
LedMAC: More Efficient Variants of LightMAC

Yaobin Shen, Lei Wang, and Dawu Gu

Shanghai Jiao Tong University
yb_shen@sjtu.edu.cn, wanglei_hb@sjtu.edu.cn, dwgu@sjtu.edu.cn

Abstract. LightMAC is a lightweight MAC designed by Luykx et al. and
recently standardized by ISO/IEC. In this paper, we refine LightMAC and
suggest two simple variants called LedMAC1 and LedMAC2. Compared to
LightMAC, our first scheme LedMAC1 avoids unnecessary padding with-
out sacrificing the security. Our second scheme LedMAC2 further reduces
the number of keys from two to one, and achieves the same level security
as that of LightMAC.

Keywords: Lightweight cryptography · Message authentication code
· Provable security

1 Introduction

This paper describes two simple variants of LightMAC. Our algorithms efficiently
handle message of any bit length, and reduce the number of blockcipher keys.
This makes them more suitable to be implemented in resource-constrained de-
vices. We begin with some background.

Lightweight cryptography. Lightweight cryptography is a subfield of cryp-
tography that aims to secure the communication of small devices, which are
typically not powerful enough to use conventional cryptography. With the ad-
vent of Internet of Things, a myriad of small devices are being placed everywhere.
These small devices such as embedded systems, RFID tags, and sensor networks
are resource-constrained with limited processing and storage capacities. The cost
of the cryptographic algorithms is important, especially for small devices.

LightMAC. LightMAC is an elegant lightweight MAC designed by Luykx et
al. [10]. It aims to ensure the data authenticity for resource-constrained devices.
It is proved to have a security bound q2/2n that is independent of the message
length, where q is the number of MAC queries and n is the block size of the
underlying blockcipher. Let us recall how LightMAC works. Let E : {0, 1}k ×
{0, 1}n → {0, 1}n be a blockcipher. The LightMAC follows the Hash-then-PRF
paradigm, and is built on top of a blockcipher E with two independent keys K1
and K2. Let is be the s-bit encoding of a counter i for i ≤ 2s− 1. Let 10∗ be the
padding that appending a one followed by as few zeros to make the total string

length a multiple of n. Let M = M [1] ∥ . . . ∥M [ℓ] be a message that we want to
authenticate, where |M [1]| = . . . = |M [ℓ− 1]| = n− s and 0 ≤M [ℓ] ≤ n− s− 1.
Then LightMACK1,K2

(M), the tag of M under keys K1 and K2, is the value T

where T = EK2(S) and S = M [ℓ]10∗ ⊕
(⊕ℓ−1

i=1 EK1(is ∥M [i])
)

.
Let us recall the brief history of LightMAC. LightMAC evolved from two al-

gorithms XOR MAC [1] and PCS [4]. The former XORed together finite-input-
length pseudorandom functions (PRF) to create a stateful and randomized MAC,
and the latter composes an XOR MAC with an independent PRF call to create a
stateless and deterministic MAC. Yasuda [11] also mentioned the basic idea for
LightMAC. Recently, LightMAC was standardized by ISO/IEC [8] for lightweight
cryptography.

Our contribution. In this paper, we refine LightMAC and propose two sim-
ple variants called LedMAC1 and LedMAC2. Compared to LightMAC, our first
algorithm LedMAC1 avoids unnecessary padding without sacrificing the security.
Our second algorithm further reduces the number of keys to be one, and achieves
the same level security as that of LightMAC.

One unfortunate feature of LightMAC is that there is some waste in the last
block. First of all, the length of the last block is only up to n − s − 1 bits,
and at least s + 1 redundant bits are always appended regardless of the length
of the message. This results in the maximal length of a message being up to
2s(n − s) − 1 bits.1 Secondly, if |M | is already a multiple of n − s, then an
entire extra block of padding is appended, seemingly "wasting" an application of
blockcipher E. Cryptographers have worked hard to optimize blockciphers, and
it seems embarrassing to squander some of this efficiency with an unnecessary
blockcipher call, especially for lightweight cryptography. Moreover, there are
settings where one needs to authenticate short messages that are always or often
a multiple of n−s. In such a case, saving one blockcipher call can be a significant
performance improvement.

Our new scheme LedMAC1 avoids this waste: the length of the last block
can be up to n − 1 bits, therewith the maximal length of a message being up
to 2s(n − s) + s − 1 bits. Moreover, there is no extra padding when |M | is a
multiple of n − s. We simply use a one-bit counter in the finalization to make
two cases. When the last block of message M is full of n−1 bits, a single 0 will be
prefixed before the finalization. Otherwise a single 1 will be prefixed before the
finalization. Note that this one-bit counter comes without any additional cost.
Our proof shows that except for a small factor 2, LedMAC1 enjoys the same
security bound as that of LightMAC.

Reducing the number of keys. Both LightMAC and LedMAC1 require two
key schedulings of the underlying blockcipher E, which is undesired for resource-
constrained devices. Our second scheme LedMAC2 further reduces the number
1 It is claimed [8,10] that the maximal length of a message can be up to 2s(n−s) bits.

However, this claim is inaccurate since the maximal number of blocks of a message
is at most 2s and the maximal bit length of the last block is n− s− 1 bits.

2

of blockcipher keys, and achieves the same level security as that of LightMAC.
Here we use a two-bit counter: one bit for padding as is done in LedMAC1, one
bit for domain separation between the hash phase and the finalization phase of
LedMAC2. The cost to save one blockcipher key is that for a s-bit counter in the
hash phase, the maximal length of a message now is up to 2s−1(n − s) + s − 2
due to the one-bit domain separation.

We prove that LedMAC2 has a security bound qσ/2n where σ is the total
number of blocks of these q queries. The security bound qσ/2n depends on the
message length, and is slightly worse than the bound q2/2n of LightMAC and
LedMAC1. However, LedMAC2 only requires one blockcipher key, and thus may
be more suitable for implementation in resource-constrained environment.

Why not use a mask. It might be helpful to handle the padding via some
masks, as is done in previous constructions such as PMAC [5], CMAC [7, 9] and
XCBC [6]. However, this requires either an extra blockcipher invocation plus field
multiplication or a longer key, and is somewhat costly for small devices. Hence we
choose to use a second counter, which is more natural for counter-based MACs.
Moreover, the counter can also be used to reduce the number of blockcipher
keys.

2 Preliminaries

Notation. Let ε denote the empty string. Let {0, 1}∗ be the set of all finite
bit strings including the empty string ε. For a finite set S, we let x←$ S denote
the uniform sampling from S and assigning the value to x. Let |x| denote the
length of the string x. Let x[i : j] denote the substring from the i-th bit to the
j-th bit (inclusive) of x. Concatenation of strings x and y is written as x ∥ y
or simply xy. For an integer i ≤ 2s − 1, let is be the s-bit encoding of i. If A
is an algorithm, we let y ← A(x1, . . . ; r) denote running A with randomness r
on inputs x1, . . . and assigning the output to y. We let y←$ A(x1, . . .) be the
result of picking r at random and letting y ← A(x1, . . . ; r). Let Perm(n) denote
the set of all permutations over {0, 1}n, and let Func(∗, n) denote the set of all
functions from {0, 1}∗ to {0, 1}n.

A blockcipher is a family of permutations. We write E : {0, 1}k × {0, 1}n →
{0, 1}n for a blockcipher, where EK(·) = E(K, ·) is a permutation over {0, 1}n

specified by the key K ∈ {0, 1}k. A MAC algorithm F : K × {0, 1}∗ → {0, 1}τ

is a function. It takes as input a key K ∈ K and a message M ∈ {0, 1}∗, and
outputs a fixed-length tag T ∈ {0, 1}τ . The value τ is called the tag length, and
we consider the case τ = n.

Security definitions. An adversary A is an algorithm that always outputs a
bit. We write AO = 1 to denote the event that A outputs 1 when given access
to oracle O. Let π←$ Perm(n) be a random permutation. The advantage of A
against the PRP security of E is defined as

Advprp
E (A) = Pr

[
AEK = 1

]
− Pr [Aπ = 1]

3

where K is chosen uniformly at random from {0, 1}k.
Let F : K × {0, 1}∗ → {0, 1}n be a MAC algorithm. Let R←$ Func(∗, n) be

a random function. The advantage of A against the PRF security of F is defined
as

Advprf
F (A) = Pr

[
AFK = 1

]
− Pr

[
AR = 1

]
where K is chosen uniformly at random from K. We note that the above defi-
nition captures the security of a MAC as a pseudorandom function (PRF). It is
well known that any PRF is a secure MAC [2].

3 Security of LedMAC1

In this section, we prove the PRF security of LedMAC1. Our result shows that
compared with LightMAC, LedMAC1 avoids unnecessary padding without sacri-
ficing the security.

The LedMAC1 construction. Let E : {0, 1}k × {0, 1}n be a blockcipher. The
LedMAC1 is based on the Hash-then-PRF paradigm, and is built on top of a
blockcipher E with two keys. The first key is used to hash the message into a
fixed-length string, and the second blockcipher key is used to prf the fixed-length
string to produce the tag. When the final block of message M is full of n−1 bits,
the fixed-length string will be prefixed with a single 0 before the PRF phase.
Otherwise it will be prefixed with a single 1.The specification of LedMAC1 is
given in Fig. 1.

Security analysis of LedMAC1. The following result shows that LedMAC1 is
a good PRF, provided that EK1 and EK2 are two good PRPs.

Theorem 1. For any adversary A against the PRF security of LedMAC1, run-
ning in time t, making at most q queries of length at most 2s(n− s) + s− 1 bits,
we have

Advprf
LedMAC1[E](A) ≤ Advprp

E (B1) + Advprp
E (B2) + 5q2

2n+1

where B1 and B2 are two adversaries against the PRP security of the blockcipher
E, the former running in time t′ = t + O(q · (2s − 1)) and making at most
q · (2s − 1) queries, and the latter running in time t′′ = t + O(q) and making at
most q queries.

Proof. Let A be an adversary against the PRF security of LedMAC1, running
in time t, making at most q queries of length at most 2s(n − s) + s − 1 bits.
Without loss of the generality, we assume the adversary never repeats a prior
query since otherwise it will receive the same response. Following the standard
argument, we first replace the blockciphers EK1 and EK2 of LedMAC1[E] with
two independent random permutations π1 and π2 to obtain LedMAC1[π]. Let B1
be an adversary against the PRP security of EK1 . It picks up a key K2 uniformly
at random from {0, 1}k to simulate EK2 . It runs A and simulates A’s oracle by
using its own oracle and the simulated EK2 . After the interaction, B uses A’s

4

procedure LedMAC1K1,K2 (M)
M [1] ∥ . . . ∥M [ℓ]←M ; S ← 0n

for i← 1 to ℓ− 1 do
S ← S ⊕ EK1 (is ∥M [i])

if |M [ℓ]| = n− 1 then
V ←M [ℓ]⊕ S[1 : n− 1]
T ← EK2 (0 ∥ V)

else V ←M [ℓ]10∗ ⊕ S[1 : n− 1]; T ← EK2 (1 ∥ V)
return T

E E E

1 [1]

E

2 [2] 3 [3] 4 10

E E E

1 [1]

E

2 [2] 3 [3] [4]

n-1

n-1

0

1

Fig. 1: Top: The detailed code description of LedMAC1. Here M [1] ∥ . . . ∥M [ℓ] ← M
denotes splitting M into (n− s)-bit blocks and stopping at the moment when it is left
with a message of length less than or equal to n−1 bits. M [ℓ]10∗ denotes right padded
with a single 1 and as few 0 bits so that the length of string to be (n−1)-bit. Middle:
The case when the final block of message M is full of n − 1 bits, i.e., |M [4]| = n − 1.
Bottom: The case when the final block of message M is less than n − 1 bits, i.e.,
0 ≤ |M [4]| < n− 1.

response as its own. Let B2 be an another adversary against the PRP security
of EK2 . It follows a similar strategy as that of B1. Then the PRF advantage of
A against LedMAC1 can be bounded by

Advprf
LedMAC1[E](A) ≤ Advprp

E (B1) + Advprp
E (B2) + Advprf

LedMAC1[π](A) ,

where B1 runs in time t′ = t + O(q · (2s − 1)) and makes at most q · (2s − 1)
queries, and B2 runs in time t′′ = t + O(q) and makes at most q queries.

5

We then focus on the last term on the right side of the inequality. For message
M , let H(M) denote the input to π2 of LedMAC1, and

H(M) = 0 ∥
(

M [ℓ]⊕
(

ℓ−1⊕
i=1

π1(is ∥M [i])

)
[1 : n− 1]

)

if |M [ℓ]| = n− 1, and

H(M) = 1 ∥

(
M [ℓ]10∗ ⊕

(
ℓ−1⊕
i=1

π1(is ∥M [i])

)
[1 : n− 1]

)

if 0 ≤ |M [ℓ]| < n−1. Denote by Rng(π2) the set of output values of π2 during the
computation of LedMAC1. The size of Rng(π2) will increase when A is interacting
with LedMAC1. During the interaction between A and its oracle LedMAC1, we
define two bad events as follows:

– bad1: at the i-th query, if H(Mi) collides with previous H(Mj) for 1 ≤ j ≤
i− 1, then set bad1 to be true.

– bad2: at the i-th query, after the computation of H(Mi), sample a string T̂i

independently and uniformly at random from {0, 1}n. If T̂i lies in Rng(π2),
then set bad2 to be true.

If neither of these two bad events happens, then we let Ti = T̂i and return
Ti to adversary A. Otherwise we return Ti = π2(H(Mi)). On the other hand,
when A is interacting with a random function, we define the same bad events as
above, but regardless of bad events happen or not, we always return Ti = T̂i to
adversary A. If neither of these two bad events happens, then the output strings
T1, . . . , Tq from LedMAC1 are merely chosen independently and uniformly at
random from {0, 1}n, which are exactly the same as the outputs from a random
function. Denote by bad = bad1 ∪ bad2. Then by the fundamental lemma of
game-playing techniques [3], we have

Advprf
LedMAC1[π](A) ≤ Pr [bad] .

We now bound the probability of bad events happen when A is interacting
with a random function. Note that during this interaction, adversary A always
receives random strings from its oracle, which are independent of its queries. In
other words, the adaptive queries do not help here. For the event bad1,

Pr [bad1] ≤
q∑

i=2

i−1∑
j=1

Pr [H(Mi) = H(Mj)]

≤
q∑

i=2

i−1∑
j=1

2
2n − 2 · 2s

≤
q∑

i=2

i−1∑
j=1

2
2n−1 ≤

2q2

2n
,

6

where the second inequality is due to the following Lemma 1, and the third
inequality is from the assumption that s ≤ n/2. For the event bad2, since each
Ti is chosen uniformly at random from {0, 1}n and there are at most i − 1
elements in the set Rng(π2) at the i-th query,

Pr [bad2] ≤
q∑

i=1

i− 1
2n
≤ q2

2n+1 .

Thus by the union bound,

Advprf
LedMAC1[π](A) ≤ 2q2

2n
+ q2

2n+1 = 5q2

2n+1 .

Summing up, the PRF advantage of A against LedMAC1 is at most

Advprf
LedMAC1[E](A) ≤ Advprp

E (B1) + Advprp
E (B2) + 5q2

2n+1 .

⊓⊔

Lemma 1. For any message M = M [1] ∥ . . . ∥ M [ℓ] where |M [i]| = n − s
for 1 ≤ i ≤ ℓ − 1 and 0 ≤ |M [ℓ]| ≤ n − 1, define H(M) to be H(M) =
0 ∥

(
M [ℓ]⊕

(⊕ℓ−1
i=1 π1(is ∥M [i])

)
[1 : n− 1]

)
if |M [ℓ]| = n − 1, and H(M) =

1 ∥
(

M [ℓ]10∗ ⊕
(⊕ℓ−1

i=1 π1(is ∥M [i])
)

[1 : n− 1]
)

if 0 ≤ |M [ℓ]| < n − 1, where
π is a random permutation over {0, 1}n. Then for any two distinct messages
M1 = M1[1] ∥ . . . ∥M1[ℓ1] and M2 = M2[1] ∥ . . . ∥M2[ℓ2],

Pr [H(M1) = H(M2)] ≤ 2
2n − ℓ1 − ℓ2 + 3

.

Proof. Without loss of the generality, we assume ℓ1 ≤ ℓ2. We first consider the
case when ℓ1 = ℓ2. We analyze the probability of collision according to whether
the final block of messages is full of n− 1 bits or not.

– Both M1[ℓ1] and M2[ℓ1] have the length of n − 1 bits. If M1[i] = M2[i] for
1 ≤ i ≤ ℓ1 − 1, and M1[ℓ1] ̸= M2[ℓ1], then obviously there is no collision
between H(M1) and H(M2). If there exists some 1 ≤ i ≤ ℓ1 − 1 such that
M1[i] ̸= M2[i], then H(M1) = H(M2) happens with probability at most
2/(2n− ℓ1− ℓ2 + 3) since π(is ∥M1[i]) is distributed uniformly at random in
a set of size at least 2n − ℓ1 − ℓ2 + 3 and will not be canceled out by other
variables in this equation, and

Pr [π(is ∥M1[i])[1 : n− 1] = y] ≤ Pr [π(is ∥M1[i]) ∈ {y ∥ 0, y ∥ 1}]

≤ 2
2n − ℓ1 − ℓ2 + 3

for any y ∈ {0, 1}n−1.

7

– Neither M1[ℓ1] nor M2[ℓ1] has the length of n − 1 bits. Then following a
similar argument as in the previous case, the collision H(M1) = H(M2)
occurs with probability at most 2/(2n − ℓ1 − ℓ2 + 3).

– M1[ℓ1] has the length of n − 1 bits while M2[ℓ1] does not. Then obviously
there is no collision between H(M1) and H(M2) since they have different
prefix.

– M2[ℓ2] has the length of n − 1 bits while M1[ℓ1] does not. Then obviously
there is no collision between H(M1) and H(M2) since they have different
prefix.

Hence, when ℓ1 = ℓ2, the probability of H(M1) = H(M2) occurs is at most
2/(2n − ℓ1 − ℓ2 + 3). We then consider the case when ℓ1 < ℓ2. In this case, the
variable π((ℓ2 − 1)s ∥M2[ℓ2 − 1]) is distributed uniformly at random in a set of
size at least 2n − ℓ1 − ℓ2 + 3, and will not be canceled out by other variables
in the equation. Hence the equation H(M1) = H(M2) holds with probability at
most 2/(2n − ℓ1 − ℓ2 + 3). ⊓⊔

4 Security of LedMAC2

Note that both LightMAC and LedMAC2 requires two key schedulings of the
underlying blockcipher E. In this section, we propose LedMAC2 which reduces
the number of keys from two to one. Our result shows that LedMAC2 achieves
the same-level security as that of LedMAC2, while requires only one blockcipher
key.

The LedMAC2 construction. Let E : {0, 1}k × {0, 1}n be a blockcipher. The
LedMAC2 is based on the Hash-then-PRF paradigm, and is built from a block-
cipher E with one key. The hash phase and the PRF phase use the same block-
cipher key, while an additional counter bit is used to separate the input domain
between these two phases. When the final block of message M is full of n − 2
bits, the fixed-length string will be prefixed with a two-bit counter 10 before
the PRF. Otherwise it will be prefixed with another two-bit counter 11. The
specification of LedMAC2 is given in Fig. 2.

Discussion. The following security bound qσ/2n of LedMAC2 depends on the
message length, which is slightly worse than the bound q2/2n of LightMAC and
LedMAC2. However, compared with LightMAC and LedMAC2, LedMAC2 requires
only one blockcipher key, and thus may be more suitable for implementation in
resource-constrained environment.

Security analysis of LedMAC2. The following result shows that LedMAC2 is
a good PRF, provided that EK is a good PRP.

Theorem 2. For any adversary A against the PRF security of LedMAC2, run-
ning in time t, making at most q queries of length at most 2s−1(n − s) + s − 2

8

procedure LedMAC2K(M)
M [1] ∥ . . . ∥M [ℓ]←M ; S ← 0n

for i← 1 to ℓ− 1 do
S ← S ⊕ EK(0 ∥ is ∥M [i])

if |M [ℓ]| = n− 2 then
V ←M [ℓ]⊕ S[1 : n− 2]
T ← EK(10 ∥ V)

else V ←M [ℓ]10∗ ⊕ S[1 : n− 2]; T ← EK(11 ∥ V)
return T

E E E

E

4 10

E E E

01 [1]

E

02 [2] 03 [3] [4]

n-2

n-2

10

11

01 [1] 02 [2] 03 [3]

Fig. 2: Top: The detailed code description of LedMAC2. Here M [1] ∥ . . . ∥M [ℓ] ← M
denotes splitting M into (n− s)-bit blocks and stopping at the moment when it is left
with a message of length less than or equal to n−2 bits. M [ℓ]10∗ denotes right padded
with a single 1 and as few 0 bits so that the length of string to be (n−2)-bit. Middle:
The case when the final block of message M is full of n − 2 bits, i.e., |M [4]| = n − 2.
Bottom: The case when the final block of message M is less than n − 2 bits, i.e.,
0 ≤ |M [4]| < n− 2.

bits, and the total number of message blocks being at most σ, we have

Advprf
LedMAC2[E](A) ≤ Advprp

E (B) + 4q2

2n
+ qσ

2n

where B is another adversary against the PRP security of blockcipher E, who
runs in time t′ = t + O(q · 2s−1) and makes at most q · 2s−1 queries.

Proof. Let A be an adversary against the PRF security of LedMAC2, who runs
in time t, makes at most q queries of length at most 2s−1(n − s) + s − 2 bits,
and the total number of message blocks being at most σ. Without loss of the
generality, we assume the adversary never repeats a prior query since otherwise

9

it will receive the same response. We first replace the underlying blockcipher EK

of LedMAC2 with a random permutation π. Thus,

Advprf
LedMAC2[E](A) ≤ Advprp

E (B) + Advprf
LedMAC2[π](A) ,

where B is an adversary against the PRP security of blockcipher E, running in
time t′ = t + O(q · 2s−1) and making at most q · 2s−1 queries.

We then focus on the second term on the right side of the inequality. For
message M , let H(M) denote the last input to π of LedMAC2, and

H(M) = 10 ∥

(
M [ℓ]⊕

(
ℓ−1⊕
i=1

π(0 ∥ is−1 ∥M [i])

)
[1 : n− 2]

)

if |M [ℓ]| = n− 2, and

H(M) = 11 ∥
(

M [ℓ]10∗ ⊕
(

ℓ−1⊕
i=1

π(0 ∥ is−1 ∥M [i])

)
[1 : n− 2]

)

if 0 ≤ |M [ℓ]| < n− 2. Denote by Rng(π) the set of output values of π during the
computation of LedMAC2. The size of Rng(π) will increase when A is interacting
with LedMAC2. During the interaction between A and its oracle LedMAC2, we
define two bad events as follows:

– bad1: at the i-th query, if H(Mi) collides with previous H(Mj) for 1 ≤ j ≤
i− 1, then set bad1 to be true.

– bad2: at the i-th query, after the computation of H(Mi), sample a string T̂i

independently and uniformly at random from {0, 1}n. If T̂i lies in Rng(π),
then set bad2 to be true.

If neither of these two bad events happens, then we let Ti = T̂i and return Ti to
adversary A. Otherwise we return Ti = π(H(Mi)). On the other hand, when A
is interacting with a random function, we define the same bad events as above,
but regardless of bad events happen or not, we will always return Ti = T̂i to
adversary A. If neither of these two bad events happens, then the output strings
T1, . . . , Tq from LedMAC2 are merely chosen independently and uniformly at
random from {0, 1}n, which are exactly the same as the outputs from a random
function. Denote by bad = bad1 ∪ bad2. Then by the fundamental lemma of
game-playing techniques [3], we have

Advprf
LedMAC2[π](A) ≤ Pr [bad] .

We now bound the probability of bad events occur when A is interacting
with a random function. Note that during this interaction, adversary A always
receives random strings from its oracle, which are independent of its queries. In

10

other words, the adaptive queries do not help here. For the event bad1,

Pr [bad1] ≤
q∑

i=2

i−1∑
j=1

Pr [H(Mi) = H(Mj)]

≤
q∑

i=2

i−1∑
j=1

4
2n − 2 · 2s

≤
q∑

i=2

i−1∑
j=1

4
2n−1 ≤

4q2

2n
,

where the second inequality is due to the following Lemma 2, and the third
inequality is from the assumption that s ≤ n/2. For the event bad2, since each
Ti is chosen uniformly at random from {0, 1}n and there are at most

∑i
j=1 ℓj

elements in the set Rng(π) at the i-th query,

Pr [bad2] ≤
q∑

i=1

∑i
j=1 ℓi

2n

≤ qσ

2n
.

Thus by the union bound,

Advprf
LedMAC2[π](A) ≤ 4q2

2n
+ qσ

2n
.

Wrapping up, the PRF advantage of A against LedMAC2 is at most

Advprf
LedMAC2[E](A) ≤ Advprp

E (B) + 4q2

2n
+ qσ

2n
.

⊓⊔

Lemma 2. For any message M = M [1] ∥ . . . ∥ M [ℓ] where |M [i]| = n − s
for 1 ≤ i ≤ ℓ − 1 and 1 ≤ |M [ℓ]| ≤ n − 2, define H(M) to be H(M) =
10∥

(
M [ℓ]⊕

(⊕ℓ−1
i=1 π(0 ∥ is−1 ∥M [i])

)
[1 : n− 2]

)
if |M [ℓ]| = n−2, and H(M) =

11 ∥
(

M [ℓ]10∗ ⊕
(⊕ℓ−1

i=1 π(0 ∥ is−1 ∥M [i])
)

[1 : n− 2]
)

if 0 ≤ |M [ℓ]| < n − 2,
where π is a random permutation over {0, 1}n. Then for any two distinct mes-
sages M1 = M1[1] ∥ . . . ∥M1[ℓ1] and M2 = M2[1] ∥ . . . ∥M2[ℓ2],

Pr [H(M1) = H(M2)] ≤ 4
2n − ℓ1 − ℓ2 + 3

.

Proof. Following a similar analysis as that of Lemma 1, we can obtain the result.
⊓⊔

11

Acknowledgments

We thank the anonymous reviewers of Asiacrypt 2021 for their helpful comments.

References

1. M. Bellare, R. Guérin, and P. Rogaway. XOR MACs: New methods for message
authentication using finite pseudorandom functions. In D. Coppersmith, editor,
CRYPTO’95, volume 963 of LNCS, pages 15–28. Springer, Heidelberg, Aug. 1995.

2. M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chaining
message authentication code. J. Comput. Syst. Sci., 61(3):362–399, 2000.

3. M. Bellare and P. Rogaway. The security of triple encryption and a framework
for code-based game-playing proofs. In S. Vaudenay, editor, EUROCRYPT 2006,
volume 4004 of LNCS, pages 409–426. Springer, Heidelberg, May / June 2006.

4. D. J. Bernstein. How to stretch random functions: The security of protected counter
sums. Journal of Cryptology, 12(3):185–192, June 1999.

5. J. Black and P. Rogaway. A block-cipher mode of operation for parallelizable
message authentication. In L. R. Knudsen, editor, EUROCRYPT 2002, volume
2332 of LNCS, pages 384–397. Springer, Heidelberg, Apr. / May 2002.

6. J. Black and P. Rogaway. CBC MACs for arbitrary-length messages: The three-key
constructions. Journal of Cryptology, 18(2):111–131, Apr. 2005.

7. M. J. Dworkin. Recommendation for block cipher modes of operation: The cmac
mode for authentication. 2016.

8. ISO/IEC 29192-6:2019 Information technology Lightweight cryptography Part 6:
Message authentication codes (MACs). Iso/iec 29192-6:2019, 2019.

9. T. Iwata and K. Kurosawa. OMAC: One-key CBC MAC. In T. Johansson, editor,
FSE 2003, volume 2887 of LNCS, pages 129–153. Springer, Heidelberg, Feb. 2003.

10. A. Luykx, B. Preneel, E. Tischhauser, and K. Yasuda. A MAC mode for lightweight
block ciphers. In T. Peyrin, editor, FSE 2016, volume 9783 of LNCS, pages 43–59.
Springer, Heidelberg, Mar. 2016.

11. K. Yasuda. PMAC with parity: Minimizing the query-length influence. In
O. Dunkelman, editor, CT-RSA 2012, volume 7178 of LNCS, pages 203–214.
Springer, Heidelberg, Feb. / Mar. 2012.

12

	LedMAC: More Efficient Variants of LightMAC
	1 Introduction
	2 Preliminaries
	3 Security of LedMAC1
	4 Security of LedMAC2

