
Grover on SPEEDY

Gyeongju Song1, Kyungbae Jang1, Hyunjun Kim1,
Siwoo Eum1, Minjoo Sim1, Hyunji Kim1,

Wai-Kong Lee2, and Hwajeong Seo1[0000−0003−0069−9061]

1IT Department, Hansung University, Seoul (02876), South Korea,
{thdrudwn98, starj1023, khj930704,

shuraatum, minjoos9797, khj1594012,

hwajeong84}@gmail.com
2Department of Computer Engineering,

Gachon University, Seongnam, Incheon (13120), Korea,
waikonglee@gachon.ac.kr

Abstract. With the advent of quantum computers, revisiting the secu-
rity of cryptography has been an active research area in recent years.
In this paper, we estimate the cost of applying Grover’s algorithm to
SPEEDY block cipher. SPEEDY is a family of ultra-low-latency block
ciphers presented in CHES’21. It is ensured that the key search equipped
with Grover’s algorithm reduces the n-bit security of the block cipher to
n
2

-bit. The issue is how many quantum resources are required for Grover’s
algorithm to work. NIST estimates the post-quantum security strength
for symmetric key cryptography as the cost of Grover key search algo-
rithm. SPEEDY provides 128-bit security or 192-bit security depending
on the number of rounds. Based on our estimated cost, we present that
increasing the number of rounds is insufficient to satisfy the security
against attacks on quantum computers. To the best of our knowledge,
this is the first implementation of SPEEDY as a quantum circuit.

Keywords: Grover’s Search Algorithm · Quantum Computing · SPEEDY.

1 Introduction

Advances in quantum computers pose a threat to various public key cryptog-
raphy and block ciphers. Grover’s search algorithm is a well-known quantum
algorithm that can accelerate exhaustive key search against symmetric key cryp-
tography [1]. This quantum algorithm can reduce the computational complexity
from O(N) to

√
N for symmetric key cryptography using an n-bit key (i.e.

N = 2n). Classic computers require 2n queries for exhaustive key search to re-
cover an n-bit key. Since qubits in quantum computers have states of 0 and 1 at
the same time, using the Grover’s search algorithm, a key recovery is possible
with

√
2n queries. NIST presented a security strength estimation for symmet-

ric key cryptography for the post-quantum era [2]. Block ciphers have not been
verified for the safety with respect to the Grover search algorithm. In order to
evaluate the safety of the target cipher even after the development of a quantum

2 Song et al.

computer, the target block cipher must be implemented as a quantum circuit.
NIST presented the cost of key search using Grover’s algorithm as an indicator
of security strength for the post-quantum era. According to this research mo-
tivation, it is an interesting research area to estimate the cost of Grover key
search for symmetric key cryptography [3–12]. SPEEDY proposed in CHES’21
is a block cipher that is working with different block sizes, key lengths, and num-
ber of rounds [13]. In this paper, the SPEEDY block cipher is implemented as
a quantum circuit by optimizing it in terms of quantum gates and the number
of qubits. Then, we evaluate whether it is safe for quantum computers by esti-
mating the resources to apply to the Grover’s search algorithm. Since SPEEDY
targets 6-bit S-box and 64-bit CPUs, the least common multiple of 6 and 64,
(i.e. 192), is used as the default block size and key length. SPEEDY for 192
bits long and r rounds is called SPEEDY-r-192. r means the number of rounds.
SPEEDY provides 128-bit security when r = 6 and full security of 192-bit is
achieved at r = 7 where it requires one more round. We estimate the cost of
Grover key search by increasing rounds r. Estimated costs are compared with the
post-quantum security strength presented by NIST. As a result of cost estima-
tion according to various r, SPEEDY provides Level-1 (AES-128) post-quantum
security. Finally, our results show that increasing the number of rounds can en-
hance security against classical computers, but not for quantum computers. For
quantum circuit implementation and simulation, IBM’s ProjectQ platform is
utilized.

1.1 Contributions of this paper:

– Optimized quantum circuit implementation for SPEEDY: To the
best of our knowledge, this is the first quantum circuit implementation of
SPEEDY. We adopt an efficient ANF (Algebraic Normal Form) S-box in
terms of the required quantum gates and implement a ShiftColumns and
Key Schedule using logical swap. As a result, a compact quantum circuit for
SPEEDY is presented.

– Estimating the cost of Grover key search for SPEEDY: Quantum
resources for applying Grover key search to SPEEDY are estimated. For
detailed analysis, the resource estimation is performed at the low level of
Clifford and T gates. With this, we lay the foundation for a quantum crypt-
analysis of SPEEDY.

– Post-quantum security evaluation and analysis of SPEEDY through
quantum cryptanalysis: Based on the cost of Grover key search and the
criteria presented by NIST, the post-quantum security of SPEEDY is eval-
uated. We discuss differences between cryptonalysis in classic and quantum
computers.

Grover on SPEEDY 3

2 Related Work

2.1 Quantum background

Similar to bits used in classic computer operations, quantum computers perform
operations using qubits that have both 0 and 1 at the same time [14]. Due to the
nature of these qubits, 2n brute-force attack in classic computer can be performed
only bπ4 2

n
2 c times on an quantum computer. In the quantum computing, all

changes except measurements must be reversible. It is possible to return to the
initial value only with the result value without additional information.

Quantum gates Quantum gates work using quantum entanglement and su-
perposition of qubits. Quantum gates is utilizing quantum entanglement and
superposition states. In the quantum computing, the state of a qubit is changed
with a quantum gate that can perform reversible operations. Figure 1 shows
some of the quantum gates.

(a) NOT/X-gate, X(x)=x: This inverts the state of a single qubit.
(b) CNOT-gate, CNOT(x, y)=(x, x ⊕ y): One of the two input qubits

becomes the control qubit. When the control bit is set to 1, the state of
the target qubit is inverted. If the control qubit x is 1, y is inverted.

(c) Toffoli-gate, Toffoli(x, y, z)=(x, y, x · y ⊕ z): Two of the three input
qubits become the control qubits. When all the control bits are 1, the
state of the target qubit is inverted. If both control qubits (x and y) are
1, z is inverted.

(d) SWAP-gate, SWAP(x, y)=(y, x) : This changes the state of two input
qubits.

x x

(a) NOT/X gate

x • x

y x⊕ y
(b) CNOT gate

x • x

y • y

z xy ⊕ z
(c) Toffoli gate

x × y

y × x

(d) SWAP gate

Fig. 1: Quantum gates.

4 Song et al.

Grover’s search algorithm for key search An exhaustive key search using
Grover’s search algorithm can recover an n-bit key with only 2n/2 searches.
First, we need to prepare key qubits in superposition state. This is achieved by
applying Hadamard gates to the key qubits1,2. This allows an n-qubit key to
have 2n states with the equal probability. In the oracle, the key in superposition
state and known plaintext are input to the encryption quantum circuit. If the
generated ciphertext matches the known ciphertext, the sign of the state of that
key is reversed3. If it is observed in this state, the solution key is returned with a
probability of 1/2n. Grover key search repeats oracle and diffusion operator 2n/2

times and then observes the key qubits4,5. As a result, the solution key can be
recovered with high probability. The classical key search performs 2n searches
in the worst case (i.e. O(2n)), but Grover key search always repeats 2n/2.

The process of Grover’s search algorithm is as follows (with Figure 2):

1. n-qubits to find the key are prepared. |0〉⊗n = |0〉0 ⊗ |0〉1 ⊗ · · · ⊗ |0〉n.
2. All qubits are placed in superposition state using Hadamard gates.
3. If the ciphertext generated by the input n-qubits (i.e. key) matches the

known ciphertext, the sign of the corresponding key state is inverted.
4. The amplitude of the solution key is amplified through the diffusion operator.
5. Steps 3 and 4 are repeated by 2n/2 times to increase the probability of key

search.

Fig. 2: Exhaustive key search using Grover’s algorithm.

2.2 SPEEDY: family of block cipher

SPEEDY is a family of ultra low-latency block ciphers proposed at the CHES’21 [13].
Different block sizes and key lengths are available, and the number of rounds
determines the degree of security. It is expressed as SPEEDY-r-6l for the block

Grover on SPEEDY 5

size 6×l and the number of rounds r. The internal state is represented as a l×6
array. Since SPEEDY targets 6-bit S-boxes and 64-bit high-end CPUs, it use the
least common multiple of 6 and 64 (i.e. SPEEDY-r-192) as default block size
and key length. Therefore, the description of SPEEDY in this paper is based on
SPEEDY-r-192. In SPEEDY’s round function (R), S-box (SB), ShiftColumns
(SC), MixColumns (MC), AddRoundKey (Akr), AddRoundConstant (Acr) are
performed, and SPEEDY-r-192 works as a 32×6 array.

S-box(SB) SPEEDY S-box is a 6-to-6-bit box with 6-bit output (y0 to y5) for
6-bit input (x0 to x5). It operates with NOT-gate and NAND-gate. Equation 1
shows the operation of S-box.

y0 = (x3 ∧ x5) ∨ (x3 ∧ x4 ∧ x2) ∨ (x3 ∧ x1 ∧ x0) ∨ (x5 ∧ x4 ∧ x1)
y1 = (x5 ∧ x3 ∧ x2) ∨ (x5 ∧ x3 ∧ x4) ∨ (x5 ∧ x2 ∧ x0) ∨ (x3 ∧ x0 ∧ x1)
y2 = (x3 ∧ x0 ∧ x4) ∨ (x3 ∧ x0 ∧ x1) ∨ (x3 ∧ x4 ∧ x2) ∨ (x0 ∧ x2 ∧ x5)
y3 = (x0 ∧ x2 ∧ x3) ∨ (x0 ∧ x2 ∧ x4) ∨ (x0 ∧ x2 ∧ x5) ∨ (x0 ∧ x3 ∧ x1)
y4 = (x0 ∧ x3) ∨ (x0 ∧ x4 ∧ x2) ∨ (x0 ∧ x4 ∧ x5) ∨ (x4 ∧ x2 ∧ x1)
y5 = (x2 ∧ x5) ∨ (x2 ∧ x1 ∧ x4) ∨ (x2 ∧ x1 ∧ x0) ∨ (x1 ∧ x0 ∧ x3)

(1)

ShiftColums (SC) In ShiftColumns(SC), rotates the j-th column of the state
upside by j-bits. The process is shown in Equation 2.

y[i,j] = x[i+j,j] (0 ≤ i < l, 0 ≤ j < 6) (2)

MixColumns(MC) MixColumns performs a CNOT operation with a shift in
a column. The shift follows the order of the given constant α (α=α0, α1, α2,
α3, α4, α5). In Equation 3 of MixColumn, i, j are rows and columns. (0 ≤ i <
l, 0 ≤ j < 6)

yi,j = x[i,j] ⊕ x[i+α1,j] ⊕ x[i+α2,j] ⊕ x[i+α3,j] ⊕ x[i+α4,j] ⊕ x[i+α5,j] ⊕ x[i+α6,j]

(3)

AddRoundKey(Akr) The length of the key kr is equal to the length of the
6 · l. kr is XORed to the whole of the state. The equation is as follows:

yi,j = x[i,j] ⊕ kr[i,j], ∀i, j (4)

AddRoundConstant(Acr) The constant cr of 6l-bits is XORed to the whole
of the state. The round constants are chosen as the binary digits of the number
π − 3 = 0.1415... The equation is as follows:

yi,j = x[i,j] ⊕ cr[i,j], ∀i, j (5)

6 Song et al.

KeySchedule Initialize the zero-th round key k0 initially. Then kr is computed
per round. kr uses the permutation P to change the position of the bits. The
equation is as follows:

kr+1[i′,j′] = kr[i,j],

(i′, j′) := P (i, j) with (6 · i′ + j′) ≡ (β · (6 · i+ j) + γ)mod 6l
(6)

Round function Encryption proceeds by repeating the round. For the round
number r, the operation is performed in the same way from round 1 to r-1. The
last round excludes MixColumn (MC) and one ShiftColumn (SC). The operation
of the round function R follows Equation 7:

Rn =

{
Acn ◦MC ◦ SC ◦ SB ◦Akn (0 < n < r − 2)

Akn+1
◦ SB ◦ SC ◦ SB ◦Akn (n = r − 1)

(7)

3 Quantum circuit for SPEEDY

This section describes the implementation of the quantum circuit of SPEEDY.
The quantum circuit is designed based on SPEEDY-7-192. The implemented
quantum circuit is used to estimate the resources required for the Grover’s algo-
rithm. As shown in Figure 3, a 32×6 array (i.e. x[i][j], 0≤i<6, 0≤j<32) in a classical
computer is used as a 1× 192 array (i.e. x[i], 0≤i<192) in a quantum circuit. We
describe quantum circuits for main algorithms of SPEEDY: S-box (SB), Shift-
Columns, MixColumns, AddRoundKey, and AddRoundConstant. All quantum
circuits are always in modulo 192 for the index. Multi-controlled X gates used
in quantum circuits are represented as follows:

– CCCX(x0, x1, x2, y0)=(x0, x1, x2, (x0 · x1 · x2)⊕ y0) : x0, x1, and x2 are
the control qubits and y0 is the target qubits. When the control qubits are all 1,
the NOT gate is used for y0.

– CCCCX(x0, x1, x2, x3, y0)=(x0, x1, x2, x3, (x0 · x1 · x2 · x3)⊕ y0) : x0, x1, x2

and x3 are the control qubits and y0 is the target qubits. When the control qubits
are all 1, the NOT gate is used for y0.

– CCCCCX(x0, x1, x2, x3, x4, y0)=(x0, x1, x2, x3 (x0 · x1 · x2 · x3 · x4)⊕ y0) :
x0, x1, x2, x3 and x4 are the control qubits and y0 is the target qubit. When the
control qubits are all 1, the NOT gate is used for y0.

3.1 S-box(SB)

S-box of SPEEDY uses NAND and OAI gates that are best-suited for ultra
low-latency. The operation of S-box follows Equation 1 expressed in disjunctive
normalform (DNF). However, DNF is inefficient to implement as a quantum
circuit. For NAND and OAI operations in quantum circuits, it is necessary to

Grover on SPEEDY 7

Fig. 3: Representing bit-array as qubit-array

allocate as many qubits as the number of operations to store intermediate val-
ues. As the number of qubits increases, it is difficult for quantum computers to
control errors. To resolve this issue, we use the Algebraic Normal Form (ANF)
of the XOR operation suitable for quantum circuits. ANF is expressed using a
combination of XOR and AND. We implement S-box as Algorithm 1 without
qubits for intermediate values using CNOT and multi-controlled X gates. The
equation of the S-box expressed as ANF can be found in details at [13]. In Al-
gorithm 1, the result of input x0, · · · , x5 is stored in y0, · · · , y5. The S-box of
the quantum circuit is characterized by high gate cost because it uses a lot of
multi-controlled X gates.

3.2 ShiftColumns (SC)

ShiftColumns in quantum circuit performs column shifts. For 192 qubits, they
are arranged in 6 columns of 32 qubits. In Figure 4, qubits are arranged like an
array. Each column of qubits is rotated by δ = 0, 1, 2, 3, 4, 5 in order. We used
logical swap to rotate the columns. In quantum circuits, swap-gate only changes
the position of the qubit. There is no need for gate cost.

3.3 MixColumns (MC)

MixColumns in quantum circuit performs XOR operation while shifting the
index of the qubits. The proposed MixColumn operates with Algorithm 3. In
the input, xk is the qubit to be encrypted and tempk is the temporary storage
qubit. First, we store x in tempk via the CNOT gate. CNOT operation of temp
and x is performed while shifting the index of temp. Finally, the result of the
operation is stored in x. Since the CNOT result is stored in x, there is no need
for qubits to store the result. The standard of shift follows the order of α (α=1,
5, 9, 15, 21, 26).

3.4 AddRoundKey (Akr)

The AddRoundKey (Akr) of the quantum circuit is assigned a qubit k (i.e. key)
with a length equal to the length of the input. The input qubit x is XORed

8 Song et al.

Algorithm 1 Quantum circuit of S-box(SB).

Input: x0, x1, x2, x3, x4, x5

Output: y0, y1, y2, y3, y4, y5

1: y0 ← CNOT(x3, y0)
2: Toffoli(x5, x3, y0)
3: CCCCX(x5, x4, x3, x2, y0)
4: CCCX(x5, x4, x1, y0)
5: CCCCCX(x5, x4, x3, x2, x1, y0)
6: Toffoli(x1, x0, y0)
7: CCCCX(x5, x4, x1, x0, y0)
8: CCCX(x3, x1, x0, y0)
9: CCCCCX(x5, x4, x3, x1, x0, y0)

10: y1 ← CNOT(x3, y1)
11: Toffoli(x4, x3, y1)
12: CCCX(x5, x4, x3, y1)
13: CCCX(x5, x3, x2, y1)
14: CNOT(x1, y1)
15: Toffoli(x3, x1, y1)
16: CCCX(x5, x2, x0, y1)
17: Toffoli(x1, x0, y1)
18: CCCX(x3, x1, x0, y1)

19: y2 ← NOT(y2)
20: CNOT(x5, y2)
21: Toffoli(x5, x2, y2)
22: Toffoli(x4, x2, y2)
23: Toffoli(x3, x2, y2)
24: CCCX(x4, x3, x2, y2)
25: CNOT(x0, y2)
26: Toffoli(x5, x0, y2)
27: Toffoli(x4, x0, y2)
28: CCCX(x4, x3, x0, y2)
29: Toffoli(x2, x0, y2)
30: CCCX(x5, x2, x0, y2)
31: CCCX(x3, x1, x0, y2)

32: y3 ← CNOT(x2,y3)
33: Toffoli(x3, x2, y3)

34: Toffoli(x3, x1, y3)
35: Toffoli(x5, x0, y3)
36: Toffoli(x2, x0, y3)
37: CCCX(x5, x2, x0, y3)
38: CCCX(x4, x2, x0, y3)
39: CCCX(x3, x2, x0, y3)
40: CCCX(x3, x1, x0, y3)

41: y4 ← Toffoli(x5, x4, y4)
42: CNOT(x1, y4)
43: Toffoli(x4, x1, y4)
44: Toffoli(x2, x1, y4)
45: CCCX(x4, x2, x1, y4)
46: CNOT(x0, y4)
47: CCCX(x5, x4, x0, y4)
48: CCCX(x4, x3, x0, y4)
49: CCCX(x3, x2, x0, y4)
50: CCCCX(x4, x3, x2, x0, y4)
51: Toffoli(x1, x0, y4)
52: CCCX(x4, x1, x0, y4)
53: CCCX(x2, x1, x0, y4)
54: CCCCX(x4, x2, x1, x0, y4)

55: y5 ← CNOT(x4, y5)
56: Toffoli(x5, x2, y5)
57: Toffoli(x4, x2, y5)
58: Toffoli(x4, x1, y5)
59: CCCX(x4, x2, x1, y5)
60: Toffoli(x3, x0, y5)
61: CCCX(x4, x3, x0, y5)
62: CCCCX(x5, x3, x2, x0, y5)
63: CCCCX(x4, x3, x2, x0, y5)
64: CCCX(x3, x1, x0, y5)
65: CCCCX(x4, x3, x1, x0, y5)
66: CCCX(x2, x1, x0, y5)
67: CCCCX(x5, x2, x1, x0, y5)
68: CCCCCX(x5, x3, x2, x1, x0, y5)
69: CCCCCX(x4, x3, x2, x1, x0, y5)
70: return y0, · · · y5

Grover on SPEEDY 9

Fig. 4: ShiftColumns (SC) operation process

Algorithm 2 Quantum circuit of ShiftColumn (SC).

Input: 192-qubit array = [x0, x1, · · · , x192]
Output: 192-qubit array = [x0, x7, x14, · · · , x29]
1: new array = []
2: for i = 0 to 31 do
3: for j = 0 to 5 do
4: new array [6 · i + j] ← x(6·(i+j)+j)

5: end for
6: end for
7: return new array

with the k of the same index. We performed the XOR operation according to
Equation 4.

3.5 AddRoundConstant (Acr)

In AddRoundConstant, XOR the input x and the constant. Since the constant
is already known, there is no need to allocate qubits for it. We don’t use CNOT-
gate, we search where the index of a constant is 1, and we use X-gate for x of
the same index. An X-gate operating with a single qubit has a lower cost of gate
than a CNOT-gate operating with two qubits. The cost of the gate can be saved.
Since X-gate is used by finding 1 in the index, only X-gate as much as Hamming
weight is used. Algorithm 4 shows the operation of AddRoundConstant.

10 Song et al.

Algorithm 3 Quantum circuit of MixColumn (MC).

Input: xk, tempk (k = 0, ..., 191)
Output: xk (k = 0, ..., 191)
1: for i = 0 to 191 do
2: tempi ← CNOT(xi, tempi) // copy target qubit(x) to temporary qubit(temp).
3: end for
4: for i = 0 to 31 do
5: for j = 0 to 5 do
6: x6·i+j ← CNOT(temp6·(i+1)+j ,x6·i+j) // x6·i+j = x6∗i+j ⊕ x6∗(i+1)+j

7: ← CNOT(temp6·(i+5)+j ,x6·i+j) // x6·i+j = line.6⊕ x6·(i+5)+j

8: ← CNOT(temp6·(i+9)+j ,x6·i+j) // x6·i+j = line.7⊕ x6·(i+9)+j

9: ← CNOT(temp6·(i+15)+j ,x6·i+j) // x6·i+j = line.8⊕ x6·(i+15)+j

10: ← CNOT(temp6·(i+21)+j ,x6·i+j) // x6·i+j = line.9⊕ x6·(i+21)+j

11: ← CNOT(temp6·(i+26)+j ,x6·i+j) // x6·i+j = line.10⊕ x6·(i+26)+j

12: end for
13: end for
14: return x0, · · · , x191

Algorithm 4 Quantum circuit of AddRoundConstant (Acr).

Input: constant, x0, · · · , x191

Output: x0, · · · , x191

1: for i = 0 to 191 do
2: if(constant & 1 = 1)
3: xi ← X(xi)

constant = constant � 1
4: end for
5: return x0, · · · , x191

4 Evaluation

In this session, resources of Grover’s algorithm are estimated for SPEEDY imple-
mented with quantum circuits. The estimated resources are used to evaluate the
security strength in quantum computer. We use estimated resources to calculate
the cost and evaluate the security strength in the quantum computer. The cost is
calculated as (total gates × total depth). Total gates is the sum of T and Clifford
gates. We decompose the non-Clifford gate resource into T+Clifford gates [15]
to obtain Total gates. Finally, we show that SPEEDY-7-192, which achieved a
security strength of 192 length in the classic computer, does not satisfy secu-
rity strength in the quantum computer. The security strength of block ciphers
is based on the estimation of the post-quantum security strength presented by
NIST [2].

Grover on SPEEDY 11

4.1 Quantum circuit resource estimation

Table 1 is the quantum circuit resource estimation result for SPEEDY. The
SPEEDY of quantum circuits is used in oracles. We decompose the non-Clifford
gate into T+Clifford to estimate the cost of the key search. Since NOT-gate
and CNOT-gate are clifford-gates, only Toffoli-gate and multi-controlled X-gate
are decomposed into T+Clifford. One Toffoli-gate is decomposed into 7 T-gates
and 8 clifford-gates. Multi-controlled X-gates are decomposed into (32×C − 84)
T-gates (C: number of control qubits).

Table 1: Quantum resources for the proposed SPEEDY implementation.

Cipher r Qubits T gates Clifford gates Total gates Depth

SPEEDY-r-192

6

4,224

424,320 83,031 507,351 859

7 495,040 97,082 592,122 1,002

14 990,080 195,398 1,185,478 2,011

28 1,980,160 392,058 2,372,218 4,029

4.2 Security strength analysis for SPEEDY

We evaluate the strength of security based on the security strength categories
presented by NIST [2]. Implementation by Grassl et al.[3] computes the cost
as (total gate × total depth). We calculate cost in the same way. The cost of
AES-128, 196, and 256, which are the security strength standards presented by
NIST, is estimated to be 2170, 2233, and 2298. The following are security strength
categories presented by NIST based on AES-128, 196, and 256:

– Level 1: Block ciphers using 128-bit key (e.g. AES 128) require computa-
tional resources that are greater than or comparable to those required for
key search.

– Level 3: Block ciphers using 192-bit key (e.g. AES 192) require computa-
tional resources that are greater than or comparable to those required for
key search.

– Level 5: Block ciphers using 256-bit key (e.g. AES 256) require computa-
tional resources that are greater than or comparable to those required for
key search.

Grover’s search algorithm can reduce the computational complexity from
O(N) to

√
N for symmetric key cryptography using an n-bit key (i.e. N = 2n).

This search algorithm increases the probability of key search by iteration of or-
acle and diffusion. Oracle has encryption and decryption functions. Since the
quantum circuit is a reversible circuit, decryption can be performed by reverse
operation (i.e. encryption resource = decryption resource). As a result, the to-
tal number of resources required by Grover’s algorithm is 2× Table 1×bπ4 2

n
2 c.

12 Song et al.

Grover’s algorithm repeats oracle and diffusion. Since oracle does most of the
calculations, we calculated resources excluding diffusion. The Grover’s algorithm
resource for SPEEDY is shown in Table 2.

Table 2: Quantum resources for Grover’s key search.

Cipher r
Gates

Total gates Total depth Cost Security
T Clifford

SPEEDY
r-192

6 1.27 · 2115 1.99 · 2112 1.51 · 2115 1.31 · 2106 1.97 · 2221 Level 1

7 1.48 · 2115 1.16 · 2113 1.77 · 2115 1.53 · 2106 1.38 · 2222 Level 1

14 1.48 · 2116 1.16 · 2114 1.77 · 2116 1.54 · 2107 1.36 · 2224 Level 1

28 1.48 · 2117 1.17 · 2115 1.77 · 2117 1.54 · 2108 1.36 · 2226 Level 1

For classic computers, SPEEDY-r-192 provides 128-bit security when r = 6
and 192-bit security when r = 7. However, from quantum computers, increasing
the number of rounds does not provide higher security. SPEEDY-6-192 provides
post-quantum security Level 1. However, as shown in Table 2, even if the number
of rounds r is increased, the security remains at Level 1. In order to increase
security from quantum computers, it is very inefficient because the number of
rounds r must increase exponentially. In a nut shell, classical methods of increas-
ing security do not apply to quantum computers. Therefore, we need to apply a
countermeasure for Grover’s algorithm, which increases the number of iterations
exponentially by increasing the key size.

5 Conclusion

We presented a quantum circuit for the block cipher SPEEDY. Based on SPEEDY-
7-192, we estimated resources required to perform a key search attack and ob-
tained the cost required to evaluate the NIST security strength. SPEEDY-7-192
showed the security strength of level 1 (i.e. the level of AES-128). We confirmed
from the security strength results that SPEEDY-7-192 provided 192-bit security
on the classic computer, but not quantum computer. Also, in quantum comput-
ers, SPEEDY does not provide higher security with increasing rounds. In order
for SPEEDY to be secure in quantum computers, it is necessary to increase the
key size to respond to Grover’s algorithm.

References

1. L. K. Grover, “A fast quantum mechanical algorithm for database search,” in
Proceedings of the twenty-eighth annual ACM symposium on Theory of computing,
pp. 212–219, 1996.

Grover on SPEEDY 13

2. NIST., “Submission requirements and evaluation criteria for the post-
quantum cryptography standardization process,” 2016. https://csrc.

nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/

call-for-proposals-final-dec-2016.pdf.
3. M. Grassl, B. Langenberg, M. Roetteler, and R. Steinwandt, “Applying Grover’s

algorithm to AES: quantum resource estimates,” in Post-Quantum Cryptography,
pp. 29–43, Springer, 2016.

4. B. Langenberg, H. Pham, and R. Steinwandt, “Reducing the cost of implementing
the advanced encryption standard as a quantum circuit,” IEEE Transactions on
Quantum Engineering, vol. 1, pp. 1–12, 2020.

5. K. Jang, S. Choi, H. Kwon, and H. Seo, “Grover on SPECK: Quantum resource
estimates.,” IACR Cryptol. ePrint Arch., vol. 2020, p. 640, 2020.

6. A. Chauhan and S. Sanadhya, Quantum Resource Estimates of Grover’s Key
Search on ARIA, pp. 238–258. 12 2020.

7. K. Jang, G. Song, H. Kim, H. Kwon, H. Kim, and H. Seo, “Efficient implementation
of PRESENT and GIFT on quantum computers,” Applied Sciences, vol. 11, no. 11,
2021.

8. R. Anand, A. Maitra, and S. Mukhopadhyay, “Grover on SIMON,” Quantum In-
formation Processing, vol. 19, p. 340, 09 2020.

9. K. Jang, G. Song, H. Kwon, S. Uhm, H. Kim, W.-K. Lee, and H. Seo, “Grover on
PIPO,” Electronics, vol. 10, no. 10, p. 1194, 2021.

10. K. B. Jang, H. J. Kim, J. H. Park, G. J. Song, and H. J. Seo, “Optimization of LEA
quantum circuits to apply Grover’s algorithm,” KIPS Transactions on Computer
and Communication Systems, vol. 10, no. 4, pp. 101–106, 2021.

11. K. Jang, H. Kim, S. Eum, and H. Seo, “Grover on GIFT.,” IACR Cryptol. ePrint
Arch., vol. 2020, p. 1405, 2020.

12. G. Song, K. Jang, H. Kim, W.-K. Lee, Z. Hu, and H. Seo, “Grover on SM3,”
13. G. Leander, T. Moos, A. Moradi, and S. Rasoolzadeh, “The speedy family of block

ciphers: Engineering an ultra low-latency cipher from gate level for secure proces-
sor architectures,” IACR Transactions on Cryptographic Hardware and Embedded
Systems, vol. 2021, p. 510–545, Aug. 2021.

14. A. Steane, “Quantum computing,” Reports on Progress in Physics, vol. 61, no. 2,
p. 117, 1998.

15. M. Amy, D. Maslov, M. Mosca, and M. Roetteler, “A meet-in-the-middle algo-
rithm for fast synthesis of depth-optimal quantum circuits,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 32, p. 818–830,
Jun 2013.

