
1

Optimization of Homomorphic Comparison
Algorithm on RNS-CKKS Scheme

Eunsang Lee, Joon-Woo Lee, Young-Sik Kim, Jong-Seon No

Abstract—Since the sign function can be used to implement
the comparison operation, max function, and rectified linear
unit (ReLU) function, several studies have been conducted to
efficiently evaluate the sign function in the Cheon-Kim-Kim-
Song (CKKS) scheme, one of the most promising fully homo-
morphic encryption schemes. Recently, Lee et al. (IEEE Trans.
Depend. Sec. Comp.) proposed a practically optimal approxi-
mation method of sign function on the CKKS scheme using
a composition of minimax approximate polynomials. However,
homomorphic comparison, max function, and ReLU function
algorithms that use this approximation method have not yet
been successfully implemented on the residue number system
variant CKKS (RNS-CKKS) scheme, and the sets of degrees
of the component polynomials used by the algorithms are not
optimized for the RNS-CKKS scheme. In this paper, we propose
the optimized homomorphic comparison, max function, and
ReLU function algorithms on the RNS-CKKS scheme using
a composition of minimax approximate polynomials for the
first time. We propose a fast algorithm for inverse minimax
approximation error, a subroutine required to find the optimal set
of degrees of component polynomials. This proposed algorithm
makes it possible to find the optimal set of degrees of component
polynomials with higher degrees than the previous study. In
addition, we propose a method to find the degrees of component
polynomials optimized for the RNS-CKKS scheme using the
proposed algorithm for inverse minimax approximation error.
We successfully implement the homomorphic comparison, max
function, and ReLU function algorithms on the RNS-CKKS
scheme with a low comparison failure rate (< 2−15) and provide
the various parameter sets according to the precision parameter
α. We reduce the depth consumption of the homomorphic
comparison, max function, and ReLU function algorithms by
one depth for several α. In addition, the numerical analysis
demonstrates that the proposed homomorphic comparison, max
function, and ReLU function algorithms reduce running time
by 6%, 7%, and 6% on average compared with the previous
best-performing algorithms, respectively.

Index Terms—Cheon–Kim–Kim–Song (CKKS) scheme, fully
homomorphic encryption (FHE), homomorphic comparison op-
eration, minimax approximate polynomial, Remez algorithm,
residue number system variant CKKS (RNS-CKKS) scheme.

I. INTRODUCTION

This work was supported by Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by the Korea govern-
ment(MSIT) (No.2021-0-00400, Development of Highly Efficient PQC Secu-
rity and Performance Verification for Constrained Devices). (Corresponding
author: Young-Sik Kim.)

E.S. Lee, J.-W. Lee, and J.-S. No are with the Department of Electrical
and Computer Engineering, INMC, Seoul National University, Seoul 08826,
South Korea (e-mail: eslee3209@ccl.snu.ac.kr; joonwoo3511@ccl.snu.ac.kr;
jsno@snu.ac.kr).

Y.-S. Kim is with the Department of Information and Communication
Engineering, Chosun University, Gwangju 61452, South Korea (e-mail:
iamyskim@Chosun.ac.kr).

HOMOMORPHIC encryption (HE) is a cryptosystem that
allows some algebraic operations on encrypted data.

Fully homomorphic encryption (FHE) is the HE that allows all
algebraic operations on encrypted data, and Gentry proposed
the first FHE scheme using bootstrapping in [1]. Then, FHE
has attracted significant attention in various applications, and
its standardization process is in progress.

The Cheon–Kim–Kim–Song (CKKS) [2] scheme, one of
the representative FHE schemes, allows the addition and
multiplication of real and complex numbers. Since data is
usually represented by real numbers, the CKKS scheme that
can deal with real numbers has attracted much attention in
many applications such as machine learning [3]–[6]. Thus,
lots of research has widely been done to optimize the CKKS
scheme [7]–[11]. In particular, Cheon et al. [7] proposed the
residue number system (RNS) variant CKKS scheme (RNS-
CKKS). The running time of the RNS-CKKS scheme is ten
times faster than that of the original CKKS scheme with one
thread. In addition, the running time performance can be more
improved in the multi-core environment because the RNS-
CKKS scheme enables parallel computation. Thus, many HE
libraries such as SEAL [12], PALISADE [13], and Lattigo
[14] are implemented using the RNS-CKKS scheme.

Although the CKKS scheme can support virtually all
arithmetic operations on encrypted data, several applications
require non-arithmetic operations. One of the core non-
arithmetic operations is the comparison operation, denoted
as comp(a, b), and this outputs 1 if a > b, 1/2 if a = b,
and 0 if a < b. This comparison operation is widely used
in various real-world applications, including machine learning
algorithms such as support-vector machines, cluster analysis,
and gradient boosting [15], [16]. The max function and the
rectified linear unit (ReLU) function are other essential non-
arithmetic operations that are widely used in deep learning
applications [17], [18]. These three non-arithmetic operations
can all be implemented using the sign function sgn(x), that
is,

comp(a, b) =
1

2
(sgn(a− b) + 1),

max(a, b) =
1

2
(a+ b+ (a− b) sgn(a− b)),

ReLU(x) =
1

2
(x+ x sgn(x)),

where sgn(x) = x/|x| for x 6= 0, and 0 otherwise. Thus,
several studies have been conducted to efficiently implement
the sign function on the CKKS scheme [9], [19]. A method
to approximate sgn(x) using the composition of component

2

polynomials was proposed in [19], and it was proved that this
method achieves the optimal asymptotic complexity. In addi-
tion, authors in [9] proposed a practically optimal method that
approximates sgn(x) with the minimum number of non-scalar
multiplications using a composition of minimax approximate
polynomials.

Although evaluation of sign function on the CKKS scheme
has been studied well [9], [19], there is no study of sign
function evaluation on the RNS-CKKS scheme yet. First,
since the rescaling error is somewhat large in the RNS-CKKS
scheme, unlike in the CKKS scheme, it is required to study
the homomorphic comparison operation and max function on
the RNS-CKKS scheme that deal with this somewhat large
rescaling error and achieve low approximation failure rates.
In addition, although the best-performing homomorphic com-
parison or max function algorithms on the CKKS scheme [9]
uses the degrees of the component polynomials that minimize
the number of non-scalar multiplications, it does not minimize
the running time on the RNS-CKKS scheme. That is, because
the running time of a non-scalar multiplication changes with
the current ciphertext level on the RNS-CKKS scheme, the
minimization of the number of non-scalar multiplications does
not necessarily correspond to that of running time, unlike the
CKKS scheme. Thus, further research on the degrees of the
component polynomials optimized for the RNS-CKKS scheme
will improve the performance further.

A. Our Contributions

There are three contributions in this paper as follows.
1) For the first time, we successfully implement the homo-

morphic comparison, max function, and ReLU function
algorithms on the RNS-CKKS scheme with a low failure
rate (< 2−15) by applying the scaling factor management
technique [20] and using proper parameter sets.

2) We improve the performance of an algorithm to find
the inverse minimax approximation error, which is a
subroutine to find the optimal set of degrees of com-
ponent polynomials. While the optimal set of degrees
of component polynomials that minimizes the number
of non-scalar multiplications was found among degrees
only up to 31 in the previous study [9], we find the
optimal set of degrees of component polynomials among
degrees up to 63 using the improved algorithm for inverse
minimax approximation error (see Algorithm 7). As a
result, the depth consumption of homomorphic compari-
son operation (resp. max/ReLU functions) is reduced by
one depth when α is 9 or 14 (resp. when α is 16, 17,
or 18), enabling one more multiplication operation. In
addition, this improved algorithm for inverse minimax
approximation error enables finding a set of degrees
of component polynomials optimized for homomorphic
comparison operation, max function, or ReLU function
on the RNS-CKKS scheme (see Section IV).

3) We propose a method to find the set of degrees of
component polynomials optimized for the homomorphic
comparison, max function, and ReLU function on the
RNS-CKKS scheme using the proposed algorithm for

inverse minimax approximation error. That is, we propose
an algorithm that finds the optimal set of degrees with
the minimum running time itself instead of the number
of non-scalar multiplications. Using the optimal set of
degrees obtained from the proposed algorithm, we reduce
the running time of the homomorphic comparison, max
function, and ReLU function algorithms by 6%, 7%,
and 6%, respectively, compared to the best-performing
algorithms up to now on the RNS-CKKS scheme library
SEAL [12].

B. Outline

The remainder of this paper is organized as follows. Section
II describes preliminaries regarding the notation, the RNS-
CKKS scheme, scaling factor management technique, and
homomorphic comparison operation using minimax composite
polynomial. In Section III, a fast algorithm to find the inverse
minimax approximation error is proposed. A new algorithm
that finds the set of degrees of component polynomials opti-
mized for the homomorphic comparison on the RNS-CKKS
scheme is proposed in Section IV. In Section V, the application
to the min/max and ReLU functions is presented. In Section
VI, numerical results for the homomorphic comparison, max
function, and ReLU function algorithms that use the proposed
set of degrees for the component polynomials are provided
on the RNS-CKKS scheme library SEAL. Finally, concluding
remarks are given in Section VII.

II. PRELIMINARIES

A. Notation

Let R = Z[X]/(XN + 1) and Rq = R/qR be the
polynomial rings, where N is a power-of-two integer. Let
C = {q0, q1, · · · , q`−1} be the set of positive integers that
are coprime each other. Then, for a ∈ ZQ, where ZQ
is the set of integers modulo Q and Q =

∏`−1
i=0 qi, we

denote the RNS representation of a with regard to C by
[a]C = ([a]q0 , · · · , [a]q`−1

) ∈ Zq0 × · · · × Zq`−1
. For the

set of real numbers R and the set of complex numbers C,
a field isomorphism τ̄ : R[X]/(XN + 1) → CN/2 is defined
by τ̄ : r(X) 7→ (r(ζ̄5j))0≤j<N/2, where ζ̄ = exp(−πi/N)
is a (2N)-th root of unity in C. HWTN (h) is the set of
signed binary vectors in {0,±1}N with Hamming weight
h. For 0 < a, b ∈ R, we denote [−b,−a] ∪ [a, b] by
R̃a,b. In particular, if a = 1 − τ and b = 1 + τ for
some τ ∈ (0, 1), then R̃a,b = R̃1−τ,1+τ is denoted by
Rτ . |{(n1, n2, · · · , ni);S(n1, · · · , ni)}| denotes the number
of tuples (n1, · · · , ni) such that the statement S(n1, · · · , ni)
is true. αmax, `max,mmax, nmax, and tmax denote the upper-
bound of precision α, ciphertext level, the number of non-
scalar multiplications, depth consumption, and running time,
respectively. These values should be set large enough, and thus
we set αmax = 20, `max = 30,mmax = 70, nmax = 40, and
tmax = 240 in this paper. dmax denotes the upper-bound of
degrees of component polynomials, and dmax of 31 or 63 is
used in this paper.

3

B. RNS-CKKS Scheme

Before describing the RNS-CKKS scheme, some basic op-
erations for the RNS are presented. Let B = {p0, · · · , pk−1},
C = {q0, · · · , q`−1}, and D = {p0, · · · , pk−1, q0, · · · , q`−1},
where pi and qj are all distinct primes.
– ConvC→B: For [a]C = (a(0), a(1), · · · , a(`−1)) ∈ Zq0×· · ·×

Zq`−1
, output

ConvC→B([a]C) =

`−1∑
j=0

[a(j) · q̂−1
j]qj · q̂j mod pi

0≤i<k

,

where q̂j =
∏
j′ 6=j qj′ ∈ Z. This algorithm over integers

ConvC→B(·) :
∏`−1
j=0 Zqj →

∏k−1
i=0 Zpi can be extended to

an algorithm over the polynomial rings as ConvC→B(·) :∏`−1
j=0Rqj →

∏k−1
i=0 Rpi by applying it coefficient-wise.

– ModUpC→D: For [a]C ∈
∏`−1
j=0Rqj , output

(ConvC→B([a]C), [a]C) ∈
k−1∏
i=0

Rpi ×
`−1∏
j=0

Rqj .

– ModDownD→C : For ([a]B, [b]C) ∈
∏k−1
i=0 Rpi×

∏`−1
j=0Rqj ,

output
([b]C −ConvB→C([a]B)) · [P−1]C ,

where P =
∏k−1
i=0 pi.

Then, the basic algorithms in the RNS-CKKS scheme are
described as follows:
– Setup(λ; ∆, L): For a security parameter λ, a scaling factor

∆, and the number of levels L (also called the maximum
level), we set some parameters. The polynomial degree N of
R is chosen so that the number of levels L can be supported
with the security λ. A secret key distribution χkey, an error
distribution χerr over R, and an encryption key distribution
χenc are chosen according to the security parameter λ.
Bases with prime numbers B = {p0, p1, · · · , pk−1} and
C = {q0, q1, · · · , qL} are selected so that pi ≡ 1 mod 2N
for 0 ≤ i ≤ k − 1 and qj ≡ 1 mod 2N for 0 ≤ j ≤ L.
q0 is usually set close to 260, and qj − ∆ are as small as
possible for 1 ≤ j ≤ L. All prime numbers are distinct. Let
D = B ∪ C. Let C` = {q0, q1, · · · , q`} and D` = B ∪ C`
for 0 ≤ ` ≤ L. Let P =

∏k−1
i=0 pi and Q =

∏L
j=0 qj .

Let p̂i =
∏

0≤i′≤k−1,i′ 6=i pi′ for 0 ≤ i ≤ k − 1, and
q̂`,j =

∏
0≤j′≤`,j′ 6=j qj′ for 0 ≤ j ≤ ` ≤ L. Then, the

following numbers are computed as:
• [P−1]qj for 0 ≤ j ≤ L
• [p̂i]qj and [p̂−1

i]pi for 0 ≤ i ≤ k − 1, 0 ≤ j ≤ L
• [q̂`,j]pi and [q̂−1

`,j]qj for 0 ≤ i ≤ k − 1, 0 ≤ j ≤ ` ≤ L
– Ecd(z; ∆): For z ∈ CN/2, output bτ̄−1(∆z)e ∈ R.
– Dcd(m; ∆): For m ∈ R, output ∆−1 · τ̄(m) ∈ CN/2.
– KSGen(s1, s2): This algorithm generates the switching

key for switching the secret key s1 to s2. First, sample
(a′(0), · · · , a′(k+L)) ← U(

∏k−1
i=0 Rpi ×

∏L
j=0Rqj) and

e′ ← χerr. Then, for given s1, s2 ∈ R, output the switch-
ing key swk = (swk(0) = (b′(0), a′(0)), · · · , swk(k+L) =
(b′(k+L), a′(k+L))) ∈

∏k−1
i=0 R2

pi×
∏L
j=0R2

qj , where b′(i) ←

−a′(i) · s2 + e′ mod pi for 0 ≤ i ≤ k − 1 and b′(k+j) ←
−a′(k+j) · s2 + [P]qj · s1 + e′ mod qj for 0 ≤ j ≤ L.

– KeyGen(λ): This algorithm generates the secret key, public
key, and the evaluation key. First, sample s ← χkey and
set the secret key sk ← (1, s). Sample (a(0), · · · , a(L)) ←
U(

∏L
j=0Rqj) and e← χerr. Then, the public key is pk←

(pk(j) = (b(j), a(j)) ∈ R2
qj)0≤j≤L, where b(j) ← −a(j) ·

s+ e mod qj for 0 ≤ j ≤ L. The evaluation key is evk←
KSGen(s2, s).

– Enc(z; pk,∆): For a message slot z ∈ CN/2, compute
m = Ecd(z; ∆). Then, sample v ← χenc and e0, e1 ← χerr.
Then, output the ciphertext ct = (ct(j))0≤j≤L ∈

∏L
j=0R2

qj ,
where ct(j) ← v ·pk(j)+(m+e0, e1) mod qj for 0 ≤ j ≤ L.

– Dec(ct; sk,∆): For a ciphertext ct = (ct(j))0≤j≤` ∈∏`
j=0R2

qj , obtain m̃ = 〈ct(0), sk〉 mod q0. Then, output
z = Dcd(m̃; ∆).

– Add(ct1, ct2): For two ciphertexts ctr = (ct
(j)
r)0≤j≤` for

r = 1, 2, output the ciphertext ctadd = (ct
(j)
add)0≤j≤`, where

ct
(j)
add ← ct

(j)
1 + ct

(j)
2 mod qj for 0 ≤ j ≤ `.

– Mult(ct1, ct2; evk): For two ciphertexts ctr = (ct
(j)
r =

(c
(j)
r0 , c

(j)
r1))0≤j≤` for r = 1, 2, compute the followings:

• d
(j)
0 = c

(j)
00 c

(j)
10 mod qj , d

(j)
1 = c

(j)
00 c

(j)
11 + c

(j)
01 c

(j)
10 mod qj ,

and d(j)
2 = c

(j)
01 c

(j)
11 mod qj for 0 ≤ j ≤ `.

• ModUpC`→D`(d
(0)
2 , · · · , d(`)

2) = (d̃
(0)
2 , · · · , d̃(k−1)

2 ,

d
(0)
2 , · · · , d(`)

2).
• c̃t = (c̃t

(k+`)
= (c̃

(j)
0 , c̃

(j)
1))0≤j≤k+`, where c̃t

(i)
= d̃

(i)
2 ·

evk(i) mod pi and c̃t
(k+j)

= d
(j)
2 · evk

(k+j) mod qj for
0 ≤ i ≤ k − 1 and 0 ≤ j ≤ `.

• (ĉ
(0)
r , · · · , ĉ(`)r) = ModDownD`→C`(c̃

(0)
r , · · · , c̃(k+`)

r)
for r = 0, 1.

• ctmult = (ct
(j)
mult)0≤j≤`, where ct

(j)
mult = (ĉ

(j)
0 +d

(j)
0 , ĉ

(j)
1 +

d
(j)
1) mod qj for 0 ≤ j ≤ `.

Then, output the ciphertext ctmult.
– RS(ct): For a ciphertext ct = (ct(j) = (c

(j)
0 , c

(j)
1))0≤j≤`,

output the ciphertext ct′ = (ct′
(j)

= (c′
(j)
0 , c′

(j)
1))0≤j≤`−1,

where c′(j)r = q−1
` · (c

(j)
r − c(`)r) mod qj for r = 0, 1 and

0 ≤ j ≤ `− 1.
In this paper, we set the key distribution χkey =

HWTN (256), which samples an element in R with ternary
coefficients that have 256 nonzero values uniformly at random.

C. Scaling Factor Management

A technique of eliminating the large rescaling error in the
RNS-CKKS scheme was proposed in [20], where different
scaling factors in different levels were used instead of using the
same scaling factor for each level. If the maximum level is L,
and the ciphertext modulus for level i is qi, the scaling factor
for each level is set as follows: ∆L = qL and ∆i = ∆2

i+1/qi+1

for i = 0, · · · , L− 1.
When two ciphertexts at the same level are multiplied

homomorphically, they do not introduce approximate rescaling
error. Then, we consider when two ciphertexts are in the
different levels: levels i and j such that i > j. In this
case, the moduli qi, qi−1, · · · , qj+1 in the first ciphertext

4

TABLE I
REQUIRED DEPTH CONSUMPTION AND THE NUMBER OF NON-SCALAR

MULTIPLICATIONS FOR EVALUATING POLYNOMIALS OF DEGREE d WITH
ODD-DEGREE TERMS USING THE OPTIMAL LEVEL CONSUMPTION

TECHNIQUE [10] AND THE ODD BABY-STEP GIANT-STEP ALGORITHM [21].

polynomial depth consumption multiplications
degree d dep(d) mult(d)

3 2 2
5 3 3
7 3 5
9 4 5
11 4 6
13 4 7
15 4 8
17 5 8
19 5 8
21 5 9
23 5 9
25 5 10
27 5 10
29 5 11
31 5 12
33 6 11
35 6 11
37 6 11
39 6 11
41 6 12
43 6 12
45 6 13
47 6 13
49 6 14
51 6 14
53 6 14
55 6 14
57 6 15
59 6 15
61 6 16
63 6 17

are dropped, and then the first ciphertext is multiplied by
a constant b∆jqj+1

∆i
e. Then, we rescale the first ciphertext

by qj+1. Since both ciphertexts are now at the same level,
conventional homomorphic multiplication can be performed.
Also, the approximate rescaling error is decreased in this way.

D. Homomorphic Comparison Operation using Minimax
Composite Polynomial

In this paper, the required depth consumption and the
number of non-scalar multiplications for evaluating a polyno-
mial of degree d with odd-degree terms using the odd baby-
step giant-step algorithm and the optimal level consumption
technique are denoted by dep(d) and mult(d), respectively.
The values of dep(d) and mult(d) for odd degrees d up to 63
are presented in Table I.

The minimax approximate polynomial of degree at most
d on D for sgn(x) is denoted by MP(D; d). In addition,
for the minimax approximate polynomial p(x) = MP(D; d),
the minimax approximation error maxD ‖p(x)− sgn(x)||∞ is
denoted by ME(D; d). It is known that for any continuous
function f on D, the minimax approximate polynomial of
degree at most d on D is unique [22]. Furthermore, the
minimax approximate polynomial can be obtained using the
improved multi-interval Remez algorithm [23].

For a domain D = R̃a,b and a set of odd integers
{di}1≤i≤k, a composite polynomial pk ◦ · · · ◦ p1 is called a
minimax composite polynomial on D for {di}1≤i≤k, denoted
by MCP(D; {di}1≤i≤k), if the followings are satisfied:

• p1 = MP(D; d1)
• pi = MP(pi−1 ◦ pi−2 ◦ · · · ◦ p1(D); di) for i, 2 ≤ i ≤ k.

Since ME(Rτ ; d) is a strictly increasing function of τ ,
its inverse function exists, which is called inverse minimax
approximation error and denoted by IME(τ ′; d). That is, for
τ ∈ (0, 1) and d ∈ N, IME(τ ′; d) is equal to a value
τ ′ ∈ (0, 1) that satisfies ME(Rτ ′ ; d) = τ . An approximate
value of IME(τ ′; d) can be obtained using binary search as in
Algorithm 1 [9].

Algorithm 1: AppIMEbinary(τ ′; d, ī) [9]
Input: Target maximum error τ ′, an odd degree d, and

iteration number ī
Output: An approximate value of IME(τ ′; d)

1 min← 2−21 and max← 1− 2−21

2 while ī > 0 do
3 if ME(R(min+max)/2; d) < τ ′ then
4 min← min+max

2
5 else
6 max← min+max

2
7 end
8 ī← ī− 1
9 end

10 return min+max
2

Algorithm 2: ComputehG(τ) [9]
Input: An input τ and an odd maximum degree dmax

Output: 2-dimensional tables h̃ and G̃
1 Generate 2-dimensional tables h̃ and G̃, both of which

have size of (mmax + 1)× (nmax + 1).
2 for m← 0 to mmax do
3 for n← 0 to nmax do
4 if m ≤ 1 or n ≤ 1 then
5 h̃(m,n)← τ

6 G̃(m,n)← φ
7 else
8 j ← argmax

1≤i≤ dmax−1
2

mult(2i+1)≤m
dep(2i+1)≤n

IME(h̃(m−mult(2i+

1), n− dep(2i+ 1)); 2i+ 1)
9 h̃(m,n)← IME(h̃(m−mult(2j + 1), n−

dep(2j + 1)); 2j + 1)
10 G̃(m,n)← {2j + 1} ∪ G̃(m−mult(2j +

1), n− dep(2j + 1))
11 end
12 end
13 end

5

Algorithm 3: ComputeMinDep(α, ε) [9]
Input: Precision parameters α and ε
Output: Minimum depth consumption Mdep

1 h̃, G̃← ComputehG(21−α)
2 for i← 0 to nmax do
3 if h̃(mmax, i) ≥ δ = 1−ε

1+ε then
4 Mdep ← i
5 return Mdep

6 end
7 if i = nmax then
8 return ⊥
9 end

10 end

Algorithm 4: ComputeMinMultDegs(α, ε,D) [9]
Input: Precision parameters α and ε, and depth

consumption D
Output: Minimum number of multiplications Mmult

and the optimal set of degrees Mdegs

1 h̃, G̃← ComputehG(21−α)
2 for j ← 0 to mmax do
3 if h̃(j,D) ≥ δ = 1−ε

1+ε then
4 Mmult ← j
5 Go to line 11
6 end
7 if j = mmax then
8 return ⊥
9 end

10 end
11 Mdegs ← G̃(Mmult, D) ; // Mdegs: ordered set

12 return Mmult and Mdegs

Algorithm 5: MinimaxComp(a, b;α, ε,D, η) [9]
Input: Inputs a, b ∈ (0, 1), precision parameters α and

ε, depth consumption D, and margin η
Output: Approximate value of comp(a, b)

1 Mdegs = {d1, d2, · · · , dk} ←
ComputeMinMultDegs(α, ε,D)

2 p1 ← MP(R̃1−ε,1; d1)

3 τ1 ← ME(R̃1−ε,1; d1) + η
4 for i← 2 to k do
5 pi ← MP(Rτi−1

; di)
6 τi ← ME(Rτi−1

; di) + η
7 end
8 return pk◦pk−1◦···◦p1(a−b)+1

2

The comparison operation is denoted as

comp(a, b) =

1 if a > b

1/2 if a = b

0 if a < b.

The procedure of obtaining an approximate value of
comp(a, b) for given precision parameters α, ε and inputs

a, b ∈ [0, 1] is summarized as follows:

1) Obtain the minimum depth consumption Mdep from
ComputeMinDep algorithm in Algorithm 3.

2) Choose depth consumption D(≥ Mdep) and
obtain the optimal set of degrees Mdegs from
ComputeMinMultDegs algorithm in Algorithm
4.

3) For some appropriate margin η, perform the homomor-
phic comparison algorithm MinimaxComp in Algorithm
5 using Mdegs.

ComputeMinDep and ComputeMinMultDegs algo-
rithms use ComputehG algorithm as a subroutine, and
MinimaxComp algorithm uses ComputeMinMultDegs al-
gorithm as a subroutine. Then, the output of MinimaxComp

algorithm, p̃(a, b) = pk◦pk−1◦···◦p1(a−b)+1
2 satisfies the follow-

ing comparison operation error condition:

|p̃(a, b)− comp(a, b)| ≤ 2−α

for any a, b ∈ [0, 1] satisfying |a− b| ≥ ε. (1)

The set of degrees Mdegs = {d1, · · · , dk} obtained from
the ComputeMinMultDegs algorithm satisfies deg(pi) =
di, 1 ≤ i ≤ k. Mdegs is the optimal set of degrees such that the
homomorphic comparison operation minimizes the number of
non-scalar multiplications and satisfies the comparison oper-
ation error condition in (1) for the given depth consumption
D.

III. FAST ALGORITHM FOR INVERSE MINIMAX
APPROXIMATION ERROR

The ComputehG algorithm in Algorithm 2 [9] should
be performed to obtain the optimal set of degrees from
the ComputeMinMultDegs algorithm. For performing the
ComputehG algorithm, the inverse minimax approximation
error IME(τ ′; d) should be computed many times. That is, the
AppIMEbinary algorithm [9] determining an approximate
value of IME(τ ′; d) should be called many times. However, a
single call of AppIMEbinary algorithm also requires multiple
computations of ME(Rτ ; d), that is, several calls for the
improved multi-interval Remez algorithm [23]. As a result,
the ComputehG algorithm requires significant running time.
Specifically, the number of computations of IME(τ ′; d) in
ComputehG for each precision parameter α is given as
follows:

mmax∑
m=0

nmax∑
n=0

∣∣∣∣{i;mult(2i+ 1) ≤ m, dep(2i+ 1) ≤ n,

1 ≤ i ≤ dmax − 1

2

}∣∣∣∣
=

∣∣∣∣{(m,n, i); 0 ≤ m ≤ mmax, 0 ≤ n ≤ nmax,

mult(2i+ 1) ≤ m, dep(2i+ 1) ≤ n, 1 ≤ i ≤ dmax − 1

2

}∣∣∣∣

6

=

dmax−1
2∑
i=1

∣∣∣∣{(m,n);mult(2i+ 1) ≤ m ≤ mmax,

dep(2i+ 1) ≤ n ≤ nmax

}∣∣∣∣
=

dmax−1
2∑
i=1

(mmax −mult(2i+ 1) + 1)(nmax − dep(2i+ 1) + 1)

=
dmax − 1

2
(mmax + 1)(nmax + 1)

− (mmax + 1)

dmax−1
2∑
i=1

dep(2i+ 1)

− (nmax + 1)

dmax−1
2∑
i=1

mult(2i+ 1)

+

dmax−1
2∑
i=1

mult(2i+ 1)dep(2i+ 1).

If we set dmax = 31,mmax = 70, and nmax = 40 as in [9],
the number of computations of IME(τ ′; d)

15(mmax + 1)(nmax + 1)− (mmax + 1) · 64

− (nmax + 1) · 113 + 64 · 113

=15 · 71 · 41− 71 · 64− 41 · 113 + 64 · 113

=41, 720.

If we want to use dmax = 63, the number of computations of
IME(τ ′; d) is 117, 675.

To obtain a precise approximate value of IME(τ ′; d) using
the AppIMEbinary algorithm, it is required to iterate at
least ten times. Then, the expected number of computations
of ME(Rτ ; d) in ComputehG is at least 117, 675 × 10 =
1, 176, 750. It should be noted that this is the case for only
one value of a precision parameter α, where the input τ of
ComputehG algorithm is 21−α. To perform the ComputehG

algorithm for α from 4 to 20, around 1, 176, 750 × 17 =
20, 004, 750 calls for ME(Rτ ; d) are required. Because of
the large number of calls for ME(Rτ ; d), the value of dmax

larger than 31 could not be used in [9], failing to improve
the performance of homomorphic comparison operation using
higher degrees. Thus, it is desirable to study how to efficiently
find approximate value of IME(τ ′; d).

A. Improved Algorithm for Inverse Minimax Approximation
Error Using Interpolation

We propose a fast method to find the approximate value of
IME(τ ′; d), which enables using a value of dmax larger than
31. Our procedure of the proposed method is given as follows:

1) Sample the values of τ at moderate intervals.
2) Compute the values of ME(Rτ ; d) for the sampled τ .
3) For τ ′ ∈ (0, 1), obtain an approximate value of

IME(τ ′; d) by interpolation using the computed sample
values of ME(Rτ ; d).

Before describing the proposed algorithm in detail, we
define realtoexp(τ) and exptoreal(x) for τ ∈ (0, 1) and
x ∈ R as follows:

realtoexp(τ) =

{
log2(τ), if τ < 0.5

− log2(1− τ), otherwise,

exptoreal(x) =

{
2x, if x < 0

1− 2−x, otherwise.

For αmax, which is the upper-bound of α, we consider
sampling τ from 2−αmax−1 to 1− 2−αmax−1. If τ is close to
zero or one, sampling should be very dense. Because sampling
the whole range densely from 2−αmax−1 to 1 − 2−αmax−1

requires a large number of samples, it is desirable to sample
densely when τ is close to zero or one, and sparsely, otherwise.

We propose to sample α from −αmax − 1 to αmax + 1
uniformly and compute ME(Rexptoreal(α); d) for the sampled
α. Interpolating using these samples, we can achieve a pre-
cise approximation of IME(τ ′; d) with a smaller number of
samples. Precision n̄ determines how frequently the values of
α are sampled, and we set n̄ = 10. For a given maximum
degree dmax and a precision n̄, StoreME algorithm in Algo-
rithm 6 stores α and realtoexp(ME(Rexptoreal(α); d)) in two-
dimensional tables X̃ and Ỹ , respectively, for the sampled
α and various d. The number of calls for ME(Rτ ; d) in
StoreME algorithm is (dmax − 1)(n̄αmax + 1). For n̄ = 10
and αmax = 20, the number of calls for ME(Rτ ; d) is 6, 030
for dmax = 31 and 12, 462 for dmax = 63.

Algorithm 6: StoreME(dmax, n̄)

Input: Maximum degree dmax and precision n̄
Output: 2-dimensional tables X̃ and Ỹ

1 Generate 2-dimensional tables X̃ and Ỹ , both of
which have size of dmax−1

2 × 2(n̄αmax + 1)
2 for i← 0 to dmax−3

2 do
3 for j ← 0 to n̄αmax do
4 α← −αmax − 1 + j/n̄

5 X̃(i, j)← α

6 Ỹ (i, j)← realtoexp(ME(Rexptoreal(α); 2i+ 3))
7 end
8 for j ← 0 to n̄αmax do
9 α← 1 + j/n̄

10 X̃(i, j + n̄αmax + 1)← α

11 Ỹ (i, j + n̄αmax + 1)←
realtoexp(ME(Rexptoreal(α); 2i+ 3))

12 end
13 end
14 return X̃ and Ỹ

AppIME algorithm in Algorithm 7 outputs an approximate
value of IME(τ ′; d) using the tables X̃ and Ỹ obtained from
StoreME algorithm. Here, many calls for AppIME algorithm
require only one computation of tables X̃ and Ỹ , that is,
one execution of StoreME algorithm. That is, StoreME is
performed only once for various precision parameters α.

7

Algorithm 7: AppIME(τ, d; dmax, n̄)

Input: Target maximum error τ , degree d, the odd
maximum degree dmax, and precision n̄

Output: An approximate value of IME(τ ; d)
1 X̃, Ỹ ← StoreME(dmax, n̄)
2 τ̃ ← realtoexp(τ)
3 for j ← 1 to 2n̄αmax + 1 do
4 if τ̃ ≤ X̃(d−3

2 , j) then
5 if X̃(d−3

2 , j − 1)X̃(d−3
2 , j) < 0 or

Ỹ (d−3
2 , j − 1)Ỹ (d−3

2 , j) < 0 then
6 return X̃(d−3

2 , j)
7 else
8 return X̃(d−3

2 , j − 1)− (X̃(d−3
2 , j)−

X̃(d−3
2 , j − 1)) · (τ̃ − Ỹ (d−3

2 , j −
1))/(Ỹ (d−3

2 , j)− Ỹ (d−3
2 , j − 1))

9 end
10 end
11 end
12 return exptoreal(X̃(d−3

2 , 2n̄αmax + 1))

TABLE II
EXPECTED RUNNING TIME OF ComputehG ALGORITHM FOR α FROM 4
TO 20 USING THE PREVIOUS AND PROPOSED ALGORITHMS FOR INVERSE

MINIMAX APPROXIMATION ERROR.

dmax
previous method proposed method

using AppIMEbinary using AppIME

expected number of 31 7,092,400 6,030
calls for ME(Rτ ; d) 63 20,004,750 12,462

expected 31 2,758 hours 2 hoursrunning time
of ComputehG 63 27,228 hours 17 hoursfor α from 4 to 20

B. Comparison Between the Previous and the Proposed Algo-
rithms for Inverse Minimax Approximation Error

We compare the running time of ComputehG algorithm
using the previous algorithm for inverse minimax approx-
imation error with that using the proposed algorithm. The
numerical analysis is conducted on a Linux PC with Intel Core
i7-10700 CPU at 2.90GHz with one thread. One call for the
improved multi-interval Remez algorithm takes about 1.4 s on
average when dmax = 31 and about 4.9 s on average when
dmax = 63. Then, the expected running time of ComputehG

can be obtained. Table II shows the expected running time of
ComputehG algorithm for α from 4 to 20 using the previous
and proposed algorithms for inverse minimax approximation
error. It can be seen from Table II that using the proposed
AppIME algorithm requires much less running time than
using the previous AppIMEbinary algorithm, enabling the
execution of ComputehG algorithm for dmax = 63. While
the running time of 17 hours might still seem to be large, it
should be noted that this process only needs to be done once
because the goal of this process is just to find the optimal set
of degrees.

TABLE III
THE OPTIMAL SETS OF DEGREES Mdegs AND CORRESPONDING MINIMUM
DEPTH CONSUMPTION FOR HOMOMORPHIC COMPARISON OPERATION FOR

dmax = 31 AND dmax = 63. Dmin IS THE MINIMUM DEPTH
CONSUMPTION FOR THE HOMOMORPHIC COMPARISON OPERATION.

α

the optimal set of degrees from
ComputeMinMultDegs(α, 2−α, Dmin)

maximum degree dmax = 31 maximum degree dmax = 63
degrees depth degrees depth

4 {27} 5 {27} 5
5 {7,13} 7 {7,13} 7
6 {15,15} 8 {15,15} 8
7 {7,7,13} 10 {7,7,13} 10
8 {7,15,15} 11 {7,15,15} 11
9 {7,7,7,13} 13 {55,55} 12
10 {7,7,13,15} 14 {7,7,13,15} 14
11 {7,15,15,15} 15 {7,15,15,15} 15
12 {15,15,15,15} 16 {15,15,15,15} 16
13 {15,15,15,31} 17 {15,15,15,31} 17
14 {7,7,15,15,27} 19 {55,59,59} 18

C. Reduction of Depth Consumption Using the Improved
Algorithm for Inverse Minimax Error

While ComputehG algorithm in Algorithm 2 could only
be performed for dmax ≤ 31 in [9], we perform ComputehG

algorithm for dmax ≤ 63 using the proposed AppIME algo-
rithm in Algorithm 7. Table III lists the optimal sets of degrees
Mdegs and the corresponding minimum depth consumption
Dmin for dmax = 31 and dmax = 63. From Table III, it can be
seen that the depth consumption is reduced by one when α is
9 or 14. That is, for α = 9 or α = 14, high dmax enables one
more non-scalar multiplication per homomorphic comparison
operation in the FHE setting, where the available number of
operations is very limited per bootstrapping. Furthermore, the
proposed AppIME algorithm enables finding a set of degrees
optimized for the RNS-CKKS scheme, described in Section
IV.

IV. FINDING DEGREES OF COMPONENT POLYNOMIALS
OPTIMIZED FOR THE RNS-CKKS SCHEME

Unlike the previous study on homomorphic comparison
operation in the CKKS scheme [9], we study homomorphic
comparison operation in the RNS-CKKS scheme, and thus
there are additional considerations. Unlike the CKKS scheme,
the RNS-CKKS scheme has a somewhat large rescaling error,
leading to a high failure rate in the homomorphic comparison
operation using minimax composite polynomial [9]. Scaling
factor according to level is determined as follows: ∆L = qL
and ∆i = ∆2

i+1/qi+1 for i = 0, · · · , L− 1. If two ciphertexts
of different levels are added or multiplied with each other,
a large error can occur because the scaling factors of the
two ciphertexts are not the same. We apply the scaling factor
management technique proposed in [20] to the homomorphic
comparison operation in the RNS-CKKS scheme. It can be
seen in Section VI that a low failure rate is achieved using
this technique and appropriate parameter sets.

There is another difference between the homomorphic com-
parison operation in the CKKS scheme and that in the RNS-
CKKS scheme. For a given depth consumption D, the set of

8

degrees Mdegs that minimizes the number of non-scalar multi-
plications can be obtained using the ComputeMinMultDegs

algorithm. Because the computation time of a non-scalar
multiplication does not depend much on the current ciphertext
modulus in the CKKS scheme, minimizing the number of non-
scalar multiplications corresponds to minimizing running time.
However, since the computation time of a non-scalar multipli-
cation depends much on the current level in the RNS-CKKS
scheme, minimizing the number of non-scalar multiplications
does not always correspond to minimizing running time.

0

2

4

6

8

0 5 10 15 20 25 30

ru
n

n
in

g
ti

m
e

(s
)

current level of the ciphertext

Fig. 1. The running time of a polynomial of degree seven according to the
current level of the ciphertext on the RNS-CKKS scheme library SEAL [12].

Fig. 1 shows the computation time of an example polyno-
mial of degree seven according to the current level on the
RNS-CKKS scheme library SEAL [12]. From Fig. 1, it can
be seen that the computation time of a polynomial tends to
increase quadratically according to the maximum level. For
example, we consider two ordered sets Mdegs = {7, 7, 31, 31}
and Mdegs = {31, 31, 7, 7}. In the CKKS scheme, the compu-
tation time of the homomorphic comparison operation using
two sets of degrees will be almost the same. However, the
homomorphic comparison operation using the former is faster
in the RNS-CKKS scheme because a high degree polynomial
is computed in a lower level in the former case. Our core
idea is to determine the set of degrees that minimizes the
running time itself rather than the number of non-scalar multi-
plications. Specifically, we modify the previous ComputehG

and ComputeMinMultDegs algorithms so that the modified
algorithms can find the set of degrees Mdegs that minimizes
the running time.

Now, we define C[i][`][`′] for 0 ≤ i ≤ dmax−3
2 , 0 ≤ ` ≤

`max, 0 ≤ `′ ≤ `max. First, we set up for the maximum
level `. Then, any polynomial of degree 2i + 3 in level `′

is evaluated using the optimal level consumption technique
[10] and odd baby-step giant-step algorithm [21]. If t is the
running time of the polynomial evaluation in milliseconds,
then we define C[i][`][`′] as C[i][`][`′] = b t

100e. Here, if
` < `′ or `′ < dlog2(2i + 3)e, the polynomial evaluation is
infeasible, and thus, C[i][`][`′] is set to large enough value
100, 000 in this case. We obtain the values of C[i][`][`′]
by performing polynomial evaluation on encrypted data, and
this computation is done on a Linux PC with Intel Core i7-

10700 CPU at 2.90GHZ with one thread. Then, uτ,L(m,n)
and Vτ,L(m,n) are defined recursively using the values of
C[i][`][`′] as follows:

uτ,L(m,n) =

τ, if m ≤ 1 or n ≤ 1

IME(uτ,L(m− C[jm,n − 1][L][n], n−
dep(2jm,n + 1)); 2jm,n + 1), otherwise,

Vτ,L(m,n) =

φ, if m ≤ 1 or n ≤ 1

{2jm,n + 1} ∪ Vτ,L(m− C[jm,n − 1][L][n],

n− dep(2jm,n + 1)), otherwise,

where jm,n =

argmax
1≤i

C[i−1][L][n]≤m
dep(2i+1)≤n

IME(uτ,L(m−C[i− 1][L][n], n− dep(2i+1)); 2i+1).

uτ,L(m,n) implies the maximum value of τ ′ ∈ (0, 1) such
that there exists a set of degrees {di}1≤i≤k that satisfies the
followings:

MCE(Rτ ′ ; {di}1≤i≤k) ≤ τ
k∑
i=1

dep(di) ≤ n

k∑
i=1

C[
di − 3

2
][L][L−

i−1∑
j=1

dep(dj)] ≤ m,

where
∑k
i=1 C[di−3

2][L][L −
∑i−1
j=1 dep(dj)] is the running

time of the homomorphic comparison operation using set of
degrees Mdegs = {di}1≤i≤k. In addition, for Vτ,L(m,n) =
{d′i}1≤i≤k′ , we have MCE(Ruτ,L(m,n); {d′i}1≤i≤k′) ≤
τ ,

∑k′

i=1 dep(d′i) ≤ n, and
∑k
i=1 C[di−3

2][L][L −∑i−1
j=1 dep(dj)] ≤ m.
ComputeuV algorithm in Algorithm 8 outputs two-

dimensional tables ũ and Ṽ that store the values of uτ,L and
Vτ,L. This ComputuV algorithm requires many computations
of IME(τ ′; d). However, these computations can be performed
quickly using the proposed AppIME algorithm.

Then, the ComputeMinTimeDegs algorithm in Algorithm
9 outputs the minimum running time Mtime (in 100 ms) and
the optimal set of degree Mdegs using two tables ũ and Ṽ
obtained from the ComputeuV algorithm.

Now, we propose the homomorphic comparison al-
gorithm OptMinimaxComp in Algorithm 10 that uses
ComputeMinTimeDegs algorithm. This is the modified al-
gorithm of the previous MinimaxComp algorithm in Algo-
rithm 5 [9], minimizing the running time on the RNS-CKKS
scheme for a given depth consumption D.

V. APPLICATION TO MIN/MAX AND RELU FUNCTION

In this section, we apply the methods of improving homo-
morphic comparison operation proposed in Sections III and
IV to max and ReLU functions.

9

Algorithm 8: ComputeuV(τ ;L)

Input: τ , maximum level L
Output: 2-dimensional tables ũ and Ṽ

1 Generate 2-dimensional tables ũ and Ṽ , both of which
have size of (tmax + 1)× (nmax + 1)

2 for m← 0 to tmax do
3 for n← 0 to nmax do
4 if m ≤ 1 or n ≤ 1 then
5 ũ(m,n)← τ

6 Ṽ (m,n)← φ

7 else
8 j ← argmax

1≤i
C[i−1][L][n]≤m

dep(2i+1)≤n

IME(ũ(m− C[i− 1][L][n],

n− dep(2i+ 1)); 2i+ 1)
9 ũ(m,n)← IME(ũ(m− C[j − 1][L][n],

n− dep(2j + 1)); 2j + 1)
10 Ṽ (m,n)← {2j + 1} ∪ Ṽ (m− C[j − 1][L][n],

n− dep(2j + 1))
11 end
12 end
13 end

Algorithm 9: ComputeMinTimeDegs(α, ε,D)
Input: Precision parameters α and ε, and depth

consumption D
Output: Minimum running time Mtime and the

optimal set of degrees Mdegs

1 ũ, Ṽ ← ComputeuV(21−α;D)
2 for j ← 0 to tmax do
3 if ũ(j,D) ≥ δ = 1−ε

1+ε then
4 Mtime ← j
5 Go to line 11
6 end
7 if j = tmax then
8 return ⊥
9 end

10 end
11 Mdegs ← Ṽ (Mtime, D) ; // Mdegs: ordered set

12 return Mtime and Mdegs

A. The Proposed Homomorphic Max and ReLU Function
Algorithm

The max function is an important operation that is used in
many applications including deep learning. The max function
is easily implemented using the sign function, that is,

max(a, b) =
(a+ b) + (a− b) sgn(a− b)

2
.

Thus, the approximate polynomial for the max function,
p̃(a, b) can be obtained from the approximate polynomial for
the sign function p(x) as:

p̃(a, b) =
(a+ b) + (a− b)p(a− b)

2
.

Algorithm 10: OptMinimaxComp(a, b;α, ε,D, η)

Input: Inputs a, b ∈ (0, 1), precision parameters α and
ε, depth consumption D, and margin η

Output: Approximate value of comp(a, b)
1 Mdegs = {d1, d2, · · · , dk} ←

ComputeMinTimeDegs(α, ε,D)
2 p1 ← MP(R̃1−ε,1; d1)

3 τ1 ← ME(R̃1−ε,1; d1) + η
4 for i← 2 to k do
5 pi ← MP(Rτi−1

; di)
6 τi ← ME(Rτi−1

; di) + η
7 end
8 return pk◦pk−1◦···◦p1(a−b)+1

2

Then, p̃(a, b) should satisfy the following max function error
condition for the precision parameter α:

|p̃(a, b)−max(a, b)| ≤ 2−α for any a, b ∈ [0, 1]. (2)

Since we have min(a, b) = a+ b−max(a, b), the approx-
imate polynomial for the min function, p̂(a, b) can be also
easily obtained, that is, p̂(a, b) = a+ b− p̃(a, b).

The previous homomorphic max function MinimaxMax

in [9] uses the set of degrees of component polynomials
obtained by executing ComputeMinMultDegs algorithm in
Algorithm 4 for inputs α, ζ · 2−α, and D − 1, where ζ is
a max function factor that can be determined experimen-
tally. The proposed algorithm in Algorithm 11 improves the
previous MinimaxMax algorithm, and we obtain the set of
degrees using the ComputeMinTimeDegs algorithm instead
of ComputeMinMultDegs algorithm.

Algorithm 11: OptMinimaxMax(a, b;α, ζ,D, η)

Input: Inputs a, b ∈ [0, 1], precision parameter α, max
function factor ζ, depth consumption D, and
margin η

Output: Approximate value of max(a, b)
1 Mdegs = {d1, d2, · · · , dk} ←

ComputeMinTimeDegs(α, ζ · 2−α, D − 1)
2 p1 ← MP(R̃1−ε,1; d1)

3 τ1 ← ME(R̃1−ε,1; d1) + η
4 for i← 2 to k do
5 pi ← MP(Rτi−1 ; di)
6 τi ← ME(Rτi−1 ; di) + η
7 end
8 return (a−b)pk◦pk−1◦···◦p1(a−b)+(a+b)

2

In addition, authors in [17] proposed a method to approx-
imate the ReLU function precisely using the approximation
of sign function. This precise approximation of the ReLU
function is necessary to evaluate pre-trained convolutional
neural networks on FHE. The ReLU and sign function have
the following relationship:

ReLU(x) =
x+ x sgn(x)

2
.

10

Thus, approximate polynomial r(x) for the ReLU function
can be implemented using the approximate polynomial p(x)
for the sign function as follows:

r(x) =
x+ xp(x)

2
. (3)

Then, r(x) should satisfy the following ReLU function error
condition for the precision parameter α:

|r(x)− ReLU(x)| ≤ 2−α for any x ∈ [−1, 1]. (4)

The previous ReLU function algorithm that uses the equa-
tion in (3) can be described as Algorithm 12, which we
call MinimaxReLU. The proposed ReLU function algo-
rithm in Algorithm 13 improves the previous ReLU func-
tion algorithm MinimaxReLU, and we obtain the set of
degrees using the ComputeMinTimeDegs algorithm instead
of ComputeMinMultDegs algorithm. It should be noted that
the ReLU function algorithm uses the same value of max
function factor ζ as the max function algorithm for a given
precision parameter α.

Algorithm 12: MinimaxReLU(x;α, ζ,D, η) [17]
Input: Inputs x ∈ [−1, 1], precision parameter α, max

function factor ζ, depth consumption D, and
margin η

Output: Approximate value of ReLU(x)
1 Mdegs = {d1, d2, · · · , dk} ←

ComputeMinMultDegs(α, ζ · 2−α, D − 1)
2 p1 ← MP(R̃1−ε,1; d1)

3 τ1 ← ME(R̃1−ε,1; d1) + η
4 for i← 2 to k do
5 pi ← MP(Rτi−1

; di)
6 τi ← ME(Rτi−1

; di) + η
7 end
8 return xpk◦pk−1◦···◦p1(x)+x

2

Algorithm 13: OptMinimaxReLU(x;α, ζ,D, η)

Input: Inputs x ∈ [−1, 1], precision parameter α, max
function factor ζ, depth consumption D, and
margin η

Output: Approximate value of ReLU(x)
1 Mdegs = {d1, d2, · · · , dk} ←

ComputeMinTimeDegs(α, ζ · 2−α, D − 1)
2 p1 ← MP(R̃1−ε,1; d1)

3 τ1 ← ME(R̃1−ε,1; d1) + η
4 for i← 2 to k do
5 pi ← MP(Rτi−1

; di)
6 τi ← ME(Rτi−1

; di) + η
7 end
8 return xpk◦pk−1◦···◦p1(x)+x

2

As explained in Section III, the proposed AppIME algo-
rithm makes it possible to perform ComputehG algorithm for
dmax = 63, which enables obtaining a better set of degrees of
component polynomials using ComputeMinMultDegs.

TABLE IV
THE OPTIMAL SET OF DEGREES Mdegs AND CORRESPONDING MINIMUM
DEPTH CONSUMPTION FOR THE HOMOMORPHIC MAX/RELU FUNCTION

FOR dmax = 31 AND dmax = 63. Dmin IS THE MINIMUM DEPTH
CONSUMPTION FOR THE HOMOMORPHIC MAX AND RELU FUNCTION.

α ζ

the optimal set of degrees from
ComputeMinMultDegs(α, ζ · 2−α, Dmin − 1)

maximum degree dmax = 31 maximum degree dmax = 63
degrees depth degrees depth

4 5 {5} 4 {5} 4
5 5 {13} 5 {13} 5
6 10 {3,7} 6 {3,7} 6
7 11 {7,7} 7 {7,7} 7
8 12 {7,15} 8 {7,15} 8
9 13 {15,15} 9 {15,15} 9

10 13 {7,7,13} 11 {7,7,13} 11
11 15 {7,7,27} 12 {7,7,27} 12
12 15 {7,15,27} 13 {7,15,27} 13
13 16 {15,15,27} 14 {15,15,27} 14
14 17 {15,27,29} 15 {15,27,29} 15
15 17 {29,29,29} 16 {15,27,59} 16
16 19 {7,7,7,15,15} 18 {27,29,59} 17
17 19 {7,7,15,15,15} 19 {29,29,59} 18
18 19 {7,15,15,15,15} 20 {59,59,61} 19

Table IV presents the optimal set of degrees Mdegs for
max/ReLU functions and the corresponding minimum depth
consumption Dmin for dmax = 31 and dmin = 63. From Table
IV, it can be seen that the depth consumption is reduced by
one when α is 16, 17, or 18, enabling one more non-scalar
multiplication per homomorphic max or ReLU function.

Furthermore, the proposed OptMinimaxMax and
OptMinimaxReLU algorithms minimize the running time
on the RNS-CKKS scheme for a given depth consumption
D by using ComputeMinTimeDegs algorithm instead of
ComputeMinMultDegs algorithm.

VI. NUMERICAL RESULTS

In this section, numerical results of the proposed
OptMinimaxComp, OptMinimaxMax, and Opt

MinimaxReLU algorithms in Algorithms 10, 11,
and 13, respectively, are presented. The performances
of OptMinimaxComp, OptMinimaxMax, and
OptMinimaxReLU algorithms using the proposed
ComputeMinTimeDegs algorithm are evaluated and
compared with those of MinimaxComp, MinimaxMax,
and MinimaxReLU algorithms using the previous
ComputeMinMultDegs algorithm. The numerical analyses
are conducted using the representative RNS-CKKS scheme
library SEAL [12] on a Linux PC with Intel Core i7-10700
CPU at 2.90GHz with one thread.

A. Parameter Setting

The precision parameters ε and α are the input and
output precisions of the homomorphic comparison al-
gorithm MinimaxComp or OptMinimaxComp in the
RNS-CKKS scheme. We set ε = 2−α, which implies
that the input and output precisions are the same. On
the other hand, the homomorphic max function algo-
rithms MinimaxMax and OptMinimaxMax and the ho-
momorphic ReLU function algorithms MinimaxReLU and

11

OptMinimaxReLU only use input precision parameter
α. We set N = 216. MinimaxComp, MinimaxMax,
MinimaxReLU, OptMinimaxComp, OptMinimaxMax,
or OptMinimaxReLU is performed simultaneously for N/2
tuples of real numbers. Then, the amortized running time is
obtained by dividing the running time by N/2.

1) Scaling Values and Margins: We use the scaled Cheby-
shev polynomials T̃i(t) = Ti(t/w) for a scaling value w > 1
as basis polynomials. The scaled Chebyshev polynomials can
be computed using the following recursion:

T̃0(x) = 1

T̃1(x) = x/w

T̃i+j(x) = 2T̃i(x)T̃j(x)− T̃i−j(x) for i ≥ j ≥ 1.

The scaling values w and margins η are obtained exper-
imentally. The obtained scaling values and margins used in
our numerical analyses on homomorphic comparison operation
and homomorphic max/ReLU functions are shown in Tables
V and VI, respectively.

2) Scaling Factor: If the output of the homomorphic
comparison operation or homomorphic max function for one
input tuple of two real numbers a and b does not satisfy
the comparison operation error condition in (1) or the max
function error condition in (2), respectively, it is said to be
failed. In addition, if the output of the homomorphic ReLU
function for one input real number x does not satisfy the

ReLU function error condition in (4), it is said to fail. The
homomorphic comparison operation, max function, or ReLU
function is performed for 215 inputs for each α, and the
number of failures is obtained. Then, the failure rate is the
number of failures divided by the total number of inputs,
215. We set the scaling factor large enough so that the
homomorphic comparison operation, max function, or ReLU
function does not fail in any slot, and the failure rate is said
to be less than 2−15 in this case. We set the scaling factor
∆ = 250 in all our numerical analyses, and the number of
failures is zero in all of the numerical results.

3) Bases with Prime Numbers: Bases with prime numbers
B = {p0, p1, · · · , pk−1} and C = {q0, q1, · · · , qL} should be
selected. We set k = 1 and p0 ≈ 260. In the numerical analysis
for the homomorphic comparison operation that consumes D
depth, we set the maximum level L = D. We set q0 ≈ 260

and qj ≈ ∆ for 1 ≤ j ≤ L.

B. Performance of The Proposed Homomorphic Comparison
Algorithm

The previous homomorphic comparison operation uses
the set of degrees Mdegs from ComputeMinMultDegs for
dmax = 31. On the other hand, the proposed homomor-
phic comparison operation obtains Mdegs for dmax = 63
from ComputeMinTimeDegs. The depth consumption D
should satisfy D ≥ Mdep, where Mdep is the minimum

TABLE V
SET OF SCALING VALUES AND MARGINS FOR THE PREVIOUS HOMOMORPHIC COMPARISON ALGORITHM MinimaxComp AND THE PROPOSED

ALGORITHM OptMinimaxComp.

α depth
previous homomorphic comparison proposed homomorphic comparison

algorithm MinimaxComp algorithm OptMinimaxComp
scaling value w margin η scaling value w margin η

8 11 {1,2,1.7} 2−12 {1,2,1.8} 2−26

12
16 {1,2,2,1.6} 2−16 {1,2,2,1.7} 2−16

17 {1,2,2,2,1.6} 2−16 {1,2,2,2,1.7} 2−16

18 {1,2,2,2,2,1.6} 2−16 {1,2,2,2,1.7} 2−16

16
21 {1,2,2,2,1.6} 2−20 {1,2,2,2,1.8} 2−24

22 {1,2,2,2,2,1.6} 2−20 {1,2,2,2,2,1.8} 2−22

23 {1,2,2,2,2,2,1.6} 2−20 {1,2,2,2,2,2,1.6} 2−20

20

25 {1,2,2,2,1.6} 2−22 {1,2,2,2,1.7} 2−24

26 {1,2,2,2,2,1.6} 2−23 {1,2,2,2,2,1.7} 2−26

27 {1,2,2,2,2,2,2,1.6} 2−22 {1,2,2,2,2,2,1.7} 2−29

28 {1,2,2,2,2,2,2,2,1.6} 2−22 {1,2,2,2,2,2,2,1.6} 2−26

TABLE VI
SET OF SCALING VALUES AND MARGINS FOR THE PREVIOUS HOMOMORPHIC MAX/RELU FUNCTION ALGORITHMS MinimaxMax/MinimaxReLU AND

THE PROPOSED ALGORITHMS OptMinimaxMax/OptMinimaxReLU.

α ζ depth
previous homomorphic max/ReLU function proposed homomorphic max/ReLU function
algorithms MinimaxMax/MinimaxReLU algorithms OptMinimaxMax/OptMinimaxReLU

scaling value w margin η scaling value w margin η
8 12 11 {1,2,1.6} 2−12 {1,1.7} 2−12

12 15 14 {1,2,2,1.6} 2−16 {1,2,2,1.6} 2−16

16 16 18 {1,2,2,2,1.6} 2−20 {1,2,2,2,1.6} 2−20

19 {1,2,2,2,2,1.6} 2−20 {1,2,2,2,1.6} 2−20

20 21
22 {1,2,2,2,1.6} 2−24 {1,2,2,2,1.8] 2−24

23 {1,2,2,2,2,1.6} 2−24 {1,2,2,2,2,1.6} 2−24

24 {1,2,2,2,2,2,1.6} 2−24 {1,2,2,2,2,2,1.6} 2−24

12

TABLE VII
COMPARISON BETWEEN THE RUNNING TIME (AMORTIZED RUNNING TIME) OF THE PREVIOUS HOMOMORPHIC COMPARISON ALGORITHM

MinimaxComp AND THAT OF THE PROPOSED ALGORITHM OptMinimaxComp IN THE RNS-CKKS SCHEME.

α depth
previous homomorphic comparison proposed homomorphic comparison

algorithm MinimaxComp algorithm OptMinimaxComp
degrees running time degrees running time

8 11 {7,15,15} 4.21 s (0.12 ms) {3,15,31} 4.08 s (0.12 ms)

12
16 {15,15,15,15} 9.92 s (0.30 ms) {7,15,15,31} 9.61 s (0.29 ms)
17 {7,7,7,13,13} 9.91 s (0.30 ms) {3,3,13,15,31} 9.40 s (0.28 ms)
18 {3,5,7,7,7,13} 9.67 s (0.29 ms) {5,5,5,15,29} 9.12 s (0.27 ms)

16
21 {15,15,15,15,27} 18.45 s (0.56 ms) {7,13,15,15,59} 17.49 s (0.53 ms)
22 {7,7,7,13,13,27} 18.23 s (0.55 ms) {5,3,7,15,15,59} 16.79 s (0.51 ms)
23 {5,7,7,7,7,13,13} 18.08 s (0.55 ms) {5,3,5,7,7,15,31} 16.73 s (0.51 ms)

20

25 {29,31,31,31,31} 32.04 s (0.97 ms) {15,15,31,59,63} 30.73 s (0.93 ms)
26 {13,15,15,15,27,27} 29.59 s (0.90 ms) {5,15,15,15,29,61} 28.27 s (0.86 ms)
27 {7,7,7,7,7,7,15,27} 29.19 s (0.89 ms) {5,5,7,15,15,15,59} 27.18 s (0.82 ms)
28 {5,7,7,7,7,7,7,7,15} 29.13 s (0.88 ms) {5,5,5,7,7,15,15,31} 26.77 s (0.81 ms)

TABLE VIII
COMPARISON BETWEEN THE RUNNING TIMES (AMORTIZED RUNNING TIMES) OF THE PREVIOUS HOMOMORPHIC MAX/RELU FUNCTION ALGORITHMS
MinimaxMax/MinimaxReLU AND THOSE OF THE PROPOSED ALGORITHMS OptMinimaxMax/OptMinimaxReLU IN THE RNS-CKKS SCHEME.

α ζ depth

previous homomorphic max/ReLU function proposed homomorphic max/ReLU function
algorithms MinimaxMax/MinimaxReLU algorithms OptMinimaxMax/OptMinimaxReLU

degrees running time degrees running time
MinimaxMax MinimaxReLU OptMinimaxMax OptMinimaxReLU

8 12 11 {3,7,7} 2.26 s (0.069 ms) 2.27s (0.069 ms) {5,23} 2.14 s (0.065 ms) 2.17 s (0.066 ms)
12 15 14 {5,7,7,15} 5.71 s (0.17 ms) 5.74 s (0.17 ms) {3,5,7,29} 5.53 s (0.16 ms) 5.55 s (0.16 ms)

16 16 18 {7,7,7,15,15} 11.46 s (0.34 ms) 11.37 s (0.34 ms) {3,3,15,15,31} 10.88 s (0.33 ms) 10.95 s (0.33 ms)
19 {3,7,7,7,7,13} 11.76 s (0.35 ms) 11.79 s (0.36 ms) {5,5,7,13,29} 10.65 s (0.32 ms) 10.71 s (0.32 ms)

20 21
22 {15,15,15,15,27} 21.72 s (0.66 ms) 20.38 s (0.62 ms) {7,13,15,15,59} 19.26 s (0.58 ms) 19.40 s (0.59 ms)
23 {7,7,7,13,13,27} 19.79 s (0.60 ms) 19.81 s (0.60 ms) {5,7,7,13,15,31} 18.59 s (0.56 ms) 18.57 s (0.56 ms)
24 {5,7,7,7,7,7,23} 19.77 s (0.60 ms) 19.81 s (0.60 ms) {3,5,5,7,7,15,31} 18.38 s (0.56 ms) 18.37 s (0.56 ms)

depth consumption obtained from ComputeMinDep algo-
rithm. The used sets of degrees and running times (amor-
tized running times) of the previous homomorphic compar-
ison algorithm MinimaxComp and the proposed algorithm
OptMinimaxComp are shown in Table VII. It can be seen
that the proposed homomorphic comparison algorithm reduces
running time by 6% on average compared with the previous
algorithm.

Increasing the depth consumption D sometimes increases
the running time. In that case, the larger depth consumption
than D does not need to be used, and Table VII does not
include this case. Table VII also does not include cases when
the previous and proposed algorithms use the same set of
degrees Mdegs.

C. Performance of the Proposed Homomorphic Max/ReLU
Function Algorithm

As in the numerical analysis of the homomorphic
comparison operation, the proposed homomorphic max
and ReLU function algorithms obtain Mdegs from
ComputeMinTimeDegs for dmax = 63. The used sets
of degrees and running times (amortized running times) of
the previous homomorphic max/ReLU function algorithms
MinimaxMax/MinimaxReLU and the proposed algorithms
OptMinimaxMax/OptMinimaxReLU are shown in Table
VIII. It can be seen that the proposed homomorphic max and

ReLU function algorithms reduce running time by 7% and
6% on average compared with the previous homomorphic
max and ReLU function algorithms, respectively. As in
the numerical analysis of the homomorphic comparison
operation, Table VIII does not include the cases when larger
depth increases the running time or when the previous and
proposed algorithms use the same set of degrees Mdegs.

VII. CONCLUSION

We implemented the optimized homomorphic comparison,
max function, and ReLU function algorithms on the RNS-
CKKS scheme using a composition of minimax approximate
polynomials for the first time. We successfully implemented
the algorithms on the RNS-CKKS scheme with a low failure
rate (< 2−15) and provided the parameter sets according to
the precision parameter α. In addition, we proposed a fast
algorithm for inverse minimax approximation error, which is
a subroutine required to find the optimal set of degrees. This
algorithm allowed us to find the optimal set of degrees for
a higher maximum degree than the previous study. Finally,
we proposed a method to find the set of degrees that is
optimized for the RNS-CKKS scheme using the proposed
fast algorithm for inverse minimax approximation error. We
reduced the depth consumption of homomorphic comparison
operation (resp. max/ReLU functions) by one depth when α
is 9 or 14 (resp. when α is 16, 17, or 18). In addition, the

13

numerical analysis demonstrated that the proposed homomor-
phic comparison, max function, and ReLU function algorithms
reduced the running time by 6%, 7%, and 6% on average
compared with the previous algorithms respectively.

REFERENCES

[1] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
Proceedings of the Forty-First Annual ACM Symposium on Theory of
Computing, 2009, pp. 169–178.

[2] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in Proceedings of International
Conference on the Theory and Application of Cryptology and Informa-
tion Security, 2017, pp. 409–437.

[3] F. Boemer, Y. Lao, R. Cammarota, and C. Wierzynski, “nGraph-HE: A
graph compiler for deep learning on homomorphically encrypted data,”
in Proceedings of the 16th ACM International Conference on Computing
Frontiers, 2019, pp. 3–13.

[4] F. Boemer, A. Costache, R. Cammarota, and C. Wierzynski, “ngraph-
he2: A high-throughput framework for neural network inference on
encrypted data,” in Proceedings of the 7th ACM Workshop on Encrypted
Computing & Applied Homomorphic Cryptography, 2019, pp. 45–56.

[5] X. Jiang, M. Kim, K. Lauter, and Y. Song, “Secure outsourced matrix
computation and application to neural networks,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security, 2018, pp. 1209–1222.

[6] F. Bourse, M. Minelli, M. Minihold, and P. Paillier, “Fast homomorphic
evaluation of deep discretized neural networks,” in Proceedings of
Annual International Cryptology Conference, 2018, pp. 483–512.

[7] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “A full rns variant of
approximate homomorphic encryption,” in Proceedings of International
Conference on Selected Areas in Cryptography, 2018, pp. 347–368.

[8] Y. Lee, J.-W. Lee, Y.-S. Kim, and J.-S. No, “Near-optimal polynomial
for modulus reduction using l2-norm for approximate homomorphic
encryption,” IEEE Access, vol. 8, pp. 144 321–144 330, 2020.

[9] E. Lee, J.-W. Lee, J.-S. No, and Y.-S. Kim, “Minimax approximation of
sign function by composite polynomial for homomorphic comparison,”
IEEE Transactions on Dependable and Secure Computing, accepted for
publication, 2021.

[10] J.-P. Bossuat, C. Mouchet, J. Troncoso-Pastoriza, and J.-P. Hubaux,
“Efficient bootstrapping for approximate homomorphic encryption with
non-sparse keys,” in International Conference on the Theory and Appli-
cations of Cryptographic Techniques, 2021.

[11] Y. Lee, J.-W. Lee, Y.-S. Kim, H. Kang, and J.-S. No, “High-precision
approximate homomorphic encryption by error variance minimization,”
Cryptol. ePrint Arch., Tech. Rep. 2020/834, 2021.

[12] “Microsoft SEAL (release 3.5),” https://github.com/Microsoft/SEAL (Apr
2020), microsoft Research, Redmond, WA.

[13] “Lattice cryptography library (release 1.10.4),” https://palisade-
crypto.org/ (Sep 2020).

[14] “Lattigo v2.2.0,” Online: http://github.com/ldsec/lattigo, Jul. 2021,
ePFL-LDS.

[15] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[16] J. A. Hartigan and M. A. Wong, “Ak-means clustering algorithm,”
Journal of the Royal Statistical Society: Series C (Applied Statistics),
vol. 28, no. 1, pp. 100–108, 1979.

[17] J. Lee, E. Lee, J.-W. Lee, Y. Kim, Y.-S. Kim, and J.-S. No, “Precise
approximation of convolutional neuralnetworks for homomorphically
encrypted data,” arXiv preprint arXiv:2105.10879, 2021.

[18] J.-W. Lee, H. Kang, Y. Lee, W. Choi, J. Eom, M. Deryabin, E. Lee,
J. Lee, D. Yoo, Y.-S. Kim et al., “Privacy-preserving machine learning
with fully homomorphic encryption for deep neural network,” arXiv
preprint arXiv:2106.07229, 2021.

[19] J. H. Cheon, D. Kim, and D. Kim, “Efficient homomorphic comparison
methods with optimal complexity,” in Proceedings of International Con-
ference on the Theory and Application of Cryptology and Information
Security, 2020, pp. 221–256.

[20] A. Kim, A. Papadimitriou, and Y. Polyakov, “Approximate homomorphic
encryption with reduced approximation error,” Cryptol. ePrint Arch.,
Tech. Rep. 2020/1118, vol. 2020, 2020.

[21] J.-W. Lee, E. Lee, Y.-W. Lee, and J.-S. No, “Optimal minimax poly-
nomial approximation of modular reduction for bootstrapping of ap-
proximate homomorphic encryption,” Cryptol. ePrint Arch., Tech. Rep.
2020/552/20200803:084202, 2020.

[22] E. W. Cheney, “Introduction to approximation theory,” 1966.
[23] J.-W. Lee, E. Lee, Y. Lee, Y.-S. Kim, and J.-S. No, “High-precision

bootstrapping of rns-ckks homomorphic encryption using optimal min-
imax polynomial approximation and inverse sine function,” in Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques, 2021.

