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Abstract. Belenios is an online voting system that provides a strong no-
tion of election verifiability, where no single party has to be trusted, and
security holds as soon as either the voting registrar or the voting server
is honest. It was formally proved to be secure, making the assumption
that no further ballots are cast on the bulletin board after voters verified
their ballots. In practice, however, revoting is allowed and voters can
verify their ballots anytime. This gap between formal proofs and use in
practice leaves open space for attacks, as has been shown recently. In this
paper we make two simple additions to Belenios and we formally prove
that the new version satisfies the expected verifiability properties. Our
proofs are automatically performed with the Tamarin prover, under the
assumption that voters are allowed to vote at most four times.
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1 Introduction

Election verifiability aims to ensure that the outcome of an election, relying on
a given electronic voting protocol, correctly reflects the votes of eligible voters.
One of its important features is that it should be software independent and
end-to-end: even if an adversary corrupts (the software on) voting platforms,
election authorities, or voting servers, the public information published on the
bulletin board should be sufficient to verify that the election outcome correctly
reflects voter choices. This verification is performed by honest parties, which
are typically a subset of voters and election auditors. Especially for voters, the
verification procedure should also be easy to use, in order to achieve widespread
adoption and security guarantees.

Helios is an internet voting system that targets this notion of end-to-end
verifiability [1,6,7]. However, an important assumption is that the voting server
is honest. Otherwise it could stuff ballots, allowing the adversary to add illegiti-
mate votes, most easily for voters that have not voted. In general, for usability,
revoting is allowed and voters can verify their ballots anytime after voting. In
that case ballot stuffing is possible even for voters that have verified their ballots
successfully. For example, the server can let some time elapse after a ballot was
cast, and cast a new ballot in the name of the same voter. This looks like revoting
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to observers and will not be noticed by voters verifying their ballots right after
voting. The so-called clash attacks allow ballot stuffing in a more surreptitious
way [24,25,28]: the adversary gives the same credential to two voters, one single
vote is cast for them, and the adversary can cast an additional ballot with no
change in the total number of ballots. If revoting is disallowed or ballot verifi-
cation is after the voting phase, this requires voting platforms to be corrupted,
since the adversary needs to supply the same ballot for two voters. Otherwise,
it was shown in [9] that corrupting the voting platform is not needed: one voter
can verify one ballot and another voter can subsequently verify another ballot
for the same credential.

Belenios extends Helios in order to get stronger election verifiability [2,16].
There is no single party that has to be trusted: verifiability holds as soon as either
the voting server or the voting registrar is not corrupted. The registrar generates
public credentials, publishes them on the bulletin board, and distributes the re-
spective private credentials to each voter. The public credential is the verification
key of a fresh signing key pair, while the private credential is the corresponding
signing key. Ballots are signed and election authorities can verify on the bulletin
board that all ballots have been cast by the expected legitimate party. A second
advantage of Belenios is that it was proved to satisfy a formal notion of election
verifiability, both in the symbolic model [15] (for a particular variant) and in
the computational model [14]. This adds confidence that verifiability is satisfied
by the protocol specification. Nonetheless, several problems of Belenios and of
verifiability definitions in [14,15] were shown in [9], leading to weaker guaran-
tees than expected. In the typical scenario when revoting is allowed and voters
can verify their ballots anytime, attacks on verifiability are still possible, most
damaging in the case when the registrar is corrupted. Even in the ideal case
when both the server and the registrar are honest, ballot reordering attacks are
possible, breaking individual verifiability. These attacks are outside the scope of
proofs in [14,15], since they do not consider the typical scenario of revoting.

Usability, Everlasting Privacy and Verifiability. There are two main fea-
tures that, put together, allow these attacks on verifiability in Belenios. The
first feature is that, in practice [2], revoting is allowed and voters can verify
their ballots anytime. This is important for usability and, eventually, also for
coercion-resistance [11,23]. The second feature is that the voting server does not
know the link between the public credentials and the corresponding voter iden-
tities. Only at ballot casting time does the voter reveal this link, and the server
ensures its consistency, e.g. that the same public credential does not correspond
to two different voters. Revealing minimal information about the association
between voters and their public credentials is important in order to ensure ever-
lasting privacy: even if an adversary may break the underlying encryption scheme
and penetrate the private logs of the server, the connection between voters and
the corresponding votes should remain private. A similar pattern underlies all
attacks in [9]: a corrupted voter can be used by the adversary to cast a ballot
for a public credential corresponding to an honest voter. Even if honest voters
successfully verified their ballots, revoting allows the adversary to undetectably
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replace them with its own ballots (when the registrar is corrupted), or with
earlier ballots submitted by the same voters (when the registrar is honest).

Our Contributions. We propose two simple additions to Belenios and we
prove that election verifiability of the resulting system, that we call Belenios+,
is strictly stronger in all three scenarios that are subject to attacks in [9]. Each
scenario is defined by the corruption abilities of the adversary: A1 - both the
server and the registrar are honest; A2 - the server is corrupt and the registrar
honest; A3 - the server is honest and the registrar corrupt. In all cases, we as-
sume the adversary may corrupt the secret key of the election, any number of
voters and the communication network. For voters, the proposed additions do
not require any change in the voting and verification procedures, maintaining the
same usability as Belenios. We do not communicate any new information to the
voting server regarding the link between voter identities and public credentials.
We simply enforce the veracity of the information the voter already commu-
nicates. This means that our additions should not affect everlasting privacy in
Belenios (everlasting privacy has not been formally proved for Belenios, but it
is thought to hold when revoting is not allowed [16]). Our security proofs are
in the symbolic model, automatically performed with the Tamarin prover [26],
although we need to make some further abstractions, as explained below. We use
the verifiability definition of [9], which is more general than [14,15], accounting
for revoting and different corruption scenarios.

Belenios relies on a zero-knowledge proof in order to verifiably attach a label
to each ballot cast. The label is the public credential of the voter who constructs
the ballot and the ballot cannot be detached from the intended label. The goal
of this construction is to ensure that each ballot is consistently cast for the
intended public credential. Our techniques enrich the structure of the label in
order to ensure stronger consistency properties. The first problem that we tackle
is a ballot reordering attack, which is possible in all three corruption scenarios,
i.e. even for the weakest adversary A1. Omitting some details (presented in
Section 2.2), the attack is as follows: an honest voter with public credential cr,
may submit two successive ballots b1 and b2; then, relying on a corrupt voter,
the adversary can cast b2 before b1, for the same public credential cr. The honest
voter may then verify b2 and expect it to be tallied, whereas b1 is tallied instead.
The solution we propose for this problem is to augment the label in the zero-
knowledge proof such that each new ballot can also be verifiably linked to the
ballot that was cast just before for a given public credential. This proof is publicly
verified on the bulletin board, thus it also helps in the scenario A2.

The second problem in Belenios relates to the scenario A3 and is at the root
of several attacks in [9]: because the voting server does not know in advance
the connection between voter identities and public credentials, an adversary cor-
rupting the registrar and a voter may submit any ballot for any public credential
cr, and claim it corresponds to that corrupt voter. In particular, this may be a
ballot b constructed by an honest voter that received the public credential cr
at registration. This leads to the fact that the honest voter may successfully
verify b on the bulletin board, while afterwards the adversary is able to cast its
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own ballot bA for the credential cr. The solution we propose for this problem is
to further augment the label in the zero-knowledge proof such that the voting
server can ensure that the cast ballot is intended for the corresponding voter.
However, we need to make sure that only the server can verify the link between
a ballot and the voter identity. That is why the label does not directly contain
the identity id of the voter, but a commitment to id, for which the server learns
the randomness from the voting platform. The randomness can be discarded by
the server after reconstructing the commitment and verifying the proof. To hide
the identity from an all-powerful adversary against the bulletin board, we can
use standard commitment schemes that are perfectly hiding, for example the
Pedersen commitment [27].

Abstraction. In practice, the two additions we make do not significantly affect
the complexity of running Belenios. However, the fact that we need to recur-
sively link every new ballot with a previously cast ballot significantly affects the
running time of Tamarin. To overcome this difficulty, we assume that each voter
casts at most four ballots, in effect allowing revoting only thrice (all attacks of
[9] occur in scenarios with at most two ballots per voter). We leave as open the
problem of formally proving (or disproving) the validity of this assumption. We
note that formal results that bound the number of agents or voters for verifica-
tion have a similar flavour [8,12,13].

Paper Structure. Section 2 contains preliminaries about election verifiability
and attacks on Belenios. In Section 3 we describe our improvements and in
Section 4 we describe the protocol specification and automated verification with
the Tamarin prover.

2 Preliminaries

We describe Belenios in more detail in Section 2.1. The formal notion of election
verifiability and the attacks on Belenios are described in Section 2.2.

2.1 Introduction to Belenios

Apart from voters (V), the parties in the Belenios protocol [16,2] are:

– Administrator (A): determines the list of eligible candidates and the list of
eligible voters.

– Bulletin Board (BB): public ledger containing election information: the pub-
lic key, the list of candidates, the list of public credentials for eligible voters,
the list of cast ballots, the final outcome and proofs of correctness. We de-
note specific portions of BB with suffixes. In particular, BBkey contains the
public key of the election, BBcast contains the list of ballots cast for each
public credential, and BBtally contains the list of ballots chosen for tally. BB
can only be changed by writing new information on it; previously written
information cannot be changed.
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– Trustees (T): generate the secret key of the election, publish the correspond-
ing public key on BB, compute the final outcome.

– Registrar (VR): for each eligible voter, it creates a fresh signing key pair
(vk, skey); vk is the public credential, which is also denoted by cr in the
following; it publishes the list of all public credentials on BB.

– Voting Server (VS): receives ballots cast by authenticated voters and pub-
lishes them on BB; voter authentication is done via passwords.

– Voting Platform (VP): constructs ballots for voter choices; authenticates
voters with respect to VS and transmits ballots to VS; each ballot contains
a ciphertext encrypting the vote, a signature of the ciphertext with respect
to skey of the corresponding voter, and zero-knowledge proofs.

– Election Auditors (EA): perform audit and verification of proofs on BB. The
validity of the ballot is verified by VS at ballot-casting time, and can also be
verified by EA at any time afterwards on BBcast.

Setup Phase. A determines the list of eligible voters id1, . . . , idn, and sends
the list to VR and VS. VR generates the public and private credentials for
each voter, while VS generates login passwords. Each voter id receives the tuple
〈cr, skey, pwd〉 during setup phase and BB is updated by the following:

BBkey : pk; BBcand : v1, . . . , vk; BBreg : cr1, . . . , crn.

Voting Phase. In this phase, voters interact with their voting platform VP to
construct a ballot b, which is sent together with their public credential cr to
VS. Upon authentication of the voter and validity checks with respect to cr, the
ballot is published on BBcast.

VP : c = enc(v, pk, r); s = sign(c, skey); prR = proofR(c, r, 〈v1, . . . , vk〉);
prL = proofL(c, r, cr); b = 〈c, s, prR, prL〉;

VS : authenticates id with pwd; receives b and the public credential cr;
verifies s, prR and prL; and stores (id, cr) in Log;

BBcast : (cr, b).

The signature ensures the voter holds the private part of the public credential
cr. The zero-knowledge proof prR ensures that the ciphertext contains a vote
in a valid range 〈v1, . . . , vk〉. The proof prL ensures that the ballot (and the
ciphertext) is verifiably linked to the label cr, and cannot be cast for any other
credential cr′. In the cryptographic construction, the underlying zero-knowledge
proof system takes the arguments of proofR and proofL and returns prR and prL
[14,16]. Moreover, the following consistency property is ensured by VS for the
Log storing the association between voter identities and public credentials:

(id, cr) ∈ Log ∧ (id, cr′) ∈ Log ⇒ cr = cr′ and
(id, cr) ∈ Log ∧ (id′, cr) ∈ Log ⇒ id = id′.

This prevents a corrupt voter to use a public credential already used by an honest
voter, and also to cast ballots for more than one public credential. In addition
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to ensuring basic integrity properties, consistency of the log also prevents ballot
copy attacks like in [17]. The individual verification procedure enables voters to
check their ballots on BB anytime during the election. Specifically, they should
check that the expected ballot b is published next to their public credential cr
on BBcast.

Tally Phase. The ballots which will be tallied are selected and marked as
input for the tally procedure. Selection typically chooses the last ballot cast by
each cri and we have BBtally : (cr1, b1), . . . , (crn, bn). bi = ⊥ if no ballot was cast
for cri. Based on the homomorphic properties of ElGamal encryption [19,22],
ciphertexts corresponding to non-empty ballots on BBtally are combined into a
ciphertext c encoding the total number of votes for each candidate. Then, c is
decrypted by trustees to obtain the result of the election.

2.2 Election Verifiability and Attacks on Belenios

We consider the symbolic definition of election verifiability from [9], which is an
extension of the symbolic definition introduced in [15]. Election verifiability is
modelled as a conjunction of properties Φh

iv ∧ Φeli ∧ Φcl ∧ Φ◦res, where:

Individual verifiability: Φh
iv ensures that if an honest voter successfully veri-

fied the last ballot they cast, then the corresponding vote should be part of
the final tally.

Eligibility: Φeli ensures that if a voter successfully verified a ballot, then the
corresponding public credential should be recorded at registration on BB.
Moreover, any tallied ballot should correspond to a public credential recorded
at registration.

No clash: Φcl ensures that no two voters can successfully verify their ballot for
the same public credential.

Result integrity: Φ◦res ensures that the adversary can cast a ballot for a given
public credential only if the corresponding voter is corrupted or has not
performed the individual verification procedure for any of the ballots cast. A
stronger notion of result integrity, denoted by Φ•res, prohibits the adversary
to cast a ballot even if the voter has not verified any of the ballots cast.

A violation of Φres is called ballot stuffing; a violation of Φcl is a clash attack.
Belenios is expected to satisfy election verifiability in the following adversarial
scenarios: A1 - both the server and the registrar are honest; A2 - the server
is corrupt and the registrar honest; A3 - the server is honest and the registrar
corrupt. Security should be ensured by private signing keys - when the registrar
is honest, and by private passwords and server logs - when the server is hon-
est. However, [9] shows several attacks resulting from the fact that the server
does not know the association between a public credential and the identity of
the corresponding voter. A corrupt voter can then cast a ballot for any public
credential, as soon as the adversary manages to obtain ballots signed with the
corresponding private credential.
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Ballot Reordering Attack by A1, A2 or A3. Assume an honest voter id
with public credential cr casts ballots b1 and b2, in this order, and only verifies
b2. Then b2 should be counted for the respective public credential. However, the
adversary can cause b1 to be counted instead. The attack scenario is as follows:

V(id, cr) : casts b1 and b2, which are blocked by A;
A : casts b2 for cr (relying on a corrupted voter or voting server);

BBcast : (cr, b2) is verified by the voter V(id, cr);
A : casts b1 for cr;

BBtally : (cr, b1).

In a normal execution, the reception of b1 or b2 from id would link cr to id,
thus the adversary cannot cast b1 after b2 when the server is honest - unless it
corrupts the password of id. The crucial point of the attack by A1 is that b2 is
cast for the same public credential cr by a distinct corrupted voter.

Ballot Stuffing and Individual Verifiability Attacks by A3. When an
honest voter id1 with cr1 casts a ballot b, the adversary can block and cast
it in the name of a corrupt voter id2, for the same public credential cr1. The
voter id1 successfully verifies b. Subsequently, relying on a corrupt registrar, the
adversary can cast another ballot bA for cr1. This violates result integrity Φ◦res
and individual verifiability Φiv, since an adversarial ballot bA is cast for cr1, even
though the corresponding voter is honest and has successfully verified the ballot
b.

A : corrupts VR and V(id2) to obtain 〈cr1, skey1, pwd2〉;
V(id1) : casts b, which is blocked by A;
A : casts b with 〈cr1, pwd2〉, and VS stores (id2, cr1) in Log;

BBcast : (cr1, b) is verified by V(id1);
A : casts bA with 〈cr1, pwd2〉, which is accepted and published;

BBtally : (cr1, bA).

If the voter id2 verified the cast ballot b, this also counts as a clash attack
in the definition from [9], as it requires resistance to clash attacks even for
corrupted voters. A variation of this attack can also lead to a weaker form of
ballot stuffing: the adversary can submit bA before id1 has a chance to cast a
ballot. In that case, the voting server will not accept any further ballot from
id1, since this would break the consistency of the log for cr1. Formally, this is a
violation of Φ•res. Our techniques in the following protect against (strong) ballot
stuffing, ballot reordering, individual verifiability attack and the clash attack.
They do not protect against the weaker form of ballot stuffing, i.e. the violation
of Φ•res.

3 Towards Improved Election Verifiability

In Belenios, the aim of the zero-knowledge proof prL = proofL(c, r, cr) in a ballot
b = 〈c, s, prR, prL〉 is to verifiably link the ciphertext c = enc(v, pk, r), and there-
fore the ballot b, to the public credential cr for which b is cast. We denote the
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corresponding verification procedure by verL(prL, c, cr). A valid proof can only be
constructed by the party who constructs the ciphertext, by proving knowledge
of the corresponding randomness r and associating it with the label cr. This is
called labeled encryption in [14]. The idea is that the ciphertext cannot be de-
tached from the label: the adversary cannot copy c, or create a ciphertext related
to the encoded vote, and cast it for a different credential cr′. This is required in
order to protect from attacks against privacy like in [17]. Concretely, the labeled
encryption in Belenios is based on ElGamal encryption with a Chaum-Pedersen
proof of knowledge, where the label cr is part of the input to a hash function
(SHA-256) that computes the challenge for a non-interactive zero-knowledge
proof.

We enrich the structure of the label in order to also protect against the
attacks presented in Section 2.2. The elements of the new label structure can
be given as inputs to the hash function along with cr in the Chaum-Pedersen
proof, thus we can rely on the same labeled encryption construction as Belenios.
Moreover, we prove in Section 4 that no further attacks are possible on election
verifiability in the resulting system. We present the new structure of the label
stepwise: first a label structure that protects against ballot reordering attacks by
A1,A2 or A3; then a label structure that protects against other attacks by A3

(in particular ballot stuffing); finally, combining the two labels protects against
all attacks by A1,A2 or A3.

3.1 Protection Against Ballot Reordering

We assume initially there are empty ballots next to eligible public credentials on
BB. Moreover, a specific portion of BB is reserved for displaying the last ballot
cast for each credential:

(Before voting) BBlast : (cr1,⊥), . . . , (crn,⊥)

(During voting) BBlast : (cr1, b1), . . . , (crn, bn)

When the voting platform VP constructs a new ballot for a voter with public
credential cr, it fetches from BBlast the last ballot b′ associated to cr. Then,
in the construction of the proof prL, instead of cr, VP uses the label h(cr, b′),
where h is a collision-resistant hash function mapping the pair (cr, b′) into the
appropriate domain for labels:

` = h(cr, b′); prL = proofL(c, r, `); b = 〈c, s, prR, prL, `〉.

BBcast records all ballots cast for cr, and their order cannot be changed on BB.
Election auditors can look at any two consecutive ballots b′ and b cast for a
credential cr and verify that

verL(prL, c, h(cr, b′)) = ok,

thereby ensuring that the party constructing b indeed expects it to follow b′.
In particular, if an honest voter casts b2 after b1, the adversary cannot cast b2
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first, since it would have to generate a proof linking b2 to an earlier ballot b0,
which is impossible since the adversary does not know the randomness in the
ciphertext corresponding to b2. This label structure ensures election verifiability
in corruption scenarios when the registrar is honest, i.e. A1 and A2.

3.2 Protection Against a Corrupted Registrar

The main cause of the attacks, in the scenario with a corrupted registrar, is
that the adversary can block a ballot b of an honest voter and cast it under
the identity of a corrupt voter, while maintaining the same public credential
associated to b. Subsequently, after the honest voter verified b, the adversary
can override it with an own ballot bA. In order to prevent this, we enrich the
label attached to b so that it includes a commitment to the identity of the
voter. More precisely, during ballot casting for a voter id, VP generates a fresh
randomness t, constructs the label 〈cr, com(id, t)〉 and sends t together with the
ballot to the voting server VS. Since the label cannot be reconstructed publicly
by election auditors, we explicitly include it in the ballot. We have:

VP : ` = 〈cr, com(id, t)〉; prL = proofL(c, r, `); b = 〈c, s, prR, prL, `〉,

VS : receives (cr, b, t) from VP for a given id; `′ = 〈cr, com(id, t)〉,
casts b if and only if `′ = ` and verL(prL, c, `) = ok.

In the attack scenario described above, the adversary cannot construct a
proof pr′L so that b is cast by VS under the identity of a corrupt voter. Indeed,
the ciphertext in b cannot be detached from the identity of the honest voter.
More generally, we prove that this structure of the label is sufficient to ensure
election verifiability in the corruption scenarios when the server is honest, i.e.
A1 and A3. Election auditors can still check the proof prL on BB, but they
are only be able to ensure the ballot is cast for the expected public credential
cr and will not have knowledge of the underlying id. Note that we cannot use
the id directly in the label, as this would reveal the link between id and cr.
Moreover, the commitment scheme should be perfectly hiding, in order to resist
an all-powerful, e.g. quantum, adversary.

3.3 Putting the Labels Together

We combine the labels from Section 3.1 and Section 3.2 as follows:

`1 = h(cr, b′); `2 = com(id, t); ` = 〈`1, `2〉.

We call Beleniostr (from tracking) the variant of Belenios where we augment the
label as described in Section 3.1, Beleniosid the variant where the label is as in
Section 3.2 and Belenios+ the variant where the label ` is as described in this
section. For a protocol P , a corruption scenarioA and a property Φ, we denote by
(P,A) |= Φ the fact that P satisfies Φ in the corruption scenario A. Let Φ◦E2E be
the election verifiability property Φh

iv ∧Φeli∧Φcl∧Φ◦res as described in Section 2.2
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and in [9]. In the next section, we describe the specification and automated
verification with Tamarin. They allow us to derive the following results:

( Beleniostr, A ) |= Φ◦E2E for A ∈ {A1,A2},
( Beleniosid, A ) |= Φ◦E2E for A ∈ {A1,A3},
( Belenios+, A ) |= Φ◦E2E for A ∈ {A1,A2,A3},

while we have ( Belenios, A ) 6|= Φ◦E2E for A ∈ {A1,A2,A3}.

The property Φ◦E2E corresponds to the standard verifiability notion used in
[14,15]. In particular, this notion ensures that, if an honest voter successfully
verified a ballot b for a public credential cr, then b is counted in the final tally
as the contribution of cr. A stronger notion of verifiability, denoted by Φ•E2E, was
also proposed in [9]: if a ballot is counted for a public credential correspond-
ing to an honest voter, then it must necessarily have been cast by that voter
- independently of the individual verification procedure. In the scenario A3, an
adversary corrupting the registrar and a voter can cast a ballot bA for any pub-
lic credential, violating the strong verifiability notion Φ•E2E, even in Belenios+.
The label 〈h(cr, b′), com(id, t)〉 does not help here, since the adversary can freely
combine the identity of a corrupted voter with any credential, sign the ballot
and construct valid zero-knowledge proofs. If the honest voter already submitted
and successfully verified a ballot b, then the adversary cannot make VS accept
bA for the same public credential under the identity of a corrupt voter. This
is due to the fact that the association between the honest voter and the public
credential is recorded by the server in the log upon accepting b. That is why
Φ◦E2E holds for Belenios+.

4 Specification and Verification

4.1 Specifying Protocols in Tamarin

We perform our analysis of Belenios+ using the Tamarin prover, which is based
on a multiset rewriting framework. We only illustrate the most relevant features
of Tamarin here. For a detailed understanding of Tamarin we refer the reader
to [3,26,29]. In Tamarin, messages (or terms) are built from a set of function
symbols and properties of cryptographic primitives are modelled by a set of
equations. Protocol state information and adversarial knowledge are represented
by facts, modelled relying on special fact symbols. Protocol actions are specified
by multiset rewriting rules, denoted by [L]−−[ M ]→[N ], in which a set of premise
facts L allows to derive a set of conclusion facts N , while recording certain events
in action facts M .

Example 1. In a voting protocol, the generation of a secret/public key pair can
be modelled by the following multiset rewriting rule, that we denote by Rkey:

[ Fr(k) ]−−[ !BBkey(pk(k)),Phase(′setup′) ]→[ !Sk(k), !BBkey(pk(k)),Out(pk(k)) ]

where Fr(k) denotes the randomly generated fresh key k as a premise. The con-
clusion facts !Sk(k) and !BBkey(pk(k)) record the secret and the public key of
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the election, respectively; the term pk(k) represents the public key itself, while
!BBkey(pk(k)) represents the fact that pk(k) is a public key published on BBkey.
If a fact is preceded by !, it means that it can be consumed (i.e. used as premise)
any number of times by other protocol rules. Otherwise it can be consumed only
once, and it is called a linear fact. The fact symbols In and Out are used for
communication over the network, controlled by the attacker. The action fact
BBkey(pk(k)) records the event that the public key is published on the bulletin
board. The action fact Phase(′setup′) records that the rule should be executed
in the setup phase. The following rules set up candidates v1 and v2 and voter
identities id:

Rcand : [ In(〈v1, v2〉) ]−−[ Phase(′setup′) ]→[ !BBcand(v1), !BBcand(v2) ]
Rid : [ In(id) ]−−[ Phase(′setup′) ]→[ !Id(id) ]

To cast a ballot, the voter with identity id makes a choice between the candidates
recorded on BBcand and encrypts the vote v using the public key from BBkey
together with fresh randomness r. The output including the voter identity id
can be sent to the server over the network. To model this action, we define the
following rule, where the event Vote(id, v) is recorded as an action fact:

Rvote : [ !Id(id), !BBcand(v), !BBkey(pk(k)),Fr(r) ]
−−[ Vote(id, v),Phase(′voting′) ]→[ Out(〈id, enc(v, pkey, r)〉) ]

Cryptographic operations are specified by equations. For example, decryption
using the private key k is specified by:

dec(enc(v, pk(k), r), k) = v

where the term enc(v, pk(k), r) represents the encryption of v with public key
pk(k) and randomness r. It can be decrypted only if the secret key k is provided.

A restriction in Tamarin is a logical formula that constrains the applica-
tion of protocol rules. For example, the restriction ∀x, y, i, j. BBkey(x) @i ∧
BBkey(y) @j ⇒ x = y applied to the rule Rkey in Example 1 means that it
is not possible to have two different election keys. The symbol @ refers to the
timepoints i and j in the execution trace when the rule Rkey is applied. We
can also express a timepoint ordering or equality. For example, the restriction
∀i, j. Phase(′setup′) @i ∧ Phase(′voting′) @j ⇒ i ≺ j means that all setup
actions should occur before voting actions. A restriction can also encode the
equality predicate, enforcing that u and v are equal in any occurrence of the
action fact Eq(u, v) : ∀u, v, i. Eq(u, v) @i⇒ u = v.

We note that formal verification with Tamarin does not guarantee full-proof
security, as Tamarin itself may have bugs. Recently, there is research aiming to
underpin fully automated provers like Tamarin with foundations from interactive
theorem provers like Coq [4,10,21].

4.2 Specification and Verification of Belenios+

We define a set of equations used for specifying decryption (1), signature verifi-
cation (2), verification of a range proof (3), and verification of a proof attaching
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a label to a ciphertext (4):

(1) dec(enc(x, pk(y), z), y) = x,

(2) ver(sign(x, y), x, pk(y)) = ok,

(3) (∀i) verR(proofR(enc(xi, y, z), z, 〈x1, . . . , xk〉), enc(xi, y, z), y, 〈x1, . . . , xk〉) = ok,

(4) verL(proofL(enc(x, y, z), z, `), enc(x, y, z), `) = ok.

To specify the set of equations (3) in Tamarin, the number of candidates k
has to be fixed in advance. We use k = 2, but any constant would work. For
modelling the actions of participants in the protocol, we define a set of rules
and restrictions. For the complete specification, we refer to the Tamarin code
online [5]. It is an extension of the code corresponding to Belenios in [9]. In the
following, we discuss two of the most important rules in the specification: ballot
casting as it happens on the voting platform VP and on the voting server VS. We
highlight the difference between Belenios+ and Belenios in red. We use special
linear facts in order to track the last ballot cast for each credential: VPlast(cr, b0)
- to be used by the voting platform, and BBlast(cr, b0) - to be used by the voting
server. The rule for ballot casting on the voting server makes sure these two
facts are in sync. For voter credentials, we use special facts !Reg(id, cr, skey) and
!Pwd(id, pwd) to store credentials received from the registrar and from the server,
respectively. Ballot casting by VP is represented by the following rule:

RVP
vote : construct a ballot, authenticate and send it to VS

let c = enc(v, pkey, r); s = sign(c, skey); ` = 〈h(cr, b0), com(id, t)〉;
prR = proofR(c, r, vlist); prL = proofL(c, r, `);
b = 〈c, s, prR, prL, `〉; a = h(〈id, pwd, cr, b, t〉) in

[ !BBcand(v), !BBkey(pkey),Fr(r),Fr(t), !Vlist(vlist), !Reg(id, cr, skey),
!Pwd(id, pwd),VPlast(cr, b0) ]−−[ Vote(id, cr, v),VoteB(id, cr, b) ]→

[ !Voted(id, cr, v, b),Out(〈id, cr, b, a, t〉) ]

where we use the Tamarin construction let. . . in for assigning terms to variables.
The rule abstracts password-based authentication with the help of a hash func-
tion, essentially ensuring that only a party knowing the password can cast a
ballot for a given id. In reality, the randomness t used for the commitment
should be sent on the same secure channel as the password. However, the se-
crecy of t is not important for verifiability properties, thus we can send it on
the public channel. The rule RVP

vote consumes the linear fact VPlast(cr, b0), thus
it can be executed only once for any ballot posted on BB. This mechanism is
complemented by the ballot casting rule on the server side:

RVS
cast : authenticate voter, verify and publish ballot

let ` = 〈h(cr, b0), com(id, t)〉; b = 〈c, s, prR, prL, `〉;
a′ = h(〈id, pwd, cr, b, t〉) in

[ In(〈id, cr, b, a, t〉), !BBkey(pkey), !Vlist(vlist), !BBreg(cr), !Pwd(id, pwd),
BBlast(cr, b0) ] −−[ a′ = a, ver(s, c, cr) = ok, verR(prR, c, pkey, vlist) = ok,
verL(prL, c, `) = ok, Log(id, cr), !BBcast(cr, b) ]→

[ !BBcast(cr, b),BBlast(cr, b),VPlast(cr, b) ]
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where we receive a ballot from the voter and perform the corresponding valida-
tion steps: verifying the password, the signature and the zero-knowledge proofs.
The fact containing the last ballot cast is consumed, and new facts are produced
for the new ballot: one to be consumed by the voting platform, and one to be
consumed by the server when the next ballot is cast. In order to obtain termina-
tion, we have a restriction limiting the number of applications of this rule to at
most four for each voter. The following rule and restriction model the individual
verification procedure, where the restriction ensures that the voter verifies the
last ballot cast:

RV
ver : [ !Voted(id, cr, v, b), !BBcast(cr, b) ]−−[ Verified(id, cr, v),VerB(id, cr, b) ]→[ ]

ΨV
last : !BBcast(cr, b) @i ∧ !BBcast(cr, b′) @j ∧ VerB(id, cr, b) @l ∧ i ≺ l ∧ j ≺ l
⇒ j ≺ i ∨ b = b′

Corruption Scenarios. We have three adversary models A1, A2 and A3, as
described in Section 2.2. Trustees are corrupted by default: we have a rule that
takes the secret key as input from the attacker. For other corruption abilities,
we have the following rules:

CVcorr : corrupt voter to reveal credentials
[ !Reg(id, cr, skey), !Pwd(id, pwd) ]−−[ Corr(id, cr) ]→[ Out(〈id, cr, skey, pwd〉) ]

CVSpwd : corrupt server to determine password

[ !Id(id), In(pwd) ]−−[ ]→[ !Pwd(id, pwd) ]

CVScast : corrupt server to stuff ballots
[ In(〈cr, b〉),BBlast(cr, b0) ]−−[ !BBcast(cr, b) ]→
[ !BBcast(cr, b),BBlast(cr, b),VPlast(cr, b) ]

CVRreg : corrupt registration of public / secret credentials
let cr = pk(skey) in

[ !Id(id), In(〈skey, cr′〉) ]−−[ !BBreg(cr′) ]→[ !Reg(id, cr, skey), !BBreg(cr′) ]

Moreover, when the server is corrupted, in the rule RVS
vote we only keep the ver-

ification actions that can be publicly performed by election auditors. Table 1
contains verification results for the corresponding specifications with Tamarin,
obtained with the specifications posted online [5]. We can see that the positive
results for Belenios+ are the union of the positive results for Beleniostr and
Beleniosid, in each of the corruption cases A1, A2 and A3. In Table 2, we give
execution times for the verification of Belenios+ when we bound the number of
ballots per voter accordingly. Tamarin does not terminate without such a bound
(it takes more than one hour for five ballots per voter).

5 Conclusion and Future Work

We have introduced a simple extension of Belenios and we have proved with the
Tamarin prover that the resulting system improves election verifiability in vari-
ous corruption scenarios. These additions do not affect usability and efficiency of
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Table 1. Verifiability analysis of the variants of Belenios.

Φ/Aj
Belenios∗ Beleniostr Beleniosid Belenios+

A1 A2 A3 A1 A2 A1 A3 A1 A2 A3

Φh
iv 7 7 7 3 3 3 3 3 3 3

Φeli 3 3 3 3 3 3 3 3 3 3

Φcl 3 3 7 3 3 3 3 3 3 3

Φ•res 3 3 7 3 3 3 7 3 3 7

Φ◦res 3 3 7 3 3 3 3 3 3 3

∗ : Verification results for Belenios as in [9].

Table 2. Execution times for the verification of verifiability of Belenios+.

#b/Aj
Belenios+

A1 A2 A3

2 ballots per voter 17 sec 8 sec 57 sec

3 ballots per voter 1 min 33 sec 2 min 47 sec

4 ballots per voter 12 min 6 sec 15 min 15 min 53 sec

Belenios. We also claim that (everlasting) privacy is not affected, but this has to
be formally proved. The bulletin board has the same structure, but the order in
which all ballots are cast for a given credential should be clear. Our open prob-
lems are related to the formal verification and to the design of electronic voting
protocols. Our specification makes certain abstractions that should be lifted or
formally justified, for greater confidence in results. The most important abstrac-
tion is the one limiting the number of ballots to four for each voter. Concerning
the design, our techniques still do not achieve the stronger notion of election ver-
ifiability, that prevents the adversary from casting ballots even for honest voters
that have not verified their ballots. We also think election verifiability could be
achieved in stronger corruption scenarios, e.g. when both the registrar and the
server are (partially) corrupted. For example, it could be interesting to achieve
public verifiability for the fact that each ballot is associated to an eligible voter,
while perfectly hiding the actual identity of the voter. This would limit the cor-
ruption abilities of the registrar who generates the public credentials, without
relying on the server to perform the verification.
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credential cr for the association of the ballot to the owner in voting phase. In
this paper, we focus on the zero-knowledge proof of (2b) which corresponds to
prL in the ballot structure b = 〈c, s, prR, prL〉 throughout the paper.

The cryptography underlying Belenios [16,20] makes use of a cyclic group
G = 〈g〉 with order q, which is a multiplicative subgroup of F∗p. Proofs are
generated using the Chaum-Pedersen algorithm and made non-interactive by the
Fiat-Shamir technique. The algorithm generates a challenge ch and a response
re to prove the knowledge of a secret sec corresponding to a public value gsec,
and sends (ch, re) as a proof to the verifier. The verifier computes ch using
the messages gsec and re, and accepts if the computed value matches the one
previously received. To generate the proof (ch, re), w ∈ Zq is randomly chosen.
Then,

ch = h(gsec, gw) mod q and re = w − sec× ch mod q

are computed. To verify the proof, given (ch, re) and gsec, A = gre(gsec)ch is com-
puted and checked that ch is equal to h(gsec,A).

In the implementation of zero-knowledge proofs in Belenios [20], h is specif-
ically the SHA-256 hash function [18], which can take an input up to 264 bits
and generates a fixed size output of 256 bits, and the proof prL = proofL(c, r, cr)
is computed as follows:

ch = SHA256(cr | 〈pk, c〉 | gw) mod q and re = w − r × ch mod q,

where cr ∈ G is the verification key of the corresponding voter, w ∈ Zq, pk is
the election public key, c = (gr, pkrgv) is the ciphertext of the vote v. Here, the
randomness r is the secret to be proved as a knowledge for a valid encryption.
Thus, A = gre(gr)ch is computed for the verification of prL.

In this paper, we propose to enrich the structure of prL with the following
replacements of cr:

– h(cr, b′) for Beleniostr,
– 〈cr, com(id, t)〉 for Beleniosid, and
– 〈h(cr, b′), com(id, t)〉 for Belenios+.

This means that cr in the generation of challenge ch will be replaced accordingly.
For Beleniostr, we propose to use a collision-resistant hash function h that takes
as input cr and the former cast ballot b′ on the BB. The hash function h can be
SHA-256 for the compatibility within the system, i.e. h(cr, b′) ≡ SHA256(cr | b′).
Assume that the former ballot on BB is not empty, i.e. b′ 6= ⊥. Then, b′ will be
in the following form:

b′ = (c, s, prR, prL, `
′)

= ((gr, pkrgv), (ch1, re1), (ch2, re2), (ch3, re3), h(cr, b′′)).

Here, s corresponds to a Schnorr-like digital signature which is also a pair of chal-
lenge and response in Zq. Therefore, we have c ∈ G×G and (chi, rei) ∈ Zq × Zq.
Note that every element in G has the same size as p since G is a subgroup of F∗p.
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In the specification [20], the lengths of p and q are taken as 2048 bits and 256
bits, respectively. Together with cr ∈ G and `′ ∈ Zq, the input size for h makes
31× 256 ≈ 213 bits, which is definitely suitable for SHA-256.

For Beleniosid, cr in the challenge ch is replaced with 〈cr, com(id, t)〉. This new
structure requires a commitment to the voter’s identity id with a randomness
t. Regarding the cryptography used for Belenios, the commitment can be a
Pedersen commitment. In this case, another generator ḡ of G will be used for
the commitment com(id, t) = gidḡt ∈ G for t ∈ Zq. Thus, the input size of SHA-
256 in ch will be increased by 2048 bits since we add a commitment in addition
to cr. In a similar fashion, when we enrich prL by applying 〈h(cr, b′), com(id, t)〉
as a first argument in the challenge for Belenios+, the input size of SHA-256
will be increased by the output size of h(cr, b′), which is 256 bits. Recall that
com(id, t) has the same length as cr and h(cr, b′) is SHA256(cr | b′) as shown
above. Hence, our propositions to enrich the structure of the proof prL fit well
with the cryptographic primitives used in Belenios.

Appendix B Belenios+ Specification Details

The details for the Belenios+ specification is in Figure 1 on the following page.

Appendix C Limiting the Number of Ballots in Tamarin

To obtain verification results in Tamarin regarding Belenios+ specification, we
need to restrict the number of ballots which can be cast by each voter, i.e. we
need to limit the number of revotes. Our current specification in Tamarin allows
up to four cast ballots, i.e. three revotes. The code does not terminate for a higher
bound. We specify the number of ballots allowed to be cast by restrictions in
Tamarin. If the allowance is for two ballots, then we use a restriction Ψtwo as
follows:

Ψtwo : TwoTimes(x) @i ∧ TwoTimes(x) @j ∧ TwoTimes(x) @k
⇒ i = j ∨ i = k ∨ j = k

This restriction refers to the action fact TwoTimes(〈cr,′ cast′〉) used in the rule
RVS
cast, which leads to a limitation on the number of ballots on BBcast. Similarly, to

specify an allowance for three and four ballots, we use the following restrictions:

Ψthree : ThreeTimes(x) @i ∧ ThreeTimes(x) @j ∧ ThreeTimes(x) @k ∧
ThreeTimes(x) @l⇒ i = j ∨ i = k ∨ i = l ∨ j = k ∨ j = l ∨ k = l

Ψfour : FourTimes(x) @i ∧ FourTimes(x) @j ∧ FourTimes(x) @k ∧
FourTimes(x) @l ∧ FourTimes(x) @m⇒ i = j ∨ i = k ∨ i = l ∨
i = m ∨ j = k ∨ j = l ∨ j = m ∨ k = l ∨ k = m ∨ l = m

For these restrictions, we call the respective action facts ThreeTimes(〈cr,′ cast′〉)
and FourTimes(〈cr,′ cast′〉) in the same server casting rule RVS

cast.
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SETUP PHASE

CTkey : generate election secret and public keys
[ In(skey) ]−−[ !BBkey(pk(skey)) ]→[ !Sk(skey), !BBkey(pk(skey)) ]

RA
cand : determine candidates to be elected

let vlist = 〈v1, . . . , vk〉 in
[ In(vlist) ]−−[ !Vlist(vlist) ]→[ !BBcand(v1), . . . , !BBcand(vk), !Vlist(vlist) ]

RA
id : determine identities eligible to vote

[ In(id) ]−−[ ]→[ !Id(id) ]

RVR
reg : register voter with signature pair

let cr = pk(skey) in
[ !Id(id),Fr(skey) ]−−[ !BBreg(cr) ]→[ !Reg(id, cr, skey), !BBreg(cr),Out(cr) ]

RVS
pwd : generate password for voter authentication

[ !Id(id),Fr(pwd) ]−−[ ]→[ !Pwd(id, pwd) ]

RVS
bb : setup initial BBcast for registered voters

[ !BBreg(cr) ]−−[ !BBcast(cr,⊥) ]→[ !BBcast(cr,⊥),BBlast(cr,⊥),VPlast(cr,⊥) ]

VOTING PHASE

RVP
vote : construct a ballot, authenticate and send it to VS

let c = enc(v, pkey, r); s = sign(c, skey); ` = 〈h(cr, b0), com(id, t)〉;
prR = proofR(c, r, vlist); prL = proofL(c, r, `);
b = 〈c, s, prR, prL, `〉; a = h(〈id, pwd, cr, b, t〉) in

[ !BBcand(v), !BBkey(pkey),Fr(r),Fr(t), !Vlist(vlist), !Reg(id, cr, skey), !Pwd(id, pwd),VPlast(cr, b0) ]
−−[ Vote(id, cr, v),VoteB(id, cr, b) ]→[ !Voted(id, cr, v, b),Out(〈id, cr, b, a, t〉) ]

RVS
cast : authenticate voter, verify and publish ballot

let ` = 〈h(cr, b0), com(id, t)〉; b = 〈c, s, prR, prL, `〉; a′ = h(〈id, pwd, cr, b, t〉) in

[ In(〈id, cr, b, a, t〉), !BBkey(pkey), !Vlist(vlist), !BBreg(cr), !Pwd(id, pwd),BBlast(cr, b0) ]
−−[ a′ = a, ver(s, c, cr) = ok, verR(prR, c, pkey, vlist) = ok, verL(prL, c, `) = ok, Log(id, cr),

!BBcast(cr, b) ]→ [ !BBcast(cr, b),BBlast(cr, b),VPlast(cr, b) ]

TALLY PHASE

R
VS/EA
tally : VS selects ballots for tally; can be audited by EA

[ !BBcast(cr, b) ]−−[ !BBtally(cr, b) ]→[ !BBtally(cr, b) ]

INDIVIDUAL VERIFICATION

RV
ver : voter verifies the ballot anytime on BBcast

[ !Voted(id, cr, v, b), !BBcast(cr, b) ]−−[ Verified(id, cr, v),VerB(id, cr, b) ]→[ ]

ΨVS
log : logs are checked to ensure consistency

Log(id, cr)⇒ ¬( Log(id, cr′) ∧ cr 6= cr′ ) ∧ ¬( Log(id′, cr) ∧ id 6= id′ )

Ψ
VS/EA
cast : ensure ballot validity; can be audited by EA

!BBcast(cr, b)⇒ !BBreg(cr) ∧ ( b = 〈c, s, prR, prL, `〉 ⇒ !BBkey(pkey) ∧ !Vlist(vlist)
∧ ver(s, c, cr) = ok ∧ verR(prR, c, pkey, vlist) = ok ∧ verL(prL, c, `) = ok )

Ψ
VS/EA
tally : the last ballot added to BB is selected for tally; can be audited by EA

!BBcast(cr, b) @i ∧ !BBcast(cr, b′) @j ∧ !BBtally(cr, b) @l⇒ j ≺ i ∨ b = b′

ΨV
last : the verified ballot is currently the last on BB

!BBcast(cr, b) @i ∧ !BBcast(cr, b′) @j ∧ VerB(id, cr, b) @l ∧ i ≺ l ∧ j ≺ l⇒ j ≺ i ∨ b = b′

Fig. 1. The specification of Belenios+.
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