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Abstract. Electromagnetic Fault Injection (EMFI) is a well known method
of introducing faults for security analysis of digital devices. Such faults
can be seen as analogous to the faults which are known to naturally
occur in digital devices, a known problem with designing safety-critical
systems.
Numerous standards have been developed for safety-critical systems, in-
cluding the development of standards for increasing the rate of naturally
occurring faults using particle sources. In this work, we demonstrate that
desktop EMFI tooling can be used to accomplish similar testing, but with
more control, effectively speeding up the evaluation process.
We demonstrate that using EMFI tooling for safety evaluation allows us
to recreate a highly publicized safety issue present in an automotive ECU
– one that could not easily be recreated previously with other techniques.
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1 Introduction

Fault injection allows an attacker to modify the operation of a device under
test. These attacks can include simple control-flow changes allowing the bypass
of a secure boot process, along with differential fault analysis attacks that allow
recovery of secret cryptographic material [4][5].

In order to understand the attacker capabilities, a defender typically assumes
some fault model, which shows what an attacker is capable of performing. These
may be simple – such as assuming an attacker is capable of an “instruction skip”,
or may be more complicated, such as an attacker being able to flip a single or
multiple bits. This may include targeting specific bits as part of a control flow
hijack [14] or other advanced attack.

These faults are introduced by various methods [2] – manipulating the exter-
nal clock or voltage supply is a simple method of introducing faults, but other
methods exist, including optical faults via flash tubes or lasers, or electromag-
netic faults[13].

? This is an authors copy of the paper presented at The 2021 Fault Diagnosis and
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These attacker models typically assume that the attacker is triggering the
fault at a specific instance in time. This capability of triggering a fault at a
specific moment in time defines the difference between faults with a specific
security implication and those that might occur naturally due to failures or
errors in the computer system.

Random faults in computer systems are a well-known problem, with solutions
such as error correcting code memory historically being used in systems which
require better long-term stability. With the long history of safety-critical design
processes, we can explore the fault models used by safety-critical systems to
better understand where safety and security fault models overlap.

This work will particularly look at a well-known example of an automotive
product which faced concern around safety-critical design failures. Despite con-
siderable efforts, this failure has previously been only partially captured with
classic safety-critical design evaluation tools. By applying tools typically used in
security analysis, we will demonstrate how this failure can be reproduced.

The specific contributions of this work are:

1. Linking fault injection techniques commonly used in security evaluation to
automotive safety testing.

2. Using EMFI for static corruption of SRAM in a similar manner to known
industry standards.

3. Recreation of a safety-critical bug using EMFI in a “black-box” environment.

The paper will start with an introduction to standards used in safety-critical
systems in Section 2, including a discussion of how those have previously been
reported in similar security-focused papers. Based on previous work in both
the security and safety domains, a specific link will be shown to commonly
used metrics for evaluation of SRAM memories for corruption will be shown
in Section 3. We will then demonstrate an “attack” on a production ECU to
recreate the safety-critical bug in Section 4, before discussing conclusions and
future opportunities in Section 5.

2 ISO 26262-11 Fault and Failure Modes

Safety-critical design of digital systems is well known in many industrial systems.
This paper focuses on automotive systems, and in particular the ISO 26262 series
of standards that is an adaption of IEC 61508 to automotive systems.

ISO 26262 contains several parts (each of which is a separate purchase from
ISO). Of particular interest is Part 11 (“Guidelines on application of ISO 26262
to semiconductors”), Part 5 (“Product development at the hardware level”), and
Part 6 (“Product development at the software level”).

ISO 26262-11 defines example fault and failure mode for various types of dig-
ital devices. Three of these have direct parallels to security fault models: “Fault
models of non-memory digital components (5.1.2)”, “Detailed fault models of
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memories (5.1.3)”, and “Failure modes of digital components (5.1.4)”. The fol-
lowing information in the remainder of this section is defined in ISO 26262-11,
but is recreated here for quick reference.

26262-11 Section 5.1.2 defines transient faults for non-memory digital com-
ponents as in Table 1. From this definition we can see the Single Event Transient
(SET) causes various types of upsets depending on the structure the transient
interacts with. Note that this definition for non-memory digital components may
still include storage such as a register in a CPU, but later in 26262-11 Section
5.1.3 stand-alone memory devices (such as FLASH or SRAM memories) are
covered with other fault modes such as “stuck-at-0” faults.

Transient faults in memory such as SRAM are well-known to follow the
general format of Table 1. The one major addition is that a Single Event Latchup
(SEL) fault model, which is normally detected by a constant higher current
consumption that lasts until the target device is power cycled. Such evaluations
from a “safety” perspective have been performed on different devices using laser
fault injection techniques[12], including work on newer devices such as Kintex-7
FPGAs[10].

Table 1: ISO 26262-11 Fault Modes
FMx Example

Single Event Transient A momentary voltage excursion (e.g.
SET a voltage spike) at a node in an

integrated circuit caused by the
passage of a single energetic particle.

Single Event Upset A soft error caused by the signal
SEU induced by the passage of a single

energetic particle.

Single Bit Upset A single storage location upset
SBU from a single event.

Multiple Cell Upset A single event that induces several
MCU bits in an IC to fail at the same

time. The error bits are usually,
but not always, physically adjacent

Multiple Bit Upset Two or more single-event-induced
MBU bit errors occurring in the same

nibble, byte, or word.

A distinction is made between the fault mode and failure mode in these safety
standards. The given fault may cause one of the failure modes (FM) listed in
Table 2. These apply to general digital devices, which perform a given function.
This function changes depending on the device, and area of device under con-
sideration. A CPU could have an overall function of executing an instruction,
but specific functions such as the interrupt handler or internal memory access
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functions. A failure of a given function using the failure modes from Table 2
gives us function-specific failures.

Table 2: ISO 26262-11 Failure Modes
FMx Failure Mode Example

FM1 Omission Function not delivered when needed
FM2 Commission Function executed when not needed
FM3 Timing Function delivered with incorrect timing
FM4 Value Function provides incorrect output

As an example, a CPU would have the function of “Execute given instruction
flow according to given Instruction Set Architecture.” Taking the failure modes
from Table 2, the failures from Table 3 could occur.

Table 3: Failure Modes applied to CPU Instruction Flow
FMx Result

FM1 Given instruction flow(s) not executed (total omission)
FM1.1 .. due to program counter hang up
FMl.2 .. due to instruction fetch hang up
FM2 Un-intended instruction(s) flow executed
FM3 Incorrect instruction flow timing (too early /late)
FM4 Incorrect instruction flow result

These failures follow well-known instruction fault models typically found in
security-oriented fault injection. The typical ‘instruction skip’ fault model, for
example, is covered in FM1, but could also be part of FM2 and FM3. Taking the
incorrect branch could be seen as FM4, and an instruction mutation is covered
by FM2.

This mapping is particularly useful when comparing tools and techniques for
developers working with safety tooling. While the fact that security fault injec-
tion has specific timing means safety-critical systems cannot be assumed to be
robust against a motivated attacker [16], this demonstrates that the fundamental
fault models themselves are well aligned. We will now investigate how tooling
typically targeting security analysis can be used as part of safety critical failure
emulation.

3 Electromagnetic Fault Injection

The objective of electromagnetic fault injection (EMFI) is to ultimately inject
a voltage onto the structure of the die itself – this can cause both “soft-error”
faults (such as bit flips in a register or SRAM), or temporary errors in reading
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voltage levels (a SET). The fact that a strong field has the ability to corrupt
data (without damaging the device) has been known since at least 1970[11].

While EMFI is routinely used for security testing purposes, the process of
fault injection in safety testing more commonly follows the JESD89A standard (a
reference for testing a device against “soft errors”), which uses an alpha particle
source to accelerate the rate of soft errors [6]. As these alpha particle sources
do not easily fit on a desktop, using standard EMFI tooling to achieve similar
results would be valuable in practice. We will next demonstrate that static RAM
memory corruption can be recreated with desktop EMFI equipment.

3.1 Memory Corruption with EMFI

Previous work on EMFI has suggested that errors occur only during transfers,
and static corruptions were not observed [8]. This would be an important dif-
ference, as most safety-critical testing for memory devices assumes a charged
particle is causing single or multi bit failures. To help validate the link between
safety and security testing, we will demonstrate that static bit flips are possible
using EMFI, and this aligns with assumptions widely used as part of safety-
critical testing.

The testing will be done using an off-the-shelf target board called the Ballistic
Gel, with details of the board available1. This target has a large 32 Mbit SRAM
chip, which can be used to understand how bit flips vary with different settings.
By downloading a pattern to the device, injecting a fault, and seeing where the
pattern flipped bits we can get an idea of the sort of effects that are possible.
The physical board is shown mounted on a test platform in Figure 1.

When performing EMFI injection, we have several characteristics we can
adjust. The first is the design of the injector itself, for which protocols designed
to help compare across devices have been proposed [15]. In this work we will
use a single EMFI platform, the ChipSHOUTER. We will compare the effect of
changing the specifics of the injection tip (coil), along with the charge voltage.

3.2 Affect of Injection Tip Dimensions and Voltages

The included injection tips vary with the size of the ferrite core, along with
the direction of the winding around the core: two 4mm tips and two 1mm tips,
each with both “clockwise” (CW) and “counter-clockwise” (CCW) versions. It
is expected that swapping the positive and negative pulse polarity is equivalent
to changing the winding direction. However, for safety reasons changing the
winding direction ensures the highest voltage is not at the most exposed end of
the winding tip. Examples of the various coils is shown in Figure 2.

Comparing the effect of a changing charge voltage shows an obvious link
between pulse voltage and number of bytes corrupted. Increasing the charge
voltage increases the number of bytes flipped.

1 Schematic and other details are posted at https://github.com/newaetech/
ChipSHOUTER-ballisticgel

https://github.com/newaetech/ChipSHOUTER-ballisticgel
https://github.com/newaetech/ChipSHOUTER-ballisticgel
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Fig. 1: Ballistic Gel mounted on XYZ table with EMFI Tool

Fig. 2: Showing the wire wrapping direction around the injection tip (coil).

With the 4mm probe tip, the clockwise (CW) and counter clockwise (CCW)
winding direction does not make a notable difference in the number of bytes
corrupted per fault injection attempt. This may result in some biasing of bit-set
or bit-reset faults, but typically for safety testing this is less of a concern.

The 1mm cores appear to have different results than the 4mm core. Here it
appears that the CW and CCW tips have a different response. Most likely, this is
due to physical construction tolerance – the tips themselves are slightly different
lengths, making them different heights above the chip surface. Note this does
show that a small number of byte errors are possible. The 1mm CW tip in this
configuration showed 1 – 10 byte errors for charge voltages below 280V.

3.3 Effect of Height

The physical height of the injection tip would also be expected to affect the
number of bit flips. In the following example we will keep the charge voltage
fixed at 200 V, and use the 1 mm CCW tip. The tip will be raised off the surface
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Fig. 3: Comparison of charge voltage and coils

of the chip, and the fault repeated 100 times. This allows us to evaluate the
repeatability of height changes. The results are shown in Figure 4.

Moving the probe off the surface showed a reduction in faults, but as demon-
strated in this diagram, there is still considerable randomness to this process. It
suggests to be biased towards zero as the probe moves away, but with occasional
large number of flips for the same position.

3.4 XY Scanning Location

Not only does scanning the EMFI location over the chip surface affect where the
faults are injected, it can affect the number due to different features in the device.
As a simple example, scanning our same fault over the SRAM top gives us the
results from Figure 5. Note that multiple areas have a 1-byte fault, some areas
have more than 1-byte fault (but not the large number of faults seen previously),
and other areas have the large number of faults.

This demonstrates that there are several different variables that affect the
types of faults generated by an EMFI platform. This can be used to target
different types of faults required for safety testing, such as faults affecting both
a small and large portion of the device at once.

4 Safety Testing with EMFI

As shown in the previous section, EMFI is capable of injecting faults similar to
those that systems designed to operate in safety-critical environments should be
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Fig. 5: SRAM Fault Results (200V), light blue is SRAM chip top, dashed area
shows scan zone.

protected against. The focus of this work on automotive systems allows us to
compare the results of systems with issues suspected of being caused by random
bit flips.

The example target will be an ECU from a 2006 model year vehicle. This rel-
atively old ECU was chosen due to existing public work discussing the potential
for software failures to occur without tripping the expected fail-safe behaviour[7].
As most production ECUs would not be available for code inspection, the ex-
istence of expert witness testimony is particularly interesting as it allows us to
understand what potential flaws the expert witness believed were present in the
system[3].

Based on this expert witness testimony, certain memory corruption events
would not be detected by the failsafe logic used in the ECU. This would allow
unintended vehicle operation, and in particular the decoupling of the vehicle
throttle from the requested user input. Notably this appeared to show a throttle
getting “stuck” at one position, but not actually going to a full open position.
This was validated with a test platform, where specific bits were flipped in a full
ECU on a running vehicle. The testimony in the trial indicated that drivers who
experienced the potential flaw first-hand described a throttle going to a full open
(wide open throttle) position before getting stuck [1]. This suggested a different
root cause than identified by code analysis, but as noted by the expert witness
it would be difficult to cover all potential flaws.
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More recent work on these devices has shown that voltage fluctuations would
temporarily cause a wide open throttle, but this did not cause a stuck throttle
[9]. This does however suggest some combination of a voltage fluctuation with
memory corruption could cause the overall error condition, but leaves questions
about the practicality of this – could the type of corruption from random parti-
cles or EMFI account for both of these?

Using EMFI, we can demonstrate a combination of these failure modes that
result in the combination of both a throttle going to wide open along with stick-
ing at one position. This will be done in a black box fashion, without requiring
any modifications to the actual ECU or sensors. However, the authors must em-
phasize that the following safety testing is not performed on a full system – that
is, the safety testing is not showing overall system failure, as other failsafes are
not investigated in this example. More advanced analysis can be performed if the
tester does have knowledge of the system under test, for example it is possible to
compare memory and register dumps in order to understand where corruption
is being inserted.

4.1 Test Bench

In order to perform a safety check, we need to operate the system inside of
some normal bounds. In this case, a very simplistic engine/car simulator is built
around the ECU to allow the system to operate normally.

This test bench is shown in Figure 6, which contains the following items:

1. The main ECU board we are testing.
2. The physical throttle body, wired to the ECU as normal.
3. The accelerator pedal sensor, wired to the ECU as normal.
4. An ignition switch (switches power on/off as a key would).
5. A simulator to provide cam & crank signals to the ECU.
6. A standard diagnostics reader to monitor the ECU datastream.
7. Probes to monitor the signal driving the throttle body.
8. A ChipSHOUTER to provide EMFI tooling.
9. A XYZ stage to allow scanning of the EMFI tool.

The current setup does not automatically monitor the outputs, but uses a
human-in-the-loop to observe out of specification modes (such as the throttle
position not matching the commanded position).

4.2 EMFI Results

While operating the device while performing EMFI, several failure modes were
noted, including:

1. ECU resets and continues to operate.
2. ECU enters a fail-safe mode, such as reduced throttle opening.
3. The drive signals for the throttle body motor stopped operating normally.
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Fig. 6: The test bench showing: 1○ the ECU under test, 2○ the throttle body,
3○ the position sensor, 4○ the ignition switch, 5○ sensor simulator, 6○ OBD-II

reader, and 7○ scope probes on PWM signal.

The final failure mode is of the most interest, as it appeared that the control
loop was otherwise closed (the position followed the pedal in general). The motor
is driven with pulse width modulation (PWM) signals, with a comparison of the
two PWM modes shown in Figure 7.

While the throttle body appeared to be maintaining the requested position,
the throttle body now had a noticeable “chatter”. In addition, the power con-
sumption jumped from the normal 1.6A to 3 – 5A (the current draw became less
constant). It is assumed this was linked to the incorrect PWM waveform. This
sudden jump in current consumption results in additional voltage drops on the
ECU power rail, which also aligns with the previous work demonstrating wide
open throttle condition during voltage fluctuations [9].

Stuck Throttle Results Once in the incorrect PWM mode, the throttle would
eventually stick either fully closed or fully open, and the accelerator pedal sensor
changes no longer have any impact on the throttle position. In this case the
current draw increased further, and viewing the PWM waveforms it was clear
the output signal was now constant. Once this mode was entered, a power cycle
was required to exit this mode.

While in this mode, the ECU continued to provide ignition output signals
that responded to changes in the cam & crank signals, and the OBD-II scan
tool could continue to provide diagnostics information. A photo of the throttle
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(a) Normal PWM Operation (b) Chattery PWM Operation

Fig. 7: PWM output for throttle body control before and after EMFI insertion.

stuck open is shown in Figure 8. Note the throttle is shown commanded to 88%
opening here. During regular operation, the maximum throttle opening on the
test bench is only 81%, thus the 88% throttle position commanded here appears
to be even beyond regular operating values.

Fig. 8: The ECU after an EMFI based fault caused some error where the throttle
is commanded to become fully open.

5 Conclusions

The possibility of memory corruption or other failures is a well-known problem
in safety-critical design, with references to issues such as electromagnetic fields
causing memory corruption going back well before the usage of these properties
in security evaluations[11]. There is a large body of knowledge around the design
of safety-critical systems such as for automotive devices, which often remains
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split from the knowledge gained and applied with a focus on security analysis of
automotive systems.

Previous work has shown that EMFI is useful for security analysis, such
as bypassing passwords or performing differential fault analysis. In this work
we demonstrate that EMFI can also be used as part of a safety evaluation, by
showing that the typical types of errors expected to be created randomly by
charged particles can also be generated with EMFI.

In addition, the type of “black box” attack that is commonly applied with
security evaluation has also been used to recreate an elusive bug in an automotive
ECU. This bug was based on trial testimony [1] of an unintended acceleration
case. While expert witnesses in that trial demonstrated that a throttle could stick
at wide open, they did not demonstrate how a throttle could go from stuck to
wide open [3]. More recent work has shown that voltage fluctuations can cause a
momentary throttle opening [9], but it would seem unlikely that a memory error
would occur by chance right when a voltage fluctuation occurs.

In this case, using EMFI we demonstrate that these two events are linked.
Introducing memory corruption with EMFI causes the power consumption to be-
come erratic, which in turn causes the voltage fluctuations previously identified.
At the same time once the memory is corrupted the ECU appears to frequently
crash in a “stuck throttle” condition.

This demonstrates that both safety and security engineering have the ability
to learn useful tools and techniques from each other, and the type of black box
testing common in security evaluations can be used to find bugs in safety critical
systems.
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