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Abstract

We study the problem of batch verification for verifiable delay functions (VDFs), focusing on
proofs of correct exponentiation (PoCE), which underlie recent VDF constructions. We show
how to compile any PoCE into a batch PoCE, offering significant savings in both communication
and verification time. Concretely, given any PoCE with communication complexity c, verification
time t and soundness error δ, and any pseudorandom function with key length kprf and evaluation
time tprf , we construct:

• A batch PoCE for verifying n instances with communication complexity m · c+ kprf , verifi-
cation time m · t+ n ·m ·O(top + tprf) and soundness error δ+ 2−m, where λ is the security
parameter, m is an adjustable parameter that can take any integer value, and top is the time
required to evaluate the group operation in the underlying group. This should be contrasted
with the naïve approach, in which the communication complexity and verification time are
n · c and n · t, respectively. The soundness of this compiler relies only on the soundness of
the underlying PoCE and the existence of one-way functions.

• An improved batch PoCE based on the low order assumption. For verifying n instances, the
batch PoCE requires communication complexity c+ kprf and verification time t+ n · (tprf +
log(s)·O(top)), and has soundness error δ+1/s. The parameter s can take any integer value,
as long as it is hard to find group elements of order less than s in the underlying group. We
discuss instantiations in which s can be exponentially large in the security parameter λ.

If the underlying PoCE is constant round and public coin (as is the case for existing protocols),
then so are all of our batch PoCEs. This implies that they can be made non-interactive using
the Fiat-Shamir transform.

Additionally, for RSA groups with moduli which are the products of two safe primes, we show
how to efficiently verify that certain elements are not of order 2. This protocol, together with
the second compiler above and any (single-instance) PoCE in these groups, yields an efficient
batch PoCE in safe RSA groups. To complete the picture, we also show how to extend Pietrzak’s
protocol (which is statistically sound in the group QR+

N when N is the product of two safe
primes) to obtain a statistically-sound PoCE in safe RSA groups.
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1 Introduction

Verifiable delay functions (VDFs), recently formalized by Boneh et al. [BBB+18], have proven to
be extremely useful in a wide array of exciting applications. These include, among others, verifi-
able randomness beacons (e.g., [LW15] and also [GS98, BCG15, BGZ16, PW18, HYL20, GLO+21]),
resource-efficient blockchains [CP19], computational time-stamping (e.g., [CE12, LSS20] and the ref-
erences therein) and time-based proofs of replication (e.g., [Ler14, ABB+16, Pro17, BDG17, Fis19]).
Roughly speaking, a VDF is a function f : X → Y which is defined with respect to a delay pa-
rameter T and offers the following sequentiality guarantee: It should not be possible to compute f
on a randomly-chosen input in time less than T , even with preprocessing and polynomially-many
parallel processors. However, the function should be computable in time polynomial in T . Moreover,
the function should be efficiently verifiable: For an input x ∈ X , it should be possible to produce
alongside the output y ∈ Y, a short proof π asserting that indeed y = f(x). Verifying the proof
should be much quicker than computing the function anew.

Proofs of correct exponentiation. The main VDF candidates currently known are based on
the “repeated squaring” function in groups of unknown order, such as RSA groups or class groups of
imaginary quadratic fields. This function – first introduced for delay purposes by Rivest, Shamir and
Wagner [RSW96] – is defined by x 7→ x2

T , where T is the delay parameter and the exponentiation
is with respect to the group operation. The recent and elegant works of Wesolowski [Wes19], of
Pietrzak [Pie19] have augmented the repeated squaring function with non-interactive proofs, yielding
full-fledged candidate VDF constructions (see also the survey of Boneh et al. [BBF18] covering these
constructions). Both of these proofs are based on applying the Fiat-Shamir heuristic [FS86] to
succinct proofs of correct exponentiation. These are protocols in which a (possibly malicious) prover
tries to convince a verifier that y = xe, for a joint input consisting of two group elements x and
y and an arbitrary (and potentially very large) exponent e.1 The succinctness of these protocols
manifests itself both in their communication complexity, and in the verifier’s running time, which
is much lesser than the time it would take the verifier to compute xe on her own. Very recently,
in an independent and concurrent work, Block et al. [BHR+21] showed how to generalize Pietrzak’s
protocol to obtain a proof of correct exponentiation that is information-theoretically secure in any
group of unknown order.

Verifying multiple VDF outputs. In many of the applications of VDFs, one might be (and
in some cases even likely to be) interested in verifying not only one but many VDF outputs at
once. Examples for such scenarios include (but are not restricted to) verifying that a storage ser-
vice maintains multiple replicas of the same file via a VDF-based proof of replication; verifying the
shared randomness produced by a VDF-based randomness beacon during the last several epochs;
and verifying the time-stamps of multiple files stamped using a VDF-based time-stamping scheme.
Unfortunately, verifying multiple VDF outputs naïvely, by verifying the proof for each of them sepa-
rately and independently, comes at a premium: If one wishes to verify n individual VDF proofs, each
of which is ` bits long and takes time t to verify, then verifying all of them using the aforesaid naïve
approach results in a total proof size (and hence communication overhead) of n · ` and verification
time of n · t.

1Often, these protocols offer only computational soundness guarantee. Nevertheless, we use the name proofs (rather
than arguments) throughout, for more concise presentation and for consistency with previous works (e.g., [BBF19]).



Existing approaches. The related and fundamental problem of verifying many exponentiations
in cryptographic groups, traces back to the seminal work of Bellare, Garay and Rabin [BGR98],
which presented elegant batch verification algorithms. However, their work, motivated by the task
of batch verification of signatures, did not consider the setting of an external prover and the effi-
ciency considerations attached to it (i.e., succinctness). Moreover, their more efficient approach and
its analysis rely on cyclic groups of prime order, which seem somewhat unlikely to accommodate
VDF constructions [RSS20] (see Section 1.2). In the context of VDF verification, Wesolowski2 re-
cently presented a “batch version” of his proof of correct exponentiation. Alas, the soundness of
this batch proof is proven under the adaptive root assumption, which is a new and rather strong
assumption in groups of unknown order. In particular this assumption is stronger than the low order
assumption which underlies Pietrzak’s protocol [BBF18, Pie19],3 and making this assumption is of
course undesirable when starting from the information-theoretically sound protocol of Block et al.
[BHR+21]. This state of affairs urges the search for succinct and efficient batch proofs of correct
exponentiation which rely on weaker assumptions than the adaptive root assumption.

1.1 Our Contributions

We present simple and efficient batch verification techniques for proofs of correct exponentiation,
extending the basic techniques of Bellare, Garay and Rabin to the external-prover setting and to
composite-order groups. In conjunction with current VDF candidates based on proofs of correct
exponentiation for the repeated squaring function [RSW96, Wes19, Pie19, BHR+21], our techniques
immediately give rise to VDFs with batch verification. Our compilers rely on weaker assumptions
than currently-known batching techniques for verifiable delay functions, paving the way to a variety
of new instantiations.

Batch proofs of correct exponentiation. We define the notion of a batch proof of correct expo-
nentiation. This is a protocol in which a prover and a verifier share as input n pairs (x1, y1), . . . , (xn, yn)
of group elements and an exponent e ∈ N, and the prover attempts to convince the verifier that
xei = yi for each i ∈ [n].4 Loosely speaking, we say that a batch proof of correct exponentiation has
soundness error δ if in case xei 6= yi for some i ∈ [n], no efficient (malicious) prover can convince a
verifier to accept with probability greater than δ + negl(λ), where λ ∈ N is the security parameter
(see Section 3 for the formal definition).

A general compiler. As our first main contribution, we show how to compile any proof of correct
exponentiation into a batch proof of correct exponentiation, offering significant savings in both
communication and verification time, relative to the naïve transformation. The soundness of this
compiler essentially relies on an information-theoretic argument, which is then derandomized using
a pseudorandom function. This makes it a generic compiler which can be applied in any group, as

2In the updated longer version of his work [Wes20].
3For example, in cyclic groups of prime (and publicly known) order, the low order assumption holds information-

theoretically, whereas the adaptive root assumption does not hold. Moreover, even in groups which are believed to
be of unknown order, the adaptive root assumption seems to be a stronger one: For instance, for a modulus N which
is the product of two safe primes, the low order assumption holds information-theoretically in the group of quadratic
residues modulo N . This is in contrast to the adaptive root assumption which is at least as strong as assuming the
hardness of factoring N . See Section 2 for details.

4Note that our definition of batch proofs of correct exponentiation deals with scenarios in which all instances should
be verified with respect to the same exponent. We discuss this point further in Section 3, and leave it as an interesting
open question to construct batch proofs for different exponents.
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long as the underlying proof of correct exponentiation is sound in this group, hence also making it
compatible with the new proof of correct exponentiation of Block et al. [BHR+21].

Theorem 1.1 (informal). Let G be a group and assume the existence of a one-way function and
of a proof of correct exponentiation in G with communication complexity c = c(λ, e), verification
time t = t(λ, e) and soundness error δ = δ(λ), where λ ∈ N is the security parameter and e ∈ N
is the exponent. Then, for any n,m ∈ N, there exists a batch proof of correct exponentiation for n
pairs of elements in the group G, with communication complexity cbatch = c ·m+λ, verification time
tbatch = m · t+ n ·m · poly(λ) and soundness error δbatch = δ + 2−m.

An improved compiler based on the low order assumption. Our second main contribution
is an improved compiler, whose soundness is based on the low order assumption in groups of unknown
order, recently introduced by Boneh et al. [BBF18]. Roughly speaking, for an integer `, the `-low
order assumption asserts that one cannot efficiently come up with a group element z 6= 1 and an
exponent ω < ` such that zω = 1. This compiler enjoys significant improvements over our general
compiler: The communication complexity is now completely independent of the desired soundness
guarantee (i.e., one can reduce the soundness error without increasing communication), and the
running time of the verifier is also improved. Concretely, we prove the following theorem.

Theorem 1.2 (informal). Let G be a group and assume the existence of a one-way function and of a
proof of correct exponentiation in G with communication complexity c = c(λ, e), verification time t =
t(λ, e) and soundness error δ = δ(λ), where λ ∈ N is the security parameter and e ∈ N is the exponent.
Assume that the `-low order assumption holds in G for an integer ` = `(λ). Then, for any n ∈ N
and s ≤ `, there exists a batch proof of correct exponentiation for n pairs of elements in the group
G, with communication complexity cbatch = c+λ, verification time tbatch = t+O(n · log(s) · poly(λ)),
and soundness error δbatch = δ + 1/s.

In Section 6, we also discuss why the low order assumption is necessary for our compiler to yield
the soundness guarantees of Theorem 1.2.

Instantiating the compiler. The compiler from Theorem 1.2 relies on the same techniques as
those underlying Wesolowski’s [Wes20] batch proof (which, as mentioned above, can be traced back
to Bellare, Garay and Rabin [BGR98]). However, our compiler is modular and our analysis of its
soundness is based solely on the low order assumption (compared to Wesolowski’s reliance on the
adaptive root assumption). This means that our compiler can be applied to both the protocols
of Wesolowski and of Pietrzak, without making any further assumptions beyond those required by
their single-instance protocols (and one-way functions for derandomization purposes). Concretely,
there are currently three main candidates for families of groups in which the low order assumption
is plausible:5

• The groups QRN and QR+
N . The low order assumption holds information-theoretically in

the group QRN of quadratic residues modulo N when N is the product of two safe primes (as
well as in the isomorphic group QR+

N of signed quadratic residues modulo N , in which group
membership is efficiently recognizable). It may also rely on the assumption that the low order
problem is computationally hard in these groups for other choices of N . The reader is referred
to Section 2 for further details regarding these groups.

5For a more in-depth discussion see Section 6 and the work of Boneh et al. [BBF18].
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• RSA groups. The low order assumption cannot hold in the RSA group Z∗N since −1 ∈ ZN is
always of order two in this group. Boneh et al. [BBF18] suggested to work over the quotient
group Z∗N/{±1} instead. We consider two additional possibilities. One is to settle on a slightly
weaker soundness guarantee: If the verifier accepts, it must be the case that xei ∈ {yi,−yi}
for every i ∈ [n]. Observe, that this requirement indeed seems compatible with many of the
applications of VDFs mentioned above.6 When N is the product of two safe primes, we show
(following Seres and Burcsi [SB20]) that this weaker notion of soundness for our compiler is
actually implied by the hardness of factoring N . The second option is to compose our compiler
with an additional protocol, specifically tailored in order to prove that yi 6= −xei for each i.
We discuss this approach below.

• Class groups of imaginary quadratic fields. The security of the low order assumption
in these groups is still unclear [BBF18, BKS+20], but at least for now, there are possible
parameters for which the low order assumption remains unbroken in these groups.

Strong soundness in RSA groups via proofs of order. As discussed above, when our compiler
from Theorem 1.2 is used within RSA groups, we can obtain only a weaker form of soundness. The
issue is that a malicious prover can still convince the verifier that xei = yi for every i, even though there
exists an index j for which yj/xej = −1. To remedy this situation we present a protocol that allows the
prover to convince the verifier that order(yi/xei ) 6= 2 for every i, and hence in particular yi/xei 6= −1
for every i. The protocol builds on the work of Di Crescenzo et al. [CKK+17], but extends it in a
non-trivial manner to save in communication (or proof size, when Fiat-Shamir is applied). It enjoys
efficient verification and information-theoretic soundness when the modulus N of the RSA group is
the product of two safe primes, and it can be made succinct (i.e., with communication complexity is
independent of the number n of pairs of group elements) using a pseudorandom function. Hence, in
such groups, executing this protocol in parallel to our compiler from Theorem 1.2 yields a full-fledged
sound compiler in RSA groups, without compromising on weaker soundness notions or making strong
assumptions. In Theorem 1.3 below, by “safe RSA groups” we mean RSA groups whose modulus is
the product of two λ-bit safe primes.

Theorem 1.3 (informal). Assume the existence of a one-way function and of a proof of correct
exponentiation in safe RSA groups with communication complexity c = c(λ, e), verification time
t = t(λ, e) and soundness error δ = δ(λ), where λ ∈ N is the security parameter and e ∈ N is the
exponent. Then, for any n,m ∈ N and s < 2λ−1, there exists a batch proof of correct exponentiation
for n pairs of elements in safe RSA groups, with communication complexity cbatch = c + O(λ),
verification time tbatch = t+O(n ·m · log(s) · poly(λ)), and soundness error δbatch = δ + 1/s+ 2−m.

A statistically-sound proof of correct exponentiation in RSA groups. To complete the
picture, we present a proof of correct exponentiation in standard (safe) RSA groups.7 The protocol
is obtained by extending Pietrzak’s protocol [Pie19] with techniques similar to those used to prove
Theorem 1.3. The protocol actually achieves statistical soundness in safe RSA groups, with very little
overhead in terms of communication and verification time when compared to Pietrzak’s protocol.

6For example, when it comes to proofs of replication, if a file is retrievable given an encoding y which is the output
of a VDF, then it is also retrievable given −y. As an additional example, in the context of verifiable randomness
beacons, this weakened soundness guarantee gives a malicious prover the ability to convince the verifier that the
shared randomness is −y, when in fact it should be y, but no more than that.

7This is in contrast to the quotient group Z∗N \ {±1} or the subgroups QRN and QR+
N of Z∗N .
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Theorem 1.4 (informal). There exists a statistically-sound proof of correct exponentiation in safe
RSA groups, whose communication complexity and verification time essentially match those of Pietrzak’s
protocol.

Though the statistically-sound proof of correct exponentiation of Block et al. [BHR+21] can also
be instantiated in safe RSA groups, their protocol incurs a factor λ overhead in communication
complexity when compared to Pietrzak’s protocol. In contrast, our protocol only incurs an overhead
of factor 2 in communication complexity.

Interpreting our results. We make two clarifications in order to help the reader interpret the
above results. Firstly, we emphasize that the parameters m (from Theorems 1.1 and 1.3) and s (from
Theorems 1.2 and 1.3) do not scale with the number n of pairs (xi, yi) to be verified, and can be
fine-tuned at will to achieve the desired tradeoff between the soundness error of the batch protocol
on the one hand, and the communication complexity and verifier’s running time on the other hand.
Secondly, we stress that in all of the above theorems, the polynomials referred to by poly are fixed
polynomials that depend only on λ, and do not scale with neither n nor the exponent e. These two
points have several important implications:

• The communication overhead incurred by our compilers is completely independent of n.
• The verification time depends linearly on n, but in all of our compilers, we manage to “decouple”

the terms which depend on n from the terms which depend on the original verification time
t in the underlying proof of correct exponentiation protocol (and hence we also decouple n
from the exponent e). This should be contrasted with the naïve solution discussed above, in
which the verification time is t ·n. Moreover, observe that some linear dependency on n seems
unavoidable, since merely reading the verifier’s input takes time at least n.

• One can set m to be super-logarithmic in the security parameter λ (e.g., by setting m(λ) =
log(λ)·log∗(λ)) in Theorems 1.1 and 1.3, and s to be super-polynomial in Theorems 1.2 and 1.3,
to obtain protocols with negligible soundness error, with only slightly greater communication
complexities and verification times than those of the underlying proof of correct exponentiation.

Applying the Fiat-Shamir heuristic. All of our compilers add only a single public coin message
from the verifier to the prover. Consequently, if the Fiat-Shamir heuristic [FS86] can be applied in
the random oracle model to the underlying proof of correct exponentiation, then it can be applied to
resulted batch proof as well (as long asm and s are set such that the soundness error is negligible). In
particular, the Fiat-Shamir heuristic may be applied to the compiled versions (via our compilers) of
the protocols of Wesolowski [Wes19], of Pietrzak [Pie19], and of Block et al. [BHR+21] to obtain non-
interactive batch proofs of correct exponentiation. See Section 5 and the related work of Lombardi
and Vaikuntanathan [LV20] for a more exhaustive discussion on the matter.

Communication in the interactive setting. As illustrated below, we use pseudorandom func-
tions in order to shrink the length of the public coin message from the verifier to the prover. This is
necessary only in the interactive setting, since when the Fiat-Shamir heuristic is applied this message
is computed locally by the prover (and hence does not affect the proof’s length). Indeed, verification
of VDFs is typically considered to be non-interactive, but we nevertheless believe that exploring
interactive verification of VDFs is interesting and well-justified by applications in which verifiaction
is done by a single verifier in an online manner, such as VDF-based proofs of storage. Using an
interactive protocol in such settings eliminates the need to rely on the Fiat-Shamir transform.
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1.2 Additional Related Work and Open Problems

Batch verification for group exponentiation. The line of works that seems most related to
ours was initiated by the seminal work of Bellare, Garay and Rabin [BGR98] (following up on the
works of Fiat [Fia89], Naccache et al. [NMV+94] and of Yen and Laih [YL95]8) and considers the
following problem: Let G be a cyclic group and let g be a generator of the group. The task, given
n exponents x1, . . . , xn and n group elements h1, . . . , hn, is to verify that gxi = hi for each i ∈ [n].
Bellare et al. presented several approaches for solving this problem, exhibiting different savings in
terms of computational costs vis-à-vis the naïve solution of raising g to the power of each xi.

Our compilers are inspired by two elegant techniques of Bellare et al. – the “random subsets”
technique and the “random exponents” technique – but there are some key differences between their
work and ours. Firstly, we embed these techniques within the framework of succinct proofs of correct
exponentiation (which we extend to the batch setting). This setting presents its own set of unique
technical challenges, the main one being reducing the communication overhead (or proof size, in the
non-interactive setting). This challenge does not arise in the setting considered in their work (and
in follow-up works), which is motivated by batch verification of signatures. Secondly, the random
exponents technique as proposed by Bellare et al. and its analysis explicitly and inherently assumes
that the group at hand is of prime order. Such groups do not seem to enable VDF constructions,
as Rotem, Segev and Shahaf [RSS20] recently showed how break the sequentiality of any such con-
struction in the generic-group model. We extend the approach underlying the random exponents
technique to composite-order groups.

In a concurrent and independent work, Block et al. [BHR+21] also extended the random subsets
technique of Bellare et al. that we use to derive Theorem 1.1, in the context of hidden-order groups
(though they did not explicitly observe the connection between the work of Bellare et al. and theirs).
Their motivation was to extend Pietrzak’s protocol [Pie19] to obtain an information-theoretically
sound protocol, while ours is proof batching, but the application of the random subsets technique is
quite similar in both cases.

Di Crescenzo et al. [CKK+17] considered the related problem of batch delegation of exponentia-
tion in RSA groups, while extending the random exponents technique of Bellare, Garay and Rabin.
Our treatment of RSA groups is also inspired by the techniques of Di Crescenzo et al. but their
protocol includes a communication overhead which is linear in the number n of exponentiations to
be delegated (and verified) – which in our setting, is exactly what we are trying to avoid. We manage
to get rid of this dependency altogether.

A long line of follow-up works succeeded the work of Bellare et al. suggesting various improve-
ments to their techniques in various settings (see for example [BP00, CL06, CY07, CHP07, CL15]
and the references therein). An interesting open question is whether some of these techniques can
be used in order to improve our results.

Other VDF candidates. This work focuses on VDF candidates which are based on the repeated
squaring function in groups of unknown order. Other candidates have also been proposed over
the last couple of years. Some of which are based on different assumptions, such as candidates
based on super-singular isogenies [FMP+19, Sha19], and the VeeDo VDF candidate in prime fields
[Sta20]; while other constructions (e.g., [EFK+20, DGM+20]) achieve various desired properties. An
interesting possible direction for future research is to enable batch verification to these candidate
VDFs as well, either relying on our techniques or presenting new ones tailored specifically for these
candidates.

8See also [CHP07] and the many references therein.
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Necessity of one-way functions in the interactive setting. Informally put, our protocols
use some function f to derandomize a long public coin message from the verifier to the prover.
In our proposed instantiations, f is implemented using a cryptographic pseudorandom generator
or pseudorandom function (both are known to exist assuming one-way functions [GGM86, Nao91,
HIL+99]), and we show that the soundness of this approach is “as good” as the soundness before the
derandomization. However, in all of our protocols, we only need the output of f on a uniformly-
random input to satisfy some specific statistical property. Hence, an interesting open question is
whether our reliance on one-way functions is necessary, or can f be instantiated without them
while still offering comparable security guarantees. One possibility is to use a Nissan-Wigderson
type pseudorandom generator [NW94, IW97], relying on worst-case assumptions. Another is to
use ε-biaset sets (see for example [NN93, AGH+92, Ta-17] and the references therein), though this
approach seems to inherently yield a slightly worse communication to soundness tradeoff.

1.3 Technical Overview

In this section we provide a high-level overview of the techniques used throughout the paper. In this
overview, we ignore various technical subtleties that arise in the full proofs.

The basic Random Subset Compiler. We start by describing the basic idea which underlines
the generic compiler guaranteed by Theorem 1.1. Let Π be any (single-instance) proof of correct
exponentiation, and let (x1, y1), . . . , (xn, yn) and e ∈ N be the n pairs of group elements and the
exponent that are shared by the prover and the verifier as input. Recall that the prover wishes to
convince the verifier that yi = xei for each i ∈ [n]. The basic technical observation underlying the
compiler is that if for some index i ∈ [n] it holds that yi 6= xei , then with probability at least 1/2

over the choice of a uniformly random subset S of [n], it holds that
∏
j∈S yj 6=

(∏
j∈S xj

)e
. This

observation then naturally lends itself to obtain a batch proof of correct exponentiation: First, the
verifier simply chooses such a subset S uniformly at random and sends it to the prover. Then, the
verifier and the prover execute Π on shared input (x′ =

∏
j∈S xj , y

′ =
∏
j∈S yj , e); that is, the prover

uses Π to convince the verifier that indeed y′ = (x′)e. By the above observation, if Π has soundness
error δ, then the compiled batch protocol has soundness error at most δ+1/2. The reader is referred
to Section 4 for a formal description of the compiler and its analysis.

Amplifying soundness and reducing communication. The above compiler suffers from two
main drawbacks: The soundness error of the resulted batch protocol is at least 1/2, and its com-
munication complexity is necessarily linear in the number n of pairs of group elements, since a
uniformly chosen subset of [n] has n bits of entropy. Fortunately, this situation is easy to remedy
by introducing two simple modifications to the protocol. First, instead of choosing just one subset
S of [n], the verifier chooses m such subsets S1, . . . ,Sm for some integer m which parameterizes the
compiler. Then, the verifier and the prover run m parallel executions of the underlying protocol Π,
where in the ith execution, they run on shared input (x′i =

∏
j∈Si xj , y

′
i =

∏
j∈Si yj , e). Suppose that

yj 6= xej for some j ∈ [n]. Using the observation from the previous paragraph, it is straightforward
that if S1, . . . ,Sm are chosen independently and uniformly at random from all subsets of [n], then
the probability that y′i = (x′i)

e for each i ∈ [m] is at most 2−m. Hence, if Π has soundness error δ,
then the compiled batch protocol has soundness error at most δ + 2−m (regardless of whether the
soundness of the underlying protocol Π is amplified via parallel repetition).

In order to attend to the large communication complexity of the compiled protocol (now the
verifier has to send k · n bits to the prover), we derandomize the choice of the sets S1, . . . ,Sm.
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Instead of sampling these sets explicitly and sending their description to the prover, the verifier now
samples and sends a short key k to a pseudorandom function PRF. This key can now succinctly
represent S1, . . . ,Sm; for example by letting j ∈ Si if and only if PRFk(i, j) = 1, for every i ∈ [m]
and j ∈ [n]. Roughly speaking, the security of the pseudorandom function guarantees that if yj 6= xej
for some j ∈ [n], then the probability that y′i = (x′i)

e for each i ∈ [m] is at most 2−m+negl(λ), where
λ is the security parameter. See Section 5 for a formal description and analysis of the strengthened
protocol.

The Random Exponents Compiler. We now describe the idea behind our improved compiler
based on the low order assumption (Theorem 1.2). The observation is that the basic Random
Subset Compiler as described above can be viewed in a more general manner: The verifier chooses
α1, . . . , αn ← {0, 1}, and then the two parties invoke the underlying protocol Π on joint input
x′ =

∏
i∈[n] x

αi
i , y′ =

∏
i∈[n] y

αi
i and e. The idea is to now let the verifier choose α1, . . . , αn from

a large domain; concretely, from the set [s] for some appropriately chosen parameter s ∈ N. As
before, after the verifier chooses α1, . . . , αn and sends them over to the prover, the two parties
invoke the underlying protocol Π on shared input (x′, y′, e) for asserting that y′ = (x′)e. It should
be noted that as in the Random Subset Compiler, the choice of α1, . . . , αn can be derandomized
using a pseudorandom function in order to save in communication, without significantly affecting
the soundness of the compiler.

The proof of soundness of the compiled protocol now has to rely on the s-low order assumption,
which roughly speaking, says that it should be hard to find a group element x and a positive integer
ω < s such that xω = 1. We wish to argue that if the s-low order assumption holds in the group
at hand and yj 6= xej for some j ∈ [n], then enlarging the domain from which α1, . . . , αn are drawn
(up to and including [s]) proportionally reduces the probability that y′ = (x′)e. This is done by
a reduction, which we now informally describe, to the s-low order assumption. For the formal
statement and reduction, we refer the reader to Section 6.

Let (x1, y1), . . . , (xn, yn) be n pairs of elements in a group G such that at least one index i sat-
isfies yi 6= xei , and let i∗ be the first such index. Consider the following algorithm A for finding
a low order element in G. A first samples n + 1 integers α1, . . . , αi∗−1, αi∗+1, . . . , αn, β, β

′ uni-
formly at random from [s]. Then, it checks that

(
xβi∗ ·

∏
i∈[n]\{i∗} x

αi
i

)e
= yβi∗ ·

∏
i∈[n]\{i∗} y

αi
i , that(

xβ
′

i∗ ·
∏
i∈[n]\{i∗} x

αi
i

)e
= yβ

′

i∗ ·
∏
i∈[n]\{i∗} y

αi
i , and that β 6= β′. If any of these conditions does

not hold, it aborts. Otherwise, if all of these conditions check out, A outputs the group element
z = yi∗/x

e
i∗ together with the exponent ω = |β−β′|. It is easy to verify that if both of the equalities

checked by A hold, then this implies that zω = 1, while the inequality checked by A implies that
indeed ω 6= 0. Now assume towards contradiction that the probability that y′ = (x′)e is at least
1/s+ ε for some ε > 0. Then, a careful analysis shows that the probability that A does not abort is
at least ε2. Informally, this implies that if the s-low order assumption holds in G and the underlying
protocol Π has soundness error δ, then the compiled batch protocol has soundness error at most
δ + 1/s+ negl(λ).

Strong soundness in safe RSA groups. Recall that, as mentioned in Section 1.1, the s-low order
assumption cannot hold in the group Z∗N for any s ≥ 2, since N − 1 is always an element of order 2
in the group. Therefore, the Random Exponents Compiler obtains a weaker form of soundness when
applied in Z∗N , guaranteeing only that yi = ±xei . To counter this problem, we present a protocol for
proving that order(yi/xei ) 6= 2 for every i. Our basic approach follows a technique by Di Crescenzo
et al. [CKK+17] for proving that order(y/xe) 6= 2 for x, y ∈ Z∗N and an odd exponent e. In their
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protocol, the prover computes w = x(e+1)/2 and sends it to the verifier, who then accepts if and
only if w2 = x · y. The idea is that if N is the product of two safe primes and order(y/xe) = 2,
then x · y must be a quadratic non-residue modulo N . This is true since, as we prove, all group
elements of order 2 in Z∗N , including y/xe, are quadratic non-residues modulo N . Now observe that
x ·y = (y/xe) ·xe+1. Since e is odd, xe+1 is a quadratic residue modulo N , and we conclude that x ·y
is a quadratic non-residue modulo N . This means that w2, which is of course a quadratic residue
modulo N , cannot be equal to x · y and the verifier will inevitably reject.

Generalizing this approach to arbitrary exponents is fairly straightforward, by having the prover
compute w as xd(e+1)/2e and then having the verifier check that w2 = x1+(e+1 mod 2) · y. The more
acute issue is that when moving to the batch setting, the naïve way for verifying that order(yi/xei ) 6= 2
for every i ∈ [n] is by running the above protocol n times in parallel, which results in communication
complexity which is linear in n. To avoid this overhead, we combine the ideas of Di Crescenzo et al.
with techniques from our Random Subset Compiler. Concretely, in our final protocol, the verifier
chooses a key k to a pseudorandom function, to succinctly represent m random subsets S1, . . . ,Sm
of [n], and sends k to the prover. The prover then computes wj :=

∏
i∈Sj x

d(e+1)/2e
i for every j ∈ [m]

and sends w1, . . . , wm to the verifier. Finally, the verifier computes tj :=
∏
i∈Sj x

1+(e+1 mod 2)
i · yi

for every j ∈ [m] and accepts if and only if tj = w2
j for all j-s. A careful analysis shows that

if order(yi/x
e
i ) = 2 for some i ∈ [n] and the subsets S1, . . . ,Sm uniformly and independently at

random, then each tj is a quadratic non-residue with probability at least 1/2. This implies that the
verifier will accept with probability at most 2−m + negl(λ). We refer the reader to Section 7 for a
detailed description of our protocol and a formal analysis of its soundness.

A statistically-sound protocol in safe RSA groups. Our statistically-sound proof of correct
exponentiation in RSA groups is obtained by extending the protocol of Pietrzak [Pie19] using tech-
niques similar to those detailed above. We start by recalling Pietrzak’s protocol. Suppose that the
prover wishes to convince the verifier that y = x2

T for a group G, elements x, y ∈ G and an integer
T , and assume for ease of presentation that T = 2t for some t ∈ N. In the beginning of the protocol,
the prover computes z = x2

T/2 and sends z to the verifier. Now the prover wishes to prove to the
verifier that indeed z = x2

T/2 and y = z2
T/2 , since if y 6= x2

T then it must be that z 6= x2
T/2 or

y 6= z2
T/2 . One possibility is to recurse on both claims, until the exponent is small enough for the

verifier to verify the claims herself. However, in this manner the number of sub-claims will blowup
very quickly, resulting in a lengthy proof and in a long verification time. So instead, Pietrzak’s idea
is to merge both claims using (implicitly) the random exponents technique of Bellare, Garay and
Rabin [BGR98]. The verifier samples a random integer r ← [2λ] and sends it to the prover, and then
the two parties recurse on the (single) instance (x′ = xr · z, y′ = zr ·y, T ′ = T/2). That is, the prover
now needs to convince the verifier of the claim y′ = (x′)T

′ , where T ′ is half the size of T . Suppose
now that all elements in the group are of order at least 2λ.9 In this case, if y 6= x2

T then there is at
most one value of r ∈ [2λ] for which y′ = (x′)T

′ and hence Pr
[
y′ = (x′)T

′
]
≤ 2−λ over the choice of

r. This recursion continues for log T = t rounds until T = 1, in which case the verifier can simply
check the relation y = x2 herself using a single squaring in the group.

In order to extend this protocol to the group Z∗N for a modulus N that is the product of two
safe primes, we use similar techniques to those used above for extending the Random Exponents
Compiler. Concretely, consider a round in Piertzak’s protocol in which the prover wants to prove

9Recall that Boneh et al. [BBF18] proved computational soundness by extending this analysis to the case where
there are elements of order less than 2λ, but these are hard to find. We focus here on statistical soundness, as this is
what we will obtain in safe RSA groups.
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that y = x2
T . In addition to z = x2

T/2 , the prover now also computes w = x2
T/2−1+1 and sends it

to the verifier. The verifier then checks that x2 · z = w2, and if that is not the case then the verifier
rejects immediately. This additional verification is made in each of the log T rounds of the protocol,
and if the verifier does not reject in any of the rounds and the check for T = 1 goes through, then
the verifier accepts.

To analyze the soundness of our protocol, suppose that all group elements (other than the iden-
tity) are either of order 2 or have order at least 2λ; this is the case for Z∗N where N is the product
of two large enough safe primes. Let x and y be group elements such that y 6= x2

T , and assume
that z and w are the group elements which the prover sends to the verifier. If x2 · z 6= w2, then the
verifier will surely reject and we are done, so for the rest of the analysis we assume that x2 · z = w2.
Consider two cases:

• If z = x2
T/2 , then for any r ∈ [2λ] it holds that (xr · z)2T/2 = zr · x2T 6= zr · y. In other words,

Pr
[
y′ = (x′)T

′
]

= 0, where x′ = xr · z, y′ = zr · y, T ′ = T/2 and the probability is taken over

r ← [2λ].
• If z 6= x2

T/2 , then we prove that there is at most one value r ∈ [2λ] for which (xr ·z)2T/2 = zr ·y.
Assume towards contradiction otherwise; that is, that there are two distinct integers r, r′ ∈ [2λ]

for which this equality holds. Rearranging, this means that (x2
T/2
/z)d = 1 for d = r−r′. Since

x2
T/2 6= z and d < 2λ, we obtain that the order of x2T/2/z is greater than 1 and lesser than

2λ, and hence this order must be 2. On the one hand, this means that x2T/2/z is a quadratic
non-residue modulo N (recall that all elements of order 2 in a safe RSA group are quadratic
non-residues), and hence z is a quadratic non-residue modulo N . But on the other hand, our
assumption that x2 · z = w2 implies that z is a quadratic residue modulo N , arriving at a
contradiction.

Over all, we obtain that in each round whose input (x, y, T ) satisfies y 6= x2
T , the probability that

the input (x′, y′, T ′) to the next round will satisfy y′ = (x′)T
′ is at most 2−λ over the choice of

r ← [2λ]. The soundness of our protocol then follows by taking a union bound over all rounds. We
refer the reader to Section 8 for a detailed description of our protocol and a formal analysis of its
soundness.

1.4 Paper Organization

The remainder of this paper is organized as follows. First, in Section 2 we present the basic notation,
mathematical background and standard cryptographic primitives that are used throughout the paper.
In Section 3 we formally define proofs of correct exponentiation and their batch variant. In Section
4 we present a simplified version of our Random Subsets Compiler for general groups; and then in
Section 5 we present the necessary amendments required in order to obtain the full-fledged compiler.
In Section 6 we present our improved compiler and analyze its security based on the low order
assumption; and in Appendix A we give tighter security analyses for the specific cases of QR+

N and
RSA groups. Finally, in Section 7 we show how to obtain strong soundness for our improved compiler
in safe RSA groups; and in Section 8 we present our new proof of correct exponentiation in such
groups.

2 Preliminaries

In this section we present the basic notions and standard cryptographic tools that are used in this
work. For an integer n ∈ N we denote by [n] the set {1, . . . , n}. For a set X , we denote by 2X the
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power set of X ; i.e., the set which contains all subsets of X (including the empty set and X itself).
For a distribution X we denote by x ← X the process of sampling a value x from the distribution
X. Similarly, for a set X we denote by x ← X the process of sampling a value x from the uniform
distribution over X . A function ν : N → R+ is negligible if for any polynomial p(·) there exists an
integer N such that for all n > N it holds that ν(n) ≤ 1/p(n).

Pseudorandom Functions. We use the following standard notion of a pseudorandom function.
Let PRF = (PRF.Gen,PRF.Eval) be a function family over domain {Xλ}λ∈N with range {Yλ}λ∈N and
key space {Kλ}λ∈N, such that:

• PRF.Gen is a probabilistic polynomial-time algorithm, which takes as input the security pa-
rameter λ ∈ N and outputs a key K ∈ Kλ.

• PRF.Eval is a deterministic polynomial-time algorithm, which takes as input a key K ∈ Kλ
and a domain element x ∈ Xλ and outputs a value y ∈ Yλ.

For ease of notation, for a key K ∈ Kλ, we denote by PRFK(·) the function PRF.Eval(K, ·). We
also assume without loss of generality that for every λ ∈ N, it holds that Kλ = {0, 1}λ and that
PRF.Gen(1λ) simply samples K from {0, 1}λ uniformly at random. Using these conventions, the
following definition captures the standard notion of a pseudorandom function family.

Definition 2.1. A function family PRF = (PRF.Gen,PRF.Eval) is pseudorandom if for every proba-
bilistic polynomial-time algorithm D, there exists a negligible function ν(·) such that

AdvPRF,D(λ)
def
=

∣∣∣∣ Pr
K←{0,1}λ

[
D(1λ)PRFK(·) = 1

]
− Pr
f←Fλ

[
D(1λ)f(·) = 1

]∣∣∣∣ ≤ ν(λ),

for all sufficiently large λ ∈ N, where Fλ is the set of all functions mapping Xλ into Yλ.

RSA groups and the factoring assumption. We will use to following formalization in order to
reason about ensembles of RSA moduli and the hardness of finding their factorizations. Let ModGen
be a probabilistic polynomial-time algorithm, which takes as input the security parameter λ ∈ N,
and outputs a bi-prime modulus N = p · q and possibly additional parameters pp.

Definition 2.2. The factoring assumption holds with respect to modulus generation algorithm
ModGen if for every probabilistic polynomial time algorithm A, there exists a negligible function ν(·)
such that

Pr

[
p′ · q′ = N
p′, q′ ∈ {2, . . . , N − 1}

∣∣∣∣ (N, pp)← ModGen(1λ)
(p′, q′)← A(N, pp)

]
≤ ν(λ),

for all sufficiently large λ ∈ N.

The following simple lemma (see for example [Bon99]) states that it is easy to find a factorization
of an RSA modulus N given a non-trivial square root of unity in the RSA group Z∗N .

Lemma 2.3. There exist a deterministic algorithm A, such that for every pair (p, q) of primes and
every group element x ∈ Z∗N for which x2 = 1 and x 6∈ {1,−1}, where N = p ·q, it holds that A(N, x)
outputs p and q. Moreover, A runs in time polynomial in log(N).

Using safe primes. We will sometimes focus on the case in which the RSA modulus N is the
product of two safe primes. That is, N = p′ ·q′, such that p′ and q′ are primes and there exist primes
p and q for which p′ = 2p + 1 and q′ = 2q + 1. In this case, the order of the RSA group Z∗N is
ϕ(N) = 4 · p · q, where ϕ(·) is Euler’s totient function. Looking ahead, this fact induces a relatively
simple subgroup structure which will prove useful in Sections 7, 8 and A.2.
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The group QR+
N . Another group of interest in this work is the group QRN of quadratic residues

modulo N , where N is an RSA modulus generated by the modulus generation algorithm ModGen.
This is the group defined by

QRN
def
=
{
x2 mod N : x ∈ Z∗N

}
.

The order of the group QRN is ϕ(N)/4. If N is the product of two safe primes p′ = 2p + 1 and
q′ = 2q + 1, this means the the order of QRN is p · q.

We will also consider the group QR+
N of signed quadratic residues modulo N , defined by

QR+
N

def
= {|x| : x ∈ QRN} ,

where the absolute value operator |·| is with respect to the representation of Z∗N elements as elements
in {−(N − 1)/2, . . . , (N − 1)/2}. This is because membership in QR+

N can be decided in polynomial
time10 and we will implicitly use this fact in Section A.1. The map | · | acts as an isomorphism from
QRN to QR+

N , and hence QR+
N is also of order ϕ(N)/4. For a more in-depth discussion on the use

of QR+
N instead of QRN see [FS00, HK09, Pie19].

Working over general groups. Some of the results in this paper are more general, and do not
assume working over a specific group. In these cases, the algorithm ModGen will be replaced by
a group generation algorithm GGen. This is a probabilistic polynomial-time algorithm which takes
in as input the security parameter and outputs a description of a group G, and possibly additional
public parameters pp. All groups in this paper are assumed to be abelian and we will not note this
explicitly hereinafter. We will also implicitly assume that for all groups considered in this paper,
their group operation is implementable in time polynomial in the security parameter λ.

The low order assumption. We will rely on the following formalization of the low order assump-
tion, put forth by Boneh et al. [BBF18] as a prerequesite for instantiating Pietrzak’s protocol [Pie19]
in general groups. For a group G, let 1G denote the identity element of the group.

Definition 2.4. Let GGen be a group generation algorithm, and let d = d(λ) be an integer function
of the security parameter λ ∈ N. We say that the d-low order assumption holds with respect to
GGen if for every probabilistic polynomial-time algorithm A, there exists a negligible function ν(·)
such that

AdvLowOrd
GGen,d,A(λ)

def
= Pr

[
LowOrdGGend,A (λ) = 1

]
≤ ν(λ)

for all sufficiently large λ ∈ N, where the experiment LowOrdGGend,A (λ) is defined as follows:

1. G← GGen(1λ).
2. (x, ω)← A(G).
3. Output 1 if x 6= 1G; ω < d; and xω = 1G. Otherwise, output 0.

Pietrzak observed (although not in this terminology) that the d-low order assumption holds
information-theoretically in the group QR+

N , whenever N is the product of two safe primes p′ = 2p+1
and q′ = 2q + 1, and d ≤ min{p, q}.

10This is the case since, as observed by Fischlin and Schnorr [FS00], QR+
N = J+N , where JN is the group of elements

with Jacobi symbol +1 and J+N
def
= JN/± 1. Hence, deciding whether an integer x is in QR+

N amounts to checking that
x ≥ 0 and that its Jacobi symbol is +1.
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In cases where G is naturally embedded in some ring R and −1G ∈ G (that is, the additive
inverse of the multiplicative identity is an element of the group),11 we can consider a weakening of
Definition 2.4, requiring that the adversary is unable to come up with a low order element other
than ±1G.

Definition 2.5. Let GGen be a group generation algorithm, and let d = d(λ) be an integer function
of the security parameter λ ∈ N. We say that the weak d-low order assumption holds with respect to
GGen if for every probabilistic polynomial-time algorithm A, there exists a negligible function ν(·)
such that

AdvWeakLO
GGen,d,A(λ)

def
= Pr

[
WeakLOGGen

d,A (λ) = 1
]
≤ ν(λ)

for all sufficiently large λ ∈ N, where the experiment WeakLOGGen
d,A (λ) is defined as follows:

1. G← GGen(1λ).
2. (x, ω)← A(G).
3. Output 1 if x 6∈ {1G,−1G}; ω < d; and xω = 1G. Otherwise, output 0.

Seres and Burcsi [SB20] recently proved (as a special case) that in RSA groups with a modulus N
which is the product of two safe primes p′ = 2p+1 and q′ = 2q+1, the weak d-low order assumption
for d ≤ min{p, q} is equivalent to factoring N .

3 Succinct Proofs of Correct Exponentiation

In this section we review the notion of succinct proofs of correct exponentiation. First, in Section
3.1, we define proofs of correct exponentiation for a single instance and then, in Section 3.2, we
extend the definition to account for the task of batch verification.

3.1 The Basic Definition

Loosely speaking, a proof of correct exponentiation is a protocol executed by two parties, a prover
and a verifier, with a common input (x, y, e), where x and y are elements in some group G and e
is an integer. The goal of the prover is to convince the verifier that y = xe. Of course, the verifier
can just compute xe and compare the result to y on her own, but we will be interested in protocols
in which the verifier works much less than that. Concretely, we are typically interested in protocols
in which the the verifier runs in time � poly(log(e), λ), which is the time it will take the verifier to
compute xe on her own, assuming that the group operation is implementable in time polynomial in
the security parameter λ ∈ N.

More formally, a proof of correct exponentiation (PoCE) is a triplet π = (GGen,P,V) of proba-
bilistic polynomial-time algorithms, where GGen is a group generation algorithm (recall Section 2), P
is the prover and V is the verifier. We denote by 〈P(aux),V〉 (input) the random variable correspond-
ing to the output of V when the joint input to P and to V is input and P additionally receives the
private auxiliary information aux. In case P receives no auxiliary information, we write 〈P,V〉 (input).
The properties which should be satisfied by a PoCE are defined in the following definition.

Definition 3.1. Let δ = δ(λ) be a function of the security parameter λ ∈ N, and let t = t(λ, e)
and c = c(λ, e) be functions of λ ∈ N and of the exponent e ∈ N. A triplet π = (GGen,P,V)
of probabilistic polynomial-time algorithms is said to be a (δ, c, t)-proof of correct exponentiation
(PoCE) if the following conditions hold:

11This is indeed the case for RSA groups, which are embedded in the ring ZN .
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1. Completeness: For every λ ∈ N, for every (G, pp) in the support of GGen(1λ) and for every
input (x, y, e) ∈ G2 × N such that xe = y, it holds that

Pr [〈P,V〉 (G, pp, x, y, e) = 1] = 1,

where the probability is over the randomness of P and of V.

2. δ-Soundness: For every pair P∗ = (P∗1,P
∗
2) of probabilistic polynomial-time algorithms, there

exists a negligible function ν(·) that

AdvPoCEπ,P∗ (λ)
def
= Pr

[
〈P∗2(st),V〉 (G, pp, x, y, e) = 1
xe 6= y

∣∣∣∣ (G, pp)← GGen(1λ)
(x, y, e, st)← P∗1(G, pp)

]
≤ δ(λ) + ν(λ)

for all sufficiently large λ ∈ N. We will sometimes write AdvPoCEπ,P∗ instead of AdvPoCEπ,P∗ (λ) when
there is no ambiguity.

3. Succinctness: For every λ ∈ N, for every (G, pp) in the support of GGen(1λ) and for every
input (x, y, e) ∈ G2 × N, it holds that: The total length of all messages exchanged between P
and V in a random execution of the protocol on joint input (G, pp, x, y, e) is at most c(λ, e)
with probability 1, where the probability is over the randomness of P and of V.

4. Efficient verification: For every λ ∈ N, for every (G, pp) in the support of GGen(1λ) and for
every input (x, y, e) ∈ G2 × N, it holds that: The running time of V in a random execution
of the protocol on joint input (G, pp, x, y, e) is at most t(λ, e) with probability 1, where the
probability is over the randomness of P and of V.

3.2 Batch Proofs of Correct Exponentiation

We now turn to define batch proofs of correct exponentiation. In such proofs, the joint input is
composed of 2n group elements x1, . . . , xn, y1, . . . , yn and an exponent e, for some n ∈ N. The prover
now wishes to convince the verifier that xei = yi for each of the i ∈ [n]. The definition is a natural
extension of Definition 3.1, except that now the communication complexity and the running time of
the verifier may both scale with the integer n. It might also make sense to consider the case where
the soundness error δ is also a function of n, but this will not be the case in our protocols, and hence
we do not account for this case in our definition. The formal definition below uses the same notation
as did Definition 3.1.

Definition 3.2. Let δ = δ(λ) be a function of the security parameter λ ∈ N, and let t = t(λ, e, n)
and c = c(λ, e, n) be function of λ, of the exponent e ∈ N and of n ∈ N. A triplet π = (GGen,P,V) of
probabilistic polynomial-time algorithms is said to be a (δ, c, t)-batch proof of correct exponentiation
(BPoCE) if the following conditions hold:

1. Completeness: For every integers λ, n ∈ N, every (G, pp) in the support of GGen(1λ) and
every input (~x = (x1, . . . , xn), ~y = (y1, . . . , yn), e) ∈ Gn × Gn × N such that xei = yi for every
i ∈ [n], it holds that

Pr [〈P,V〉 (G, pp, ~x, ~y, e) = 1] = 1,

where the probability is over the randomness of P and of V.

2. δ-Soundness: For every pair P∗ = (P∗1,P
∗
2) of probabilistic polynomial-time algorithms, there

exists a negligible function ν(·) such that

AdvBPoCEπ,P∗ (λ)
def
= Pr

[
〈P∗2(st),V〉 (G, pp, ~x, ~y, e) = 1
∃i ∈ [n], xei 6= yi

∣∣∣∣ (G, pp)← GGen(1λ)
(n, ~x, ~y, e, st)← P∗1(G, pp)

]
≤ δ(λ)+ν(λ)
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for all sufficiently large λ ∈ N, where ~x = (x1, . . . , xn) and ~y = (y1, . . . , yn). We will sometimes
write AdvBPoCEπ,P∗ instead of AdvBPoCEπ,P∗ (λ) when there is no ambiguity.

3. Succinctness: For every λ, n ∈ N, for every (G, pp) in the support of GGen(1λ) and for every
input (~x, ~y, e) ∈ Gn×Gn×N, it holds that: The total length of all messages exchanged between
P and V in a random execution of the protocol on joint input (G, pp, ~x, ~y, e) is at most c(λ, e, n)
with probability 1, where the probability is over the randomness of P and of V.

4. Efficient verification: For every λ, n ∈ N, for every (G, pp) in the support of GGen(1λ) and
for every input (~x, ~y, e) ∈ Gn × Gn × N, it holds that: The running time of V in a random
execution of the protocol on joint input (G, pp, ~x, ~y, e) is at most t(λ, e, n) with probability 1,
where the probability is over the randomness of P and of V.

On using a single exponent. The above definition considers the setting of a single exponent for
all n pairs of group elements; that is, the joint input includes a single exponent e ∈ N for which
the prover contends that xei = yi for all i ∈ [n]. Note that this setting is indeed in line with the
motivation described in Section 1 of batch verification of many VDF outputs based on the repeated
squaring function. This is the case, since in this scenario the exponent e is determined by the
delay parameter T . In the examples mentioned in Section 1, a scenario in which all outputs were
computed with respect to the same delay parameter is reasonable. It might still be of interest, both
theoretically and for specific applications (see for example [BBF19]), to construct batch proofs of
correct exponentiation with different exponents, and we leave it is as an interesting open question.

4 Warm-Up: The Random Subset Compiler

In this section we present a simplified version of our general compiler, which we call “The Random
Subset Compiler” following Bellare, Garay and Rabin [BGR98]. This simplified version is based on a
technique introduced by Bellare et al. for related, yet distinct, purposes (recall Section 1.2). In our
context of proofs of correct exponentiation, this technique introduces quite a large communication
overhead and a considerable amount of additional soundness error. Nevertheless, we start off with
this simplified version as it already captures the main ideas behind the full-fledged compiler. Then,
in Section 5 we show how to simultaneously amplify the soundness guarantees of our compiler and
considerably reducing the communication overhead.

Let δ = δ(λ) be a function of the security parameter λ ∈ N, and let c = c(λ, e) and t = t(λ, e) be
functions of λ and of the exponent e ∈ N. Our compiler uses as a building block any (δ, c, t)-PoCE
(recall Definition 3.1) π = (GGen,P,V) and produces a protocol Batch1(π) = (GGen,PBatch,VBatch),
which is a (δ′, c′, t′)-BPoCE for δ′ = δ+1/2 and for related functions c′ = c′(λ, e, n) and t′ = t′(λ, e, n).

The Protocol Batch1(π)
Joint input: Public parameters (G, pp) generated by GGen(1λ), vectors ~x = (x1, . . . , xn) and ~y =
(y1, . . . , yn) of group elements, and an exponent e ∈ N.

1. VBatch samples I ← 2[n] and sends I to PBatch.

2. Both VBatch and PBatch compute xprod =
∏
i∈I xi and yprod =

∏
i∈I yi.

3. VBatch and PBatch execute the protocol π on joint input (G, pp, xprod, yprod, e), where VBatch plays the
role of V and PBatch plays the role of P. Let b ∈ {0, 1} be the output of V in this execution.

4. VBatch outputs b.
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Theorem 4.1 below establishes the completeness, soundness, succinctness and verifier efficiency
of Batch1(π). It uses the following notation: We let top(λ) denote a bound on the time required to
apply the binary group operation on two group elements, in a group G generated by GGen(1λ).

Theorem 4.1. Assume that π is a (δ, c, t)-PoCE. Then, Batch1(π) is a (δ′, c′, t′)-BPoCE, where for
every λ, e, n ∈ N:

• δ′(λ) = δ(λ) + 1/2.
• c′(λ, n, e) = c(λ, e) + n.
• t′(λ, n, e) = t(λ, e) +O(n · top(λ)).

We start by presenting our main technical lemma, which we will use in the proof of Theorem 4.1
as well as in subsequent sections.

Lemma 4.2. Let G be a group. For every integers n, e ∈ N and vectors ~x, ~y ∈ Gn the following
holds: If there exists an index i ∈ [n] such that xei 6= yi, then

Pr
I←2[n]

[(∏
i∈I

xi

)e
6=
∏
i∈I

yi

]
≥ 1

2
.

Proof of Lemma 4.2. For a subset I ⊆ [n], we say that I is biased if
(∏

i∈I xi
)e 6= ∏

i∈I yi, and
otherwise we say that I is balanced. Denote by SBalanced and by SBiased the set of all balanced subsets
of [n] and the set of all biased subsets of [n], respectively.

Suppose that there exists an index i ∈ [n] such that xei 6= yi, and let i∗ be an arbitrary such index
(e.g., the minimal index for which the inequality holds). We wish to show that |SBalanced| ≤ |SBiased|,
as this will conclude the proof of the lemma. To this end, consider a partition P of 2[n] to 2n−1 pairs
as follows:

P = {(I, I ∪ {i∗}) : i∗ 6∈ I} .

In each pair (I, I ∪ {i∗}) in P, at most one subset of I and I ∪ {i∗} can be balanced. This is the
case since if I ∈ SBalanced, then it must be that I ∪ {i∗} ∈ SBiased since∏

i∈I∪{i∗}

xei = (x∗i )
e ·
∏
i∈I

xei

= (x∗i )
e ·
∏
i∈I

yi (4.1)

6= yi∗ ·
∏
i∈I

yi (4.2)

=
∏

i∈f(I)

yi,

where Eq. (4.1) holds because I is balanced, and (4.2) holds due to the assumption that xei∗ 6= yi∗ .
Since at most one subset in each pair of the 2n−1 pairs in P is balanced, it holds that |SBalanced| ≤
|SBiased| concluding the proof of Lemma 4.2.

We are now ready to prove Theorem 4.1, establishing the completeness, soundness, verifier effi-
ciency and succinctness of our protocol πBatch.
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Proof of Theorem 4.1. Completeness follows immediately from the completeness of π and the
fact that if xei = yi for every i ∈ [n], then it also holds that

(∏
i∈I xi

)e
=
∏
i∈I yi for any choice of

I ∈ 2[n].
We now turn to prove that Batch1(π) satisfies δ′-soundness for δ′ = δ + 1/2. Let P∗Batch =

(P∗Batch,1,P
∗
Batch,2) be a malicious prover attempting to break the soundness of Batch1(π). Consider

the following pair P∗ = (P∗1,P
∗
2) attempting to break the soundness of π. On input (G, pp) generated

by GGen(1λ), the algorithm P∗1 is defined as follows:
1. Invoke (n, ~x, ~y, e, st)← P∗Batch,1(G, pp), where ~x = (x1, . . . , xn) and ~y = (y1, . . . , yn).

2. Sample I ← 2[n].
3. Compute xprod =

∏
i∈I xi and yprod =

∏
i∈I yi.

4. Set st′ = (st, ~x, ~y, I).
5. Output (xprod, yprod, e, st

′).

Then, the algorithm P∗2, running on private input st′ and interacting with the verifier V on joint
input (G, pp, xprod, yprod, e), is defined as follows:

1. Parse st′ as (st, ~x, ~y, I).
2. Invoke P∗Batch,2 on input st and simulate to P∗Batch,2 an execution of Batch1(π) on joint input

(G, pp, ~x, ~y, e):
(a) Send I to P∗Batch,2 as the first message of the verifier in Batch1(π).
(b) Let V play the role of VBatch in all subsequent rounds, by relaying all messages from

P∗Batch,2 to V and vice versa.

We now turn to bound AdvPoCEπ,P∗ . To that end, we define the following events:
• Let NotEqual denote the event in which for some i ∈ [n], it holds that xei 6= yi, where n, ~x, ~y

and e are outputted by P∗Batch,1 in Step 1 of P∗1, ~x = (x1, . . . , xn) and ~y = (y1, . . . , yn).
• Let BiasedSet be the event in which (∏

i∈I
xi

)e
6=
∏
i∈I

yi,

where n, ~x, ~y and e are as before and I is the random subset sampled by P∗1 in Step 2.
• Let PWin be the event in which P∗ wins; that is, V outputs 1 and BiasedSet holds.
• Let PBatchWin be the event in which P∗Batch wins in the simulation of Batch1(π) by P∗: The

simulated VBatch outputs 1 and NotEqual holds.

Equipped with this notation, it holds that

AdvPoCEπ,P∗ = Pr [PWin]

≥ Pr [PWin|PBatchWin ∧ BiasedSet] · Pr [PBatchWin ∧ BiasedSet]

= Pr [PBatchWin ∧ BiasedSet] , (4.3)

where Eq. (4.3) holds since conditioned on PBatchWin, it holds that VBatch (in the simulation of
Batch1(π)) outputs 1. This implies that V outputs 1, and hence that Pr [PWin|PBatchWin ∧ BiasedSet]
= 1. By total probability,

Pr [PBatchWin ∧ BiasedSet] = Pr [PBatchWin]− Pr
[
PBatchWin ∧ BiasedSet

]
= AdvBPoCEBatch1(π),P∗Batch

− Pr
[
PBatchWin ∧ BiasedSet

]
(4.4)

≥ AdvBPoCEBatch1(π),P∗Batch
− Pr

[
NotEqual ∧ BiasedSet

]
(4.5)

≥ AdvBPoCEBatch1(π),P∗Batch
− Pr

[
BiasedSet

∣∣NotEqual] , (4.6)

17



where Eq. (4.4) holds since P∗ perfectly simulates Batch1(π) to P∗Batch; and Eq. (4.5) is true since
PBatchWin is contained in NotEqual, and hence PBatchWin ∧ BiasedSet is contained in NotEqual ∧
BiasedSet.

We are left with bounding Pr
[
BiasedSet

∣∣NotEqual]. Indeed, Lemma 4.2 immediately implies that

Pr
[
BiasedSet

∣∣NotEqual] ≤ 1

2
. (4.7)

Taking Eq. (4.3), (4.6) and (4.7) together and rearranging, we get that

AdvBPoCEBatch1(π),P∗Batch
≤ AdvPoCEπ,P∗ +

1

2
,

which implies – since π satisfies δ-soundness – that there exists a negligible function ν(·) such that

AdvBPoCEBatch1(π),P∗Batch
≤ δ(λ, e) +

1

2
+ ν(λ),

for all sufficiently large λ ∈ N.
We have proved that Batch1(π) satisfies δ′-soundness for δ′ = δ + 1/2. To conclude the proof,

we are left with bounding the verifier’s running time t′ and the communication complexity c′ of
Batch1(π). As for the running time of VBatch: The verifier samples a random subset I, computes∏
i∈I xi and

∏
i∈I yi and participates in a single execution of π. Since the products computed by

VBatch include at most n group elements each, it follows that her running time is t′ = O(n ·top(λ))+t.
The communication in Batch1(π) includes the subset I, which can be encoded using n bits, and all
messages exchanged in a single execution of π. Therefore, the total communication is c′ = c + n.
This concludes the proof of Theorem 4.1.

5 Amplifying Soundness and Reducing Communication

In this section, we address the two main drawbacks of the compiler from Section 4; namely, its
large soundness error, and the fact that the communication complexity is linearly dependent on the
number n of pairs (xi, yi). In order to do so, we introduce an improved compiler, which differs
from the one found in Section 4 in two respects. First, the verifier now chooses m random subsets
I1, . . . , Im ⊆ [n] for some integer m which is a parameter of the protocol, and the parties invoke
m parallel executions of the underlying protocol π on the m inputs which are induced by these
subsets. Note that sending the representation of m random subsets of [n] requires that the verifier
sends additional m · n bits to the prover. To avoid this communication overhead, we let the verifier
succinctly represent these m subsets via a single key to pseudorandom function, thus reducing the
additive communication overhead to just λ bits, where λ ∈ N is the security parameter. As we will
show, this essentially does not harm the soundness guaranteed by the protocol.

We now turn to formally present our compiler. Let δ = δ(λ) a be a function of the security
parameter λ ∈ N, and let c = c(λ, e) and t = t(λ, e) be functions of λ and of the exponent e ∈ N.
Our compiler is parameterized by an integer m ∈ N, and uses the following building blocks:

• A (δ, c, t)-PoCE π = (GGen,P,V) (recall Definition 3.1).
• A pseudorandom function family PRF, such that for every λ ∈ N and for every key K ∈ {0, 1}λ,

the function PRFK maps inputs in {0, 1}dlog(m·n)e to outputs in {0, 1}. For ease of notation, for
integers j ∈ [m] and i ∈ [n], we will write PRFK(j‖i), with the intention (but without noting
it explicitly) that the input to the function is a bit string representing the integers j and i.

The compiler produces a protocol Batchm2 (π) = (GGen,PBatch,VBatch), which is a (δ′, c′, t′)-BPoCE
for δ′ = δ + 2−m and for related functions c′ = c′(λ, e, n) and t′ = t′(λ, e, n).
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The Protocol Batchm2 (π)

Joint input: Public parameters (G, pp) generated by GGen(1λ), vectors ~x = (x1, . . . , xn) and ~y =
(y1, . . . , yn) of G elements, and an exponent e ∈ N.

1. VBatch samples K ← {0, 1}λ and sends K to PBatch.

2. For j = 1, . . . ,m:

(a) Both VBatch and PBatch compute Ij = {i ∈ [n] : PRFK(j‖i) = 1}.
(b) Both VBatch and PBatch compute uj =

∏
i∈Ij xi and wj =

∏
i∈Ij yi.

3. VBatch and PBatch execute in parallel m executions of the protocol π, where in the j-th execution, the
joint input is (pp, uj , wj , e). In each execution, VBatch plays the role of V and PBatch plays the role of
P. For each j ∈ [m], let bj ∈ {0, 1} be the output of V in the j-th execution.

4. VBatch outputs b :=
∧m
j=1 bj .

Theorem 5.1 establishes the completeness, soundness, succinctness and verifier efficiency of
Batchm2 (π). Recall that we denote by top = top(λ) the time required to apply the binary group
operation on two group elements, in a group G generated by GGen(1λ). We also denote by tprf =
tprf(λ,m, n) the time required to compute PRFK(z) for K ∈ {0, 1}λ and z ∈ {0, 1}dlog(m·n)e.

Theorem 5.1. Assume that PRF is a pseudorandom function and that π is a (δ, c, t)-PoCE. Then,
Batchm2 (π) is a (δ′, c′, t′)-BPoCE, where:

• δ′(λ) = δ(λ) + 2−m.
• c′(λ, n, e) = m · c(λ, e) + λ.
• t′(λ, n, e) = m · t(λ, e) + λ+O (m · n · (top + tprf)).

Before proving Theorem 5.1, a couple of remarks are in order.

Applying the Fiat-Shamir heuristic. If the Fiat-Shamir heuristic [FS86] can be applied to π in
the random oracle model, then it can also be applied to Batchm2 (π) as well, as long as m = ω(log(λ))
(and hence 2−m is a negligible function of the security parameter λ ∈ N). This is the case since
our compiler only adds a single public coin message from the verifier to the prover. In particular,
the Fiat-Shamir heuristic may be applied whenever π is a constant-round public-coin protocol with
negligible soundness error, which is indeed the case for the protocol of Wesolowski [Wes19]. It should
be noted that even though the protocol of Pietrzak [Pie19] is not constant-round, the Fiat-Shamir
heuristic may still be applied to it in the random oracle model, and so it can also be applied to the
compiled version thereof using our compiler.

Replacing PRF with a pseudorandom generator. Our use of PRF enables us to handle cases
in which n is not a-priori bounded and can be chosen by the malicious prover (this is in line with
Definition 3.2). However, in many cases it makes sense to consider values of n which are a-priori
bounded. In such cases, we can replace our use of the pseudorandom function with a pseudorandom
generator PRG mapping seeds of length λ to outputs of length m · n.12 Instead of sampling a key
K, the verifier will now sample a seed s ← {0, 1}λ to PRG and send it over to the prover. Then,
both the prover and the verifier can compute y = PRG(s) and parse y as the natural encoding of m
subsets I1, . . . , Im of [n] (i.e., for each j ∈ [m], the vector (y(j−1)·n+1, . . . , yj·n) is the characteristic
vector of Ij). In practice, PRG can be efficiently implemented via a cryptographic hash function
(e.g., SHA).

12We implicitly assume here that m and n are both polynomially-bounded functions of the security parameter.
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Proof of Theorem 5.1. We now turn to the proof of Theorem 5.1. We start by analyzing the
communication complexity and the verifier’s running time. Per the running time of the verifier: It
samples a random key K ← {0, 1}λ, taking time λ; makes m · n invocation of PRF, taking time
m · n · tprf ; computes 2m products of at most n group elements each, taking time O(m · n · top);
and participates in m executions of π, which takes time m · t. It follows that her running time is
t′ = t+λ+O(m·n·(top+tprf)). The communication in Batchm2 (π) includes the keyK and all messages
exchanged in m executions of π, resulting in a total communication complexity of c′ = m · c+λ. The
δ′-soundness of Batchm2 (π) follows immediately from the following lemma and the pseudorandomness
of PRF.

Lemma 5.2. For every pair P∗Batch = (P∗Batch,1,P
∗
Batch,2) of probabilistic polynomial time algorithms,

there exist a probabilistic polynomial-time algorithm D and a negligible function ν(·) such that

AdvBPoCEBatchm2 (π),P∗Batch
≤ δ + 2−m + AdvPRF,D(λ) + ν(λ)

for all sufficiently large λ ∈ N.

Proof. Let P∗Batch = (P∗Batch,1,P
∗
Batch,2) be a pair of probabilistic polynomial-time algorithms trying

to break the soundness of Batchm2 (π). Define the following events:

• Let NotEqual denote the event in which for some i ∈ [n], it holds that xei 6= yi, where (G, pp)←
GGen(1λ), (n, ~x, ~y, e, st)← P∗Batch,1(G, pp), ~x = (x1, . . . , xn) and ~y = (y1, . . . , yn).

• Let BiasedSet be the event in which there exists some j∗ ∈ [m] such that ∏
i∈Ij∗

xi

e

6=
∏
i∈Ij∗

yi,

where n, ~x, ~y and e are as before, K ← {0, 1}λ and I1, . . . , Im are chosen using PRFK(·) as in
Step 2(a) of Batchm2 (π).

• Let PBatchWin be the event in which P∗Batch wins; that is, VBatch outputs 1 and NotEqual holds.

By definition, it holds that

AdvBPoCEBatchm2 (π),P∗Batch
= Pr [PBatchWin]

= Pr [PBatchWin ∧ NotEqual] (5.1)
= Pr [PBatchWin ∧ NotEqual ∧ BiasedSet]

+ Pr
[
PBatchWin ∧ NotEqual ∧ BiasedSet

]
≤ Pr [PBatchWin ∧ BiasedSet] + Pr

[
NotEqual ∧ BiasedSet

]
, (5.2)

where Eq. (5.1) follows from the fact that PBatchWin ⊆ NotEqual. The lemma then follows from
the following two claims. Claim 5.3 below uses the pseudorandomness of PRF in order to bound the
probability of the event NotEqual ∧ BiasedSet.

Claim 5.3. There exists a probabilistic polynomial-time algorithm D such that

AdvPRF,D(λ) ≥ Pr
[
NotEqual ∧ BiasedSet

]
− 2−m

for every λ ∈ N.
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Claim 5.4 reduces the event PBatchWin ∧ BiasedSet to the soundness of the underlying PoCE
protocol π.

Claim 5.4. There exists a pair P∗ = (P∗1,P
∗
2) of probabilistic polynomial-time algorithms such that

AdvPoCEπ,P∗ ≥ Pr [PBatchWin ∧ BiasedSet]

for every λ ∈ N.

We first conclude the proof of Lemma 5.2 and then prove Claims 5.3 and 5.4. Taken together with
Eq. (5.2) and rearranging, the two claims indeed imply the existence of probabilistic polynomial-time
algorithm D and of a pair P∗ = (P∗1,P

∗
2) of probabilistic polynomial-time algorithms such that

AdvBPoCEBatchm2 (π),P∗Batch
≤ AdvPRF,D(λ) + AdvBPoCEπ,P∗ + 2−m

for every λ ∈ N. By the δ-soundness of π, this implies that there exists a negligible function ν(·),
such that

AdvBPoCEBatchm2 (π),P∗Batch
≤ δ + 2−m + AdvPRF,D(λ) + ν(λ)

for all sufficiently large λ ∈ N, concluding the proof of Lemma 5.2.

We now turn to prove the two claims, starting with Claim 5.3.

Proof of Claim 5.3. Consider the probabilistic polynomial-time algorithm D, which on input 1λ

and oracle access to an oracle O is defined as follows:

1. Sample (G, pp)← GGen(1λ).
2. Invoke (n, ~x, ~y, e, st)← P∗Batch,1(G, pp).
3. If for each i ∈ [n] it holds that xei = yi, then output 0 and terminate.
4. For j = 1, . . . ,m:

(a) Initialize Ij := ∅.
(b) For i = 1, . . . , n, query the oracle for O(j‖i) and if the answer is 1 then update Ij :=
Ij ∪ {i}.

(c) Compute uj :=
∏
i∈Ij xi and wj :=

∏
i∈Ij yi.

5. If for every j ∈ [m] it holds that uej = wj , then output 1; and otherwise, output 0.

We now proceed to bound AdvPRF,D(λ) by considering two cases:

• If D has oracle access to PRFK(·) for K ← {0, 1}λ: In this case the values of (~x, ~y, (Ij)j∈[m])
are distributed identically to as they are distributed in a random execution of Batchm2 (π).
Moreover, D outputs 1 if there exists an i∗ ∈ [n] for which xei∗ 6= yi∗ yet for all j ∈ [m] it holds
that

(∏
i∈Ij xi

)e
=
∏
i∈Ij yi. Hence, by definition of the events NotEqual and BiasedSet, it

holds that

Pr
K←{0,1}λ

[
D(1λ)PRFK(·) = 1

]
= Pr

[
NotEqual ∧ BiasedSet

]
(5.3)

for every λ ∈ N.
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• If D has oracle access to f(·) for f ← Fλ (where Fλ denotes the set of all functions from
{0, 1}dlog(m·n)e to {0, 1}): In this case, the values of (~x, ~y) are distributed identically to as
they are distributed in a random execution of Batchm2 (π). However, the subsets I1, . . . , Im are
uniformly and independently sampled from 2[n]. Hence,

Pr
f←Fλ

[
D(1λ)f(·) = 1

]
= Pr

NotEqual ∧
∀j ∈ [m] :

∏
i∈Ij

xi

e

=
∏
i∈Ij

yi


≤ Pr

∀j ∈ [m] :

∏
i∈Ij

xi

e

=
∏
i∈Ij

yi

∣∣∣∣∣∣NotEqual


≤ 2−m, (5.4)

for every λ ∈ N, where I1, . . . , Im ← 2[n], and Eq. (5.4) follows from Lemma 4.2 and the fact
that I1, . . . , Im are sampled independently.

From Eq. (5.3) and (5.4), it follows that

AdvPRF,D(λ) =

∣∣∣∣ Pr
K←{0,1}λ

[
D(1λ)PRFK(·) = 1

]
− Pr
f←Fλ

[
D(1λ)f(·) = 1

]∣∣∣∣
≥ Pr

K←{0,1}λ

[
D(1λ)PRFK(·) = 1

]
− Pr
f←Fλ

[
D(1λ)f(·) = 1

]
≥ Pr

[
NotEqual ∧ BiasedSet

]
− 2−m

for every λ ∈ N, concluding the proof of Claim 5.3.

We now conclude this section by proving Claim 5.4.

Proof of Claim 5.4. Consider the following pair P∗ = (P∗1,P
∗
2) of probabilistic polynomial-time

algorithms, attempting to break the soundness of π. On input (G, pp) generated by GGen(1λ), the
algorithm P∗1 is defined as follows:

1. Invoke (n, ~x, ~y, e, st)← P∗Batch,1(G, pp), where ~x = (x1, . . . , xn) and ~y = (y1, . . . , yn).
2. Sample K ← {0, 1}λ.
3. For j = 1, . . . ,m:

(a) Compute Ij = {i ∈ [n] : PRFK(j‖i) = 1}.
(b) Compute uj =

∏
i∈Ij xi and wj =

∏
i∈Ij yi.

4. Find the first index j∗ ∈ [m] for which uej∗ 6= wj∗ ; and if no such index exists, output ⊥ and
terminate.

5. Set st′ = (st, ~x, ~y,K, j∗, ~u, ~w), where ~u = (u1, . . . , um) and ~w = (w1, . . . , wm).
6. Output (uj∗ , wj∗ , e, st

′).

Then, the algorithm P∗2, running on private input st′ and interacting with the verifier V on joint
input (G, pp, uj∗ , wj∗ , e), is defined as follows:

1. Parse st′ as (st, ~x, ~y,K, j∗, ~u, ~w).
2. Invoke P∗Batch,2 on input st and simulate to P∗Batch,2 an execution of Batchm2 (π) on joint input

(G, pp, ~x, ~y, e):
(a) Send K to P∗Batch,2 as the first message of the verifier in πBatch.
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(b) Simulate to P∗Batch,2 the m parallel executions of π (Step 3 in Batchm2 (π)) as follows:
• In the j∗-th execution, let V play the role of the verifier, by relaying all messages from
P∗Batch,2 to V and vice versa.

• For each j ∈ [m]\{j∗}, in the j-th execution P∗2 honestly plays the role of the verifier
on joint input (G, pp, uj , wj , e).

Let PWin be the event in which P∗ wins; that is, V outputs 1 and BiasedSet holds. Recall that by
the definition of Batchm2 (π), the verifier VBatch outputs 1 only if each of the verifiers in the m parallel
executions outputs 1, including the verifier in the j∗ execution. Hence,

AdvPoCEπ,P∗ = Pr [PWin]

= Pr [V outputs 1 ∧ BiasedSet]

≥ Pr [VBatch outputs 1 ∧ BiasedSet]

= Pr [PBatchWin ∧ BiasedSet] (5.5)

for every λ ∈ N, where Eq. (5.5) follows from the fact that BiasedSet ⊆ NotEqual and PBatchWin =
(VBatch outputs 1) ∧ NotEqual.

6 An Improved Compiler From the Low Order Assumption

In this section we present an improved compiler, which enjoys significant communication improve-
ments over our general compiler from Section 5. Concretely, the communication complexity of the
resulted protocol is completely independent of the additional soundness error (the verification time,
though also improved, still depends on it).13 The cost is that this compiler, unlike the previous one,
relies on an algebraically-structured computational assumption – the low order assumption (recall
Definition 2.4). However, this caveat does not seem overly restrictive when to compiler is applied
to either the protocol of Pietrzak or to that of Wesolowski [Pie19, Wes19], both of which rely either
on this assumption or stronger ones. Our compiler is inspired by an approach presented by Bellare,
Garay and Rabin [BGR98] (which also implicitly underlies the batch proof of Wesolowski [Wes20]),
while introducing some new ideas for the setting of succinct BPoCE (see Sections 1.2 and 1.3 for
details).

6.1 The Compiler

We now present the compiler. Let GGen be a group generation algorithm (recall Section 2). Let
δ = δ(λ) a be a function of the security parameter λ ∈ N, and let c = c(λ, e) and t = t(λ, e) be
functions of λ and of the exponent e ∈ N. Our compiler is parameterized by an integer s, and uses
the following building blocks:

• A (δ, c, t)-PoCE π = (GGen,P,V).
• A pseudorandom function family PRF, such that for every λ ∈ N and for every key K ∈ {0, 1}λ,

the function PRFK maps inputs in {0, 1}dlog(n)e to outputs in [s].14 For ease of notation, for
an integer i ∈ [n], we will write PRFK(i), with the intention (but without noting it explicitly)
that the input to the function is a bit string representing the integer i.

13Recall that in the compiler from Section 5, in order to obtain an additive soundness loss of 2−m, the communication
had to grow linearly with m.

14Given any efficient algorithm Samp for sampling from the uniform distribution over [s] using r = r(s) random
coins, PRF can be implemented by invoking a PRF mapping {0, 1}dlog(n)e into {0, 1}r and then applying Samp using
the output of the PRF as random coins.
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The compiler produces a protocol Batchs3(π) = (GGen,P′,V′), which is a (δ′, c′, t′)-BPoCE for related
functions δ′ = δ′(λ), c′ = c′(λ, e, n) and t′ = t′(λ, e, n).

The Protocol Batchs3(π)
Joint input: Public parameters (G, pp) generated by GGen(1λ), vectors ~x = (x1, . . . , xn) and ~y =
(y1, . . . , yn) of group elements, and an exponent e ∈ N.

1. V′ samples K ← {0, 1}λ and sends K to P′.

2. For i = 1, . . . , n: Both V′ and P′ compute αi := PRFK(i).

3. Both V′ and P′ compute x =
∏
i∈[n] x

αi
i and y =

∏
i∈[n] y

αi
i .

4. V′ and P′ execute the protocol π on joint input (G, pp, x, y, e), where V′ plays the role of V and P′

plays the role of P. Let b ∈ {0, 1} be the output of V in this execution.

5. V′ outputs b.

Similarly to our discussion in Section 5, if the Fiat-Shamir heuristic [FS86] can be applied to π
in the random oracle, then it can also be applied to Batchs3(π). Moreover, if the number n of pairs
(xi, yi) is a-priori bounded, then the use of PRF can be replaced by a pseudorandom generator in a
similar manner to what was done in Section 5.

Theorem 6.1 establishes the completeness, soundness, succinctness and verifier efficiency of
Batchs3(π), in cases where the low order assumption holds with respect to GGen. Recall that we
denote by top = top(λ) the time required to apply the binary group operation on two group elements
in G that is generated by GGen(1λ). We also denote by tprf = tprf(λ, s, n) the time required to
compute PRFK(z) for K ∈ {0, 1}λ and z ∈ {0, 1}dlog(n)e.

Theorem 6.1. Assume that PRF is a pseudorandom function, that π is a (δ, c, t)-PoCE, and that the
s-low order assumption holds with respect to GGen. Then, Batchs3(π) is a (δ′, c′, t′)-BPoCE, where:

• δ′(λ) = δ(λ) + 1/s.
• c′(λ, n, e) = c(λ, e) + λ.
• t′(λ, n, e) = t(λ, e) + λ+ n · tprf +O(n · log(s) · top).

Instantiating the compiler. Basing the compiler on the general low order assumption gives rise
to several possible instantiations. In particular:

• The groups QRN and QR+
N . The low order assumption holds unconditionally in the group

QRN of quadratic residues moduloN whenN is the product of two safe primes, as well as in the
(isomorphic) group QR+

N of signed quadratic residues modulo N (recall Section 2). Concretely,
if N = (2p+ 1) · (2q+ 1) for prime p and q, then QRN and QR+

N contain no elements of order
less than min{p, q}. In the context of VDFs, this was observed by Pietrzak [Pie19] and by
Boneh et al. [BBF18]. However, it is also plausible that the assumption holds computationally
in the groups QRN and QR+

N when the factors of N are not safe primes.

• RSA groups. It is tempting to instantiate our compiler within the RSA group Z∗N as perhaps
the best-understood group of unknown order. Alas, the low order assumption cannot hold in
Z∗N since −1 ∈ ZN is always of order two in this group. One possible ramification, suggested by
Boneh et al. is to work over the quotient group Z∗N/{±1}. Another possibility is to settle on a
slightly weaker soundness guarantee for BPoCEs, which allows a malicious prover to convince
the verifier that yi = xei for every i, even though for some indices yi = −xei . This weakened
soundness guarantee is defined in Appendix A and can be shown to follow from the weak low
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order assumption (Definition 2.5), using essentially the same proof as the proof of Theorem 6.1.
Moreover, Seres and Burcsi [SB20] have shown that when N is the product of two safe primes,
breaking the weak low order assumption in Z∗N is equivalent to factoring the modulus N .15 A
third option is to compose our compiler with an additional protocol, specifically dedicated to
proving that yi 6= −xei for each i. We present and analyze such a protocol in Section 7.

• Class groups of imaginary quadratic fields. These groups were suggested in the context
of VDFs by Wesolowski [Wes19] as candidate groups of unknown order. The security of the low
order assumption in these groups is still unclear [BBF18, BKS+20]; but at least until proven
otherwise, it is possible that our compiler can be instantiated in a sub-family of these groups as
well. See the recent work of Belabas et al. [BKS+20] for further details on the possible choice
of parameters for such groups.

On the tightness of the reduction. In Section 6.2 we prove the soundness of our compiler based
on the low order assumption. This general reduction, however, suffers from a cubic security loss:
Given a prover which breaks the soundness of the resulting BPoCE with advantage δ + 1/s+ ε, we
construct an adversary breaking the low order assumption with advantage O(ε3). Coming up with a
tight reduction to the general low order assumption seems to be beyond current techniques. Hence,
instead, in Appendix A, we give specific proofs for the soundness of our compiler in the groups QR+

N

and Z∗N . In the former, our proof is information-theoretic, while in the latter, it relies on a tight
reduction to the factoring assumption.

Necessity of the low order assumption. We note that our reliance on the s-low-order assump-
tion in Theorem 6.1 is necessary. To see why that is, suppose that we work in a group G in which the
assumption does not hold; that is, given the group description it is easy to find a group element z and
an integer ω < s such that zω = 1G. In this case, the attacker can output an instance ((xi, yi)i∈[n], e)
such that n and e are arbitrary integers, x1, . . . , xn are arbitrary group elements, yi = xei for every
i ∈ {2, . . . , n} and y1 = z · xe1. The verifier V′ will incorrectly accept whenever the group elements
x and y computed by P′ and V′ in Step 3 of the protocol satisfy y = xe. This occurs when the
exponents α1, . . . , αn satisfy (

∏n
i=1 x

αi
i )e =

∏n
i=1 y

αi
i . By the choices made by the attacker, this

equality holds whenever zα1 = 1G, which happens with probability at least 1/s.

Proof of Theorem 6.1. We first analyze the communication complexity and the running time of
the verifier, and then in Section 6.2, we base the soundness of Batchs3(π) on the low order assumption.
As for the running time of verifier: It samples a random key K ← {0, 1}λ, taking time λ; makes n
invocation of PRF, taking time n · tprf ; raises n elements to exponents which are bounded by s, which
takes time O(n · log(s) · top); computes the product of n group elements, taking time (n − 1) · top);
and participates in a single execution of π, which takes time t. It follows that her running time is
t′ = t+λ+n · tprf +O(n · (log(s) + 1) · top). The communication in Batchs3(π) includes the key K and
all messages exchanged in a single execution of π, resulting in a total communication of c′ = c+ λ.

6.2 Soundness Analysis Based on the Low Order Assumption

The proof of soundness for Batchs3(π) follows the same outline as did the corresponding proof in
Section 5, and is by reduction to the δ-soundness of π, to the pseudorandomness of PRF and to the
low order assumption with respect to GGen. Since the reduction and its analysis are extremely similar

15Their proof can also be used, essentially unchanged, to show that (the strong variant of) the low order assumption
in Z∗N {±1} is equivalent to factoring N .
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to those presented in Section 5, we forgo presenting them explicitly here, and instead concentrate on
the main differences.

Concretely, the only major difference between the soundness analysis of Batchs3(π) and the anal-
ysis of Batchm2 (π) in Section 5, is that instead of relying on Lemma 4.2 in order to lower bound the
probability that xe 6= y (where x and y are computed from ~x, ~y as defined in Step 3 of Batchs3(π)),
we rely on Lemma 6.2 and Corollary 6.3 found below. Loosely, relying on the low order assumption
with respect to GGen, Lemma 6.2 and its corollary assert that if there is some i ∈ [n] for which
xei 6= yi, then with probability at most 1/s+negl(λ) over the choice of α1, . . . , αn ← [s], it holds that
xe = y.16

Lemma 6.2. Let G be a group. For every integers n, e ∈ N, any integer s, any number ε ∈ (0, 1)
and any vectors ~x, ~y ∈ Gn the following holds: If there exists an index i ∈ [n] such that xei 6= yi and

Pr
α1,...,αn←[s]

∏
i∈[n]

xαii

e

=
∏
i∈[n]

yαii

 > 1

s
+ ε,

then there exists an algorithm A which receives as input ~x, ~y and e, runs in time poly(λ, n, log(e)),
and with probability at least ε2 outputs (u, ω) ∈ G× N such that u 6= 1G, 1 < ω < s and uω = 1G.

Corollary 6.3 below follows from Lemma 6.2 and from the definition of the low order assumption
(Definition 2.4).

Corollary 6.3. Let GGen be a group generation algorithm and let s = s(λ) be a function of the secu-
rity parameter λ. If the s-low order assumption holds with respect to GGen, then for any probabilistic
polynomial-time algorithm P∗0, there exists a negligible function ν(·) such that

Pr

 ∃i ∈ [n], xei 6= yi(∏
i∈[n] x

αi
i

)e
=
∏
i∈[n] y

αi
i

∣∣∣∣∣∣
(G, pp)← GGen(1λ)
(n, ~x, ~y, e)← P∗0(G, pp)
α1, . . . , αn ← [s]

 ≤ 1

s
+ ν(λ),

for all sufficiently large λ ∈ N.

Proof of Corollary 6.3. Let P∗0 be a probabilistic polynomial-time algorithm as in the statement
of the corollary, and assume towards contradiction that there exists a polynomial f(·) such that

Pr

 ∃i ∈ [n], xei 6= yi(∏
i∈[n] x

αi
i

)e
=
∏
i∈[n] y

αi
i

∣∣∣∣∣∣
(G, pp)← GGen(1λ)
(n, ~x, ~y, e)← P∗0(G, pp)
α1, . . . , αn ← [s]

 > 1

s
+

1

f(λ)
, (6.1)

for infinitely many values of λ ∈ N. Consider the following polynomial-time algorithm B which
receives as input (G, pp)← GGen(1λ) and attempts to find a low order element of G:

1. Invoke (n, ~x, ~y, e)← P∗0(G, pp).
2. Invoke (u, ω)← A(~x, ~y, e,N), where A is the algorithm guaranteed by Lemma 6.2.
3. Output (u, ω).

16Observe that in Batchs3(π), the exponents α1, . . . , αn are not chosen uniformly at random from [s], but using the
pseudorandom function PRF. This is handled in exactly the same manner in which it was handled in the proof of
Claim 5.3.
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Say that a tuple (G, pp, n, ~x, ~y, e) is good if there exists some i ∈ [n] such that xei 6= yi and in addition
it holds that

Pr
α1,...,αn←[s]

∏
i∈[n]

xαii

e

=
∏
i∈[n]

yαii

 > 1

s
+

1

2f(λ)
.

By the assumption (6.1) and total probability it holds that

Pr [(G, pp, n, ~x, ~y, e) is good] ≥ 1

2f(λ)
,

for infinitely many values of λ ∈ N, where the probability is taken over (G, pp) ← GGen(1λ) and
(n, ~x, ~y, e)← P∗0(G, pp).

Observe that Lemma 6.2 implies that conditioned on the event in which the tuple (G, pp, n, ~x, ~y, e)
is good (where (G, pp) is sampled by GGen(1λ) as the input to B and (n, ~x, ~y, e) is sampled by B in
Step 1), with probability at least 1/(4 · f2(λ)) it holds that u 6= 1G, 1 < ω < s and uω = 1G. That
is,

Pr
[
LowOrdGGens,A (λ) = 1

∣∣∣(G, pp, n, ~x, ~y, e) is good
]
≥ 1

4 · f2(λ)
,

for every λ ∈ N, where (G, pp)← GGen(1λ) and (n, ~x, ~y, e)← P∗0(G, pp). Hence, by total probability,
it follows that

AdvLowOrd
GGen,s,A(λ) = Pr

[
LowOrdGGens,A (λ) = 1

]
≥ Pr

[
LowOrdGGens,A (λ) = 1

∣∣∣(G, pp, n, ~x, ~y, e) is good
]
· Pr [(G, pp, n, ~x, ~y, e) is good]

≥ 1

2 · f(λ)
· 1

4 · f2(λ)

=
1

8 · f3(λ)
,

for infinitely many values of λ ∈ N, in contradiction to the assumption that the s-low order assump-
tion holds with respect to GGen.

We now complete the analysis by proving Lemma 6.2

Proof of Lemma 6.2. Suppose that there exists an index i ∈ [n] such that xei 6= yi, and let i∗ be
the minimal index for which this holds. Let ε ∈ (0, 1) and assume that

Pr
α1,...,αn←[s]

∏
i∈[n]

xαii

e

=
∏
i∈[n]

yαii

 > 1

s
+ ε. (6.2)

Consider the following algorithm A, which on input (G, pp) is defined by:

1. Find the minimal index i∗ for which xei∗ 6= yi.
2. Compute z = yi∗/x

e
i∗ .

3. Sample α1, . . . , αi∗−1, αi∗+1, . . . , αn, β, β
′ ← [s].

4. Check that:
•
(
xβi∗ ·

∏
i∈[n]\{i∗} x

αi
i

)e
= yβi∗ ·

∏
i∈[n]\{i∗} y

αi
i ;

•
(
xβ
′

i∗ ·
∏
i∈[n]\{i∗} x

αi
i

)e
= yβ

′

i∗ ·
∏
i∈[n]\{i∗} y

αi
i ; and
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• β 6= β′.
If any of the checks fail, output ⊥ and terminate. Otherwise, set ω = |β − β′|.

5. Output (z, ω).

We now turn to analyze the success probability of A. We argue that if A reaches Step 5, then it
succeeds with probability 1. Assume that A reaches Step 5, and assume without loss of generality
that β > β′ (by the third conidition of Step 4, it holds that β 6= β′; the proof for the case β′ > β is
completely symmetric). By the first two conditions of Step 4, it holds that

x
e·(β−β′)
i∗ = yβ−β

′

i∗ .

Rearranging the above expression, it holds that(
yi∗

xei∗

)β−β′
= 1. (6.3)

Moreover, it is the case that ω = β − β′ < s; and by the assumption that xei∗ 6= yi∗ it follows that
z = yi∗/x

e
i∗ 6= 1G. Therefore, by (6.3), it must also be that ω 6= 1. Hence, we have shown that

whenever A reaches Step 5, it indeed outputs (z, ω) such that z 6= 1G, zω = 1G and 1 < ω < s, as
required.

We now turn to bound the probability that A reaches Step 5. For a vector ~α−i∗ = (α1, . . . , αi∗−1,
αi∗+1, . . . , αn), denote by B~α−i∗ ⊆ [s] the set of β-s for which the first condition in Step 4 of algorithm
A holds; that is

B~α−i∗ =

β ∈ [s]

∣∣∣∣∣∣
xβi∗ · ∏

i∈[n]\{i∗}

xαii

e

= yβi∗ ·
∏

i∈[n]\{i∗}

yαii

 .

Using this notation, algorithm A reaches Step 5 whenever the event β ∈ B~α−i∗ ∧ β
′ ∈ B~α−i∗ ∧ β 6= β′

occurs. Hence, the probability that A reaches Step 5 is

Pr

 β ∈ B~α−i∗β′ ∈ B~α−i∗
β 6= β′

 = Pr

[
β ∈ B~α−i∗
β 6= β′

∣∣∣∣β′ ∈ B~α−i∗] · Pr
[
β′ ∈ B~α−i∗

]

=

1− Pr

 β 6∈ B~α−i∗∨
β = β′

∣∣∣∣∣∣β′ ∈ B~α−i∗
 · Pr

[
β′ ∈ B~α−i∗

]
≥
(
Pr
[
β ∈ B~α−i∗

∣∣β′ ∈ B~α−i∗ ]− Pr
[
β = β′

∣∣β′ ∈ B~α−i∗ ]) · Pr
[
β′ ∈ B~α−i∗

]
(6.4)

= Pr

[
β ∈ B~α−i∗
β′ ∈ B′~α−i∗

]
− Pr

[
β′ ∈ B~α−i∗
β = β′

]

= Pr

[
β ∈ B~α−i∗
β′ ∈ B′~α−i∗

]
− 1

s
· Pr

[
β′ ∈ B~α−i∗

]
, (6.5)

where ~α−i∗ ← [s]n−1, β, β′ ← [s], and Eq. (6.4) holds by union bound. By total probability, the
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expression in Eq. (6.5) is equal to

1

sn−1
·

∑
~α−i∗∈[s]n−1

(
Pr
β,β′

[
β ∈ B~α−i∗
β′ ∈ B′~α−i∗

]
− 1

s
· Pr
β′

[
β′ ∈ B~α−i∗

])

=
1

sn−1
·

∑
~α−i∗∈[s]n−1

(
Pr
β

[
β ∈ B~α−i∗

])2

− 1

s
·

∑
~α−i∗∈[s]n−1

1

sn−1
· Pr
β

[
β ∈ B~α−i∗

]
=

1

sn−1
·

∑
~α−i∗∈[s]n−1

(
Pr
β

[
β ∈ B~α−i∗

])2

− 1

s
· Pr
~α−i∗ ,β

[
β ∈ B~α−i∗

]
≥
(

Pr
~α−i∗ ,β

[
β ∈ B~α−i∗

])2

− 1

s
· Pr
~α−i∗ ,β

[
β ∈ B~α−i∗

]
(6.6)

≥ ε2, (6.7)

where Eq. (6.6) follows from Jensen’s Inequality, and Eq. (6.7) follows from the assumption in Eq.
(6.2), and the fact that the expression in Eq. (6.6) is positive and increasing in Pr~α−i∗ ,β

[
β ∈ B~α−i∗

]
as long as Pr~α−i∗ ,β

[
β ∈ B~α−i∗

]
> 1/s (which is indeed the case by the assumption). Hence, the total

success probability of A in outputting (z, ω) satisfying the conditions in the Lemma is at least ε2, as
required.

7 Achieving Strong Soundness in RSA Groups

As discussed in Section 6, only the weak low order assumption may hold in the group Z∗N ; and
hence, when our compiler from Section 6 is used for batch proof of correct exponentiation within this
group, we can obtain only a weaker form of soundness. Recall that the issue was that a malicious
prover could still convince the verifier that xei = yi for every i, even though there exists an index
j for which yj = −xej (or several such indices; where subtraction is with respect to the ring ZN ).
Therefore, in this section we present a protocol through which the prover can prove to the verifier
that this is not the case. In fact, this protocol provides the following information-theoretic soundness
guarantee: Whenever the verifier accepts, it is necessarily the case that yi/xei is a group element of
order different than two. When N is the product of two safe primes, the only low order elements in
Z∗N have order exactly two.

The protocol OrderCheck is parameterized by an integer m and is defined below. It is inspired by
the work of Di Crescenzo et al. [CKK+17], though their approach incurs a communication overhead
which is linear in n – exactly what we are trying to avoid. Moreover, their approach is restricted
to exponents which are coprime to the group’s order (and in particular, exponents which are odd
integers); where in the context of VDFs, the exponent is typically a power of 2. We manage to lift
both of these restrictions.

The Protocol OrderCheckm = (V,P)

Joint input: Public parameters (N, pp) generated by ModGen(1λ), vectors ~x = (x1, . . . , xn) and ~y =
(y1, . . . , yn) of elements in Z∗N , and an exponent e ∈ N.

1. V samples I1, . . . , Im ← 2[n] and sends I to P.

2. P computes ui := x
d(e+1)/2e
i for each i ∈ [n] and wj :=

∏
i∈Ij ui for each j ∈ [m].

3. P sends w1, . . . , wm to V.

29



4. V computes zi := x
1+(e+1 mod 2)
i · yi for each i ∈ [n] and tj :=

∏
i∈Ij zi for each j ∈ [m].

5. V outputs 1 if tj = w2
j for every j ∈ [m]. Otherwise, V outputs 0.

Observe that if yi = xei for every i ∈ [n], then the verifier accepts with probability 1. This is true
since for every i ∈ [n] it holds that

u2i = x
2·d(e+1)/2e
i = x

e+1+(e+1 mod 2)
i = x

1+(e+1 mod 2)
i · yi = zi.

The soundness guarantee of the protocol is captured by the following lemma.

Lemma 7.1. Let p and q be prime integers such that p ≡ 3 mod 4, and let N = p · q. For every
integers n, e,m ∈ N and vectors ~x, ~y ∈ (Z∗N )n the following holds: If there exists an index i ∈ [n]
such that order(yi/xei ) = 2 then

Pr
I1,...,Im←2[n]

[
∀j ∈ [m] : tj = w2

j

]
≤ 2−m,

where t1, . . . , tm and w1, . . . , wm are computed from ~x, ~y, e and I1, . . . , Im as defined in the protocol
OrderCheckm.

Before proving Lemma 7.1, we analyze the protocol’s communication complexity and the running
time of the verifier. The communication includes m subsets of [n], which can be represented using
m · n bits and m group elements sent from P to V, which can be represented using m · dlogNe
bits. Hence, the total communication is m · (n+ dlogNe), which can be reduced to λ+m · dlogNe,
where λ is the security parameter, by succinctly representing the subsets I1, . . . , Im using a key to a
pseudorandom function (as done in Section 5). As for the verifier’s running time, samplingm random
subsets of [n] can takes time O(m · n); computing each zi takes time at most O(log2N); computing
each tj takes time at most O(n · log2N) and the verification in Step 5 takes time O(m · log2N).
Overall, the verification time is O(m ·n+(m+n) · log2N). When succinctly representing the subsets
I1, . . . , Im using a PRF key, the verification time is O(λ + m · n · (tprf + log2N)), where tprf is the
time complexity of a single PRF evaluation.

Putting it all together. Note that the restriction on the modulus N in Lemma 7.1 is satisfied
whenever N is the product of two safe primes p′ = (2p + 1) and q′ = (2q + 1). Moreover, in this
case, the only group elements (other than 1) with order less than min{p, q} have order 2. Therefore,
when N is of this form, protocol OrderCheck can be executed in parallel to our compiler from Section
6, resulting in a BPoCE in RSA groups which satisfies our strong soundness definition (Definition
3.2) while relying merely on the existence of one-way functions; this is compared to executing the
compiler from Section 6 on its own, which provides only weak soundness informally defined in Section
6 (and formally defined in Definition A.2).

Concretely, let ModGen be a modulus generation algorithm such that for any λ ∈ N and any
(N, pp) in the support of ModGen(1λ), it holds that N is the product of two safe primes p′ = 2p+ 1
and q′ = 2q + 1 satisfying 2λ−1 ≤ p, q < 2λ. Let PRF is a pseudorandom function, let π be a
(δ, c, t)-PoCE in RSA groups with moduli generated by ModGen, and let m, s ∈ N be integers such
that s < 2λ−1.

Corollary 7.2. Assume that PRF is a pseudorandom function and that π is a (δ, c, t)-PoCE. Then,
there is a (δ′, c′, t′)-BPoCE, where:

• δ′(λ) = δ(λ) + 1/s+ 2−m.
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• c′(λ, n, e) = c(λ, e) +O(λ).
• t′(λ, n, e) = t(λ, e) +O(n ·m · tprf + n · log(s) ·m · λ2).

In particular, setting m to be super-logarithmic and s to be super-polynomial, we get that the
overhead of our compiler in terms of soundness error is negligible. In this regime, and assuming that
δ(λ) is negligible as well and that π is a public-coin protocol (as are the protocols of Wesolowski and
of Pietrzak [Wes19, Pie19]), the Fiat-Shamir heuristic can be applied to the resulting batch protocol,
yielding a non-interactive proof which is longer then the proof for a single instance by an additive
O(λ) bits.

We now turn to prove Lemma 7.1.

Proof of Lemma 7.1. Let λ,N, n, e,m, ~x and ~y be as in the statement Lemma 7.1, and let {ui}i∈[n]
and {zi}i∈[n] be the values computed from ~x, ~y and e as in the definition of the protocol. Suppose
that there exists an index i ∈ [n] such that order(yi/x

e
i ) = 2, and let i∗ be the minimal index for

which this holds. We will prove that

Pr
I←2[n]

(∏
i∈I

ui

)2

=
∏
i∈I

zi

 ≤ 1

2
. (7.1)

The lemma will then follow immediately from Eq. (7.1) and the fact that the subsets I1, . . . , Im are
chosen independently.

In order to prove Eq. (7.1), we will actually prove that

Pr
I←2[n]

[(∏
i∈I

zi

)
∈ QRN

]
≤ 1

2
, (7.2)

where QRN is the set of quadratic residues modulo N . Eq. (7.1) then immediately follows, since
it is always the case that

(∏
i∈I ui

)2 ∈ QRN . Denote SQR =
{
I ∈ 2[n] :

∏
i∈I zi ∈ QRN

}
and

SQNR =
{
I ∈ 2[n] :

∏
i∈I zi 6∈ QRN

}
. We wish to prove that |SQR| ≤ |SQNR|, as this will prove Eq.

(7.2). To this end, consider a partition P of 2[n] to 2n−1 pairs as follows:

P = {(I, I ∪ {i∗}) : i∗ 6∈ I} .

We argue that for each pair (I, I ∪ {i∗}) in P, at most one of I and I ∪ {i∗} is in SQR. This is true
since if I ∈ SQR, then it necessarily holds that I ∪ {i∗} ∈ SQNR, since∏

i∈I∪{i∗}

zi = zi∗ ·
∏
i∈I

zi

= x
1+(e+1 mod 2)
i∗ · yi∗ ·

∏
i∈I

zi

= v · xe+1+(e+1 mod 2)
i∗ ·

∏
i∈I

zi, (7.3)

for v ∈ Z∗N such that order(v) = 2, where Eq. (7.3) holds by our assumption that order(yi∗/xei∗) = 2.
Note that xe+1+(e+1 mod 2)

i∗ ∈ QRN since e+ 1 + (e+ 1 mod 2) is always even, and
∏
i∈I zi ∈ QRN

since we assumed that I ∈ SQR. We argue that v is a quadratic non-residue modulo N . By the
assumption that p ≡ 3 mod 4, it holds that (p−1)/2 is an odd integer. Denote (p−1)/2 = 2 ·a+ 1.
Then, since v is of order two, it holds that v(p−1)/2 = v2·a+1 = 1a · v = v 6= 1, and by Euler’s
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Criterion, it is indeed the case that v is a quadratic non-residue modulo p. Therefore, v is also a
quadratic non-residue modulo N since N = p · q. It follows that I ∪ {i∗} ∈ SQNR, as we wanted to
show.

Since at most one subset in pair in P is in SQR, and there are 2n−1 such pairs, it follows that
|SQR| ≤ |SQNR|, concluding the proof of Lemma 7.1.

8 A Statistically-Sound Proof of Correct Exponentiation in RSA Groups

In this Section we present a new proof of correct exponentiation in RSA groups with a modulus
which is the product of two safe primes. The proof enjoys statistical soundness, and in conjunction
with our compiler from Section 6 and our protocol from Section 7, it implies a batch proof of correct
exponentiation in RSA groups with such moduli. The new protocol is obtained by incorporating our
techniques from Section 7 with Pietrzak’s protocol [Pie19], and is described below. For simplicity of
presentation, we assume that the delay parameter T is a power of 2.

The Protocol RSAPoCE = (ModGen,VRSA,PRSA)

Joint input: A modulus N generated by ModGen(1λ), group elements x, y ∈ Z∗N , and an exponent 2T for
T ∈ N.

1. PRSA and VRSA set x1 := x, y1 := y and T1 := T .

2. For i = 1, . . . , log T :

(a) If Ti = 1, then V outputs 1 if y = x2, and otherwise outputs 0.

(b) If Ti > 1:

i. PRSA computes zi := x2
Ti/2

i and ui := x2
Ti/2−1+1
i and sends zi and ui to VRSA.

ii. VRSA verifies that x2i · zi = u2i . If so, it continues, and if not, it outputs 0 and terminates.
iii. VRSA samples r ← [2λ−1] and sends r to PRSA.
iv. PRSA and VRSA compute xi+1 := xri · zi, yi+1 := zri · yi and Ti+1 := Ti/2.

Theorem 8.1. Let ModGen be a modulus generation algorithm such that for every λ ∈ N, ModGen(1λ)
always outputs a modulus N which is the product of two safe primes p′ = 2p + 1 and q′ = 2q + 1
such that 2λ−1 ≤ p′, q′ < 2λ. Then, RSAPoCE is a (δ, c, t)-PoCE for δ = 0, c = O(λ · log T ) and
t = O(λ2 · log T ).

The completeness, communication complexity and verification time of RSAPoCE are straight-
forward, and follow by a similar analysis to previously presented protocols. The soundness of the
protocol follows from the following lemma.

Lemma 8.2. Let λ ∈ N be an integer and let p, q ∈ N be a primes such that p′ = 2p + 1 and
q′ = 2q + 1 are primes and 2λ−1 ≤ p, q < 2λ. Let N = p′ · q′. For every integer T ∈ N and group
elements x, y ∈ Z∗N the following holds:
If x2T 6= y, then for any group elements z, u ∈ Z∗N for which x2 · z = u2 it holds that

Pr
r←[2λ−1]

[
(xr · z)2

T/2

= zr · y
]
< 2−λ+1.

Taking a union bound over all iterations in Step 2 of the protocol, Lemma 8.2 immediately implies
that if x2T 6= y, then the probability that VRSA accepts is at most 2−λ+1 ·log T (even when interacting
with an unbounded malicious prover). This is indeed negligible as long as T is polynomially bounded.
We now prove Lemma 8.2.
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Proof. Let x, y, u, z ∈ Z∗N be group elements such that

x2
T 6= y (8.1)

and

x2 · z = u2. (8.2)

We consider two cases.

Case 1: z = x2T /2. In this case, for any r ∈ N it holds that

(xr · z)2
T/2

=
(
xr ·

(
x2

T/2
))2T/2

= xr·2
T/2 · x2T

= zr · x2T

6= zr · y, (8.3)

where Eq. (8.3) follows from Eq. (8.1). In particular:

Pr
r←[2λ−1]

[
(xr · z)2

T/2

= zr · y
]

= 0,

implying the lemma.

Case 2: z 6= x2T /2. We prove that there exists a unique r ∈ [2λ−1] such that

(xr · z)2
T/2

= zr · y. (8.4)

Observe that this will immediately imply the lemma. Assume towards contradiction otherwise; that

is, that there are two distinct r > r′ ∈ [2λ−1] such that (xr · z)2
T/2

= zr · y and
(
xr
′ · z
)2T/2

= zr
′ · y.

This means that (
x2

T/2

z

)r−r′
= 1. (8.5)

Denote w = x2
T/2
/z and d = r − r′. Eq. (8.5) implies that d is a multiple of the order of w in Z∗N .

Note that d = r − r′ < r ≤ 2λ−1 ≤ min{p, q}, and that the assumption that z 6= x2
T /2 implies that

w 6= 1. This means that
1 < order(w) < min{p, q}.

Since the order of Z∗N is 4 · p · q and it must be divisible by order(w), and since Z∗N contains no
elements of order 4,17 it follows that order(w) = 2.

On the one hand, this implies that w 6∈ QRN , because as we proved in the proof of Lemma 7.1,
all quadratic roots of 1 in Z∗N (other than 1 itself) are quadratic non-residues. But on the other hand,
Eq. (8.2) implies that z = (u/x)2, which means that z ∈ QRN . Hence, seeing that x2T/2 ∈ QRN as
well, it holds that w = x2

T/2
/z ∈ QRN , arriving at a contradiction.

This concludes the proof of Lemma 8.2.

17See for example [CKK+17].
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A Soundness Analysis of Batch3 in Concrete Groups

A.1 Soundness Analysis in QR+
N

The proof of soundness for Batchs3(π) in the group QR+
N follows the same outline as did the corre-

sponding proof in Section 5, and is by reduction to the δ-soundness of π and to the pseudorandomness
of PRF. Since the reduction and its analysis are extremely similar to those presented in Section 5,
we forgo presenting them explicitly here, and instead concentrate on the main difference.

Concretely, the only major difference between the soundness analysis of Batchs3(π) in QR+
N and

the analysis of Batchm2 (π) in Section 5, is that instead of relying on Lemma 4.2 in order to lower
bound the probability that xe 6= y, we rely on Lemma A.1 found below. Loosely, Lemma A.1 asserts
that if there is some i ∈ [n] for which xei 6= yi, then with probability at most 1/s over the choice of
α1, . . . , αn ← [s], it holds that xe = y.18

Lemma A.1. Let λ ∈ N be an integer and let p, q ∈ N be a primes such that p′ = 2p + 1 and
q′ = 2q+ 1 are primes and 2λ−1 ≤ p, q < 2λ. Let N = p′ · q′. For every integers n, e ∈ N, any integer
s < 2λ−1 and vectors ~x, ~y ∈

(
QR+

N

)n it holds that:

Pr
α1,...,αn←[s]

∏
i∈[n]

xαii

e

=
∏
i∈[n]

yαii

 ≤ 1

s
.

Proof. Suppose that there exists an index i ∈ [n] such that xei 6= yi, and let i∗ be an arbitrary such
index (e.g., the minimal index for which the inequality holds). We show that for any fixing of the
values α1, . . . , αi∗−1, αi∗+1, . . . , αn, it holds that

Pr
αi∗←[s]

∏
i∈[n]

xαii

e

=
∏
i∈[n]

yαii

 ≤ 1

s
, (A.1)

18Observe that in Batchs3(π), the exponents α1, . . . , αn are not chosen uniformly at random from [s], but using the
pseudorandom function PRF. This is handled in exactly the same manner in which it was handled in the proof of
Claim 5.3.
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and the lemma follows immediately by total probability. Fix α1, . . . , αi∗−1, αi∗+1, . . . , αn ∈ [s]. We
show that there exists at most a single value β ∈ [s] for whichxβi∗ · ∏

i∈[n]\{i∗}

xαii

e

= yβi∗ ·
∏

i∈[n]\{i∗}

yαii , (A.2)

as this would imply Eq. (A.1). Assume towards contradiction that there are two such distinct values
β, β′ ∈ [s] satisfying Eq. (A.2), and assume without loss of generality that β > β′. But this implies
that

x
e·(β−β′)
i∗ =

(
xβi∗ ·

∏
i∈[n]\{i∗} x

αi
i

)e(
xβ
′

i∗ ·
∏
i∈[n]\{i∗} x

αi
i

)e
=
yβi∗ ·

∏
i∈[n]\{i∗} y

αi
i

yβ
′

i∗ ·
∏
i∈[n]\{i∗} y

αi
i

= yβ−β
′

i∗ .

By rearranging, we get that (
yi∗

xei∗

)β−β′
= 1. (A.3)

By the assumption that xei∗ 6= yi∗ it follows that yi∗/xei∗ 6= 1. Hence, by Lagrange’s Theorem, it
follows that β − β′ divides the order of QR+

N . But the order of QR+
N is p · q, and by definition it

holds that
β − β′ < β ≤ s < 2λ−1 < min{p, q}.

Therefore, since p and q are primes, it cannot be the case that β − β′ divides p · q, deriving a
contradiction. This means that there can be at most a single value β ∈ [s] satisfying Eq. (A.2),
concluding the proof of Lemma A.1.

A.2 Soundness Analysis in RSA Groups

Before proving the soundness of Batchs3(π) in RSA groups, we need to define an adjusted, and slightly
weaker, soundness guarantee.

An adjusted soundness guarantee. Our compiler, when instantiated in RSA groups, does not
quite meet the soundness guarantee formulated in Definition 3.2. Instead, we introduce a weaker
soundness guarantee. Informally, it asserts that if the verifier accepts, it must be the case that
xei ∈ {yi,−yi} for every i ∈ [n]. Observe, that this requirement seems compatible with many
applications of VDFs as discussed in Section 1. Formally, we replace the δ-soundness requirement of
Definition 3.2 with the following requirement (which is formulated specifically for RSA groups, as it
is only used in this section).

Definition A.2 (weak δ-soundness). For every pair P∗ = (P∗1,P
∗
2) of probabilistic polynomial-time

algorithms, there exist a negligible function ν(·) such that

AdvBPoCEπ,P∗
def
= Pr

[
〈P∗2(st),V〉 (N, pp, ~x, ~y, e) = 1
∃i ∈ [n], xei 6∈ {yi,−yi}

∣∣∣∣ (N, pp)← ModGen(1λ)
(n, ~x, ~y, e, st)← P∗1(pp)

]
≤ δ(λ) + ν(λ)

for all sufficiently large λ ∈ N, where ~x = (x1, . . . , xn) and ~y = (y1, . . . , yn).
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We now prove the soundness guarantees of Batchs3(π) in Z∗N as formulated in Theorem 6.1, with
respect to the adjusted soundness definition above. As we did in Section A.1, since the reduction to
the soundness of π and to the pseudorandomness of PRF is extremely similar to previous sections,
we focus here on the only main difference that arises in analyzing Batchs3(π) in Z∗N . Concretely, the
only major difference is that instead of using Lemma 4.2 as we did in Section 5 or Lemma A.1 as
we did in Section A.1, we now use Lemma A.3 and its corollary, both of which can be found below.
Informally, Corollary A.4 states that assuming that factoring is hard, if there exists some i ∈ [n]
for which xei 6∈ {yi,−yi}, then with probability at most 1/s over the choice of α1, . . . , αn ← [s], it
holds that xe = y. We first present Lemma A.3, then continue by formally presenting and proving
Corollary A.4, and finally we conclude by proving Lemma A.3.

Lemma A.3. Let λ ∈ N be an integer and let p, q ∈ N be a primes such that p′ = 2p + 1 and
q′ = 2q + 1 are primes and 2λ−1 ≤ p, q < 2λ. Let N = p′ · q′. For every integers n, e ∈ N, any
integer s < 2λ−1 and vectors ~x, ~y ∈ (Z∗N )n the following holds: If there exists an index i ∈ [n] such
that xei 6∈ {yi,−yi} and

Pr
α1,...,αn←[s]

∏
i∈[n]

xαii

e

=
∏
i∈[n]

yαii

 > 1

s
,

then there exists an algorithm A which receives as input ~x, ~y, e and N , factors N with probability 1
and runs in time poly(λ, n, log(e)).

Let ModGen be a modulus generation algorithm such that for any λ ∈ N and any (N, pp) in the
support of ModGen(1λ), it holds that N is the product of two safe primes p′ = 2p+ 1 and q′ = 2q+ 1
satisfying 2λ−1 ≤ p, q < 2λ. Let s = s(λ) < 2λ−1 as before. Corollary A.4 below follows from Lemma
A.3 and from the definition of the factoring assumption (recall Definition 2.2).

Corollary A.4. If the factoring assumption holds with respect to ModGen, then for any probabilistic
polynomial-time algorithm P∗0, there exists a negligible function ν(·) such that

Pr

 ∃i ∈ [n], xei 6∈ {yi,−yi}(∏
i∈[n] x

αi
i

)e
=
∏
i∈[n] y

αi
i

∣∣∣∣∣∣
(N, pp)← ModGen(1λ)
(n, ~x, ~y, e)← P∗0(N, pp)
α1, . . . , αn ← [s]

 ≤ 1

s
+ ν(λ),

for all sufficiently large λ ∈ N.

Proof. Let P∗0 be a probabilistic polynomial-time algorithm as in the statement of the corollary, and
assume towards contradiction that there exists a polynomial f(·) such that

Pr

 ∃i ∈ [n], xei 6∈ {yi,−yi}(∏
i∈[n] x

αi
i

)e
=
∏
i∈[n] y

αi
i

∣∣∣∣∣∣
(N, pp)← ModGen(1λ)
(n, ~x, ~y, e)← P∗0(N, pp)
α1, . . . , αn ← [s]

 > 1

s
+

1

f(λ)
, (A.4)

for infinitely many values of λ ∈ N. Consider the following polynomial-time algorithm B which
receives as input (N, pp)← ModGen(1λ) and attempts to factor N :

1. Invoke (n, ~x, ~y, e)← P∗0(N, pp).
2. Invoke (p̃, q̃)← A(~x, ~y, e,N), where A is the algorithm guaranteed by Lemma A.3.
3. Output (p̃, q̃).
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Say that a tuple (N, pp, n, ~x, ~y, e) is good if there exists some i ∈ [n] such that xei 6∈ {yi,−yi}, and in
addition it holds that

Pr
α1,...,αn←[s]

∏
i∈[n]

xαii

e

=
∏
i∈[n]

yαii

 > 1

s
+

1

2f(λ)
,

where exponentiation is done in Z∗N . By the assumption (A.4) and total probability it holds that

Pr

[
(N, pp, n, ~x, ~y, e) is good

∣∣∣∣ (N, pp)← ModGen(1λ)
(n, ~x, ~y, e)← P∗0(N, pp)

]
≥ 1

2f(λ)
,

for infinitely many values of λ ∈ N.
Observe that Lemma A.3 implies that conditioned on the event in which the tuple (N, pp, n, ~x, ~y, e)

is good (where (N, pp) is sampled by ModGen(1λ) as the input to B and (n, ~x, ~y, e) is sampled by B
in Step 1), the algorithm B succeeds in factoring N with probability 1. Hence, by total probability,
it follows that for infinitely many values of λ ∈ N, B succeeds in factoring N with probability at
least 1/2f(λ), in contradiction to the assumption that the factoring assumption holds with respect
to ModGen. This concludes the proof.

Before proving Lemma A.3, we remind the reader that by Lemma 2.3, there exists an efficient
algorithm C, which on input N and a non-trivial root of unity z ∈ Z∗N successfully factors N with
probability 1. We now turn to the proof.

Proof of Lemma A.3. Suppose that there exists an index i ∈ [n] such that xei 6∈ {yi,−yi}, and let
i∗ be the minimal index for which this holds. Assume that

Pr
α1,...,αn←[s]

∏
i∈[n]

xαii

e

=
∏
i∈[n]

yαii

 > 1

s
. (A.5)

Consider the following factoring algorithm A, which on input N is defined by:

1. Find the minimal index i∗ for which xei∗ 6∈ {yi∗ ,−yi∗}.
2. Set z = yi∗/x

e
i∗ . If z

2 6= 1, then output ⊥ and terminate.
3. Invoke the factoring algorithm C guaranteed by Lemma 2.3 on input (N, z) and denote its

output by (p̃, q̃).
4. Output (p̃, q̃).

We now turn to analyze the success probability of A. We argue that if A reaches Step 4, then it
succeeds with probability 1. This is the case, since whenever A reaches Step 4, it is necessarily the
case that z2 = 1. Moreover, since xei∗ 6∈ {yi∗ ,−yi∗}, it follows that z 6∈ {1,−1}. In other words, z
is a non-trivial root of unity in Z∗N , and so it follows from Lemma 2.3 that A indeed succeeds with
probability 1 in factoring N whenever it reaches Step 4.

Now assume that ~x, ~y and e are such, that A does not reach Step 4. In this case, we will derive
a contradiction to the assumption in Eq. (A.5), in a similar manner to the proof of Lemma A.1.
Concretely, we show that for any fixing of the values α1, . . . , αi∗−1, αi∗+1, . . . , αn, it holds that

Pr
αi∗←[s]

∏
i∈[n]

xαii

e

=
∏
i∈[n]

yαii

 ≤ 1

s
, (A.6)
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and the desired contradiction (and hence the lemma) follows immediately by total probability. Fix
α1, . . . , αi∗−1, αi∗+1, . . . , αn ∈ [s]. We show that there exists at most a single value β ∈ [s] for whichxβi∗ · ∏

i∈[n]\{i∗}

xαii

e

= yβi∗ ·
∏

i∈[n]\{i∗}

yαii , (A.7)

as this would imply Eq. (A.6). If this is not the case, then there are two such distinct values β, β′ ∈ [s]
satisfying Eq. (A.7), and assume without loss of generality that β > β′. This would imply that

x
e·(β−β′)
i∗ = yβ−β

′

i∗ .

Rearranging the above expression, it holds that(
yi∗

xei∗

)β−β′
= 1. (A.8)

By the assumption that xei∗ 6∈ {yi∗ ,−yi∗} it follows that yi∗/xei∗ 6= 1. Hence, by Lagrange’s Theorem,
it follows that β− β′ divides the order ϕ(N) = 4 · p · q of Z∗N . We show that this cannot be the case.
First, note that

β − β′ < β ≤ s < 2λ−1 < min{p, q}.

Therefore, since p and q are primes, it cannot be the case that β − β′ divides p · q. This means that
the order of z = yi∗/x

e
i∗ is either 2 or 4. But this is also impossible, since there are no elements of

order 4 in Z∗N (e.g., [CKK+17]), and had the order of z been 2, A would have reached Step 4.
Overall, we showed that assuming Eq. (A.5), the algorithm A always reaches Step 4 and succeeds

in factoring N . This concludes the proof of the lemma.
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