lemma due to the circularity issue. Our main technical contribution
is to overcome the hurdle.

Keywords: Fujisaki-Okamoto transformations, quantum random oracle model, key dependent
message security
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1 Introduction

1.1 Background

Post-quantum security is emerging as a de facto standard since quantum technology has been making
rapid progress. In particular, since the NIST post-quantum cryptography standardization project started,
IND-CCA security in the quantum random oracle model (QROM) have been extensively studied to
design practical and post-quantum secure public-key encryption (PKE) [BHH " 19, AHU19, HKSU20,
JZM19a, HHK 17, JZC " 18, SXY18, TU16, KSS™20]. IND-CCA [RS92, DDNO00] is the gold standard
security notion for PKE since chosen-ciphertext attacks are realistic in many practical applications [Ble98].
The random oracle model (ROM) [BR93] is an idealized model where hash functions are modeled as
ideal random functions in security proofs. This idealized model helps us to design extremely efficient
cryptographic primitives. In the QROM [BDF ' 11], a random oracle query is a superposition query
since adversaries are modeled as quantum polynomial-time algorithms and hash functions are locally
computable.

Although IND-CCA is suitable for many practical applications, a stronger security goal than standard
confidentiality is required in some settings. Key-dependent message (KDM) security [BRS03] is such
an example. KDM security guarantees that adversaries cannot distinguish encryption of f(sk) from
encryption of fi(sk) where sk is a secret key and fy, f1 are arbitrary functions. The KDM situation is
realistic in hard disk encryption systems like BitLocker [BHHOOS] and bootstrapping fully homomorphic
encryption [Gen(09]. We also use KDM secure encryption as a building block of cryptographic primitives
and protocols such as anonymous credentials [CLO1]. In particular, (non-adaptive) KDM secure
secret-key encryption (SKE) against quantum adversaries is used to achieve delegation of quantum
computation [Zhal9b]. The KDM situation also naturally arises in formal verification of cryptographic
protocols [ARO02].

Thus, a natural question is:

Can we achieve practical KDM-CPA/CCA secure PKE in the QROM?
or
Do existing practical IND-CPA/CCA secure PKE satisfy KDM security in the QROM?

The difficulty of this question depends on what level of security and efficiency we achieve.

Security analysis in the QROM usually deviates from one in the classical ROM. One significant
issue is that, in the QROM, we cannot directly use the observability of the classical ROM, which says
reduction algorithms can observe input points where adversaries make random oracle queries. In the
QROM, reduction algorithms need to measure superposition queries to observe random oracle queries,
but this prevents reduction since adversaries can detect measurement. Superposition queries also prevent
us from straightforwardly applying the adaptive programming technique. These problems make it more
challenging to achieve CCA and KDM security in the QROM since each property is one of the crucial
properties in the proofs for CCA and KDM [FO13, KMHT16]. New techniques have been proposed to
solve the security-proof problems in the QROM. The one-way to hiding (O2H) lemma [Unr15] and its
variants [AHU19, BHH " 19, KSS"20] are the most well-known useful tools to solve the problem above
and achieve secure encryption in the QROM.

Roughly speaking, the (original) O2H lemma is as follows. A quantum distinguisher 4 is given oracle
access to an oracle @, which is either a random function H : X — Yor G : X — Y such that Vx ¢ S,
H(x) = G(x). Let z be a random classical string or quantum state ((G, H, S, z) may have an arbitrary
distribution). Let D be a quantum algorithm that is given input z and oracle access to H, measures 4’s
query, and outputs the result. The distinguishing advantage of 4, € 4, is bounded by the square root of the
search advantage of D, €y, that finds an element in S.! All O2H lemmas except the variant by Kuchta,

'Here, we ignore security loss by the number of queries and constants for simplicity.



Sakzad, Stehlé, Steinfeld, and Sun [KSS™20] incur a square root security loss. A square root security loss
significantly degrades the performance of cryptographic primitives since we need to use much longer
security parameters for building blocks to guarantee a reasonable security level, say, 128-bit security.?
Thus, to achieve practical KDM secure PKE schemes, we should avoid a square root loss. When we
focus on tight security, both security advantages and the running time of reductions are crucial factors.
However, in most PKE schemes (and all our schemes), the running time of reductions does not incur much
overhead and is not a dominant factor. Thus, we focus on security loss.

At first glance, the O2H lemma by Kuchta et al. [KSS*20] (denoted by O2H with MRM) seems
to immediately answer our question since it does not incur a square root security loss. However, this
is not the case. O2H with MRM is a variation of the double-sided O2H lemma by Bindel, Hamburg,
Hovelmanns, Hiilsing, and Persichetti [BHH " 19], where D is given oracle access to both H and G. Thus,
in O2H with MRM, D is given oracle access to a random oracle H and a modified random oracle G.
This is not an issue for proving IND-CPA/CCA security. However, it is a serious issue for proving KDM
security because correlated information about secret keys could remain in the modified random oracle G
in known proofs for KDM in the classical ROM. See Section 1.4 for the detail. Kuchta et al. [KSS"20]
left relaxing their double-sided O2H with MRM to a single-sided variant as an open question. However,
that question remains elusive. In the KDM setting, we cannot directly apply a double-sided type O2H
lemma. Achieving KDM security with a double-sided O2H lemma is independent of interest. Thus, our
question is more precisely described as follows.

Can we achieve practical KDM-CPA/CCA secure PKE without a square root security loss in the QROM?
or
Do existing practical IND-CPA/CCA secure PKE satisfy KDM security without a square root security loss
in the QROM?

1.2 Our Result

In this work, we affirmatively answer the question above. We prove the following.

* We can obtain KDM-CPA secure PKE without a square root security loss by applying a Fujisaki-
Okamoto transformation (denoted by FO) [FO13, HHK17] to IND-CPA secure PKE and combining
one-time pad (OTP) as DEM.

* We can obtain KDM-CCA secure PKE without a square root security loss by applying an
FO [FO13, BHH " 19] to IND-CPA secure PKE and combining OTP and strong one-time MAC3
(that is, OTP-then-MAC) as DEM.

Note that our goal is PKE (not KEM) since we can consider the KDM setting only in PKE. We need
OTP to achieve PKE since FO yields KEM [FO13, HHK17]. Our results are extremely versatile since
we can convert IND-CPA secure PKE to KDM-CPA/CCA secure PKE by the well-known general
transformations. FO yields practical KEM/PKE schemes and is employed in many candidates of the
NIST PQC standardization to achieve CCA security. Note that we do not need the perfect correctness
of the building block PKE. However, for the result on KDM-CCA secure PKE, we require that a
derandomized version of the building block PKE is injective as in the CCA schemes in some previous
works [BHH 19, KSS"20]. Bindel et al. argue that injectivity is commonly satisfied by many practical
schemes [BHH " 19]. We also note that we use PKE in the multi-user setting [BBMO0O] as the building
block PKE in the transformation since the KDM setting is the multi-user setting by default.4

2Saito, Xagawa, and Yamakawa [SXY 18] estimate that we need 376-bit security of underlying trapdoor functions for 128-bit
security of the IND-CCA KEM scheme by Boneh et al. [BDF 11] if the number of queries is 20 due to a square root security
loss.

3Strong one-time MAC unconditionally exists.

4We can achieve PKE in the /-user setting with advantage €’ from standard PKE with advantage € such that €’ = ( - €.



To explain our result more precisely, we recall that an FO can be decomposed into two transformations
T and U. This was first observed by Hofheinz, Hévelmanns, and Kiltz [HHK17]. In this work, we adopt
variants of T and U defined by Bindel et al. [BHH " 19]. The only difference between the transformations
by Hofheinz et al. and those by Bindel et al. is that the validity check by encryption in the decryption
algorithm is performed as a part of T in the former while it is performed as a part of U in the latter. Thus,
the resulting FO is the same regardless of which definitions of T and U we use.

T transformation transforms an IND-CPA secure PKE scheme into an OW-CPA secure deterministic
PKE scheme. U transformation transforms an OW-CPA secure deterministic PKE scheme into an
IND-CCA secure KEM. Regarding U, there are six variants, U, U£, ULxeveont YL Uz, and U;Leyeent,
Here, 1 and [ mean explicit and implicit rejection in decryption, respectively, and no subscript and
subscript 1 mean a hash function takes a ciphertext as a part of the input or not. Superscript keyconf
(key confirmation) means that we add a hash value of a plaintext to a ciphertext and check the hash value
in decryption. Bindel et al. [BHH ' 19] prove that UL, U%, and U-¥ey¢onf yie]d IND-CCA KEM if and
only if U;5, U#, and U;55®7°°™ yield IND-CCA KEM, respectively. It does not matter whether a hash
function takes a ciphertext as the input or not. This is also the case in the context of KDM security. Thus,
in this work, we focus on U#, Uﬁ, and U,ﬁ’keyconf.

To solve the correlated information problem above, we introduce a new security notion called seed-
dependent message one-wayness against related seed attacks (SDM-OW-RSA). This notion is a technical
contribution and plays a crucial role in this work (defined in Section 2.3). Then, we show that if we apply
the U, transformation to SDM-OW-RSA deterministic PKE, the resulting scheme is KDM-CPA secure by
combining OTP as DEM. We also show that if we apply Uy;***°*f to SDM-OW-RSA secure deterministic
PKE with injectivity, the resulting scheme is KDM-CCA secure by combining OTP-then-MAC as DEM.
Although we need O2H with MRM in this part to avoid a square root security loss, we can overcome the
double-sided oracle issue due to SDM-OW-RSA security.

In order to complete the proof for the KDM security of FO transformations, we go to the following path.
We first introduce a variant of T that we call T transformation with hash key generation Tyxkg, and show
that if we apply Tk to IND-CPA PKE, the resulting deterministic PKE scheme satisfies SDM-OW-RSA
without square root security loss. Combined with the above, we see that U5, (resp. U,J,;’keywnf) together
with Tgge can be used to obtain a KDM-CPA (resp. KDM-CCA) secure PKE scheme from an IND-CPA
secure PKE scheme without square root loss. Finally, we show that Tykg in those constructions can be
replaced with T, thus prove the KDM security of FO transformations.

Although we omit in this paper, we can see that we can prove the KDM-CPA security without a square
root security loss even if we use U;ﬁ instead of U:. Interestingly, if we use U;ﬁ instead of U,J,;’keyconf, itis
not clear whether we can prove the KDM-CCA security without a square root loss. In the IND-CCA
case, U;,KZ provides us with IND-CCA security without a square root security loss [KSS20, BHH " 19].
See Section 1.4 for the detail. We summarize these results in Table 1.

1.3 Related Work

Our work is the first study on KDM secure PKE in the QROM. Our work also focuses on tighter reductions.
Zhang constructs a non-adaptive KDM-CPA SKE scheme in the QROM to achieve delegation of quantum
computation [Zhal9b]. To the best of our knowledge, other advanced security notions for PKE (such
as leakage-resilience [AGV(09], selective opening security [BHY09]) have not been investigated in the
QROM yet.

Backes, Diirmuth, and Unruh [BDUOS] study the KDM security of the OAEP transformation [BR95]
in the classical ROM. They prove that OAEP is KDM-secure in the classical ROM if the underlying
trapdoor permutation is partial-domain one-way. Note that there is no post-quantum secure trapdoor
permutation so far. Davies and Stam [DS14] study the KDM security in the KEM/DEM framework. They
prove that if a key derivation function (KDF) is used in between the KEM and DEM part and the KDF



Table 1: Summary of our results. Here, Uy, orp and Uiﬁgfﬁc denote U;; with OTP and
U;n 7™ \yith OTP-then-MAGC, respectively. Let e and d be the attacker advantage
in scheme X and the query depth of queries to random oracle F, respectively. Note
that dp < gr where gr is the number of random oracle queries. We use PKE in the
multi-user setting for the building block PKE (denoted by PKE). Open Q. means that it is
an open question whether we can achieve KDM-CCA security by using U;‘g,OTP [PKE1, H]

transfromation.
Transformation Security implication Security bound Condition
PKE; := Tuxc[PKE, G] (§ 5) IND-CPA = SDM-OW-RSA  O(dg - €pke) none
Ust orp [PKE1, H] (§ 4) SDM-OW-RSA = KDM-CPA  O(dy - €pke, ) none
Ust oe[T[PKE, G, H] (§ 6) IND-CPA = KDM-CPA O(dy - dg - €pke)*  none
U o1 [T[PKE, G], H] IND-CPA = KDM-CPA O(dy -dg - epke)* none
Uy ome [PKEy, H] (§ B) SDM-OW-RSA = KDM-CCA  O(dy - €pke, ) injectivity
U, edcone [T[PKE, G|, H] (§ B&6)  IND-CPA = KDM-CCA O(dy -dg - epke)®  injectivity
U;ﬁ,m‘r’ [PKE;, H| open Q. = KDM-CCA open Q. open Q.

2This is a simplified bound. See Section 6 for the detail.

function is modelled as a classical random oracle, the resulting PKE scheme is KDM-secure. See the
reference for security requirements. Kitagawa, Matsuda, Hanaoka, and Tanaka [KMHT16] prove that the
FO transformation [FO13] satisfies KDM-CCA security in the classical ROM.>

We also briefly introduce previous works on IND-CCA secure PKE/KEM in the QROM. Let € and
€pp be the advantages of IND-CCA PKE/KEM and the building block, respectively. Let gy be the number
of random oracle queries (and we set dy := gp for simplicity). Below, we omit “IND-CCA” and “in the
QROM?” since all results are about them. We also ignore the differences between FO and FO variants.

Boneh et al. [BDF'11] use a KEM variant of Bellare-Rogaway transformation [BR93] to obtain
their KEM from trapdoor functions and € ~ qp+/€pp. Targhi and Unruh [TU16] use FO to obtain their
PKE from OW-CPA PKE and € ~ g} {/€pp. They also use an OAEP variant to obtain their PKE from
partial domain trapdoor injective OWFs and € ~ poly(qr)¢/€pp. Hofheinz et al. [HHK17] present
modular analysis for FO, but their KEM does not improve the construction by Targhi and Unruh. Saito et
al. [SXY18] use FO to obtain their KEM from disjoint simulatable deterministic PKE and € ~ €. They
also obtain their KEM from IND-CPA PKE with perfect correctness and € ~ qpy+/€pp. Jiang, Zhang,
Chen, Wang ,and Ma [JZC " 18] use FO and obtain their KEM from OW-CPA PKE and € =~ qH/€bb-
Jiang, Zhang, and Ma [JZM19a] achieve the same bound as those by Jiang et al. [JZC" 18] and Saito et
al. [SXY'18] by using the same assumptions and FO with explicit rejection. Ambainis, Hamburg, and
Unruh [AHU19] prove an improved variant of the original O2H lemma (semi-classical O2H lemma) and
its bound is €4 ~ /qH /€ (the query loss is improved). The semi-classical O2H lemma leads to KEM
with improved bounds in the query part [AHU19, HKSU20, JZM19b]. Bindel et al. [BHH " 19] prove the
double-sided O2H lemma whose bound is €5 ~ /€5. They use FO to obtain their KEM from IND-CPA
PKE with injectivity, but its bound is essentially the same as that of schemes using the semi-classical
O2H lemma. Kuchta et al. [KSS™'20] prove O2H with MRM and obtain their KEM from IND-CPA PKE
with injectivity via FO, and € ~ q%{be-

SPrecisely speaking, the FO transformations studied in the context of QROM are somewhat different from the original FO
transformation [FO13].



1.4 Technical Overview

We provide the technical overview of this work. Our goal here is to show that the KDM security in the
QROM of the PKE scheme Us; grp (T(PKE, Genc), H)® can be reduced to the IND-CPA security of the
underlying PKE without square root security loss. Roughly speaking, the difficulty is that in the setting
of KDM security, double-sided O2H lemmas [BHH " 19, KSS*20] cannot be applied straightforwardly,
which is currently the only tool that enables us to circumvent square root security loss in the QROM.

We first explain how we circumvent square root security loss and prove the KDM security in the
QROM of the PKE scheme U;; grp = Usy g1p (dPKE, H) whose ciphertext is described as

(dEnc(pk,s), H(s) ®&m),

where dEnc is the encryption algorithm of a deterministic PKE scheme dPKE with the message space
M, s < M, and H is a random oracle. We identify that the KDM security in the QROM of Ufn‘,ﬂTp
can be reduced without square root loss to the security notion of dPKE that we call seed-dependent
message one-wayness (SDM-OW security). Then, we explain that the SDM-OW security in the QROM
of a tweaked version of T = T(PKE, Gepc) can be reduced to the IND-CPA security of the underlying
PKE scheme PKE without square root security loss. We call the tweaked version T transformation
with hash key generation Takg = Tukg(PKE, (Gkg, Genc)) Where Gyg and Gepc are random oracles.
From these facts, we see that the KDM security in the QROM of UTJ,;,UTP(THKG(PKE, (Gene,Gxg)), H)
can be reduced to the IND-CPA security of PKE without square root security loss. Finally, we state
that the KDM security of UL g1p(T(PKE, Genc), H) immediately follows from the KDM security of
UrJ_n,UTP (THKG (PKE/ (Gencr Gkg) ), H) .

Below, we start with how to prove the KDM security of U#;,OTP in the classical ROM. For simplicity,
in this overview, we consider the following simplified KDM security. Given a ciphertext of f;(sk), any
adversary cannot predict b correctly better than random guessing, where b <— {0, 1} is the challenge bit
and fp and f1 are any a-priori fixed two functions. The actual KDM security requires indistinguishability
holds for multiple pairs of functions adaptively chosen by an adversary under multiple public and secret
key pairs.

KDM security of U,Jn-,OTP in the classical ROM. Let 4 be an adversary. A is given the challenge
ciphertext and the random oracle access, which are described as

CT : (dEnc(pk,s), H(s) @ fy(sk)) and RO : H(x).

We first make a conceptual change to the security game so that the challenge ciphertext and the random
oracle are described as

ud fp(sk) (if x =s)

CT : (dEnc(pk,s),u) and RO:V(x)= {H(x) (otherwise)

where u is a uniformly chosen value independent of H and fj,(sk). We can confirm that this is a purely
conceptual change since V behaves as a random function and the challenge ciphertext is computed as
(dEnc(pk,s), V(s) @ fp(sk)) = (dEnc(pk,s), u). Therefore, it does not change 4’s advantage. Then,
we further change the security game so that 4 can access to H instead of V, but the challenge ciphertext
is still generated using V. Thus, the challenge ciphertext is not changed from (dEnc(pk, s), ). In other
words, except for the generation of the challenge ciphertext, we program the output value of the random
oracle at point s from V(s) = u & f;(sk) into H(s). The view of 4 is now

CT = (dEnc(pk,s),u) and RO : H(x).

6 We again note that we use variants of T and U transformations defined by [BHH " 19] in this work.



We see that in the final game, the challenge bit b is completely hidden from the view of 4, and thus
4’s advantage is 0. Therefore, we must estimate how much the advantage of 4 is changed by the above
programming of the random oracle. From the difference lemma’, this can be bounded by the probability
that 4 queries s to H in the final security game. In the final game, information of f},(sk) is completely
eliminated from the view of 4. Thus, we can use the security of dPKE in order to estimate the probability.
Concretely, the probability is estimated by using the OW-CPA security of dPKE. This completes the
proof. Of course, square root security loss does not occur in this proof.

KDM security of U#DTP in the QROM? When we try to prove KDM security of U,{;’OTP in the
QROM, we need a different tool from the difference lemma. This is because “the probability that 2
queries s to H” is not well-defined in this case since 4 can make a query to the random oracle in
super-position. In the QROM, in many cases, we can use one-way to hiding (O2H) lemma [Unr15] and its
variants [AHU19, BHH" 19, KSS"20] as drop-in replacements of the difference lemma in the security
proof done in the classical ROM. Roughly speaking, the O2H lemma guarantees that there exists an
extractor D such that the distinguishing gap caused by a programming of a quantumly-accessible random
oracle can be bounded by the probability that 9 extracts the programmed point. O2H lemma is classified
into two categories. The first one is a single-sided O2H lemma where D can access either pre-programmed
or post-programmed random oracles. The other one is a double-sided O2H lemma where 2 can access
both of them. In order to circumvent the square root security loss, we currently need to use double-sided
O2H lemma proposed in [KSS20] called O2H with measure-rewind-measure (MRM) lemma.

Suppose to prove KDM security of U%/OTP in the QROM, we follow the same strategy as the case of
the classical ROM (i.e., make a conceptual change and program V into H) and use O2H lemma instead of
the difference lemma. Since our goal here is to prove the KDM security of Ufn-,UTp in the QROM without
square root security loss, we use O2H lemma with MRM. By doing so, we can say that there exists a QPT
extractor D such that

‘Pr [b +— ﬂl'w(z)} —Pr {b — alf) (z)} ‘ <4d-Pr [s — plVH) (z)},

where z = (dEnc(pk, s), u) and d is the query depth of 4 to the random oracle.® Thus, if we can in
turn bound the probability Pr [s — plV.H) (z)} by using the security of the underlying dPKE, we can

complete the entire security proof. However, it turns out that it cannot be done straightforwardly using the
OW-CPA security of dPKE as before. The reason is that since D has access to not only H but also V' that
has information of f;(sk), it is not clear whether we can use the OW-CPA security of dPKE. Recall that
in the proof in the classical ROM case, when estimating “the probability that 4 queries s to H” using the
OW-CPA security of dPKE, information of f,(sk) is eliminated from the view of 4 since 4 does not have
access to V.

In summary, in the proof in the classical ROM, we can successfully reduce the KDM security of
Ui,cm: to the OW-CPA security of dPKE by eliminating information of f;(sk) using programming of the
random oracle. However, in the case of the QROM, if we use O2H with MRM lemma, it seems difficult to
eliminate the information of f;,(sk) by programming the random oracle. This is because we finally need
to handle the extractor © who can access both pre-programmed and post-programmed random oracles.

Note that even if V does not have information of fj(sk), it might not be clear whether an OW-CPA
adversary can simulate two random oracles V and H at the same time for D. The reason is that the
differing point s of the two random oracles is the solution of the OW-CPA game itself. This problem can
be handled by using the correctness of dPKE. As shown by [LW21], the correctness of dPKE implies
that under a randomly generated key (pk, sk), a randomly generated message m does not have a collision,

"The lemma states that if Pr[A A =C] = Pr[B A =C], |Pr[A] — Pr[B]| < Pr[C] holds for any events A,B, and C.
8The notation 4/©) indicates that 4 is allowed to make a query to O in super-position. Also, for the definition of query depth,
see Section 3.



that is another message m’ such that dEnc(pk, m) = dEnc(pk,m’), with overwhelming probability. If
ct = dEnc(pk, s) has unique pre-image s, the OW-CPA adversary can check the condition “if x = s” by
checking “if dEnc(pk, x) = ct” (in super-position), thus can simulate V and H at the same time if V
does not have information of f,(sk).

Reduction to SDM-OW security. Although it seems difficult to bound the probability Pr [s — plVH) (z)]

using the OW-CPA security of dPKE, we show that it can be bounded if dPKE satisties SDM-OW security
introduced in this work. Hereafter, we assume that the message space M of dPKE is an abelian group with
the operation “4- and the random coin space of the key generation algorithm dKG of dPKE is contained
in M. Then, SDM-OW security is a security notion that guarantees that given (s, dEnc(pk,r + s)), an
adversary cannot compute 7 + s, where s «+— M, and r € M is the random coin used to generate (pk, sk)
(i.e., (pk,sk) + dKG(14;7)).

The estimation is done after adding the following changes to z and V that do not affect the view of D.
First, we replace s in z and V with ¥ + s, where r € M is the random coin used to generate (pk, sk).
Namely, we change z and V' as

ud fp(sk) (if x=r+s)

H(x) (otherwise). W

z = (dEnc(pk,r +s),u) and V(x)= {

This change does not affect the view of D since s is chosen uniformly at random and independently of r.
Then, we further replace V' with the following

V(x) = {u@fb(x) (if x:'r—i—s) )
H(x) (otherwise),
where f, is a function that is given x as an input, computes (pk, sk) <— KG(1%; x —s), and outputs f;(sk).
We can check that V in Equation (1) and V in Equation (2) are functionally equivalent. Thus, this change
also does not affect the view of D. Moreover, we finally replace the condition “if x = s 4 #” in V with “if
dEnc(pk, x) = dEnc(pk, 7 +s)”. As noted before, this can be justified from the correctness of dPKE.
We see that by the above changes, z and V (i.e., the entire view of D) can now be simulated by an
SDM-OW adversary B who is given (s, dEnc(pk, 7 + s)). Moreover, B can break the SDM-OW security
if the simulated 9 successfully extracts the differing point of V and H, that is, » + s. This means that

Pr [s — plV.H) (z)} can be bounded by using the SDM-OW security of dPKE.

From the above arguments, we see that the KDM security of Uimp in the QROM can be reduced to
the SDM-OW security of dPKE without square root security loss.

SDM-OW security of a variant of T.  We next explain the SDM-OW security of Taxg = Take(PKE, (Gxg, Genc))
can be reduced to the IND-CPA security of the underlying PKE scheme PKE without square roof security

loss, where Gyg and Genc are random oracles. Tygg is a tweaked version of T = T (PKE, Genc) transfor-

mation. T transformation converts a (randomized) IND-CPA secure PKE scheme into an OW-CPA secure
deterministic PKE scheme. The encryption algorithm of T is described as Enc(pk, m; Genc (1)), where

Enc is the encryption algorithm of the underlying PKE. The key generation and decryption algorithms of

T are those of PKE themselves. In Tyxc, we also generate a key pair (pk, sk) by using a random coin
generated by the random oracle Gy, that is, (pk, sk) < KG(1%; Gig(7)), where 7 < M.

Bindel et al. [BHH " 19] showed that the OW-CPA security of T can be reduced to the IND-CPA
security of PKE without square root security loss. The important thing is that the target security notion is
one-wayness (not indistinguishability) here. Essentially, Bindel et al. avoided the square root security
loss by relying on the fact that if the target security notion is one-wayness and the starting security notion



is indistinguishability, we can avoid square root security loss by using single-sided O2H lemma called
semi-classical O2H lemma [AHU19]. In this work, we show that such a reduction to IND-CPA security
without square root loss is possible even when we prove Tykg’s SDM-OW security, which can be seen as
one-wayness for a kind of key dependent messages. In fact, there is no difficulty based on the circularity
issue as before since we use single-sided O2H lemma in this step, not double-sided one. Roughly speaking,
when we use single-sided O2H lemma, we can eliminate correlations between keys, encryption random
coins, and plaintexts by random oracle programming in the security proof even in the context of QROM.
We give the overview of this proof in Section 5.2. More specifically, we provide a high-level idea of how
to solve the correlations after we describe a few hybrid games for the proof, and complete the proof.

The KDM security of U;; o5 (T(PKE, Genc), H).  From the discussions so far, we see that the KDM
security of Uy g1p (Tike (PKE, (Gig, Genc)), H) can be reduced to the IND-CPA security of PKE without
square root security loss. This immediately implies the same holds for U, grp(T(PKE, Genc), H).
This is because adversaries cannot detect whether the public and secret key pair is generated using
a random oracle or not. The KDM security of Uy, gp(T(PKE, Genc), H) can be reduced to that of
U%,DTP(THKG(PKE/ (Gkgf Genc)), H).

Some remarks. We finally make some remarks.

* In the actual security game of KDM security, an adversary can choose a pair of functions ( fo, f1)
adaptively and obtain a ciphertext of fj,(sk) multiple times under the existence of multiple key
pairs. Also, to capture a wide range of usage scenarios, we allow those functions to access random
oracles. We handle these issues by using adaptive reprogramming technique for QROM [Unr14] and
introducing a security notion we call SDM-OW-RSA security which is an extension of SDM-OW
security.

* Qur proof technique is also compatible with KDM-CCA security. Concretely, we can prove the KDM-
CCA security of a PKE scheme constructed by using U;y <% = ;L *eveont (dPKE, H) [BHH " 19]
as KEM and OTP-then-MAC as DEM without square root security loss. We assume the underlying
dPKE is SDM-OW-RSA secure and additionally satisfies injectivity. The security proof is a
combination of our proof for the KDM security of Uimp and the proof for the IND-CCA security

of U;5 Y™ by [BHH' 19, KSST20]. Thus, we mainly focus on KDM-CPA security in the main
body, and we provide the results on KDM-CCA security in Appendix B.

As shown by [BHH " 19], Ui’keyconf and U;,KZ are IND-CCA secure KEMs that are compatible
with double-sided O2H lemma such as O2H lemma with MRM. To use U,J‘,l’keyconf as the KEM
part in the above construction is essential. If we use U;ﬁ as the KEM part, it seems difficult to
prove the KDM-CCA security of the construction. U,’fl returns a random value generated by using
pseudo-random functions (PRF) if the decryption algorithm detects a given ciphertext is not valid
to make it possible to simulate the decryption oracle without using secret keys. In the KDM-CCA
security game of a PKE scheme whose KEM part is Uﬁ, the keys of PRF are also encrypted. In
that case, we cannot use the security of PRF and cannot simulate the decryption oracle. It is an
interesting open problem to prove KDM-CCA security of a PKE scheme whose KEM part is U;ﬁ
without square root security loss.

* Our proof strategy explained so far can be realized more easily for SKE where the secret key is
used for encryption. A ciphertext of a simple SKE scheme is (s, H(sk||s) & m), where H is a
random oracle. The simple scheme has a good structure to apply our proof strategy because the
secret key sk can be recovered from the differing point sk||s when programming the random oracle
in the security proof. Zhang [Zhal9b] showed the non-adaptive KDM security of the SKE scheme



. . 1y (4, qxan,qf,¢ . . .
with security bound %, where ¢ is the number of random oracle queries, Jyan is

the number of KDM queries, g is the number of random oracle queries by KDM functions, 14
is the number of secret keys, and A is the length of sk. Using our proof strategy, we can prove
the non-adaptive KDM security of the SKE scheme with security bound roughly w.
We formally prove it in Appendix C. The proof of this is much easier than the proof of our main

construction Ui,oTP- The former can be a warming-up for the latter.

2 Preliminaries

2.1 Notations

In this paper, for a finite set X and a distribution D, x <— X denotes selecting an element from X uniformly
at random, x <— D denotes sampling an element x according to D. Let y < A(x) denotes assigning
to y the output of a probabilistic or deterministic algorithm A on an input x. When we explicitly show
that A uses randomness 7, we write iy <— A(x; r). When A is allowed to access to an oracle O, we write
y < AO9(x). Let [a] and [a, b] denote the sets of integers {1,--- ,a} and {a,--- ,b}, respectively. A
denote a security parameter. PPT and QPT algorithms stand for probabilistic polynomial-time algorithms
and polynomial-time quantum algorithms, respectively. Let negl denote a negligible function.

2.2 Public-Key Encryption

A public-key encryption (PKE) scheme PKE is a three tuple (KG, Enc, Dec) of PPT algorithms. Let M
be the message space of PKE. The key generation algorithm KG, given a security parameter 1%, outputs a
public key pk and a secret key sk. The encryption algorithm Enc, given a public key pk and message
m € M, outputs a ciphertext CT. The decryption algorithm Dec, given a secret key sk and ciphertext
CT, outputs a message /i1 € { L} U M.

Definition 2.1 (Correctness of PKE). We say that PKE is §-correct if

IE | max Pr[Dec(sk, Enc(pk,m)) # m]|(pk,sk) « KG(1*)| <4 .

meM

If PKE is constructed in the random oracle model, the expectation is taken over the choice of (pk,sk)
KG(1") and the random oracle.

We say that PKE is deterministic PKE if Enc(pk, -) is a deterministic function. We introduce the
correctness notion that is specific to deterministic PKE. In addition to the ordinary correctness above, it
requires that under a randomly generated key (pk, sk), a randomly generated message m does not have a
collision, that is another message m’ such that dEnc(pk, m) = dEnc(pk, m’). This correctness notion is
useful when we use double-sided O2H lemmas [BHH ™19, KSS*20].

Definition 2.2 (Correctness of deterministic PKE). We say that a deterministic PKE scheme dPKE =
(dKG, dEnc, dDec) with the message space M is (81,02)-correct if it is d1-correct and it holds that

Pr[Im’ € M : dEnc(pk,m') = dEnc(pk, m)|(pk,sk)  dKG(1"), m « M] <3, .

If dPKE is constructed in the random oracle model, the probability is taken over the choice of
(pk, sk) < dKG(1"), m < M, and the random oracle.

We introduce a multi-instance and multi-challenge version of IND-CPA security for PKE.



Definition 2.3 (IND-CPA security for PKE). Let PKE = (KG, Enc, Dec) be a PKE scheme. We define

Expi;,‘i'E”‘E';pa (1%) for an adversary 4 as follows.

Initialize: First, the challenger chooses a challenge bit b <— {0,1}. Next, the challenger generates
(pkF, sk¥) <= KG(11) for every k € [{]. The challenger executes b’ < ﬁlOIND((pkk)ke[(g]).

Omp: On the i-th call with input (k;, m;o, m; 1), where k; € [{] and |m;o| = |m;;
Enc(pk, m; ;).

, it returns ct; <

Finalize: The challenger outputs 1if b = b' and 0 otherwise.

We say that PKE is IND-CPA secure if for any polynomial £ = {(\) and QPT adversary 4, we have
ind-m- ind-m-
Adv';KE%,;pa A) = ‘Pr[l — ExpgKEr},;pa(l)‘)} — %‘ = negl(A).
We introduce the definition of KDM-CPA security for PKE. In the main body of the paper, we mainly
focus on KDM-CPA security. We provide the definition of KDM-CCA security in Appendix B.

Definition 2.4 (KDM-CPA security for PKE). Let PKE = (KG, Enc, Dec) be a PKE scheme. We define

Explgc:("é'lf';f’ (1*) for an adversary 4 as follows.

Initialize: First, the challenger chooses a challenge bit b < {0,1}. Next, the challenger generates
(pkK, skk) < KG(1%) for every k € [{]. The challenger sets sk := (sk',...,sk"), and executes
b 2% ((pk)iern).

Oxpu: On the i-th call with input (k;, fio, fi1), where k; € [{] and f; and fi, are efficiently computable
functions with the same output length, it returns ct; < Enc(pk®, f; ,(sk)).

Finalize: The challenger outputs 1ifb = b' and 0 otherwise.

We say that PKE is KDM-CPA secure if for any polynomial £ = {(\) and QPT adversary A4, we have

kdm-cpa
AdVPKE,Z,F;I (A) =

- 1
Pr [1 — Exp'é?("é/z’ﬁ(l/\)} — 2' = negl(A).

Remark 2.5 (KDM security in QROM). In order to capture a wide variety of situations, we allow KDM
functions to access to random oracles if the scheme is constructed in the (quantum) random oracle model.
We allow only classical access random oracles for KDM functions, while adversaries can access random
oracles in super-position. This setting is sufficient when honest entities are classical.

2.3 SDM-OW-RSA Security

We introduce a new security notion seed-dependent message one-wayness against related seed attacks
(SDM-OW-RSA security). This notion plays a crucial role in achieving KDM security from IND-CPA
security in the QROM without square roof security loss.

Definition 2.6 (SDM-OW-RSA security for PKE). Ler PKE = (KG, Enc, Dec) be a PKE scheme such
that the message space M is an abelian group with the operation 4, and the random coin space of KG is
M. We define Exp,sgdk"é 2"’;;:;1(1” for an adversary A4 as follows.

Initialize: The challenger first generates v < M. The challenger then generates A* < M and
(pkF,skX) <= KG(1%;7 + A¥) for every k € [{]. Next, for every k € [{] and i € [qsan), the

challenger generates s; . <— M and computes ct;; <— Enc (pkk, r+ Si,k)- Finally, the challenger

executes T + ﬂ((pkk, Ak)ke[f]/ (Si,k/ Cti,k)ie[qsdm],ke[f})~

10



Finalize: The challenger outputs 1 if and only if T contains 1" such that v' = r + s, holds for some
i € [Gsan) and k € [1].

We say that PKE is SDM-OW-RSA secure if for any polynomial ¢ = ¢(A) and Gsan = Gsam(A) and
OPT adversary 4, we have

AdvETE o2 ()\) = Pr [1  Exppie = (1 )} = negl(A).

3  Quantum Random Oracle and Useful Lemmas

Given a function H : X — Y, a quantum-accessible oracle O of H is modeled by a unitary transformation
Uy operating on two registers in and out, in which |x) |y) is mapped to |x) |y & H(x)), where & denotes
XOR group operation on Y. Following [AHU19, BHH " 19, KSS™20], we model a quantum algorithm 4
making parallel queries to a quantum oracle O as a quantum algorithm making 4 < g queries to an oracle
O®" consisting of n = q/d parallel copies of oracle O. Given an input state of 7 pairs of in/out registers
|x1) |y1) <+ - |Xn) |yn), the oracle O®™ maps it to the state |x1) [y1 @ H(x1)) - -+ |xn) [yn ® H(xy)). We
call d the algorithm’s query depth, n the parallelization factor, and 4 = 7 - d the total number of oracle
queries. We write 419) to denote that the algorithm 2’s oracle O is a quantum-accessible oracle.

Simulation of quantum random oracles. In this paper, following many previous works in the
QROM, we give quantum-accessible random oracles to reduction algorithms if needed. This is just a
convention. We can efficiently simulate quantum-accessible random oracles by using the compressed
oracle technique [Zhal9a].

3.1 One-Way to Hiding (O2H) Lemma

Definition 3.1 (Punctured oracle). Let F : X — Y be any function, and S C X be a set. The oracle
F\ S(“F punctured by S”) takes as input a value x € X. It first computes whether x € S into an auxiliary
register and measures it. Then it computes F(x) and returns the result. Let Find be the event that any of
the measurements returns 1.

Lemma 3.2 (Semi-classical O2H [AHU19, Theorem 1]). Let G, H : X — Y be random functions, z
be a random value, and S C X be a random set such that G(x) = H(x) for every x ¢ S. The tuple
(G, H, S, z) may have arbitrary joint distribution. Furthermore, let 4 be a quantum oracle algorithm.
Let Ev be any classical event. Then we have

'\/Pr[Ev : 410) (z)] — \/Pr [Ev A —Find : }4|H\5>(Z)]‘ < \/(d +1) - Pr[Find : 2I"\%)(2)] ,

where d is the query depth of 4 for G and H \ S.

Lemma 3.3 (Search in semi-classical oracle [AHU19, Theorem 2]). Let H : X — Y be a random
function, let z be a random value, and let S C X be a random set. (H, S,z) may have arbitrary joint
distribution. Let A be a quantum oracle algorithm. If for each x € X, Pr[x € S] < € (conditioned on H
and z), then we have

Pr [Find : ﬂ‘H\S)(z)} < 4ge ,

where q is the number of queries to H \ S by 4.

Note that the above lemma is originally introduced in [AHU19], but we use a variant that is closer to
Lemma 4 in [BHH " 19].

11



Lemma 3.4 (Adapted version of O2H with MRM [KSS"20, Lemma 3.3]). Let G,H : X — Y be
functions, and S C X be a set such that G(x) = H(x) for every x ¢ S. Also, let z be a value and Oqyyx
be a function. The tuple (G, H, S, z, Oaux ) may have arbitrary joint distribution. Furthermore, let 4 be a
quantum oracle algorithm. Then we can construct an algorithm D such that

e The running time of D is roughly three times longer than that of 4. Moreover, if A makes at most q
queries to G and H with query depth d, D makes at most O(q) queries to each of those oracles
with query depth O(d), and outputs a list T C X of size at most O(q).

e [t holds that
’Pr [1 - ﬂ‘G’Oa“">(z)} —Pr [1 - ﬂ‘H'Oa“X>(z)} ) <4d- Pr[T NS#AD: T« @‘GIH'OauO(z)} ,

where d is the query depth of A for the first oracle.

Remark 3.5 (On the difference from the original version). There are some differences between Lemma 3.4
and the original O2H lemma with MRM [KSS 20, Lemma 3.3]. First, in Lemma 3.4, we allow the
algorithm 4 to access to an additional oracle Oy, Which is not explicitly appeared in the original version.
Second, in Lemma 3.4, we explicitly state the size of D’s output T is at most O(q) while the original
lemma does not refer to the size of T. For the first one, it is easy to see that even if we introduce such an
additional oracle, the lemma still holds. (This extension is used in also [LW21].) For the second, the
concrete extractor 9 constructed in [KSS20] satisfies this condition. Since we need the upper bound on
the size of T in order to estimate the security bound in our proof, we place the requirement.

3.2 Additional Lemma

Lemma 3.6 ([Unr14, Lemma 13 in the eprint version]). Lez 6, () be a point function that outputs 1 if
and only if it is given x. Let &, () be the constant function that outputs O for all inputs. Let 4 be an
oracle QPT algorithm making at most q queries. Let py denote the final state of A together with x in the

following experiment: Pick x < M and run 41%). Let p1 denote the final state of A together with x in
29

VIMI

Using Lemma 3.6, we can prove the following lemma which is a multi-point version of adaptive
reprogramming of QRO used in the proof of adaptive O2H lemma [Unr14, Lemma 14 in the eprint
version]. The following lemma is needed to handle KDM queries that are adaptively made.

the following experiment: Pick x < M and run 41°1). Then, we have ||py — p1]|,, <

adp- pr0g<1/\)

Lemma 3.7 (Adaptive reprogramming of QRO). We consider the following Exp forog, A

Initialization The challenger first generates the challenge bit b < {0,1} and a fresh random oracle
Vo : X — Y. Then, the challenger executes b’ < ,q\vO)'OPr"g(l)‘), where Oprog is defined as
follows.

Oprog: On the i-th call, it first generates s; <— X. If b = 0, it just returns (s;, Vo(s;)). Otherwise, it
generates u; < Y, updates the random oracle A can access to into V; defined as

‘ PN o
Vi(x) = U (if x = s; holds for some j < i)
H(x) (otherwise),

and returns (s;, Vi(s;)) = (si, u;).
Finalization The challenger outputs 1ifb = b' and 0 otherwise.

Then, for any integer qprog and an oracle algorithm A that makes at most q queries to Oy, we have
‘PI‘ [1 — EX adp prog 1A } ‘ 2‘1 ‘7pr°g

12



Proof. We consider the following intermediate games for i* € [0, gprog)-

Game i*: This is the same as Exp;ldp_pmg(ﬂ) where b = 0 except that Opyog behaves as follows.

Oprog: On the i-th call, it generates s; <— X. If i > 7*, itreturns (s;, Vi (s;)). Otherwise, it also generates
u; <— Y, updates the oracle 4 can access to into V; defined as

o fw 3 <icx=s)
Vi(x) = {Vi)(x) (otherwise) ]

and returns (s;, V;(s;)) = (si, u;).

Game i*: This game is the same as Game i* except that for i < i*, V; is replaced with V;{s;« 1} defined
as
Vi{sit1}(x) = { u; (if Ij<i: x=s)
Vo(x) (otherwise)

Game i*: This game is the same as Game i* except that on the i* + 1-th call, Op;og updates the oracle 4
can access to into Vi1 defined as

Lt]' (ifEIjgi*—}—l:x:sj)
Vo(x) (otherwise)

Viepa(x) = {

and returns (sj41, Vis11(Si41)) = (Si+41, Ui=41), where U1 < Y. Also, on the i-th call for
i > 1" 4+ 1, Oprog returns (s;, Vi-11(s;)).

Let ONEy, ONEy, ONEx be the event that 4 outputs 1 as the final output in Game X, Game X, and
Game X, respectively. Game 0 (resp. Game gprog) is exactly the same as Expildp_prog(l)‘) where b = 0
(resp. b = 1). Thus, we have

Pr {1 — Expgsr?,;?ztog(l)\)] - ;‘
1
< 5 [Pr(onEy] — Pr[oNg,,., ]|
<1 Y |pr[owg] - Priowg,.y]]
2 iG[O,l/]progfl]
- % Y. |Pr[ONE;] — Pr[ONE]| + |Pr[ONE;] — Pr[ONE;] | + |Pr[ONE,] — Pr[ONE; ]| .

1€[0/prog—1]
We show that |Pr[ONE;«| — Pr[ONE;+|| < \/2% for every i* € [0, gprog — 1] using Lemma 3.6.

Consider the following oracle algorithm 3 that has oracle access to a function F : X — {0,1}.

B: B first generates a fresh random oracle Vo : X — Y. Then, B executes 4/V0)Opros (1*) just before 4
makes the i* + 1-th query to Opyog, Where Vj is defined as

Vi) = {J_ (it F(x) =1)

Vo(x) (otherwise)

and Oprog is simulated as follows.

13



Oprog: On the i-th call, it generates s; <— X. It also generates u; <— Y, updates the oracle 4 can
access to into VZ/ defined as

1 (if F(x) =1)
Vi(x) = q u; (if 3j<i: x=sj)
Vo(x) (otherwise)

and returns (s;, V(s;)) = (si, u;).

If F equals 6, (that is, a constant function that outputs O for all inputs), then V/ is functionally
equivalent to V;. If F equals Js,. ,, (that is, a point function that outputs 1 only for s;+), then V! is
functionally equivalent to V;{s;+,1}. B simulates Game i* (resp. Game i*) for 4 just before 4 makes the
i* + 1-th query to Oprog if F = 6 (resp. F = s, ). Thus, from Lemma 3.6, the trace distance between
the internal state of 4 in Game i* and that in Game i* at the point just before 4 makes i* + 1-th query to
Oprog can be bounded by \/2%. Moreover, the remaining procedures of Game i* and Game i* are exactly

the same. Therefore, we obtain |Pr[ONE;«| — Pr[ONE;]| < \/2%7\'
, we can obtain |Pr[ONE;] — Pr[ONE; ]| < —L.. Also,

e

we can see that the difference between Game i* and Game i* is only conceptual, and thus we have

Similarly to |Pr[ONE;:] — Pr[ONE;]

|Pr[ONE;-] — Pr [ONE;]| = 0.
Overall, we obtain ‘Pr [1 — EXp;::Z;Z;Og(]_)\)} _ %‘ < Wﬁ, U (Lemma 3.7)

4 KDM-CPA Security of U, with OTP as DEM

In this section, we show that the KDM-CPA security in the QROM of a PKE scheme U,i;’OTP =
U,LnloTp(d PKE, H) can be reduced to the SDM-OW-RSA security of the underlying dPKE without square
root security loss. Uy, grp is constructed by using U;; (dPKE, H) [BHH " 19] as KEM and OTP as DEM.
Since we focus on KDM-CPA security here, Ufn-,UTp omits the ciphertext validity check by re-encryption
in the decryption algorithm, which is performed in U;.. For the construction of U;;, see Appendix A.

4.1 Construction

Construction 4.1. Let dPKE = (dKG, dEnc, dDec) be a deterministic PKE scheme whose message space
is M. We assume that M is an abelian group and denote the operation in M as 4. Let H : M — {0,1}*
be a hash function. We construct Uy; orp = (KG, Enc, Dec) as follows.

KG(1"): Return (pk,sk) < dKG(11).
Enc(pk, m): Generate s <— M and compute ct <— dEnc(pk,s) and t = H(s) & m. Return CT = (ct, t).

Dec(sk, CT): Parse CT' = (ct/, '), compute s’ +— dDec(sk, ct’), and return L if s’ = L. Otherwise,
return ' @ H(s').

We see that if dPKE is (61, 82)-correct, then Uy; oqp is d1-correct for any 4.
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4.2 Security Proof

We prove the following theorem.

Theorem 4.2. Let { = ((A) be a polynomial and dPKE be a (81,8, )-correct deterministic PKE. Let 4 be
a QPT adversary against the KDM-CPA security of Uy, grp = ijﬁ,m"p (dPKE, H) making q (superposition)
random oracle queries to H with query depth d and qxan (classical) queries to Oxpu. Also, let q r be the
upper bound of the total number of (classical) random oracle queries made by KDM functions. Then,
there exists a QPT adversary B such that

4(g +
N (q qf)qkdm+

VIM]

Proof. We complete the proof using hybrid games. Let SUCx be the event that the final output is 1
in Game X. We assume that 2 makes at least one KDM query before the first set of random oracle
queries and between d*-th set of random oracle queries and (d* + 1)-th set of random oracle queries for
every d* € [d — 1]. This assumption is without loss of generality in the sense that any adversary can be
transformed into one satisfying this condition without changing the number and depth of random oracle
queries.

kdm-cpa A sdm-ow-rsa A
Advui DTP/‘el'q(l ) < 4d- AdVdPKErélqkdmrﬂ(]' )

(4d +1) - Guan - 02 (3)

Game 1: This is Exp“™? (1%).

Uﬁ,(mwfﬂq

Initialize: First, the challenger chooses a challenge bit b <— {0,1}. The challenger also generates
a fresh random oracle H. Next, the challenger generates (pk, sk*) <— dKG(1%) for every
k € [¢]. The challenger sets sk := (sk!,...,sk’) and pk := (pk’, ..., pk"), and executes
b < alt) O (pk). Ogpy behaves as follows.

Okxpu: On the i-th call with input (k;, f;o, fi1), it returns CT; generated as follows.

1. Generate s; < M and compute ct; dEnc(pkkf,si).
2. Compute t; = H(s;) @ fl (sk).
3. Set CT; + (Cti, ti).

Finalize: The challenger outputs 1 if b = b’ and 0 otherwise.

Game 2: This is the same as Game 1 except the behavior of Ogpy. In this game, Ogpy adaptively
reprograms the random oracle that 4 (and functions queried by 4) can access every time it is
invoked. The detailed description is as follows.

Oxpu: On input (k;, fio, fi1), it returns CT; generated as follows.
1. Generate s; < M and compute ct; dEnc(pkkf,si).
2. Generate u#; < {0,1}* and compute t; = u; @jﬁ’l(sk).
3. Set CT; + (Cti, tz').

Also, it updates the random oracle into

vy =4 six=s)
H(x) (otherwise),

From Lemma 3.7, we have |Pr[SUC;| — Pr[SUC,|| = %‘
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Game 3: This game is the same as Game 2 except that u; is replaced with u; © ]"i‘/bi’l (sk) for every
i€ [qkdm]. More concretely, the behavior of Okpy is changed as follows.

Okpu: On input (k;, fio, fi1). it returns CT; generated as follows.
1. Generate s; < M and compute ct; < dEnc(pk",s;).
2. Generate u; < {0,1}* and set t; < u;.
3. Set CT; + (Cti, tz').

Also, it updates the random oracle into

Vioq . . .
u; @ f.1(sk) (if 3j<i:x=s;
Vi(x) = { f],b (sk) (if 3j < )
H(x) (otherwise),
This change does not affect the view of 4 since u; is chosen uniformly at random and independently
offi‘gfl(sk) for every i € [qxan]. Thus, we have |Pr[SUC;] — Pr[SUC3]| = 0.

Game 4: This game is the same as Game 3 except for the following. The challenger first generates r <— M.
The challenger then generates Al, ..., A’ <+ M and generates (pk",sk) < dKG(14; 7 + A¥) for
every k € [/].

The above change does not affect the view of 4 since the distribution of (pkk,skk) ke[ does not
change. Thus, we have |Pr[SUC3] — Pr[SUC4]| = 0.

Game 5: This game is the same as Game 4 except that s; is replaced with r + s;. More concretely, the
challenger generates ct; as ct; <— dEnc(pkX,r + s;) for every i € [qyan]. Also, the challenger sets
V; as

Vi) = {4 @ filsk) (3 <i:x=r+s)
Z H(x) (otherwise)

for every i € [qxdn)-

We have |Pr[SUC,] — Pr[SUCs]| = 0 since this change also does not affect the view of 4.

From the next game, we use the function ﬁ p described in Figure 1. fl is designed so that it computes
fx; '(sk) if it has oracle access to H and is given r + s; as an input. For this aim, fz- » sequentially
computes V; from Vi, V3, ..., V;_1 using H. They are denoted as ‘7] in the description of ﬁz Here, the
computation of V by f ' is local, and thus f ., does not perform the updates of the random oracle that 4
can access.

Game 6: For every i € [fxan|, we define a function . Then, Game 6 is the same as Game 5 except that
the challenger sets V; as

Vi(x) = {”f@fﬁ;(x) (if Ij<i:x=r+sj)
l H(x) (otherwise)

for every i € [qxdn)-
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FE sy Sty (B)rere] ()

Hardwired: (S]', u]'/fj,h)je[i]/(Ak)kG[f,]'
Oracle H.
Input: x € M.

1. Compute w = x — s; and (pkX, sk¥) +— dKG(1%;w + AF) for every k € [£], and set sk = (sk',...,sk").
2. Repeat the following from j = 1 toi — 1, where Vo = H.

(a) Compute v; = u; eaf].‘;;’l(sk).

(b) Set V; as

~ : i i . i’ < i ! = 5
Vj(x/) _ )y / (if 3j 6 [Gxan] : j <j and x w—l—s])
H(x') (otherwise).

3. Return fl.‘z’l (sk).

Figure 1: The description of ﬁ[_{]

Since ﬁ-,b correctly computes fx;'*l (sk) if it has oracle access to H and is given ¥ + s; as an input
for every i € [qxan|, the functionality of V; does not change between Game 5 and 6 for every i € [Gxan]-
Therefore, we have |Pr[SUC5] — Pr[SUCe|| = 0.

Game 7: This game is the same as Game 6 except that for every i € [qxan], V; is defined as

Vi(x) = wj @ fl(x) (if 3j <i: dEnc(pkh,x) = ct;)
l H(x) (otherwise).

If ct; has a unique pre-image r + s; under pkk" for every i € [qxanm|, the functionality of V; does
not change for every i € [gxan| between Game 6 and 7. Thus, from the correctness of dPKE, we have
‘Pr[SUCd — PI‘[SUC7” < Jxdm 0.

At Game 7, 4 can access to information of the challenge bit b only through d sets of random oracle
queries. Below, we use d more hybrid games and remove information of b from those d sets of random
oracle queries one by one.

Game 7 +d* (d* =1,...,d): Thisis the same game as Game 7 except Oxpy defers updating the random
oracle. Concretely, Ogpy does not update the random oracle until 4 makes the d*-th set of random
oracle queries. The detailed description of Okpy is as follows.

Oxpu: On input (k;, fio, fi1), it returns CT; generated as follows.
1. Generate s; < M and compute ct; < dEnc(pkki,r +5i).
2. Generate u; < {0,1}* and set t; < u;.
3. Set CT; « (Ct,', ti).
Also, if 4 already makes d*-th set of queries to the random oracle, it updates the random
oracle into

V.(x) — uj Eij/\[,_i(x) (if EU <i: dEnC(pkkf,x> — Ct]')
Z H(x) (otherwise).
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We have ’Pr[SUCHd] — %! = 0 since in Game 7 + d, the view of 4 is completely independent of
b. In order to estimate |Pr[SUC;, s« 1] — Pr[SUCy, 4:]| for every d* € [d], we consider the following
procedure Setup,y:.

Setupy-: First, the challenger chooses a challenge bit b <— {0,1}. The challenger also generates a
fresh random oracle H. Next, the challenger generates (pkf, sk¥) «— dKG(1%; 7 4 AF), where
r < M and AF <~ M for every k € [¢]. The challenger sets pk := (pk?, ..., pk"), and executes
4/H)Orou (pk) just before 2 makes the d*-th set of random oracle queries. Oxpy behaves as follows.

Oxpu: On input (k;, fio, fi1), it returns CT; generated as follows.

1. Generate s; < M and compute ct; < dEnc(pk’,r +s;).
2. Generate u; < {0,1}* and set t; < u;.
3. Set CT; «+ (Cti, ti).

Let 4 makes i* KDM queries before d*-th set of random oracle queries. Then, the challenger sets
V.« as

Vi(x) = @ fl(x) (if 3j <i* : dEnc(pkY, x) = ct;)
l H(x) (otherwise)

and S = {x|3j € [i*] : dEnc(pk",x) = ct;}. The challenger also generates s; < M and
generates Ct; x ¢— dEnc(pkk,r + ;) forevery i € [i* + 1, qxan) and k € [¢]. The challenger then
sets

z = (|st), b, Pk, (A)eeig, (kis fip Sir ti )i (S Ctip)iei+1gealkel) » 4

where |st) is the internal state of 4 at this point. The challenger outputs (Vj+«, H, S+, z, Oaux = H).

Also, we consider the following QPT algorithm 4. that has oracle access to O € {V;-, H} and
Oaux = H.

42 Given an input z, 4+ parse it as Equation (4) and executes 210).O0x from 4’s d*-th set of random
oracle queries using |st) as the internal state of 4 at that point. 4;- simulates Okpy as follows.

Oxpn: On input (kj, fio, fi1). it returns CT; generated as follows.
1. Setct; < ctj, (and sets; <— s;,).
2. Generate u; < {0,1}* and set t; < u;.
3. Set CT; < (ctj, t;).

Also, it updates the random oracle that 4 can access to into

Viix) = @ fHi(x) (if 3j <i : dEnc(pkf,x) = ct;)
Z H(x) (otherwise).

When 4 terminates with output b’, 44 outputs 1if b = b’ and 0 otherwise.

Suppose we execute Setupg« and 4+ successively. They simulate the view of 4 in Game 7 + d* — 1

(resp. Game 7+ d*) if O = Vj« (resp. O = H). Also, 4, outputs 1 if and only if the output of

the simulated games is 1. Thus, we have Pr[SUC;, 4«_1] = Pr {1 — JZl{L?:V"*’O‘"‘“":m (2) : Setupd*} and
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Pr[SUCy, 4] = Pr [1 — ﬂt‘i?:H’Oa“":m (z) : Setu pd*} . From Lemma 3.4, there exists a QPT algorithm

D+ such that

IPr[SUC, 41 — Pr[SUCs,a:]| < 4 - Pr [T NSy #@ ‘ T ¢ ol HOwe=H) (Z),Setupd*} .
Note that 4;- makes queries to O € {V;:, H} with depth 1 by the following reason. 4;- is supposed to
simulate Game 7 + d* — 1 (resp. Game 7 4 d*) for 4 from the point that 4 makes d*-th set of random
oracle queries when 4+ accesses to O = Vj: (resp. O = H). The answers to 2’s (d* + 1) to d-th set
of random oracle queries are identical between Game 7 + d* — 1 and 7 + d*. (Here, 4 makes at least
one KDM query between the d*-th and (d* + 1)-th set of random oracle queries due to the assumption.
Thus, they are answered using an updated random oracle.) 4« can simulate them by using Oayx = H
and information included in z. Therefore, 4;: uses its oracle O only for answering to 4’s d*-th set of
random oracle queries, and thus 4;’s query depth to O is 1.

We bound the right-hand side probability. In order to bound it, using 2+, we construct the following
adversary B;- against the SDM-OW-RSA security of dPKE.

By-: Given pk = (pk',...,pkf), (AF);, and (Siks Ctij)ic|guan] kele]> Ba+ first simulates Setupg.. By
chooses a challenge bit b < {0,1} and prepares a fresh random oracle H. B;- then executes
g/H) Orou (pk) just before 4 makes the d*-th set of random oracle queries, where Opy is simulated
as follows.

Oxpu: On input (k;, fio, fi1), it returns CT; generated as follows.
1. Setct; < ctjy, (and sets; <— s;x,).
2. Generate u; « {0,1}* and set t; < u;.
3. Set CT; + (Ctl’, ti).

Let 4 makes i* KDM queries before d*-th set of random oracle queries. Then, B;« sets Vj- as

Vi (x) uj@fﬂ(x) (if 3j <i* : dEnc(pkbi,x) = ct;)
(x) = :
Z H(x) (otherwise).

By« also sets

z = (Ist), b, pk, (A )i, (Kis fipr Sis Ctis i)ie (i) (Sier Ctige)icliv 41 gumlkelt]) +

where |st) is the internal state of 4 at this point. Finally, B;: outputs T <« Vit H Oax=H) (2).
B;- perfectly simulates a successive execution of Setup,« and Dj;-. Also, in the simulated execution,
if TNS;+ # @ occurs and ct; has a unique pre-image 7 + s; under pkki for every i € [qxan|, By« Wins.
Thus, we have

PHT NS # @ T+ D)0 (2), Setupy.] < AdvVEEREI o (1Y) + fian - 62.

sdm-ow-rsa sdm-ow-rsa

From the discussions so far, by setting B as B+ such that AdvapRe . 5., (1M < AdVIRKRE [ g5 (11)
for every d* € [d], we see that there exists a QPT /B that satisfies Equation (3). J (Theorem 4.2)

5 SDM-OW-RSA Secure Deterministic PKE

In this section, we show that the SDM-OW-RSA security in the QROM of a tweaked version of T
transformation [BHH ™ 19] can be reduced to the IND-CPA security of the underlying PKE scheme. For
the construction of the original T transformation, see Appendix A.
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5.1 Construction

Construction 5.1. Let PKE = (KG, Enc, Dec) be a PKE scheme whose message space is an abelian group
M with the operation +. We also let the random coin space of KG and Enc be Ryg and Renc, respectively.
Let G = (Gug, Genc) be a pair of hash functions, where Gig : M — Ryg and Gene : M — Renc . We
construct T transformation with hash key generation Tgxe = Tuxe(PKE, G) = (dKG, dEnc, dDec) as
follows.

dKG(1%;7): Return (pk,sk) < KG(1%; Gyg(r)).
dEnc(pk, m): Return ct <— Enc(pk, m; Gepc(m)).
dDec(sk, CT): Return m <— Dec(sk, ct).

Recall that we define a deterministic PKE scheme is (41, ;)-correct if it is &1-correct, and under a
randomly generated key (pk, sk), the probability that a randomly generated message m has a collision, that
is, another message m’ such that dEnc(pk, m) = dEnc(pk, m’) is bounded by &,. Under this definition,
as shown by [LW21, Lemma 4], T(PKE, Gepc) is (J,20)-correct if PKE is d-correct for any 6. We
can easily see that the correctness of Tyye(PKE, G) can be reduced to that of T(PKE, Gepc), and thus
Tuke (PKE, G) is (9, 20)-correct if PKE is d-correct for any J.

5.2 Security Proof

We prove the following theorem.

Theorem 5.2. Let ¢ = () and Gsan = Gsan(A) be polynomials and PKE be a PKE scheme. Let A be a
QPT adversary against SDM-OW-RSA security of Tuke = Tuxe(PKE, G) making total q (superposition)
random oracle queries to Gyg and Genc with query depth d, and outputs a list of size at most t as the final
output. Then, there exists a QPT adversary B such that

sam-ow-rsa |n -m-cpa +t g S + 1

Proof. Without loss of generality, we assume that 2 makes random oracle queries to a single random
oracle G = Gig X Genc instead of separate two random oracles Gyg and Genc in the security games. Let
4beaQPT adversary that runs in the same way as 4 except that before it terminates, a computes and
discards G(r') for all ¥/ contained in 4’s final output T. Then, 4 makes at most q + t queries to G with
query depth d + 1, and we have AdVSTdHZ:,Z\;:;?ﬂ(A) = AdeTdHZ:; ?"L;’S:j;(/\). We estimate the latter using
hybrid games. Let SUCx be the event that the final output is 1 in Game X.

d A
Game 1: This is ExpT™ 2"[‘1’ drjaﬂ(l ).

Initialize: The challenger generates r <— M and generates (pk*, sk*) «— KG(1; Gyg(r + AF)),
where A* < M for every k € [¢]. Then, for every k € [¢] and i € [gsqan], the challenger
generates s;  <— M and computes ct; ; Enc(pkk, r + Sik; Genc (7 + ik )). The challenger
executes T < 416 ((pkk, Ak)ke[z}r (Siks Ctik)iclgean] keld))-

Finalize: The challenger outputs 1 if and only if T contains r’ such that ' = r + s, holds for
some i € []san) and k € [£].
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Game 2: This game is the same as Game 1 except that G = Gyg X Gepc is replaced with

uk (if Ik e[l] : x=r+A"
V(x) = qoix  (if i € [quan] andk € [{] : x =71 +5;x)
G(x) (otherwise),

where u¥, Uik < Rig X Renc forevery k € [{] and i € [qan].

We have |Pr[SUC;| — Pr[SUC;]| = 0 since this change does not affect the view of 4. Below, we let
S = {r+ A%Yeg U + sikticlal kel

Before proceeding the hybrid games, We provide the high level overview of the rest of games. In Game
2, the key generation randomness Gyg (7 + A¥) and encryption randomness Gepe (7 + s; k) correlate with
the encrypted plaintexts 7 + s; ,. Thus, next, at transition from Game 2 to 3, we eliminate the correlation
by programming the random oracle. Concretely, in Game 3, the above randomnesses are generated by
using V, but 4 can access to only the punctured oracle G \ S, not V. In order to justify the programming,
we use semi-classical O2H lemma (Lemma 3.2). By doing so, we can justify the programming without
square root security loss, and obtain Pr[SUC;] < (d + 2) Pr[Finds|, where Findx be the event that the
punctured oracle G \ S returns 1 in Game X. Thus, all we have to do is to bound Pr[Finds]. At Game 3,
from the view of 4, the key generation randomness and encryption randomness are uniformly random
strings that are independent of 7, that is, #* and 0; k. Namely, the correlation issue above are solved. Thus,
at transition from Game 3 to 4, we use the IND-CPA security of PKE, and eliminate information of »
from ct; ;. In Game 4, except the punctured oracle G \ S, r is completely hidden from the view of a.
Therefore, by using Lemma 3.3, we can bound Pr[Findy| and complete the proof.

Game 3: This game is the same as Game 2 except that 4 can access to the punctured oracle G \ S.

(pk¥, skk) and ct; ; are still generated using V for every k € [¢] and i € [gsan)-

Let Findx be the event that the punctured oracle G \ S returns 1 in Game X. From the definition of
4, we have Pr [SUC3 A —Findz] = 0. Thus, we have

\/Pr[sucy] = ‘\/Pr[SUCZ] — \/Pr[SUCs A —Finds|

By applying Lemma 3.2, we obtain

'\/Pr[sucz] - \/Pr [SUC3 A =Finds]| < \/(d +2) - Pr[Finds] .

Therefore, we also obtain Pr[SUC,| < (d + 2) Pr[Finds].

Game 4: This game is the same as Game 3 except that ct; ; is generated as ct; ;. < Enc(pkk, 0) for every
ke [f]andi € [gsgn)-

In order to estimate |Pr[Finds] — Pr[Findy]|, using 4, we construct the following QPT adversary B
against the IND-CPA security of PKE. In the description, a function Test takes a value x and a set X as
inputs and outputs 1 if x € X and 0 otherwise.

Initialize: Given (pk¥);, B first generates r < M. B then generates AK < M for every k € [/],
Six < M forevery i € [sqn] and k € [¢], and a fresh random oracle G. Next, for every i € [{sdn]
and k € [¢], B queries (k, 7+ s;¢,0) to its oracle Oryp and obtains ct; ;. Finally, B sets b’ = 0 and
executes T < 416\9) ((pk, Ak)kem, (Siks Ctik)ic(geanl kele])» Where G\ S is simulated as follows.
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G\ S: When 4 makes a (superposition) query |x) |y) to G \ S, B first computes |x) |y) | Test(x, S))
and measures |Test(x, S)). If the result is 0, B just returns |x) |y @& G(x)) to 4. Otherwise, B set
the value of b’ to 1, and returns |x) |y & G(x)) to 4.

Finalize: If 4 terminates, B terminates with output b’.

Let the challenge bit in Exp}QQ'E”;';Pa be b. B perfectly simulates Game 3 and 4 for 2 when b = 0
and b = 1, respectively. Also, B outputs b’ = 1 if and only if Finds and Findy occur in the simulated

Games. Thus, we have

AT (1) =

Pr[b = b'] — ;‘
= [Pr[p' = 1jb = 0] — Pe[s/ = 1p = 1]|

1
= SIPr{Finds] — PrlFindy]] -

Finally, we bound Pr[Find,]. In Game 4, conditioned on (pkF, A¥) kele) and (Sik, Ctik)ic(guml keld]>

we have Pr,. \[m € §] < % for any m € M. Thus, from Lemma 3.3, we obtain Pr[Find,] <
4(9+1)((gsan+1)
[M] )
Overall, we see that there exists a QPT B that satisfies Equation (5). I (Theorem 5.2)

6 Conclusion: KDM Security of FO Transformations

In the conclusion, we show that the KDM security in the QROM of FO transformations can be reduced to
the IND-CPA security of the underlying PKE scheme without square root security loss.

We first provide the security bound for the KDM-CPA security of the PKE scheme Uy, op (Tixe (PKE, G), H)
in terms of the IND-CPA security of the underlying PKE. In order to capture the most general setting, we
allow adversaries for the KDM-CPA security of Uy, orp (Taxe (PKE, G), H) and KDM functions queried
by them to access to not only H but also G. The security proof we provide in Section 4.2 still goes
through in that setting. Then, the following theorem holds.

Theorem 6.1. Ler ¢ = ((A) be a polynomial and PKE be a -correct PKE scheme. Let Axay be an
adversary for the KDM-CPA security of Uy; g1p(Take (PKE, G), H) making qxan KDM queries. Suppose
Ayan Mmakes at most qG (resp. qH ) super-position random oracle queries to G (resp. H) with query depth
dS (resp. d™). Also, suppose KDM functions queried by Zygn makes at most q? (resp. q}{ ) classical
random oracle queries to G (resp. H). Then, there exists a QPT adversary Aing such that

kdm-cpa A
Adv P 1
UVJE,UTP(THKG(PKE/G)/H)/fﬂkdm( )

PKE,?,4inq

: O@(gC +gH. (¢ +4%)) -2 +1
<4d"-0@d® +d" -47) <Z.Adv'"d'm'c”a(1)‘)+ @ a7 (0 a7)) L (e )>

M|
4(9" + 97) Ixan
M|

+ +2(4d" +1) - Gran - 9 . (©6)
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Proof. We estimate the number of queries to G made by B;« appeared in the proof of Theorem 4.2 when
Ayan is used inside of it. First, B;- make O(g%) queries with depth O(d®) in order to simulate queries to
G made by D;«. Also, every time Dy« makes a query to Vj«, By needs to make at most O (£ + q?) queries

to G with depth O(q?) in order for the computation of ﬁb Since Dy« makes at most O(g") queries to
Vi« with depth O(d!?), to simulate D;.’s queries to V;«, By needs to make at most O(g" - (¢ + q?))
queries to G with query depth O(d* - q?) Therefore, B; makes at most O(q + g - (£ + qu)) queries
to G with query depth O(d® + 4" - q?) This holds for every d* € [d]. Also, Since D+ outputs a list of

size O(g™), so does By for every d* € [d]. From this fact and Theorems 4.2 and 5.2, we see that there
exists a QPT 4;,4 that satisfies Equation (6). [ (Theorem 6.1)

Remark 6.2 (On the value of g% and qu .). Note that the values of qu and q}{ are determined depending on
usage scenarios and independent of the adversary’s behavior. For example, in the usage scenario where
we need only circular security such as anonymous credential [CLO1], we can set q? = qu = 0. In that

case, the multiplicative term of AdvEE_Er}:;E’; (1*) in Equation (6) is roughly the square of the query depth

of Ayqp to the random oracles. It is asymptotically the same as the multiplicative term appeared in the
proof of IND-CCA secure KEM using O2H lemma with MRM [KSS*20]. In order to capture a wide
range of applications, we allow KDM functions to access the random oracles in this work, but we think
q}? and q? are not large in many applications.

Let FO#DTP (PKE, Genc, H) be a PKE scheme constructed by combining the KEM U;5; (T(PKE, Genc ), H)
with OTP as DEM. We provide the formal description of T and U;; in Appendix A. From Theorem 6.1,
we can show that FOi (PKE, Gene, H) satisfies KDM-CPA security with asymptotically the same security
loss with respect to the underlying IND-CPA secure PKE as Equation (6). Concretely, we have the
following theorem.

Theorem 6.3. Let ¢ = ((A) be a polynomial and PKE be a PKE scheme. Let Axgn be an adversary for
the KDM-ATK security of FOy; g1p(PKE, Genc, H) where ATK € {CPA, CCA}. Then, it holds that for
atk € {cpa, cca}

0e—1)

Ad kdm-atk 1)\ < Ad kdm-atk 1/\ .
’ (1) < Ady a+

FO;J;Z,OTP (PKE,Genc,H),¢, Axan Urjﬁ,urp (Take (PKE,G),H),{, Acan

Proof. Suppose we modify the security game Expl;‘gﬂ'atkg - (1) so that the k-th key pair (pk¥, sk¥) is
m, TP/

generated by using Gig (%) as the random coin for KG for every k € [£], where Gyg : M — Ryg is a
random oracle and r* < M for every k € [¢]. If r!,..., 7’ are mutually different, then the distribution of
{ key pairs does not change by this modification. Thus, by the modification, 4x4,’s advantage is changed

) . . kdm-atk A
at most M We can see that the security game is now exactly Exp L (Taa(PKEG), H) A, ﬂkdm(l ).

Therefore, we obtain the theorem. [ (Theorem 6.3)

Thus, we see that the KDM-CPA security of FO;; grp (PKE, Genc, H) is reduced to that of Uz} g1p (Taxe

(PKE, G), H) with additional security loss ez(f/;ll‘) which is absorbed by the additive term of Equation (6).

Extension to KDM-CCA security. In the main body of this paper, we focused on KDM-CPA security.
Our proof technique is also compatible with KDM-CCA security. Concretely, we can prove the KDM-CCA
security of a PKE scheme constructed by using a variant of U called Uy *®7°°™ = U;;**Y°™ (dPKE, H)
as KEM and OTP-then-MAC as DEM without square root security loss if the underlying dPKE is
SDM-OW-RSA secure and additionally satisfies injectiveness. The security proof is a combination of
our proof for the KDM-CPA security of U;; grp and the proof for the IND-CCA security of Ujy keveent
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by [BHH " 19, KSS*20]. We provide the formal description of this construction and security proof for the
KDM-CCA security of it in Appendix B.

By following a similar argument as the case of KDM-CPA security, we can show that the KDM-CCA
security of the KEM FO;; "™ (PKE, Gene, H) = Up ™™ (T(PKE, Genc ), H) combined with OTP-
then-MAC as DEM, can be reduced to the IND-CPA security of PKE. The multiplicative term in the
security bound with respect to the underlying PKE is roughly the same as Equation (6) though some
additive terms are added to the security bound.
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1,k f N
A T,U:L, and U, ™ Transformations

We Recall the two transformations T and U that together yield FO. T and U are first introduced by
Hofheinz et al. [HHK17]. In this work, we adopt variants of T and U defined by Bindel et al. [BHH " 19].
The only difference between the transformations by Hofheinz et al. and those by Bindel et al. is that the
validity check by encryption in the decryption algorithm is performed as a part of T in the former while it
is performed as a part of U in the latter. Thus, the resulting FO is the same regardless of which definitions
of T and U we use.

Construction A.1 (T transformation). Let PKE = (KG, Enc, Dec) be a PKE scheme whose message space
is M. We also let the random coin space of Enc be Renc. Let Gene : M — Renc be a hash function. T
transformation T = T(PKE, Genc) = (KGr, Enc, Dect) is described as follows.

KGt(11): Return (pk,sk) < KG(1%).
Enct(pk, m): Return ct < Enc(pk, m; Gepc(m)).
Dect(sk, CT): Return m «— Dec(sk, ct).

Construction A.2 (U transformation). Let dPKE = (dKG, dEnc, dDec) be a deterministic PKE scheme
whose message space is M. Let H : M — {0,1}* be a hash function. A KEM scheme U;; =
U;- (dPKE, H) = (KGy, Ency., Decy ) ) is described as follows.

KGy, (11): Return (pk,sk) < dKG(1%).

Ency. (pk): Generate s <— M and compute ct < dEnc(pk, s). Return ct as a ciphertext and H(s) as a
session key.

Decy (sk, ct’): Compute s’ <— dDec(sk, ct’) and return L if s" = L or ct # dEnc(pk,s’). Otherwise,
return H(s').

Construction A.3 (U5 transformation). Let dPKE = (dKG, dEnc, dDec) be a deterministic PKE
scheme whose message space is M. Let H : M — {0,1}" be a hash function. A KEM scheme

Urjﬁlkeyconf — U#;'keyconf (dPKE, H) — (KGUL,keyconf, EnCUL,keyconf, DeCUL,keyconf) is described as fOllOWS.
KGy Lxeyeons (11)2 Return (pk, sk) <= dKG(1%).

EncyjLieycens (Pk): Generate s «— M and compute ct < dEnc(pk, s) and seskey||kc < H(s). Return
(ct, ke) as a ciphertext and seskey as a session key.

Dec, Lxeycans (Sk, (ct’, kc')): Compute s” <— dDec(sk, ct’) and return L if s" = L or ct’ # dEnc(pk,s’).

Otherwise, compute seskey’ ||kc” <— H(s') and returns seskey’ if k¢’ = kc” and | otherwise.
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B KDM-CCA Security of Uy **Y°** with OTP-then-MAC as DEM

In this section, we show that a PKE scheme that we denote Uifg;gfgfc = U;fgigi"gfc (dPKE, H) satisfies
KDM-CCA security in the QROM without square root security loss if the underlying dPKE satisfies
SDM-OW-RSA security and injectiveness.

B.1 Definitions

Definition B.1 (KDM-CCA security for PKE). Ler PKE = (KG, Enc, Dec) be a PKE scheme. We
define Exp'é‘i'(mE:,ff; (1Y) for an adversary 4 as follows.

Initialize: First, the challenger chooses a challenge bit b < {0,1}. Next, the challenger generates
(pkK, skk) < KG(1%) for every k € [{]. The challenger sets sk := (sk',...,sk"), and executes
b = A%0n O ((pk") ey ).

Oxpu: On the i-th call with input (k;, fio, fi1), where k; € [{] and f; o and f; are efficiently computable
functions with the same output length, it returns CT; < Enc(pk¥, f; ,(sk)).

Obec: Oninput (K',CT"), it returns L if (k',CT") = (kj, CT;) for j < i, where i is the number of KDM
queries already made at this point. Otherwise, it returns Dec(skk,, cT).

Finalize: The challenger outputs 1 if b = b" and 0 otherwise.

We say that PKE is KDM-CCA secure if for any polynomial £ = ((A) and QPT adversary A4, we have
AdVEEEES (1) = [Pr[1  Bxpies (1) — 3] = negl(A).

Definition B.2 (Injectivity of deterministic PKE). We say that a deterministic PKE scheme dPKE =
(dKG, dEnc, dDec) is n-injective if

Pr [dEnc(pk, -) is not injective |(pk, sk) < dKG(l)‘)] <.

If dPKE is constructed in the random oracle model, the probability is taken over the choice of (pk, sk) <
dKG(1%) and the random oracle.

Definition B.3 (Finding failing ciphertext). Ler dPKE = (dKG, dEnc, dDec) be a deterministic PKE
scheme. We define Exptgf;KE, ﬂ(l/\) for an adversary 4 as follows.

Initialize: First, the challenger generates (pk,sk) < dKG(11). The challenger executes Lsge
A(pk, sk).

Finalize: The challenger outputs 1 if there exists (m,CT) € M X Lggc such that CT = dEnc(pk, m)
and dDec(sk, CT) # m. Otherwise, the challenger outputs 0.

We define Adv(fsye 4(A) = Pr [1 “ Exptgf;KEﬂ(ﬂ)]
The above definition is slightly different from the original definition used in [BHH 19, KSS*20]. In

the original definition, 4 is given only the public key pk, but in Definition B.3, (pk, sk) is given to 4. As
shown below, we bound Advg%E, a(A) statistically, and thus the difference is not a big issue.
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Lemma B.4. Let PKE = (KG, Enc, Dec) be a é-correct PKE scheme whose message space is an abelian
group M with the operation +. We also let the random coin space of KG and Enc be Ryg and
Renc. respectively. Let G = (Gxg, Genc) be a pair of hash functions, where Gyg : M — Ryg and

Genc : M — Renc. Suppose Tuge = Tuxe (PKE, G) constructed as Construction 5.1 is nj-injective. Let

4 be an adversary that runs in ExpthiKG/ ﬂ(lA) and makes at most q queries to G with query depth d and

returns Lesc of size at most qaec. Then, we have /-\dv%mﬂ(/\) <((4d+1)-0+/37n) - (9+ Gaec) + 1

This lemma can be proven in almost the same way as Lemma 6 in [BHH " 19] that guarantees the
same bound for T. We omit the formal proof.

Definition B.5 (Strong OT-MAC). A strong OT-MAC MAC is a three tuple (MGen, Tag, Vrfy) of PPT
algorithms. Below, let D ac be the domain of MAC.,

e MGen(1%) : Given a security parameter 1%, outputs a key mk.

e Tag(mk, m) : Given a key mk and a message m € D ac, outputs mac.

e Vrfy(mk, m, mac) : Given a key mk, message m € Dmac, and mac, outputs T or L.

We require the following properties.
Correctness: For every m € Dpac and mk <— MGen(11), we have Vrfy(mk, m, Tag(mk,m)) = T.
Security: For any QPT adversary A, it holds that

Vrfy(mk, m, mac) = TA mk < MGen(1%)

sot-mac 1A\ __
Adviiaca (17) = Pr (m, mac) # (mq, macy) (m, mac) < a(1")Tee(mk)

< negl(A),

where 4 can access the oracle only once and my is the query from 4 and macy is the response.
We have the following theorem.

Theorem B.6. There exists an information-theoretically secure strong OT-MAC.

B.2 Construction

Construction B.7. Let MAC = (MGen, Tag, Vrfy) be a strong OT-MAC. Let dPKE = (dKG, dEnc, dDec)
be a deterministic PKE scheme whose message space is M. We assume that M is an abelian group

and denote the operation in M as +. Let H be a hash function. We construct Ui:gigi‘ﬁc =

U,Ln:gigi‘;,}fc(dPKE, H) = (KG, Enc, Dec) as follows.
KG(1"): Return (pk,sk) < dKG(11).

Enc(pk, m): Generate s <— M and compute ct <— dEnc(pk, s) and otp||mk||kc <— H(pk||s). Compute
t = otp @ m and mac «— Tag(mk, t). Return CT = (ct, k¢, £, mac).

Dec(sk, CT'): Parse CT' = (ct’, kc/,#/, mac’), compute s’ < dDec(sk, ct’) and return | if s’ = | or
ct’ # dEnc(pk,s’). Otherwise, compute otp’||mk’||kc” < H(pk||s’) and return L if k¢’ # kc”.
Otherwise, return # @ otp’ if T = Vrfy(mk’, #/,mac’) and L otherwise.

We see that if dPKE is (41, d2)-correct, then Uiﬁ;gfﬂc is d1-correct for any 0.

Remark B.8 (On hashing pk with s). In the above construction, pk is fed into H together with s. As stated
by [BHH " 19], we usually need to do this to prove a security notion defined in the security game where
there are multiple public and secret key pairs, especially in the case of CCA security.
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B.3 Security Proof

We prove the following theorem.

Theorem B.9. Let ¢ = ((A) be any polynomial, dPKE be a (81, 62)-correct and 11-injective deterministic
PKE scheme, and MAC be a strong OT-MAC. Let 4 be a QPT adversary against the KDM-CCA security
of Ufn‘:g;}},’i‘ﬁc = U,i‘/’g?gfgfc(dPKE, H) making q (superposition) random oracle queries with query
depth d to H, qyan (classical) queries to Oxpy, and Gaec (classical) queries to Opec. Also, let q f be the
upper bound of the total number of (classical) random oracle queries made by KDM functions. Then,

there exists QPT adversaries B, Bstc, and Bpac such that

Adv (T | (11) < 8d - AdVEEREY =2 5(1) + £ Advgke s, (1) + Gian - AdVRIREES, (1%)

Um,OTP+MAC’

4 + ec
9 ﬂ\f/t)'qkd’“ + gfkc‘ 409+ Guan - 01+ 2(4d +1) - uan - 02 - (7)

Proof. We complete the proof using hybrid games. Let SUCx be the event that the final output is 1
in Game X. We assume that 4 makes at least one KDM query before the first set of random oracle
queries and between d*-th set of random oracle queries and (d* + 1)-th set of random oracle queries for
every d* € [d — 1]. This assumption is without loss of generality in the sense that any adversary can be
transformed into one satisfying this condition without changing the number and depth of random oracle
queries.

Game 1: This is Expdm.c2, ~ (11).
m,OTP+MAC/£/’q

Initialize: First, the challenger chooses a challenge bit b <— {0,1}. The challenger also generates
a fresh random oracle H. Next, the challenger generates (pk, sk*) <— dKG(1%) for every
k € [¢]. The challenger sets sk := (sk!,...,sk’) and pk := (pk’, ..., pk"), and executes
b+ aH)OkonObec (pk). Okpy and Ope. behave as follows.

Okpu: On the i-th call with input (k;, f;o, fi1), it returns CT; generated as follows.
1. Generate s; < M and compute ct; dEnc(pkk",si).
2. Compute otp; || mk;||ke; <— H(pk¥||s;).
3. Compute t; = otp; @fﬁ(sk) and mac; < Tag(mk;, t;).
4. Set CT; + (ct;, ke, t;, mac;).
Obec: Oninput (K, CT') = (K, (ct/, k', ¢/, mac’)), itreturns L if (K, CT') = (k;, CT;) forj < 1,
where 7 is the number of KDM queries already made at this point. Otherwise, it responds as
follows.

1. Compute s’ < dDec(sk", ct’).
2. Return L if L = s’ or ct’ # dEnc(pkF,s’). Otherwise, compute otp'||mk’|[kc”
H(pk'||s'). Return L if ke’ # kc”’.
3. Return t' @ otp’ if T = Vrfy(mk’,#/,mac’) and L otherwise.
Finalize: The challenger outputs 1 if b = b’ and 0 otherwise.
Game 2: This is the same as Game 1 except the behavior of Ogpy. In this game, Okpy adaptively
reprograms the random oracle that 4 (and functions queried by 4) can access every time it is

invoked. The detailed description is as follows.

Oxpu: On input (k;, fio, fi1), it returns CT; generated as follows.
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1. Generate s; < M and compute ct; < dEnc(pk",s;).
2. Generate u; < {0,1}* and parse it as otp; | mk; || ke;.

3. Compute t; = otp; @fi‘z‘l(sk) and mac; < Tag(mk;, t;).
4. Set CT; < (ct;, ke, t;, mac;).

Also, it updates the random oracle into

(if 3j <i : pk|lx = pkli]s;)

Vilpk|x) = 4
(pkl|lx) = { L
1 H(pk|lx) (otherwise),

We can show that |Pr[SUC;| — Pr[SUC,|| = ﬁqiﬁv)lqkdm by using a modified version of Lemma 3.7.

The reason why we cannot use Lemma 3.7 directly is that the programmed point here is pkk" ||s:, but
Lemma 3.7 requires a programmed point be chosen uniformly at random. However, even if we allow a
programmed point to be the form of z||x, where z is an adversarially chosen value and x is a uniformly at
random value, we can have the same bound as Lemma 3.7. We omit the formal proof.

Game 3: This is the same as Game 2 except Ope. behaves as follows, where R is a random oracle.

Opec: Oninput (K, CT') = (K, (ct’, kd, ¥/, mac’)), it returns L if (k', CT") = (k;, CT;) forj < i,
where 7 is the number of KDM queries already made at this point. Otherwise, it responds as
follows.

1. Compute s’ < dDec(sk", ct’).

2. Compute otp'[|mk’|[ke” + R(pk¥ ||ct’) if s’ = L or ct’ # dEnc(pk¥’,s’). Otherwise, com-

putes otp’||mk’||ke” < H(pkX'||s’). Return L if ke’ # kc”.
3. Return t @ otp’ if T = Vrfy(mk’, mac’) and | otherwise.

R is used only inside Opec. Then, for the first decryption query (k/, CT') = (K, (ct’, kc’, ¥/, mac’))
such that s’ = L or ct’ # dEnc(pkX,s’), the probability that k¢’ = k' holds is s> Where s’

dDec(sk, ct’) and otp’||mk’||ke” < R(pk¥||ct’). Thus, Opec returns L for the decryption query

without the probability By repeating this argument, we obtain |Pr[SUC,| — Pr[SUC3]| < kaecj

Z\kc\ .

Game 4: This game is the same as Game 3 except that H is replaced with

Vo (pk||x) = {R(PkHdEnC(pk,x)) (if Ik e [¢] : pk = pkF) N

H(pk]|x) (otherwise),
where R is the random oracle introduced in the previous game.

We define an event FFCx as follows.

FFCx: In Game X, 4 makes a decryption query (k’,CT’) = (K, (ct/,kc’,#,mac’)) satisfying the
condition that there exists 7’ € M such that ct’ = dEnc(pk¥, m’) but m’ # dDec(sk¥, ct’).

If FFC3 and FFC4 does not occur, R is used inside Ope. only for pkk ||ct’ such that there does not exists
m' € M satisfying ct’ = dEnc(pkX, m’) for every k € [¢]. On the other hand, inside Vj, R is used
for pkX||ct such that there exists m € M satisfying ct = dEnc(pk¥, m). Moreover, if dEnc(pk®, -) is
injective for every k € [¢], R(pkF||dEnc(pk¥, x)) and R(pkF||dEnc(pkE, x’)) are independent random
values for any different x and x’. Thus, we have |Pr[SUC3] — Pr[SUC4]| < Pr[FFC4] + ¢ - 17

We see that there exists a QPT adversary Bgs.. such that Pr[FFC,] < £ - AdviS, e 5, (1),
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Game 5: This is the same as Game 4 except Ope. behaves as follows.

Opec: Oninput (k/,CT) = (K, (ct/, ke, ¥/, mac’)), it returns L if there exists j < i such that
k' = kj and ct/ = ctj, where i is the number of KDM queries already made at that point.

Otherwise, it responds in the same way as Game 4.

We define an event BDy as follows.

BDy: InGame X, 2 makes a decryption query (k', CT') = (k/, (ct’, k¢, #', mac’)) satisfying the following
conditions for some j < i, where i is the number of KDM queries already made at that point.

* It holds that k" = k; and ct’ = ct;.
* (t,mac’) # (t;, mac;).
« T = Vrfy(mk;, t',mac’).

Suppose ct; is correctly decrypted to s; using skki for every i € [xam]. In Game 4, for a decryption
query (k',CT") = (K, (ct’, kc’, ¥/, mac’)) such that kK’ = kjand ct’ = ct; holds for some j € [gxan)> Odec
returns | unless T = Vrfy(mk]-, t',mac’) (regardless of whether ke’ = ke; holds or not). Thus, we have
|Pr[SUC4] — PI‘[SUC5” < PI‘[BD5] + Gxan - 0.

We see that now Ope. behave as follows without using (skk ke -

Opec: On input (k/,CT") = (K, (ct’, kc’, ¥/, mac’)), it returns L if there exists j < i such that kK’ = kj
and ct’ = ctj, where i is the number of KDM queries already made at this point. Otherwise, it
responds as follows.

1. Compute otp’||mk’[|kc” < R(pk¥||ct’). Return L if ke’ # ke’
2. Return t' @ otp’ if T = Vrfy(mk’,#, mac’) and L otherwise.

Game 6: This game is the same as Game 5 except that u; is replaced with u; & fi‘z’l (sk)||OF for every
i € [gxan], where L = |mk| + |kc|. More concretely, the behavior of Ogpy is changed as follows.

Oxpn: On input (kj, fio, fi1). it returns CT; generated as follows.
1. Generate s; < M and compute ct; dEnc(pkk",si).
2. Generate u; < {0,1}* and parse it as otp; || mk; ||ke;.
3. Compute #; = otp; and mac; < Tag(mk;, t;).
4. Set CT; < (ct;, ke, t;, mac;).

Also, it updates the random oracle into

wi@ f, 7 (sk) 0L (if 3j < i : pkl|x = pkhi]s;)

Vi(pk||x) =
’ Vo(pk|x) (otherwise),

This change does not affect the view of 4 since u; is chosen uniformly at random and independently of

£Y1-1(sk) for every i € [qxan]. Thus, we have |Pr[SUCs] — Pr[SUCq]| = 0 and |Pr[BDs] — Pr[BDg]| = 0.

L

Game 7: This game is the same as Game 6 except for the following. The challenger first generates r <— M.
The challenger then generates Al, ..., A’ <+~ M and generates (pk",sk) «— dKG(14; 7 + A¥) for
every k € [/].

The above change does not affect the view of 4 since the distribution of (pkk,skk) ke[ does not
change. Thus, we have |Pr[SUCs] — Pr[SUC;]| = 0 and |Pr[BD¢] — Pr[BDy|| = 0.
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P [(S]‘/ “j/fj,b)je[i]/(Ak)ke[k]] (x):

Hardwired: (S]', u]'/fj,h)je[i]/(Ak)kG[(/,]'
Oracle V.
Input: x € M.

1. Compute w = x — s; and (pkK, sk¥) « dKG(1%;w + A¥) for every k € [¢], and set sk = (sk’, ..., sk").
2. Repeat the following from j = 1 toi — 1, where 170 =W.

(a) Compute v; = u; @f].‘;;’l(sk)HOL.
(b) Set V; as

oj (if 3f' € [gxan) @ 7 <j and pk|x’ = pkkf’Hers}v)
Vo(pk||x")  (otherwise).

Vi(pkllx) = {

3. Return fi‘;;’l (sk).

Figure 2: The description of fz‘?

Game 8: This game is the same as Game 7 except that s; is replaced with r 4 s;. More concretely, the
challenger generates ct; as ct; <— dEnc(pk", 7 + s;) for every i € [qyan]. Also, the challenger sets
V; as
Vi .. :

uj @ f) '(sk)[OF (if 3j <i : pk|x = pkhi|[r +s))

Vo (pk||x) (otherwise),

Vi(pk|lx) = {

for every i € [qxdn)-

We have |Pr[SUC;| — Pr[SUCg|| = 0 and |Pr[BD;] — Pr[BDg]| = O since this change also does not
affect the view of 4.

Game 9: For every i € [qkdm], we define a function ﬁ,b as described in Figure 2. Then, Game 9 is the
same as Game 8 except that the challenger sets V; as

for every i € [Gxdn]-

We see that for every i € [qxan]» ;5 correctly computes fl.‘;]"*l (sk) if it has oracle access to Vp and is
given r + s; as an input. Therefore, the functionality of V; does not change between Game 8 and 9 for
every i € [qxan). and thus we have |Pr[SUCg] — Pr[SUCy]| = 0 and |Pr[BDg] — Pr[BDg]| = 0.

Game 10: This is the same as Game 9 except that the challenger sets V; as

uj@]%’(x)HOL (if 3j <i : pk = pk"i A dEnc(pkhi, x) = ct))
Vo (pk]|x) (otherwise)

Vi(pkllx) = {
for every i € [Gxdn]-
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If ct; has a unique pre-image r 4 s; under pkk" for every i € [gxan), the functionality of V; does not
change for every i € [xqn] between Game 9 and 10. Thus, from the correctness of dPKE, we have
|PI‘[SUC9] — PI‘[SUCwH < (xdm * J> and |PI‘[BD9] — PI‘[BDm” < (xdm * 0.

Game 10 +d* (d* =1,...,d): This is the same game as Game 9 except Ogpy defers updating the
random oracle. Concretely, Ogpy does not update the random oracle until 4 makes the d*-th set of
random oracle queries. The detailed description of Okpy is as follows.

Oxpu: On input (k;, fio, fi1), it returns CT; generated as follows.
1. Generate s; < M and compute ct; < dEnc(pk, 7 +s;).
2. Generate u; < {0,1}* and parse it as otp; || mk; ||ke;.
3. Compute ¢; = otp; and mac; « Tag(mk;, ;).
4. Set CT; < (ct;, ke;, £, mag;).
Also, if 4 already makes d*-th set of queries to the random oracle, it updates the random
oracle into V.

We have ‘Pr[SUC10+d] — %‘ = 0 since in Game 10 + d, the view of 4 is completely independent of b.
Also, we can see that there exists a QPT adversary Byac such that Pr[BD1g. 4] < Gxdn - Advs,ﬁtA'g:%‘;aC (1").
In order to estimate |Pr[SUCyg 4«_1] — Pr[SUCyq. 4+]| for every d* € [d], we consider the following

procedure Setup,:.

Setupy-: First, the challenger chooses a challenge bit b <— {0, 1}. The challenger also generates a fresh
random oracle H and R. Next, the challenger generates ¢ key pairs (pkk, skk) — KG(14; 7 + AF),
where 7 < M and A¥ < M for every k € [¢]. The challenger sets pk := (pk!,...,pk’) and
Vo as Equation (8), and executes 4/V0)-OromOpec (pk) just before 2 makes the d*-th set of random
oracle queries. Oxpy and Opec behave as follows.

Okpu: On the i-th call with input (k;, f;o, fi1), it returns CT; generated as follows.
1. Generate s; < M and compute ct; < dEnc(pk, 7 +s;).
2. Generate u; < {0,1}* and parse it as otp; || mk; ||ke;.
3. Compute ¢; = otp; and mac; «— Tag(mk;, ;).
4. Set CT; < (ct;, ke, t;, mac;).
Opec: Oninput (k',CT’) = (K, (ct/, ke, ¥/, mac’)), it returns L if there exists j < i such that
k' = k; and ct/ = ctj, where i is the number of KDM queries already made at this point.
Otherwise, it responds as follows.

1. Compute otp’||mk’||ke” < R(pk¥ ||ct’). Return L if ke’ # kc”.
2. Return t' @ otp’ if T = Vrfy(mk’,#/,mac’) and L otherwise.

Let 4 makes i* KDM queries before d*-th set of random oracle queries. Then, the challenger sets
Vi as

wj @ fiR(x)[0F (it 3j <i* @ pk = pk's A dEnc(pkY, x) = ct;)
Vo (pk]|x) (otherwise).

Vi- (pk||x) :{

and S;- = {pk||x | 3j € [i*] : pk = pk® A dEnc(pk", x) = ct;}. The challenger also generates
six < M and generates ct; < dEnc(pkk, r + six) forevery i € [i* 4+ 1, gxan| and k € [¢]. The
challenger then sets

z = (Ist), b, pk, (A, (kis fiprSisCtis i)ie(i)s (Sir Ctigd)iclio4igaliel]) + (9
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where |st) is the internal state of 4 at this point. The challenger outputs (V;+, Vo, Si+, 2, Oaux =
(Vo,R)).

Also, we consider the following QPT algorithm 4z that has oracle access to O € {V;+, Vp} and
Oaux = (VO/ R)

442 Given an input z, 4+ parse it as Equation (4) and executes 210)Oron.Ovec from 4°s d*-th set of
random oracle queries using |st) as the internal state of 4 at that point. 4+ simulates Ogpy and
Opec as follows.

Oxpu: On input (k;, fio, fi1), it returns CT; generated as follows.
1. Setct; < ctj, (and sets; <— s;,).
2. Generate u; < {0,1}* and parse it as otp; || mk; || k;.
3. Compute ¢; = otp; and mac; < Tag(mk;, £;).
4. Set CT; < (ct;, ke, t;, mac;).

Also, it updates the random oracle that 4 can access to into

w; @ f2(x)[|0F  (if 3j <i : pk = pkki A dEnc(pkbi, x) = ct))

Vi(pkl|x) = ]’ .

Vo (pk]|x) (otherwise).

Opec: On input (k',CT") = (K, (ct’, k¢, #/,mac’)), it returns L if there exists j < i such that
k' = kj and ct’ = ct;, where i is the number of KDM queries already made at this point.
Otherwise, it responds as follows.

1. Compute otp’||mk’[|kc” < R(pk¥||ct’). Return L if ke’ # ke’
2. Return t' @ otp’ if T = Vrfy(mk’,#, mac’) and | otherwise.

When 4 terminates with output b’, 4+ outputs 1if b = b’ and 0 otherwise.

Suppose we execute Setup,+ and 44+ successively. They simulate the view of 4 in Game 10 + d* — 1
(resp. Game 10 +d*) if O = Vj« (resp. O = Vj). Also, 4+ outputs 1 if and only if the output of
the simulated games is 1. Thus, we have Pr[SUCyp, 4+ 1] = Pr {1 — leﬁ‘i?zv"*'oa‘“x:(vo’R» (z) : Setupd*}

and Pr[SUCyg4 4] = Pr [1 — ﬂo‘i?:VO'Oa“XZ(VO’R» (z): Setupd*} . From Lemma 3.4, there exists a QPT

algorithm 2y« such that

|Pr[SUC1044:—1] — Pr[SUCI04a:] < 4 - Pr [T NSy #D: T« @“f*'vo'omz(vo’m)(Z),Setupd*} .

(10)

Note that 4;+ uses its oracle O € {Vj:, V} only for simulating 4’s d*-th set of random oracle queries.
Thus, 44+ make queries to O with depth 1.

We bound the right-hand side probability. In order to bound it, using 2+, we construct the following
adversary B;- against the SDM-OW-RSA security of dPKE.

By-: Given pk = (pk',...,pkf), (AF);, and (Siks Ctij)ic|guan] kele]> Ba+ first simulates Setupg.. By
chooses a challenge bit b < {0, 1}, prepares a fresh random oracles H and R, and set Vj as

Equation (8). B;- then executes 4!"0)-CwnObec (pk) just before 4 makes the d*-th set of random
oracle queries, where Ogpy and Ope. are simulated as follows.

Oxpu: On input (k;, fio, fi1), it returns CT; generated as follows.
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1. Setct; < ctj, (and sets; <— s;,).

2. Generate u; < {0,1}* and parse it as otp; || mk; || ke;.
3. Compute t; = otp; and mac; <— Tag(mk;, t;).

4. Set CT; < (ct;, ke, t;, mac;).

Opec: On input (k',CT") = (K, (ct’, k¢, #/,mac’)), it returns L if there exists j < i such that
k' = kj and ct/ = ctj, where i is the number of KDM queries already made at this point.
Otherwise, it responds as follows.

1. Compute otp/||mk’||ke” < R(pkF ||ct’). Return L if ke’ # kc”.
2. Return ¥’ @ otp’ if T = Vrfy(mk’,#/,mac’) and L otherwise.

Let 4 makes i* KDM queries before d*-th set of random oracle queries. Then, B;« sets Vj- as

uj @j%)(x)HOL (if 3j <i* : pk = pk® A dEnc(pk¥, x) = ct;)
Vo (pk|[x) (otherwise).

Vi (pkllx) = {

By« also sets

z = (Ist), b, Pk, (A, (kis fips Sir Ctis )i (Sigo Ctig)ieli+1,galkeld])

where |st) is the internal state of 4 at this point. Finally, B4 outputs T <— p|Vir Vo Oaux=(Vo.R)) (2).

By« perfectly simulates a successive execution of Setupy- and D;«. Also, in the simulated execution,
if TNS;+ # @ occurs and ct; has a unique pre-image 7 + s; under pkki for every i € [Gan), B+ Wins.
Thus, we have

Pr[T S # @: T« ol 0000 ) Setupy. | < AdvaRRENT= 5., (1) + fuan - 62

From the discussions so far, by setting B’ as B, such that AdVZ%rREVZ,;Lﬁ,@d* (1) < Advf;‘f;",‘{,f/‘@’;i:i:,g,(l)‘)
for every d* € [d]|, we see that there exists a QPT B’ such that |Pr[SUCyjo] — Pr[SUCy 4] <
4d - (AdVEEREY = 5y (1Y) + Gran - 62).

Similarly, we can show that there exists a QPT 38" such that |Pr[BDyg] — Pr[BDyg.4]| < 4d -

(Advfj%"f{g‘%zzrgu (1") + Gxan - 02). Note that we can efficiently check whether BDx occurs or not without

using (skk)kem.
From the discussions so far, by setting B appropriately, we see that there exists B, Bssc, and Bpac
satisfying Equation (7). [ (Theorem B.9)

C Non-Adaptively KDM Secure SKE

Zhang [Zha19b] showed that a simple random oracle based SKE scheme satisfies non-adaptive KDM-CPA

. . . 1y (4,9xan,qf,L .
security with security bound roughly %, where g and qxqn are the number of (super-position)

random queries and (classical) KDM queries made by adversaries, g ris the number of (classical) random
oracle queries made by KDM functions, ¢ be the number of secret keys, and A is the length of secret keys.
In this section, we show the construction’s KDM-CPA security with better security bound w

using our proof strategy.
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C.1 Definition

A secret-key encryption (SKE) scheme SKE is a three tuple (Gen, E, D) of PPT algorithms. Let M be the
message space of SKE. The key generation algorithm Gen, given a security parameter 11, outputs a secret
key sk. The encryption algorithm E, given a secret key sk and message m € M, outputs a ciphertext ct.
The decryption algorithm D, given a secret key sk and ciphertext ct, outputs a message 11 € { L} U M.
As correctness, we require D(sk, E(sk, m)) = m for every m € M and sk < Gen(1%).

Definition C.1 (Non-adaptive KDM-CPA security for SKE). Ler SKE = (Gen,E,D) be an SKE
na-kdm-cpa
SKE4, (ki fi0.fi1)ielgan
and fi1 are efficiently computable functions of the same output length for every i € [(xdn)-

scheme. We define Exp | (1) for an adversary A as follows, where k; € [{] and fig

Initialize: The challenger chooses the challenge bit b < {0,1}, generates sk’ < Gen(1") for every
k € ], and sets sk = (sk',...,sk"). The challenger generates ct; < E(sk", f; ,(sk)) for every
i € [qxan]- Then, the challenger executes b’ < A((cti)ic[g,u])-

Finalize: The challenger outputs 1if b = b' and 0 otherwise.
We say that SKE is non-adaptively KDM-CPA secure if for any polynomial { = {(A) and Gyan =
Jram(A), tuples (ki, fio, fi1), and QPT adversary 4, we have

Advna-kdm-cpa )\) _

SKE,4, (ki fi0.fi1)ielgegn) 2 ( SKE4, (ki fi0.fi1)ielguan

-kdm- 1
Pr [1 ¢+ Exphkdm-cpa ],ﬂ(l/\)} - 2' = negl(A).

C.2 Additional Lemma

The following lemma is used to prove the non-adaptive KDM security of the SKE scheme in Appendix C.3.

Lemma C.2 (Inverting QRO with correlated inputs). Let { = ((\) be a polynomial and A be an
oracle QPT algorithm that makes at most q queries with query depth d, and outputs a list T of size at
most t as the final output. We consider the following Expz:q'”v(l)‘).

Initialization The challenger first generate a fresh random oracle H : X — Y. Then, the challenger
also generates s < X and AF < X for every k € [¢]. Then, the challenger executes T <
A (8%, H(s + 8%))kepr))-

Finalization The challenger outputs 1 if T contains z such that z = s + A¥ holds for some k € [¢] and O
otherwise.

ci-inv/qA 4(d+2)(g+t)e
Then, we have Pr[1 < Expf 3™ (1")] < X

Proof. Let 4 be a QPT adversary that runs in the same way as 4 except that before it terminates, 4
computes and discards H(z) forevery z € T, where T is the final output of 4. Then, 4 makes at most g + ¢

queries to H with the query depth d + 1, and we have Pr[1 < Exp{;™ (1})] = Pr [1 — Exp‘lfli/}qi""(l)‘)} .
We estimate the latter.

We complete the proof using hybrid games. We define Game 1 as Exp;i};""(l)‘). Let SUCx be the

event that the challenger outputs 1 as the final output in Game X. We also let S = {s + Al,...,s + Aé}.

Game 2: This game is the same as Game 1 except that V defined as

R (if Ike[l] : x=s5+n)
Vi) = {H(x) (otherwise),

is used instead of H, where y* < Y for every k € [/].
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We have |Pr[SUC;] — Pr[SUC,]| = 0 since Game 1 and 2 are exactly the same from the view of 4.

Game 3: This game is the same as Game 2 except that 4 can access to the punctured oracle H \ S. In
other words, the challenger executes T <— 4I7\S) ((AK, y) ke[¢)) at the end of the initialization step.

Let Findy be the event that the punctured oracle H \ S returns 1 in Game X. From the definition of
4, we have Pr [SUC3 A —=Finds] = 0. Thus, we have

\/ Pr[SUC,] = ‘\/ Pr[SUC,| — \/ Pr [SUC3 A —Finds)]

By applying Lemma 3.2, we obtain

'\/ Pr[Suc,] — \/ Pr [SUC3 A —=Find3]| < \/ (d+2) - Pr[Finds] .

Therefore, we also obtain Pr[SUC;] < (d + 2) Pr[Finds].
Finally, we bound Pr[Find;]. In Game 3, conditioned on (A¥, 1)y, we have Pry, x[x € §] < %

for any x € X. Thus, from Lemma 3.3, we obtain Pr[Find3] < W.
From the discussions so far, we obtain Pr [1 — Expz;{""(l)‘)] < W. ] (Lemma C.2)

C.3 Construction

Construction C.3.Let H : {0,1}>* — {0,1}* be a hash function. We construct the following
SKEkd_m = (Gen, E, D)

Gen(11): Return sk < {0,1}*.
E(sk,m): Generate s < {0,1}*, compute t = H(sk||s) ® m, and return (s, t).
D(sk,ct): Parse ct = (s,t) and return t & H(sk||s).

The construction clearly satisfies correctness.

C.4 Security Proof

We prove the following theorem.

Theorem C.4. Let { = {(A) and Gyxan = Gxan(A) be polynomials. Let k; € [{] and fio and f;, are
efficiently computable functions of the same output length for every i € [qxan]. Let A be any (possibly
computationally unbounded) adversary against the non-adaptive KDM-CPA security of SKEgan making q
(superposition) random oracle queries to H with query depth d. Also, let q¢ be the upper bound of the
total number of (classical) random oracle queries made by KDM functions queried by 4. Then, it holds
that

O(qf - ran +d? - q - £)

-kdm-
Ad na m-cpa (1A) S ZA

v
SKExan, L, (ki,fi0,fi1) i gran) 2
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Proof. We prove this theorem using hybrid games. Let SUCx be the event that 2 wins in Game X.

. .. na-kdm-cpa A
Game 1: This is Expgye ™, Fof )i A1),

Initialize: The challenger chooses the challenge bit b < {0,1}, generates sk « {0,1}* for
every k € [¢], and sets sk = (sk,...,sk"). The challenger generates ct; = (s;, t;) for every
i € [Jxan] as follows.

1. Generate s; < {0,1}*.
2. Compute t; = H(ski||s;) @ fl(sk).

Then, the challenger executes b’ +— 4/H) ((cti)ic[gea))-

Finalize: The challenger outputs 1 if b = b’ and 0 otherwise.

Game 2: This game is the same as Game 1 except that H is replaced with

U; if 3i wam] @ x||w = skki S;
V(wa):{z( " (if 31 € [quen] : x]|w = sk¥]]s)

(otherwise),
where u; <— {0,1}* for every i € [Jxqn)-
Game 1 and 2 are exactly the same from the view of 4. Thus, we have |Pr[SUC;| — Pr[SUC;|| = 0.

Game 3: This game is the same as Game 2 except that KDM functions f;j, can access to H instead of V
for every i € [Gxdn]-

Game 2 and 3 differs only when f; , calls one of sk*!||sy, ..., skkan [|s,, . for some i € [quan]. Since
S1,- -+, Sgyan are chosen uniformly at random and independently from (f; ;) and (skk)kem, we have

|Pr[SUC,] — Pr[sucs]| < 7.

1€ [qican]

Game 4: This game is the same as Game 3 except that u; is replaced with u; @ fﬁ](sk) for every
i € [Jxan]. Concretely, t; is set as t; <— u; for every i € [qxan|, and V is defined as

V(xfw) = 4 fh(sk)  (if 30 € [quan] ¢ x| = sk ]|s;)
H(x||w) (otherwise).

This change does not affect the view of 4 since u; is chosen uniformly at random and completely
independent of f} (sk) for every i € [{]. Thus, we have |Pr[SUC3] — Pr[SUC4]| = 0.

Game 5: This game is the same as Game 4 except how the challenger generates sk, . . ., sk’ Concretely,
the challenger first generates sk < {0,1}* and A* «+ {0,1}" for every k € [¢]. Then, the
challenger sets sk’ = sk @ A for every k € [¢].

We have |Pr[SUC,] — Pr[SUCs]| = 0 since the change does not affect the view of 4.
From the next game, we use the function ﬁ p described in Figure 3. fl p is designed so that it computes
iH (sk) if it has oracle access to H and is given skki as an input.
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£ [fi,b/kir (Ak)ke[é]] (x):
Hardwired: f;;,k;, (AF) e -
Oracle H.
Input: x € {0,1}*.
1. Compute sk = x @ Aki @ AX for every k € [£], and set sk = (sk!,...,sk’).
2. Return fH (sk).

Figure 3: The description of fl[_{]

Game 6: This game is the same as Game 5 except that V is defined as

V() = wi @ fH(x)  (Gf 3i € [qran] © x[|w = sk |s;)
H(x||w) (otherwise).

Since for every i € [Gxan|, ﬁ‘,b correctly computes fg‘,ﬁ(sk) if it has oracle access to H and is given

skki as an input, the functionality of V' does not change between Game 5 and 6. Therefore, we have
|Pr[SUC5] — PI‘[SUC6] =0.

Game 7: This game is the same as Game 6 except that V is defined as

U; (if 3i € [Gxan] @ P(x)||w = P(skkf)Hsl-)
H(x||w) (otherwise),

V(xflw) = {

where P : {0,1}* — {0,1}3" is a random function.

If P is injective, Game 6 and 7 are exactly the same from the view of 4. Thus, we have

A(HA _
|Pr[SUCs] — Pr[sucy]| < 22U A< L

Game 8: This game is the same as Game 7 except that 4 can access to H instead of V though cty, ..., cty,,
are generated by using V.

We see that Pr[SUCg] = 1/2 since the information of b is completely hidden from the view of 4. In
order to estimate |Pr[SUC7| — Pr[SUCg]|, we consider the following procedure Setup.

Setup: The challenger chooses the challenge bit b <— {0,1} and fresh random oracles H and P. The
challenger then generates sk <— {0,1}* and A* <— {0, 1} forevery k € [£], and sets sk* = sk @ A¥
for every k € [¢] and sk = (sk!,...,sk). The challenger also computes pk; < P(skj) for every
k € [£]. Next, the challenger generates s; < {0,1}* and u; < {0,1}*, and sets ct; < (s;, u;) for
every i € [gxam]. The challenger sets V as

ui @ flj(x)  (if 30 € [quan] : P(x)[|w = pk¥|ls;)
H(x||w) (otherwise)

7

V(x|jw) = {

S = {x||w|3i € [gxan] : P(x)||w = pk¥i||s;}, and z = (b, (cti)ic[gua])- The challenger outputs
(V,H,S,z).
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Also, for O € {V,H}, we consider a QPT algorithm 40/ that is given z = (b, (Cti)ic[gua)) s input,
executes b’ «+ 410 ((cti)ic[gua])» and outputs 1 if b = b" and 0 otherwise.

Suppose we execute Setup and A4’ successively. They simulate the view of 4 in Game 7 (resp.
Game 8) if O = V (resp. O = H). Also, 4’ outputs 1 if and only if the output of the simulated games
is 1. Thus, we have Pr[SUC;] = Pr [1 — a2V (z): Setup} and Pr[SUCg] = Pr [1 — 2 (z) : Setup}.
From Lemma 3.4, there exists a QPT algorithm 2 such that

|Pr[SUC;] — Pr[SUCs]| < 4d - Pr[T NS#®: T« plVH (z),Setup] .

We estimate the right-hand side probability of the above inequality. This can be done by using
Lemma C.2. Consider the following adversary B run in Exp§'z™ (1%).

B: B has oracle access to P. Given (A, pkk), (¢] as an input, B first chooses the challenge bit b < {0, 1}

and fresh random oracles H. Next, B generates s; < {0,1}" and u; < {0,1}*, and sets
ctj < (s, u;) forevery i € [qyan|. B sets V as

wi @ fl(x) (if 3i € [qean] : P(x)]lw = pkis;)
H(x||w) (otherwise)

4

V(x[lw) = {

and z = (b, (ct;)ic[g,e,)- B outputs T < DlVH) (z).

Wkdm])

B perfectly simulates a successive execution of Setup and D. In the simulated execution, if TN S # @

occurs and P is injective, B wins. Thus, from Lemma C.2, we have Pr [T NS#QD: T+ plV.H) (z), Setup] <
O(d-q-£)
20
From the discussions so far, we obtain

na-kdm-cpa A qf * qxdun 1 O(d -q- g)
AdVSKEkdm,E,(F;c,v,fi,O,fm)[E[qkdm],,q(1 )S ot T —
O(4f - qxan +d*-q - 0)

2)‘
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