
Design Space Exploration of SABER in 65nm ASIC
Malik Imran

Tallinn University of Technology
Tallinn, Estonia

malik.imran@taltech.ee

Felipe Almeida
Tallinn University of Technology

Tallinn, Estonia
felipe.almeida@taltech.ee

Jaan Raik
Tallinn University of Technology

Tallinn, Estonia
jaan.raik@taltech.ee

Andrea Basso
University of Birmingham

Birmingham, UK
a.basso@pgr.bham.ac.uk

Sujoy Sinha Roy
Graz University of Technology

Graz, Austria
sujoy.sinharoy@iaik.tugraz.at

Samuel Pagliarini
Tallinn University of Technology

Tallinn, Estonia
samuel.pagliarini@taltech.ee

ABSTRACT
This paper presents a design space exploration for SABER, one of
the finalists in NIST’s quantum-resistant public-key cryptographic
standardization effort. Our design space exploration targets a 65nm
ASIC platform and has resulted in the evaluation of 6 different
architectures. Our exploration is initiated by setting a baseline ar-
chitecture which is ported from FPGA. In order to improve the
clock frequency (the primary goal in our exploration), we have
employed several optimizations: (i) use of compiled memories in
a ‘smart synthesis’ fashion, (ii) pipelining, and (iii) logic sharing
between SABER building blocks. The most optimized architecture
utilizes four register files, achieves a remarkable clock frequency of
1𝐺𝐻𝑧 while only requiring an area of 0.314𝑚𝑚2. Moreover, physi-
cal synthesis is carried out for this architecture and a tapeout-ready
layout is presented. The estimated dynamic power consumption
of the high-frequency architecture is approximately 184mW for
key generation and 187mW for encapsulation or decapsulation
operations. These results strongly suggest that our optimized ac-
celerator architecture is well suited for high-speed cryptographic
applications.

CCS CONCEPTS
•Hardware→ Application specific integrated circuits; • Security
and privacy → Hardware security implementation; Cryptogra-
phy.

KEYWORDS
SABER, Lattice cryptography, MLWR, Crypto core, ASIC
ACM Reference Format:
Malik Imran, Felipe Almeida, Jaan Raik, Andrea Basso, Sujoy Sinha Roy,
and Samuel Pagliarini. 2021. Design Space Exploration of SABER in 65nm
ASIC. In ASHES ’21: Workshop on Attacks and Solutions in Hardware Security,
Nov. 19, 2021, Seoul, South Korea. ACM, New York, NY, USA, 6 pages. https:
//doi.org/xx.yyyy/zzzzzzzzzzz

1 INTRODUCTION
Currently deployed public-key cryptographic schemes, i.e., Rivest
Shammir Adleman (RSA) and Elliptic-curve Cryptography (ECC),
have their security strength built on the hardness of solving hard
mathematical problems such as prime factorization and discrete

ASHES ’21, Nov. 19, 2021, Seoul, South Korea
2021. ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/xx.yyyy/zzzzzzzzzzz

logarithms. While these crypto schemes have been standardized
and, to a large extent, remain useful, the recent advances in the field
of quantum computers now threat to break them [11]. Therefore,
researchers are focusing on designing and investigating quantum-
resistant public-key algorithms and protocols to keep future com-
munications secure.

Recently, a competition has been started by the National Institute
of Standards and Technology (NIST) for the standardization of
post-quantum cryptographic (PQC) public-key protocols [9], i.e.,
protocols that would not be vulnerable to quantum computers. As
the competition approaches its end, the majority of the remaining
candidates are based on computationally infeasible lattice problems.
One such candidate is a key encapsulationmechanism (KEM) named
SABER [6], which is the central piece of this study.

Throughout the standardization/competition process, NIST has
considered the security strength of PQC KEM protocols. C/C++
reference implementations of the finalist protocols are available
from [9]. Naturally, as with ECC and RSA, having accelerators for
PQC candidates is of interest as dedicated hardware can achieve
significant speed-ups in performance. Examples of hardware accel-
erators for NIST PQC protocols are presented in [1, 2, 4, 5, 8, 10, 13]
where both field programmable gate array (FPGA) and application
specific integrated circuit (ASIC) platforms are targeted.

Comparatively, state-of-the-art hardware implementations of
SABER [10, 13] provide significant performance improvements in
terms of computational time for the key generation (KeyGen), en-
capsulation (Encaps) and decapsulation (Decaps) operations. The
required computation time for these operations can be further
reduced by employing different architectural and circuit-level so-
lutions. Consequently, the focus of this work is to show the
design space exploration for the NIST PQC finalist SABER
with a focus on improving performance.

The design space exploration, in this work, determines the adap-
tion in various architectural elements (i.e., distinct memory con-
figurations, pipelining, and logic sharing) with an emphasis on
optimizing the design for a specific 65nm ASIC technology. There-
fore, to initiate our design space exploration, we have selected an
open source implementation of SABER1. The existing code targets
an FPGA platform, whereas in our work we target an ASIC plat-
form. Converting the code to ASIC is one of the contributions of
our work, as well as the following:
1The utilized SABER core is modelled as an instruction set coprocessor architecture.
The code is written in Verilog at Register Transfer Level (RTL). It can be accessed
directly at https://github.com/sujoyetc/SABER_HW.

https://doi.org/xx.yyyy/zzzzzzzzzzz
https://doi.org/xx.yyyy/zzzzzzzzzzz
https://doi.org/xx.yyyy/zzzzzzzzzzz
https://github.com/sujoyetc/SABER_HW

ASHES ’21, Nov. 19, 2021, Seoul, South Korea Malik Imran, Felipe Almeida, Jaan Raik, Andrea Basso, Sujoy Sinha Roy, and Samuel Pagliarini

• Exploration of different types, numbers, and sizes of com-
piled memories in a ‘smart synthesis’ fashion.

• Promoting logic sharing between SABER building blocks
that require similar functionality.

• Pipelining of selected portions of the design, thus trading-off
throughput for latency.

• Design of a tapeout-ready SABER core in a commercial 65nm
CMOS technology, for which we provide a layout and power,
area, and timing characteristics.

• Source codes for our many architectures2

The remainder of this paper is organized as follows: Section 2
provides the required mathematical background and discusses the
baseline architecture for the SABER PQC KEM protocol. Our design
space exploration is given in Section 3. Implementation results and
a comparison to the state of the art is provided in Section 4. Finally,
Section 5 concludes the paper.

2 PRELIMINARIES
This section presents the required mathematical background and a
description of the chosen baseline architecture for SABER.

Symbols (or notations). The 𝑝 and 𝑞 are modulo powers of 2. Set of
integers is presented with Z. Then the ring of integers modulo 𝑝 and
𝑞 is Z𝑝 and Z𝑞 , respectively. The ring of polynomials for an integer
𝑁 is presented with 𝑅𝑝 = Z𝑝 [𝑥]/⟨𝑥𝑁 +1⟩ and 𝑅𝑞 = Z𝑞 [𝑥]/⟨𝑥𝑁 +1⟩
where 𝑁 is a fixed power of 2. Vectors are shown in bold and lower
case font (e.g., a).

Security strength. The security strength relies on the hardness of
module Learning With Rounding (Mod-LWR) problem. Therefore,
a Mod-LWR sample is defined as follows:

(a, 𝑏 = ⌊𝑝
𝑞
(a𝑇 s)⌉) ∈ 𝑅𝑙×1𝑞 × 𝑅𝑝 (1)

In Eq. 1, a is a vector of randomly generated polynomials in
𝑅𝑞 , s is a secret vector of polynomials in 𝑅𝑞 whose coefficients are
sampled from binomial distribution, and the modulus 𝑝 < 𝑞. The
identification between Mod-LWR samples and uniformly random
samples in 𝑅𝑙×1𝑞 × 𝑅𝑝 formulates the Mod-LWR problem. There-
fore, this Mod-LWR problem is presumed to be computationally
infeasible both on classical and quantum computers. Consequently,
SABER is a good candidate for developing quantum-resistant cryp-
tosystems.

PKE and KEM operations. SABER is a Chosen Ciphertext Attack,
i.e., IND-CCA, secure KEM and Chosen Plaintext Attack, i.e., IND-
CPA, secure public-key encryption (PKE) scheme. Therefore, the
PKE crypto operations are the generation of pairs of public and
private keys (PKE.KeyGen), encryption (PKE.Enc) and decryption
(PKE.Dec). Similarly, the corresponding KEM operations are key
generation (KEM.KeyGen), encapsulation (KEM.Encaps) and decap-
sulation (KEM.Decaps). These operations are described as follows:

Key Generation. PKE.KeyGen starts by randomly generating
a seed that defines an 𝑙 × 𝑙 matrix A containing 𝑙2 polynomials in
𝑅𝑞 . A function 𝑔𝑒𝑛 (see Algorithm 1 of [10]) is used to generate
the matrix from the seed based on SHAKE-128. A secret vector s
of polynomials is also generated. These polynomials are sampled
from a centered binomial distribution. The generated public key
2Available from [7].

contains a matrix seed and rounded product A𝑇 s, while the secret
key contains a secret vector s. KEM.KeyGen does not differ from
PKE.KeyGen, except that it appends a secret key with a hash of the
public key and a randomly generated string 𝑧.

Encryption and Encapsulation. The PKE.Enc operation con-
sists of generating a new secret s′ and adding message to the inner
product between the public key and the new secret s′. This forms
the first part of the ciphertext while the second part contains the
rounded product As′. The KEM.Encaps operation starts by ran-
domly generating a message𝑚 and obtaining from that the public
key. The ciphertext 𝑐 contains the encrypted message and a value
achieved from the message and public key.

Decryption and Decapsulation. PKE.Dec requires the secret
key s to extract original message from the inner product between
the public and secret keys. It is the reverse to PKE.Enc. KEM.Decaps
re-encrypts the obtained message with the randomness associated
with it and checks whether the ciphertext corresponds to the one
received.

Set of parameters. For a security level equivalent to AES-128, AES-
192, and AES-256, SABER provides three variants that are termed
LightSABER, SABER, and FireSABER, respectively. All three vari-
ants use polynomial degree 𝑁 = 256 and moduli 𝑞 = 213 & 𝑝 = 210.
They differ only in the module dimension, binomial distribution
parameter (𝜇), and the message space. For more details about se-
curity parameters, PKE and KEM operations, we refer readers to
algorithms 1–6 of [10].

2.1 Baseline architectures
2.1.1 FPGA Coprocessor architecture of [10]. As introduced in Sec-
tion 1, we have used an open source crypto core for which the target
platform is FPGA. The coprocessor consists of: (i) a data memory
(BRAM with a size of 1024×64); (ii) a program memory; (iii) a dedi-
cated finite state machine based (FSM) controller for orchestrating
the SABER operations; and (iv) individual SABER building blocks.
The building blocks include: (i) polynomial Vector-Vector multiplier
wrapper; (ii) variants of secure hashing algorithms, i.e., SHA3-256,
SHA3-512, and SHAKE-128; (iii) a binomial sampler; (iv) AddPack;
(v) AddRound; (vi) Verify; (vii) Constant-time Move (CMOV); (viii)
Unpack; (ix) CopyWords; and (x) BS2POLVECp.

A BRAM-implemented memory is used to keep initial, inter-
mediate, and final results for the computation of required crypto-
graphic operations. A program memory is employed to enable the
coprocessor flexibility and its instruction set architecture (ISA) that
comprehends a number of instructions required by (the variants
of) SABER. For polynomial multiplication, inside the Vector-Vector
multiplier, a centralized schoolbook multiplier architecture is uti-
lized (described in [3]). A sampler is required to compute a sample
from pseudo-random input string for all KeyGen, Encaps, and De-
caps operations. The verify block is responsible for comparing two
byte strings of the same length. Based on the output of the verify
unit, CMOV is responsible to either copy the decrypted session
key or a pseudo random string at a specified memory location. The
AddPack block computes coefficient-wise addition with a constant
followed by generated message. Moreover, it packs the resultant
bits into a byte string. Similarly, the AddRound block performs
coefficient-wise addition of a constant followed by coefficient-wise

Design Space Exploration of SABER in 65nm ASIC ASHES ’21, Nov. 19, 2021, Seoul, South Korea

rounding. The unpack unit converts a byte string into bit string.
The BS2POLVECp block converts the byte string into a polynomial
vector. A dedicated FSM is responsible for interpreting incoming in-
structions from the program memory and to communicate/activate
the individual building blocks.

2.1.2 Our baseline architecture. To achieve our design premise, i.e.,
high performance, we have constructed a baseline ASIC architecture
for evaluation on a commercial 65nm technology. The first key
difference with respect to [10] is the replacement of the BRAMwith
an SRAM. The SRAM is generated by using a commercial memory
compiler provided by a partner foundry. Initially, for the baseline
architecture, the memory size is kept identical (1024×64). We will
later show many variants where the number of memory instances
and their sizes are optimized with the aim of improving the clock
frequency.

It is important to note that our baseline architecture remains
a coprocessor architecture and that the same ISA is utilized. We
assume the program memory resides outside of the SABER accel-
erator core. The same building blocks utilized in [10] are kept in
our work, but most of them are modified during our optimizations,
which we detail in the next section.

3 DESIGN SPACE EXPLORATION PROCESS
To differentiate our generated architecture to one another, we have
adopted a different name for each design as shown in Fig. 1. In
order to provide a simple terminology for our studied architec-
tures, we make use of the prefixes DP and SP, meaning that the
architecture employs either a dual-port or a single-port memory.
Similarly, the PIP prefix implies that the architecture in question is
pipelined. Based on this terminology, the following architectures
are considered:

• Baseline { • DP_1(1024x64)

• Optimized


• DP_2(1024x32)
• DP_4(1024x16)
• DP_8(512x16)
• PIP_DP_4(1024x16)
• PIP_SP_4(256x64)

Therefore, we have presented five optimized designs originating
from our baseline architecture. The memory is structured as i(m ×
n), where 𝑖 is the number of instances,𝑚 is the number of memory
addresses, and 𝑛 is the data width of each address.

In addition to the FSM controller and building blocks shown
in Fig. 1, our design space exploration led to the creation of new
units: (i) memory manager; (ii) pipeline register; and (iii) shared
shift buffer. All these units are common to all of our studied archi-
tectures, except for the pipeline register that is employed only in
our pipeline architectures, i.e., PIP_DP and PIP_SP. Furthermore,
we have done modifications to many building blocks to synchronize
their inputs/outputs with the memory timing requirements. The
modified blocks are shown with dashed lines in Fig. 1.

3.1 Memory manager
A smart memory synthesis [12] approach is investigated and imple-
mented in our Memory Manager unit. We clarify that the central
concept of smart synthesis is the observation that having smaller

P
IP

E
L

IN
E

-R
E

G

Connecting pipeline register to
sampler

SHA3-256/512
SHAKE128

Unpack

Binomial
Sampler

AddPack

AddRound

F
SM

 C
o

n
tr

o
ll

er

SABER building blocks

DP_2(1024×32)

DP_4(1024×16)

DP_8(512×16)

PIP_DP_4(1024×16)

PIP_SP_4(256×64)

Sh
ar

ed
 s

h
if

t
b

u
ff

er

DP_1(1024×64)

Memory Manager

Our contributed blocks

Blocks taken from [10]

Our modified building blocks

CopyWords

CMOV

Verify

BS2POLVECp

Multiplier

Multiplier taken from [3]

Figure 1: Block diagram of the designs generated during our
design space exploration

and distributed memories can be advantageous in an ASIC design.
Smaller memories require simpler address decoder units (which
are faster). This, combined with the fact that part of the address
decoding is now described as logic and can be co-optimized with
the remainder of the design, leads to performance improvements
with sometimes marginal increase in area. In this work, we ex-
plore a smart memory synthesis strategy within the limitations of
a commercial memory compiler.

For KEM operations, when the security is equivalent to AES-
192, SABER requires 992, 1344, and 1088 bytes for generating a
single public-key, secret-key, and a cipher text [6]. Therefore, a
relatively large memory (1024 × 64) is employed in [10]. We have
used the same memory size in our baseline architecture. To initiate
our design space exploration process, we have divided the data
width (64 bit) of the employed memory into smaller chunks (32 and
16) and increased the number of memory instances accordingly.
With this division, the memory structure becomes DP_2(1024×32)
and DP_4(1024×16). This design choice results in an increase in
clock frequency at the expense of area and power. Thereafter, from
DP_4(1024×16) memory structure, we have constructed another
architecture where we have reduced the required number of mem-
ory addresses from 1024 to 512. In this case, the memory structure
becomes DP_8(512×16). Conversely, this design choice results in an
increase in area and power with a marginal gain in clock frequency.
Therefore, at this point, we deem that further diving the memories
is no longer of interest.

In our first pipelined architecture, i.e., PIP_DP, we have used the
same 4(1024×16) memory structure as employed in DP_4(1024×16).
Our second pipelined architecture, however, utilizes compiled Reg-
Files3. One of the limitations of the use of a RegFile is that the IP
available to us is single-port, meaning that the design has to be
modified such that all building blocks that benefit from concurrent
read and write operations now execute them sequentially, one after
the other. The consequence is that the overall number of clock
cycles for a given cryptographic operation will increase. Later, we

3RegFiles are not flip-flops. This is a vendor-specific terminology for a compiled
6T SRAM memory that is advantageous when bit density can be traded-off with
performance. It is also termed a “high-speed” variant of SRAM by its vendor.

ASHES ’21, Nov. 19, 2021, Seoul, South Korea Malik Imran, Felipe Almeida, Jaan Raik, Andrea Basso, Sujoy Sinha Roy, and Samuel Pagliarini

will show that this increase is beneficial since the improved clock
frequency still reduces the overall latency for all SABER operations.
The memory structure of the PIP_SP architecture is 4(256×64).

3.2 Pipelining
Initially, with the goal of improving clock frequency, we have em-
ployed different memory configurations until the improvements in
clock frequency were exhausted. However, as the memory configu-
rations change, the critical path of the design changes as well. In
order to shorten the critical path and to further optimize the clock
frequency, we have to explore other circuit level solutions, such as
selective pipelining.

Based on the evaluation of the critical path of several architec-
tures (details are given in section 4.1), it becomes evident that the
memory is the performance bottleneck of the design. For this rea-
son, we have placed pipeline registers at the memory output. This
guarantees that the critical path is proportional to the memory
access time (as opposed to being proportional to the memory and
to the logic that follows it). Therefore, in our PIP_DP and PIP_SP
architectures, the input to the pipeline register is from the memory
while the output is connected to the binomial sampler (not shown
in Fig. 1).

3.3 Shared shift buffer
For several building blocks of SABER, i.e., AddRound, AddPack,
BS2POLVECp, and multiplier, a shift register is required to read
from many memory addresses and accumulate (hundreds of) bits
into local registers. For example, a 320-bit long register is required
in AddPack and BS2POLVECp while a 64 and 676 bit register are
required in AddPack and Multiplier, respectively. It is important
to mention that all the SABER building blocks produce outputs
serially, so the shift buffer can be shared as there are no concerns
with concurrent access. Therefore, we have efficiently employed
a single 676-bit register that is shared by AddRound, AddPack,
BS2POLVECp, andMultiplier. The use of a shared shift buffer results
in a 10.3% decrease in the total area with no impact on performance.
All results given in the next section consider the use of this shared
buffer by all architectures.

4 RESULTS AND COMPARISONS
The synthesis results on a 65nm commercial technology for our
baseline and optimized architectures are presented in Table 1. These
results are obtained after logic synthesis in Cadence Genus. The ini-
tial power estimates are obtained by assuming constant switching
probabilities (i.e., while considering a synthetic workload).

As shown in Table 1, the concurrent use of compiled memo-
ries in a ‘smart synthesis’ fashion with logic sharing to several
SABER building blocks and pipelining allow us to achieve 1𝐺𝐻𝑧
clock frequency, albeit with overheads in area (column two) and
power (columns six to eleven). With several optimizations from
baseline (DP) to PIP_DP architectures, we have shown that mem-
ory is the actual bottleneck in our implementation. For example,
for baseline architecture, out of total dynamic power, the memory
consumes 44% while the combinational logic utilizes 19%. More-
over, increase in memory instances results increase in power (72%
of the total dynamic power, see last column of Table 1 for our

PIP_DP_4(1024×16) architecture). Therefore, one approach to over-
come this bottleneck is the use of faster memory instances as we
employed in our PIP_SP_4(256×64) architecture where combina-
tional logic is responsible for 23% of the dynamic power while
memory is responsible for 27%.

One interesting aspect of the PIP_SP_4 architecture is that the
higher clock frequency changes the behavior of the synthesis tool
considerably. We have verified that the tool then prefers to map the
logic to (numerous) simpler gates instead of complex gates. Our
analysis of the synthesis log also shows that partitioning decisions
made by the tool were more frequent. The end result is that the
PIP_SP_4 architecture has 18k more logic gates than its counterpart
PIP_DP_4. We have also verified an increase in the number of
buffers and inverters. Even for a simple gate like NAND2, we see
1626 instances in PIP_DP_4 while PIP_SP_4 has 3450 instances. It
is important to highlight that the number of flip-flops does not
change since the PIP_SP_4 design is identical to PIP_DP_4.

We have calculated clock cycles (CCs) from end to end of each
operation (KEM.KeyGen, KEM.Encaps, and KEM.Decaps). The time
required to perform one cryptographic computation determines
latency (𝜇𝑠) and is calculated using Eq. 2. The CCs information for
each SABER building block is given in Table 2. The total CCs and
latency to compute KEM.KeyGen, KEM.Encaps and KEM.Decaps
for our baseline and optimized architectures is shown in Table 3.

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (𝜇𝑠) = 𝑇𝑜𝑡𝑎𝑙 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (MHz) (2)

Table 2 reveals that simultaneous use of multiple optimization
approaches results in additional CCs when compared to baseline de-
sign. For example, our PIP_SP_4(256×64) architecture requires 101,
76, 128, and 151 additional CCs for the Binomial Sampler, Vector-
Vector Polynomial Multiplier, Unpack, and CopyWords building
blocks. For other building blocks, the CC count will remain identi-
cal to the original design (meaning no changes when compared to
[10]). Similarly, Table 3 shows that the increase in both CCs and
clock frequency (values given in column six of Table 1) result in a
decrease in the computation time.

4.1 Critical path analysis
The critical paths of our baseline and optimized architectures are
shown in Fig. 2. Our analysis reveals that the memories containing
longer access time result in longer critical paths for most architec-
tures (i.e., the memory presents itself as the bottleneck) while the
use of faster RegFiles result in a shorter critical path. In other words,
as shown in Fig. 2, the critical path of our baseline architectures
depend on the memory and some amount of combinational logic
(to a lesser degree). However, this is not the case for our optimized
PIP_SP architecture where the critical path is mostly combinational
logic (and the setup time of the destination flip-flop). This result
implies that our optimized architecture is saturating the memory
bandwidth thanks to our optimization strategies at architecture
and circuit levels.

4.2 Physical layout for PIP_SP
The layout of CCA-secure KEM SABER accelerator, as shown in
Fig. 3, is obtained from Cadence Innovus. The accelerator circuit
was implemented with a nominal voltage of 1.2V in a 65nm CMOS

Design Space Exploration of SABER in 65nm ASIC ASHES ’21, Nov. 19, 2021, Seoul, South Korea

Table 1: Logic Synthesis results for CCA-secure KEM SABER

Design
Area Information Timing Information Power Information (inmW)

Area (𝑚𝑚2) Gates Clk. P (𝑛𝑠) Freq. (𝑀𝐻𝑧) Crypto core Combinational logic Memory
Lkg Dyn Lkg Dyn Lkg Dyn

DP_1(1024×64) 0.299 43336 2.000 500 0.090 86.844 0.059 16.235 (19%) 0.003 38.001 (44%)
DP_2(1024×32) 0.308 45319 1.718 582 0.091 104.835 0.059 18.499 (18%) 0.004 48.322 (46%)
DP_4(1024×16) 0.340 39981 1.638 610 0.082 135.342 0.051 18.762 (14%) 0.006 81.368 (60%)
DP_8(512×16) 0.478 45979 1.624 615 0.099 220.410 0.062 21.691 (10%) 0.010 157.490 (71%)
PIP_DP_4(1024×16) 0.365 46217 1.508 663 0.097 233.361 0.063 20.890 (10%) 0.006 168.476 (72%)
PIP_SP_4(256×64) 0.314 64230 0.998 1002 0.111 142.413 0.074 32.925 (23%) 0.006 39.060 (27%)
Clk. P. clock period, Lkg. leakage power, Dyn. dynamic power

Table 2: CCs information for SABER building blocks

building blocks Clock cycles Reason[10] This Work
Binomial Sampler 145 246 Pipelining
Multiplier 894 970 Memory sync.
Unpack 167 295 Memory sync.
CopyWords 60 211 Single-port RegFile
Others - No change

Table 3: Total CCs and latency for CCA-secure KEM SABER
on a 65nm commercial technology

Designs Total clock cycles Latency (𝜇𝑠)
KeyGen Encaps Decaps KeyGen Encaps Decaps

DP_1 5644 6990 8664 11.2 13.9 17.3
DP_2 5644 6990 8664 9.6 12.0 14.8
DP_4 5644 6990 8664 9.2 11.4 14.2
DP_8 5644 6990 8664 9.1 11.3 14.0
PIP_DP_4 5741 7087 8761 8.6 10.6 13.12
PIP_SP_4 7154 7136 9359 7.1 7.1 9.3

Figure 2: Critical path analysis for our studied architectures.

technology. The design is placed and clock tree synthesis (CTS)
is performed. The circuit is fully routed and passes design rule
checking (DRC) with no violations. Metals M1 through M7 are used
for signal routing, while the power is distributed in M8/M9. This is
a typical metal stack for the considered 65nm process. The circuit
is tapeout-ready with a core utilization of 88.66%.

630μm

6
3
0
μ
m

R
e

g
F

il
e

 D
 (

2
5

6
×

6
4

)

R
e

g
F

il
e

 B
 (

2
5

6
×

6
4

)

RegFile A (256×64)

RegFile C (256×64)

Figure 3: Physical layout of the CCA-secure KEM SABER
Table 4: Power results for different process corners

Operations Power values (in𝑚𝑊)
SS TT FF

KEM.KeyGen 146.7 184.3 244.8
KEM.Encaps 148.9 187.0 248.3
KEM.Decaps 148.4 186.4 247.5

The results achieved after physical synthesis for different corners
are given in Table 4. These results were obtained with the aid of
value change dump (VCD) files, i.e., files that capture the activity
of the design based on representative simulation loads. Thus, the
power values reported here are more realistic. Three different cor-
ners were used for characterization: slow-slow (SS), typical-typical
(TT), and fast-fast (FF). These corners have operating conditions for
different voltages and temperatures. The results reveal, as expected,
that FF consumes more power than TT. Similary, TT consumes
more power than SS.

The comparison to existing SABER implementations is given in
Table 5. Column one provides the reference implementation while
the targeted platform is given in column two. The latency in 𝜇𝑠 for
KEM.KeyGen, KEM.Encaps and KEM.Decaps is given in column
three. Column four provides the clock frequency (𝑀𝐻𝑧). Finally, the
last column provides the area for FPGA (in terms of look-up-tables
and flip-flops) and ASIC (in𝑚𝑚2) platforms. We have placed a ‘–’
where required information is not available.

ASHES ’21, Nov. 19, 2021, Seoul, South Korea Malik Imran, Felipe Almeida, Jaan Raik, Andrea Basso, Sujoy Sinha Roy, and Samuel Pagliarini

Table 5: Comparison to existing SABER accelerators. All im-
plementation results are for security equivalent to AES-192

Ref. # FPGA/ASIC Latency (𝜇𝑠) Freq. Area
(MHz) LUT/FF (or) mm2

[1] Artix-7 –/467.1/527.6 100 6713/7363
[5] Ultrascale+ –/60/65 322 –/–
[8] Artix-7 3.2K/4.1K/3.8K 125 7.4K/7.3K
[10] Ultrascale+ 21.8/26.5/32.1 250 23.6K/9.8K
[13] 40nm 2.66/3.64/4.25 400 0.38
PIP_SP 65nm 7.1/7.1/9.3 1000 0.314

Comparison to FPGA implementations [1, 5, 8, 10]. In terms
of computation time (shown in Table 5), themost efficient implemen-
tation of SABER on FPGA is described in [10]. It takes 5453, 6618 and
8034 CCs for the computation of one KEM.KeyGen, KEM.Encaps
and KEM.Decaps which are comparatively 24%, 8% and 15% lower
than our PIP_SP architecture. Moreover, our PIP_SP architecture
require 3.07, 3.73 and 3.45 times lower latency. For same operations,
the proposed PIP_SP architecture takes 450.7, 577.4 and 408.6 times
lower latency as compared to [8]. Additionally, our PIP_SP archi-
tecture achieves 8 and 4 times higher clock frequency as compared
to [8] and [10], respectively.

On Xilinx Zynq Ultrascale+ MPSoC, a software/hardware co-
design processor architecture is presented in [5]. For KEM.Encaps
and KEM.Decaps, our PIP_SP architecture is 8.45 and 6.98 times
faster (in terms of latency). As compared to lightweight imple-
mentation of SABER, described in [1], our PIP_SP architecture
require 65.78 and 56.73 times lower latency for KEM.Encaps and
KEM.Decaps, respectively. Moreover, our PIP_SP architecture re-
sults 10 and 3.10 times higher clock frequency as compared to [1]
and [5]. Noted that the area comparison to [1, 5, 8, 10] is not possi-
ble due to distinct implementation platforms (as we have provided
synthesis on ASIC while [1, 5, 8, 10] utilizes FPGA).

Comparison to ASIC accelerator [13]. As shown in Table 5,
our optimized PIP_SP architecture has higher latency. On the other
hand, we are utilizing 1.21 times lower hardware resources on a
65nm technology while the referenced work utilized 40nm. It is
therefore likely that our design would be a fraction of the size in
the same technology. Moreover, we are achieving 2.5 times higher
clock frequency. For multiplication of two 256-degree polynomials
in SABER, we have employed a centralized schoolbook multiplier
architecture of [3]. It takes 256 CCs to compute one polynomial
multiplication. On the other hand, in [13], the use of an 8-level
Karatsuba multiplier for the same polynomial length requires 81
CCs instead of 256.

Furthermore, a high-speed Keccak module containing two par-
allel sponge functions (Keccak-f) is used in [13]. It computes two
Keccak-f[1600] computations in each clock cycle and each round
of Keccak is performed every 12 CCs. In our architectures, a single
sponge function in a serial fashion is incorporated which results in
28 CCs to generate 1,344 bits of a pseudo-random string. In addition
to aforesaid differences in performance, our implementation follows
a coprocessor architecture while a fully parallelized architecture
is described in [13]. Consequently, the decrease in clock cycles in
[13] ultimately shows decrease in computation time.

5 CONCLUSIONS
This work has presented a design space exploration of SABER
with a focus on high performance. Our design space exploration
results in 1𝐺𝐻𝑧 clock frequency with concurrent use of compiled
memories in a ‘smart synthesis’ fashion, logic sharing between
SABER building blocks, and pipelining. Moreover, we have shown
that for optimizing clock frequency with area and power overheads,
a single instance of a large memory may not be optimal, and that
numerous smaller memories can be more convenient.

Finally, we highlight that our design already is tapeout-ready and
will be sent for fabrication in early September (the packaged parts
are expected to be delivered by December). This will allow us to
extend this work with physical measurements after IC fabrication.

6 ACKNOWLEDGMENTS
This work was partially supported by the EC through the European
Social Fund in the context of the project “ICT programme”. It was
also partially supported by European Union’s Horizon 2020 research
and innovation programme under grant agreement No 952252
(SAFEST) and by the Estonian Research Council grant MOBERC35.

REFERENCES
[1] Abubakr Abdulgadir, Kamyar Mohajerani, Viet Ba Dang, Jens-Peter Kaps, and

Kris Gaj. 2021. A Lightweight Implementation of Saber Resistant Against Side-
Channel Attacks. In Third PQC Standardization Conference.

[2] Utsav Banerjee, Tenzin S. Ukyab, and Anantha P. Chandrakasan. 2019. Sapphire:
A Configurable Crypto-Processor for Post-Quantum Lattice-based Protocols.
IACR Transactions on Cryptographic Hardware and Embedded Systems 2019, 4
(Aug. 2019), 17–61. https://doi.org/10.13154/tches.v2019.i4.17-61

[3] Andrea Basso and Sujoy Sinha Roy. 2020. Optimized Polynomial Multiplier
Architectures for Post-Quantum KEM Saber. Cryptology ePrint Archive, Report
2020/1482. https://eprint.iacr.org/2020/1482.

[4] Michiel Van Beirendonck, Jan-Pieter D’anvers, Angshuman Karmakar, Josep Bal-
asch, and Ingrid Verbauwhede. 2021. A Side-Channel-Resistant Implementation
of SABER. J. Emerg. Technol. Comput. Syst. 17, 2, Article 10 (April 2021), 26 pages.
https://doi.org/10.1145/3429983

[5] Viet B. Dang, Farnoud Farahmand, Michal Andrzejczak, and Kris Gaj. 2019. Imple-
menting and Benchmarking Three Lattice-Based Post-Quantum Cryptography
Algorithms Using Software/Hardware Codesign. In 2019 International Conference
on Field-Programmable Technology (ICFPT). 206–214.

[6] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, Frederik Ver-
cauteren, Jose Maria Bermudo Mera, Michiel Van Beirendonck, and Andrea
Basso. 2021 (last accessed, May 19, 2021). SABER: MLWR-Based KEM. https:
//www.esat.kuleuven.be/cosic/pqcrypto/saber/index.html

[7] Malik Imran and Samuel Pagliarini. 2021. saber-chip. https://github.com/Centre-
for-Hardware-Security/saber-chip.

[8] JoseMaria BermudoMera, Furkan Turan, AngshumanKarmakar, Sujoy Sinha Roy,
and Ingrid Verbauwhede. 2020. Compact domain-specific co-processor for accel-
erating module lattice-based KEM. In 2020 57th ACM/IEEE Design Automation
Conference (DAC). 1–6. https://doi.org/10.1109/DAC18072.2020.9218727

[9] NIST. Created January 3, 2017, Updated June 24, 2020. Post-quantum cryptogra-
phy. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

[10] Sujoy Sinha Roy and Andrea Basso. 2020. High-speed Instruction-set Coprocessor
for Lattice-based Key Encapsulation Mechanism: Saber in Hardware. IACR
Transactions on Cryptographic Hardware and Embedded Systems 2020, 4 (Aug.
2020), 443–466. https://doi.org/10.13154/tches.v2020.i4.443-466

[11] Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer. 26, 5 (1997). https://doi.org/10.
1137/S0097539795293172

[12] H. Ekin Sumbul, Kaushik Vaidyanathan, Qiuling Zhu, Franz Franchetti, and Larry
Pileggi. 2015. A synthesis methodology for application-specific logic-in-memory
designs. In 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6.
https://doi.org/10.1145/2744769.2744786

[13] Yihong Zhu, Min Zhu, Bohan Yang, Wenping Zhu, Chenchen Deng, Chen Chen,
Shaojun Wei, and Leibo Liu. 2021. LWRpro: An Energy-Efficient Configurable
Crypto-Processor for Module-LWR. IEEE Transactions on Circuits and Systems I:
Regular Papers 68, 3 (2021), 1146–1159. https://doi.org/10.1109/TCSI.2020.3048395

https://doi.org/10.13154/tches.v2019.i4.17-61
https://eprint.iacr.org/2020/1482
https://doi.org/10.1145/3429983
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/index.html
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/index.html
https://doi.org/10.1109/DAC18072.2020.9218727
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://doi.org/10.13154/tches.v2020.i4.443-466
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1145/2744769.2744786
https://doi.org/10.1109/TCSI.2020.3048395

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Baseline architectures

	3 Design Space Exploration Process
	3.1 Memory manager
	3.2 Pipelining
	3.3 Shared shift buffer

	4 Results and Comparisons
	4.1 Critical path analysis
	4.2 Physical layout for PIP_SP

	5 Conclusions
	6 Acknowledgments
	References

