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Abstract

Secure multiparty computation (MPC) enables n parties, of which up to t may be corrupted,
to perform joint computations on their private inputs while revealing only the outputs. Opti-
mizing the asymptotic and concrete costs of MPC protocols has become an important line of
research. Much of this research focuses on the setting of an honest majority, where n ≥ 2t+ 1,
which gives rise to concretely efficient protocols that are either information-theoretic or make a
black-box use of symmetric cryptography. Efficiency can be further improved in the case of a
strong honest majority, where n > 2t+ 1.

Motivated by the goal of minimizing the communication and latency costs of MPC with a
strong honest majority, we make two related contributions.

• Generalized pseudorandom secret sharing (PRSS). Linear correlations serve as an im-
portant resource for MPC protocols and beyond. PRSS enables secure generation of many
pseudorandom instances of such correlations without interaction, given replicated seeds of a
pseudorandom function. We extend the PRSS technique of Cramer et al. (TCC 2005) for
sharing degree-d polynomials to new constructions leveraging a particular class of combinato-
rial designs. Our constructions yield a dramatic efficiency improvement when the degree d is
higher than the security threshold t, not only for standard degree-d correlations but also for
several useful generalizations. In particular, correlations for locally converting between slot
configurations in “share packing” enable us to avoid the concrete overhead of prior works.

• Cheap straggler resilience. In reality, communication is not fully synchronous: protocol
executions suffer from variance in communication delays and occasional node or message-
delivery failures. We explore the benefits of PRSS-based MPC with a strong honest majority
toward robustness against such failures, in turn yielding improved latency delays. In doing so
we develop a novel technique for defending against a subtle “double-dipping” attack, which
applies to the best existing protocols, with almost no extra cost in communication or rounds.

Combining the above tools requires further work, including new methods for batch verifica-
tion via distributed zero-knowledge proofs (Boneh et al., CRYPTO 2019) that apply to packed
secret sharing. Overall, our work demonstrates new advantages of the strong honest majority
setting, and introduces new tools—in particular, generalized PRSS—that we believe will be of
independent use within other cryptographic applications.

∗This paper in the full version of [7]
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1 Introduction

Protocols for secure multiparty computation (MPC) [59, 34, 5, 17] enable a set of parties with
private inputs to compute a joint function of their inputs while revealing nothing but the output.
MPC provides a general-purpose tool for distributed computation on sensitive data, as well as for
eliminating single points of failure. As a result, a major research effort focused on improving the
asymptotic and concrete efficiency of MPC.

Efficient honest-majority MPC. The most practical MPC protocols rely on an honest majority
assumption, namely security is guaranteed as long as t < n/2 out of the n parties are corrupted,
and provide “security with abort” in the presence of malicious parties. Such protocols can be
either information-theoretic, or alternatively achieve better communication cost by making a black-
box use of a pseudorandom function. The latter is mainly useful for non-interactive generation
of pseudorandom shared secrets via a pseudorandom secret sharing (PRSS) technique [32, 21].
Moreover, the most efficient protocols in this setting follow the blueprint of Damg̊ard and Nielsen
(DN) [25], where each layer of a circuit is evaluated by having a designated “leader” party send
messages to all other parties and receive a message from each party in return.

In almost all of this line of research, one assumes the weakest honest majority assumption of
n = 2t+1 parties. However, assuming that up to half of the parties can be corrupted may sometimes
be overly pessimistic, and small relaxations of corruption threshold can be highly preferred in favor
of boosting performance. On the other hand, existing honest-majority protocols are also overly
optimistic in that they assume all messages arrive on time and are not robust to transient delays
or failures. We will revisit this issue later.

The potential for savings in the “strong honest majority” regime of n > 2t+1 has been asserted
within the context of asymptotic efficiency [27, 22, 24, 23, 4, 30, 41]. In a sense, existing MPC
protocols for n = 2t+ 1 parties are analogous to using a repetition code, which increases the total
cost by a factor of n, whereas the latter protocols are analogous to asymptotically good codes that
provide a constant or near-constant amortized asymptotic overhead. However, the techniques in
these theory-oriented works incur large concrete overheads placing them quite far from practical
efficiency, and their asymptotic efficiency benefits kick in only for large computations.

In the context of concretely efficient MPC, the potential gains of a strong honest majority remain
relatively untapped—both in the sense that asymptotic benefits of prior works do not currently
translate to concrete wins, and that potential for concrete gains outside the standard theoretical
models or (asymptotic) goals have not been well explored. One exception to this is a recent line
of works leveraging a larger number of honest parties for the purpose of closing the efficiency gap
between security against malicious (or active) adversaries and security against semi-honest (or
passive) adversaries [36, 29]. However, recent works [9, 12, 42, 13] have successfully closed this gap
even given a minimal honest majority n = 2t+ 1, in which case this advantage no longer applies.

In this work, we initiate a deeper study of concretely efficient MPC with strong honest majority
n > 2t + 1. We focus on developing general-purpose primitives and techniques to alleviate the
concrete costs of existing theory-oriented solutions, as well as exploring new directions for improved
latency in realistic networks. Our primary focus is on the case where the corruption threshold t
is small. This enables the use of PRSS techniques that give rise to simpler and more efficient
protocols, but incur (an offline) cost that scales exponentially with t. We are motivated by two
main limitations of current techniques.
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The overhead of packed secret sharing. A major source of concrete overhead in the aforemen-
tioned theory-oriented works is the use of a “share packing” technique [27] in which secret-shared
values are arranged into blocks, and a set of shares can simultaneously encode several values at the
same per-party cost. This technique natively supports computing a single circuit on many inputs
in parallel (also known as a “SIMD computation”), by computing operations simultaneously on all
values within a block. However, it requires a costly routing mechanism for general computations.
This overhead applies even in the semi-honest setting, but introduces additional challenges in the
malicious setting. While the initial O(log n) overhead of the routing-based technique from [23] was
recently improved to a constant [41], this comes at the cost of poor concrete efficiency.

Extending the ideas of these works, one may observe that existence of certain useful linear
correlations across parties would enable avoiding these routing overheads altogether. The desired
correlations correspond to sets of packed shares of secret random values, where different sets include
the same random values in different computation “slot” positions, in line with the routing of wires
within the computation circuit. But, unlocking these savings demands a large number of different
rerouting patterns, whose generation would destroy the optimization savings in existing works.
Much of the effort in previous works [22, 24, 23, 4, 38, 30, 41] was spent on efficient distributed
protocols for generating these linear correlations.

Tolerating stragglers. One advantage of MPC with a strong honest majority, which serves as
a primary motivation for the current work, is the potential for better robustness, in turn leading to
reduced latency in realistic network environments. Existing MPC protocols with n = 2t+ 1 parties
require at least one of the parties to wait for messages from all other parties before proceeding to
the next round. In particular, in protocols that follow the DN blueprint, the leader needs to wait
until it hears back from all other parties. But in reality, communication is not fully synchronous.
Even in a semi-honest setting, protocol executions suffer from variance in communication delays
and occasional message-delivery failures. This is sometimes referred to as the problem of stragglers.
To deal with this problem, practical distributed systems typically employ redundancy to allow
proceeding with the computation as long as “sufficiently many” messages were received. See [48]
for empirical studies of the impact of stragglers on realistic network.

Interestingly, achieving robustness to stragglers becomes more challenging when some parties
can be malicious. Standard secure protocols with good concrete efficiency do not have this feature
even when n > 3t. While such protocols are able to terminate in the face of up to t stragglers, this
occurs at the cost of labeling these parties as corrupt, and their secrets are no longer protected.
Alternatively, attempting to run DN-style protocols in an “optimistic mode,” by simply having the
leader wait for the first 2t messages to arrive, gives rise to a subtle “double-dipping” attack that
allows a malicious leader to learn private information. Previous solutions for this attack(see [29, 40])
require significantly more interaction and are not suitable for efficiently dealing with transient faults;
See Section 1.2 and Section 5.1 for more details.

1.1 Our Contributions

Motivated by the above opportunities and challenges, we present new techniques for MPC within
the setting of a strong honest majority, n > 2t + 1, focusing on the case of small1 values of t that

1 More precisely, our protocols have storage and (offline) computation costs that grow exponentially in t but
linearly in the number of parties n. Thus, when t is a small constant, they can be practical even for a large n.
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enable efficient use of PRSS. We make the following two main contributions.

Contribution 1: Generalized pseudorandom secret sharing (PRSS). As noted above,
PRSS enables a secure non-interactive generation of (pseudo)random values that are uniformly
distributed over some linear vector space. It relies on a low-communication setup, where indepen-
dent pseudorandom function (PRF) seeds are distributed to different subsets of the parties. The
prominent cost metric of a PRSS scheme is the number of such seeds required for the parties to
each compute their entry within the sampled vector. Following a general framework of Gilboa and
Ishai [32], Cramer et al. [21] described PRSS techniques for sharing degree-d polynomials between n
parties using

(
n
d

)
seeds,

(
n−1
d

)
per party, targeting the typical use-case where the security threshold

t is equal to d. Motivated by the fact that in MPC with strong honest majority we have t < d, we
present new PRSS constructions exploiting this gap.

Our constructions leverage suitable combinatorial designs, and yield a dramatic efficiency im-
provement when t � d, not only for standard degree-d correlations but also for several useful
generalizations. This includes correlations for locally converting between slot configurations in
“share packing,” which enable us to avoid the concrete overhead of prior works on MPC based
on share packing [23, 38, 30]. We remark that our PRSS results are independently motivated by
other applications beyond the context of MPC, including threshold cryptography, advanced cryp-
tographic primitives, and targeted multi-party protocols (e.g., [16, 26, 6, 14, 8]). See Appendix A
for discussion.

We provide a general transformation yielding PRSS schemes from any instance of a so-called
“covering design” with appropriate parameters. An (n,m, t)-cover is a collection of size-m subsets
Si ⊂ [n], such that every subset of t elements of [n] is covered by some set Si. The goal is to do so
with the fewest number of such sets Si. Construction of covering designs is a topic of combinatorial
research, where bounds are known for small parameters, and several results are known in the
larger parameter regime (see Section 3.3 for discussion). While it is not hard to see that the seed
replication pattern of a PRSS must induce a covering design, the converse direction is less obvious.
Indeed, our transformation incurs a small overhead that leaves a (d+1) multiplicative gap between
the upper and lower bounds on the number of seeds for the case of degree-d polynomials.

The following theorem summarizes our general transformation from covering designs to PRSS
for degree-d polynomials, as well as some corollaries obtained by plugging in existing covering
designs from the literature (cf. [37]).

Theorem 1.1 (PRSS for degree-d polynomials from covering designs, informal) Let n, d, t
be positive integers such that t < d < n. Given an (n, d+ 1, t)-cover of size k, one can construct a
PRSS scheme for sharing random degree-d polynomials between n parties with security threshold t,
requiring k(d + 1)(n − d)/n PRF seeds per party. As a special case, plugging in existing covering
designs for small t, we obtain the following:

– For t = 1, any n:
⌈

n
d+1

⌉
(d+1)(n−d)

n PRF seeds per party (or just n− d when (d+ 1)|n); .

– For t = 2, any n ≤ 3(d+ 1): 13(d+ 1) PRF seeds per party.

We further obtain PRSS for “double Shamir sharing” (i.e. two random polynomials of degrees d
and 2d with the same evaluations on given d− t+ 1 points) with roughly twice as many PRF seeds.
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In comparison to the parameters above, the naive baseline from [21] is
(
n−1
d

)
seeds per party,

which in the case that t < d can be improved to
(
n−1
t

)
seeds per party (see Footnote 2). Plug-

ging in explicit covering design constructions from the literature, the PRSS solutions obtained via
Theorem 1.1 provide significant savings to even this improved baseline. For example:

• (n, d, t) = (48, 15, 4) requires 2, 772 seeds per party, versus baseline
(

47
4

)
= 178, 365.

• (n, d, t) = (49, 23, 4) requires 484 seeds per party, versus baseline
(

48
4

)
= 194, 580.

• (n, d, t) = (49, 23, 8) requires 57, 281 seeds per party, versus baseline
(

48
8

)
≈ 3.7 · 108.

See Table 1 for additional data points. Our PRSS constructions go beyond basic Shamir or
double-Shamir shares, to a generalized form of PRSS that allows local generation of packed pseu-
dorandom secrets with an arbitrary replication pattern. We achieve this with with additional
redundancy of seeds to parties. However, the resulting complexity still provides significant sav-
ings as an alternative to existing approaches within motivated regimes. We refer the reader to
Section 3.6 for a detailed treatment.

Contribution 2: Cheap straggler resilience. We propose a novel technique for dealing with
the “straggler” problem of delayed messages, allowing the protocol to continue the execution once
sufficiently many messages are received. In doing so, we need to defend against the subtle “double-
dipping” attack mentioned above. In contrast to alternative approaches for defending against this
attack [29, 40], our approach has no extra cost to the round complexity of the protocol and only
a sublinear additive communication overhead. Our protocol makes black-box use of our PRSS
construction to produce the required randomness without interaction.

Combining the above tools to obtain efficient MPC protocols with security against malicious
parties requires additional ideas. In particular, we need to adapt the distributed zero-knowledge
proof techniques of Boneh et al. [9] to the setting of MPC based on packed secret sharing. See
additional discussion below.

The features of our final protocol are captured by the following theorem.

Theorem 1.2 (Malicious security with straggler resilience, informal) Let t ≥ 1 be a secu-
rity threshold, ` ≥ 1 a packing parameter, n ≥ 2t+2`−1 a number of parties, and F be a finite field
such that |F| > n + t + 2`. Then, for any arithmetic circuit C over F with S multiplication gates
and depth D, there is an n-party protocol for C with the following efficiency and security features:

• The protocol makes a black-box use of any pseudorandom function;

• Excluding O(1) rounds of preprocessing and postprocessing, the protocol consists of D epochs,
where in each epoch P1 sends a message to each other party Pi and receives a message back
from each Pi;

• It achieves security with abort in presence of t malicious parties even if τ = n− (2t+ 2`− 1)
messages, chosen by the adversary, are dropped in each epoch;

• If the parties follow the protocol, it terminates successfully even if τ messages, chosen by the
adversary, are dropped in each epoch;
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• Communication cost is
(

3
` −

2t+2`+1
n·`

)
S + o(S) elements of F sent per party.

We further discuss the communication, computation, and storage costs in the following remarks.

Remark 1.3 (Sensitivity to the topology of C.) As in other protocols based on packed secret
sharing, the communication complexity bound in Theorem 1.2 assumes that the circuit C is “non-
pathological” in the sense that its width is bigger than the packing parameter `. (Otherwise there
is an extra communication cost resulting from empty slots.) Since we typically expect ` to be much
smaller than the circuit size, this condition is met for almost all natural instances of big circuits.

Remark 1.4 (On the cost of PRSS.) The generalized PRSS primitive influences the local stor-
age and computational cost, which can be performed offline and are practical for small t even for
large values of ` and n; see Table 1 and Table 3 for concrete numbers. By increasing the degree
parameter d of the generalized PRSS construction beyond the minimum required by t and `, we get
better PRSS complexity at the cost of a lower straggler resilience threshold τ .

Remark 1.5 (On communication complexity.) When ` = 2, the amortized communication
cost in Theorem 1.2 is always less than 1.5 elements per party per gate, and when ` = 3 it goes below
1 element per party. We present concrete efficiency analysis of our protocol in Table 2, showing that
as we increase n and `, our protocol not only can withstand stragglers, but also achieves lower total
communication than the best known semi-honest protocols with n = 2t + 1 parties. In particular,
whenever ` = Ω(n) the total communication complexity (ignoring lower order additive terms) is
O(s).

Technical challenges & contributions. Our final MPC protocol builds on new solutions for
the following main challenges:

• Generalized pseudorandom secret sharing (PRSS) based on combinatorial designs that take
advantage of the gap between the polynomial degree d and the security threshold t to reduce
computation and storage costs.

• Packed secret sharing beyond SIMD, without the asymptotic or concrete overhead of previous
techniques [23, 38, 30]. Our solution relies on generalized PRSS for cheaper batch generation
of useful linear correlations, for “repacking” secret shared values in different orders.

• Preventing “double-dipping” attacks, identified by [40, 29], which exploit the redundancy of
encoding across parties in a strong honest majority to obtain related secret values under the
same random mask (see below; note that this attack arises even without share packing). The
works of [40, 29] protect against the attack using methods that require participation from all
parties and increase the round complexity by 2x or more; we do so while supporting resilience
to stragglers, and with essentially no extra online cost.

• Applying sublinear distributed zero knowledge [9] on packed shares, as well as achieving
batched verification with missing shares (due to stragglers). The former challenge arises
again from the non-SIMD structure of general computation, here relating to the statements
to be efficiently verified. The latter issue pertains to verifying consistency of several robustly
secret shared values, when each secret has a different subset of shares missing, corresponding
to different sets of straggling parties.

We further discuss each of the above points in Section 1.2 below.
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1.2 Overview of Techniques

Generating random packed sharings via generalized PRSS. In section 3 we show how to
generate shared blocks of random sharings that satisfy linear correlations, without any interaction
beyond a short setup step. Our techniques can be seen as an extension of the share conversion
methods of Cramer-Damg̊ard-Ishai (CDI) [21]. However, besides extend this construction, we also
drastically improve its efficiency.

Recall that CDI described non-interactive sharing of (pseudo)random degree-t polynomials,
resilient against t dishonest parties, as follows: Each (n − t)-subset of parties S ⊂ [n] (we use [n]
to denote the set {1, . . . , n}) gets a random PRF seed, and uses it to generate a (pseudo)random
degree-t polynomial which is zero in all points outside of S. The resulting polynomial is just a sum
of all these

(
n
t

)
polynomials. Each party can compute its share on this polynomial from the seeds

that it knows, because the seeds that it is missing correspond to polynomials that evaluate to zero
in the point of that party.

We extend this construction to the case where the polynomial degree d is larger than the
resilience threshold t, and show how the gap between d and t can be used to achieve drastic
improvement in complexity. In this case, the construction turns out to be closely related to a well
studied combinatorial design problem of covering all t-subsets of [n] using larger subsets of size
(roughly) d. That is, each t-subset of [n] must be contained completely within at least one d-subset
within the cover.

It is easy to see that such covers are necessary: Each PRF seed must be given to a size-
(n − d) subset for the resulting polynomial to have degree d (since any party without the seed
must correspond to evaluation output 0), and every t-subset must miss at least one of the seeds
(else they know the entire polynomial). So the complementing subsets must form a set-cover of
all t-subsets using d-subsets. We observe that the other direction also holds, albeit with some
overhead: Any design that covers all t-subsets using larger subsets of size d + 1 can be converted
to a secure share-conversion for degree-d polynomials with security against t-collusions, with only
a modest increase in complexity.

Specifically, let C′ = {S′1, S′2, . . . , S′k′} be a collection of size-(d + 1) subsets that covers all t-
subsets (i.e., for every t-subset T there exists S′i ∈ C′ such that T ⊂ S′i.) Consider all the subsets
that are obtained by removing a single element from any of the S′i’s, namely the collection

C̄ =
{
S′ \ {j} : S′ ∈ C′, j ∈ S′

}
.

The number of distinct subsets in C̄ is k ≤ k′(d + 1), and each subset is of size d. Let us denote
the subsets in C̄ by S̄1, S̄2, . . . , S̄k, and their complement sets by Si = [n] \ S̄i. We use the Si’s
in the CDI construction to distribute (pseudo)random polynomials. The resulting polynomials are
of degree d (since the Si’s have cardinality n − d). It is also easy to see that C̄ still covers all
t-subsets (and hence each t-subset still misses some seeds): For each T ⊂ [n] there is S′i ∈ C′
that covers it, and removing from S′i an element which is not in T yields some S̄ ∈ C̄ that still
covers T . In section 3 we use the linear algebraic security criteria of Gilboa and Ishai [32] to prove
that this construction is indeed resilient against any t-collusion. We then show a more intricate
extension of this construction that handles the more complex linear correlations corresponding to
packed random secrets that satisfy an arbitrary replication pattern. These are useful for our MPC
protocol which we describe below.

The key reason for the efficiency advantage of generalized PRSS over standard PRSS is that
when d � t there are set-covers of size much less than

(
n
t

)
, sometimes as small as O(1) (when
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t = O(1) and d = Ω(n)). In these cases we get constructions with total complexity O(n), compared
to O(nt) of standard PRSS [21].2 See Table 1 for concrete numbers.

First step toward straggler resilience. We proceed to discuss our protocol which deals with
stragglers. The starting point is the Damg̊ard-Nielsen (DN) [25] protocol for computing the mul-
tiplication of two shared values x and y. This protocol is the most efficient honest-majority secure
multiplication protocol known to date. We use the notation JxKd to denote a Shamir’s secret sharing
of x via a degree-d polynomial. In the DN protocol, the parties prepare random sharings JrKd and
JrK2d which are used as follows. To multiply JxKd and JyKd, the parties locally multiply their shares,
mask it by adding JrK2d and send the result to a designated party P1. Party P1 then reconstructs
xy− r and shares it to the parties as Jxy − rKd. Finally, the parties locally add Jxy − rKd to JrKd to
obtain JxyKd. The sharing JrK2d is a random masking polynomial, which guarantees that no private
data is learned (since locally multiplying JxKd and JyKd yields JxyK2d, the masking polynomial must
be of degree at least 2d).

It is easy to see that P1 must receive 2d messages in order to compute xy−r, as together with its
own share, P1 now holds 2d+1 points on a 2d-degree polynomial. Thus, in the semi-honest setting,
a straightforward solution to withstand loss of messages in this step is to consider additional parties,
i.e., strong honest majority. Given n > 2d + 1 parties, the protocol directly becomes resilient to
n− (2d+ 1) dropped messages in a phase consisting of the parties sending degree-2d shares to P1

and receiving degree-d shares in return.

Reducing communication and computation using packed secret sharing. One drawback
of increasing the number of parties, is that the overall communication and computation grow as
well. To reduce communication and to allow straggler resilience without increasing costs, we wish to
leverage the ideas of [22, 23] using packed secret sharing [27], to allow encoding a block of ` secrets
on the same polynomial. We use the notation Jx1 · · ·x`Kd to denote that the secrets x1, . . . , x` are
shared via a polynomial of degree d. Following [22, 23], given two blocks Jx1 · · ·x`Kd and Jy1 · · · y`Kd,
and randomness of the form Jr1 · · · r`Kd and Jr1 · · · r`K2d, it is possible to invoke the DN protocol
once to obtain Jx1y1 · · ·x`y`Kd, instead of calling it ` times in the single secret-per-sharing case,
thereby reducing costs by a factor of `.

This approach fits directly into place when the program to be evaluated is of a special SIMD
(“same instruction, multiple data”) structure, consisting of many parallel copies of an identical
sub-computation. However, as encountered in these works, a greater challenge comes in supporting
computations of general circuit structures beyond SIMD, since outputs of intermediate operations
must be reordered into different “slots” to perform the following block of parallel operations. This
problem was addressed in prior works by introducing between each pair of existing operations
an additional logarithmic sequence of intermediate “routing” operations (emulating the swaps of a
routing network), which serve to reorder the outputs into new blocks that correspond to the program
structure. However, this routing procedure is the source of great overhead. Asymptotically it

2 While a naive use of CDI [21] for degree-d polynomials requires
(
n
d

)
PRF seeds, when t < d it can be reduced

to
(
n
t

)
by using the same seed multiple times, each time with a different input. Concretely, for each set of parties of

size T , where |T | = t, a seed rT is given to the parties in [n] \T . The parties define a polynomial PT where all points
corresponding to the parties in T are zero, and d+1− t additional points are set by invoking the PRF, with rT as the
key, and the point’s x-coordinate as the input (e.g., for each i ∈ T set PT (i) = 0, and for each k ∈ {−d+ t, . . . , 0} set
PT (k) = PRFrT (k)). Note that the parties in [n] \ T have enough information to compute PT . The final polynomial
of degree d is the sum of all these

(
n
t

)
polynomials.
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multiplies the complexity of the protocol by a logarithmic factor, and concretely it incurs significant
slowdowns and extra implementation complexity.

One may observe that, given a particular form of linear correlated randomness, a simple adjust-
ment to the existing protocols can allow the use of packing techniques in general circuits/programs
without increasing communication. We can additionally leverage the fact that in the DN protocol,
party P1 sees masked intermediate values in the clear, to let P1 carry out locally linear operations
over the masked secrets.

For example, consider ` = 2 and suppose that P1 received Jx1 + r1, x2 + r2K2d in some intermedi-
ate layer of the circuit and recovered the values x1+r1 and x2+r2 in the clear. Further suppose that
for the next layer of the circuit, x1 is supposed to be packed in both positions of some block. P1 can
distribute to everyone the packed polynomial Jx1 + r1, x1 + r1Kd, and it falls to the offline random-
ness generation to equip the parties with a sharing of Jr1, r1Kd that they can use to unmask these
values. Similarly, suppose that P1 holds x1+r1 and x2+r2, and the circuit specifies that some linear
combination α1 ·x1+α2 ·x2 is to be fed into a multiplication gate in the next level, packed in the first
position of some block. P1 can compute x′ = α1(x1+r1)+α2(x2+r2) = (α1x1+α2x2)+(α1r1+α2r2),
and distribute a sharing of Jx′, . . .Kd to everyone (with some other value in the second position).
Again it falls to the offline randomness generation to equip the parties with a sharing of Jr′, . . .Kd
(with r′ = α1r1 + α2r2) that they can use for unmasking.

In full generality, we can implement an arbitrary linear transformation between two adjacent
multiplication layers by having P1 apply this linear transformation to the masked values, and
having the offline randomness generation equip the parties with the linearly correlated randomness
needed for unmasking. Specifically, the parties must hold blocks of random secrets Jr1 · · · r`K2d for
masking and Jr′1 · · · r′`Kd for unmasking, such that the ri’s are uniformly random and each r′j is set
as some public linear combination of the ri’s. Fortunately, this type of correlated randomness can
be provided by our PRSS method discussed above as we show in Section 3.6.

From semi-honest to malicious security. The next step is to augment the protocol described
so far to malicious security (with abort). Our goal is to achieve this without increasing the amortized
communication cost, and while providing the same resilience to stragglers as in the semi-honest
protocol. As in many efficient multi-party protocols, we follow the path of letting the parties run
the semi-honest protocol to compute the circuit/program, and then, before the output is revealed,
run a short cheap verification protocol to detect cheating in the semi-honest protocol. However,
this raises a problem.

While semi-honest protocols (and in particular the DN protocol) in the setting of n = 2d+1 have
been shown to achieve privacy even in the presence of malicious adversaries, surprisingly enough
this is not the case when n > 2d+ 1, as considered in this work. Indeed, Goyal et al. [40] identified
a subtle yet fatal concrete attack (which we call the “double-dipping” attack) for this setting that
is carried out over two multiplication gates in two layers, in which a malicious P1 can learn private
data. What enables this attack is the fact that P1 needs only 2d+ 1 shares to compute xy− r, and
can use these shares to also compute by himself the remaining n− (2d+ 1) shares (since any 2d+ 1
points on a 2d-degree polynomial determine deterministically all the other points). This enables
P1 to send a false message to a single party and then later compare the “correct” response of this
party in the following round (computed based on the other parties’ correct response) to the party’s
real response (computed based on the false message sent by P1 in the previous round), revealing
secret-dependent information.
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To overcome this problem, a simple solution suggested in [40] is to take a masking polynomial
of degree n− 1 instead of 2d. A different solution from [29] requires running a constant-cost check
between each two layers of the computed circuit/program. The first solution require all parties to
participate, thus leaving no room for stragglers, while the second blows up the number of rounds
by a factor of 2.

Privacy against “double-dipping” attacks. To allow straggler resilience without changing
the round complexity, we design a new solution that allows P1 to proceed with just 2d+1 shares as
before, but in a private manner. The main idea behind our solution is to have a different masking
polynomial for each subset of 2d + 1 parties. This of course raises the question of which masking
share a party should use when sending its message to P1. Our idea thus requires that each subset
T of 2d+1 parties will hold a sharing JrT K2d, under the constraint that the share held by each party
Pi will be the same for all subsets T for which Pi ∈ T . The protocol then proceeds by having each
party use its share as a masking in its message to P1, and having the exact masking polynomial
be determined “on the fly” by the first 2d messages arriving to P1. This method achieves privacy
since even though the masking polynomial is of degree 2d < n− 1, the different masks mean that
the random shares held by the parties are now completely random and independent (i.e., cannot
be reconstructed from one another), preventing the above attack.

This new method requires of course the adjustment of the offline protocol described above to
produce random sharings with these constraints. We show how these can be produced to support
our new protocol using our general PRSS method in a black-box way, enabling a private evaluation
of the circuit/program in the presence of malicious adversaries with resilience to n−(2d+1) dropped
messages in each phase as before.

Sublinear zero knowledge on packed shares (and batched verification with stragglers).
Once privacy is guaranteed, we proceed to show how to achieve correctness. To this end, we utilize
the distributed zero-knowledge proofs introduced by Boneh et al. [9]. Their main observation
is that to verify the correctness of a distributed computation (as opposed to carrying out the
computation), one can define a verification circuit of degree-2, where all the inputs are robustly
shared among the parties, which outputs 0 if no cheating took place. Specifically, given that
the parties hold multiplication triples (JxKd , JyKd , JzKd) corresponding to the inputs and output of
each multiplication gate/instruction, the circuit that takes a random linear combination of all the
differences of the form z−x ·y is a degree-2 circuit with inputs that are shared robustly via degree-d
sharings and that outputs 0 if all multiplication triples are correct. The low degree of the circuit
enables running a secure protocol to verify that the output is 0, with sublinear communication cost
(in the size of the original circuit/program).

Applying their method to our setting raises several challenges. While the inputs to the ver-
ification circuit are robustly shared, they are encoded at different slots, which makes it difficult
to perform the operations required by the protocol. We show how to overcome this by carefully
designing a verification circuit, where all operation are slot-friendly operations, meaning that all
operations are carried out over inputs that are encoded at the same entry of their block.

A second problem that arises is that in our protocol, the parties do not hold shares of the
output of each multiplication. Recall that in our protocol P1 does not share the output of each
(masked) multiplication’s output to the parties, but rather performs linear operations over the
masked values and only when P1 reaches the next multiplication, it shares the masked input blocks
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to the parties. This seems problematic, since the verification circuit defined above works with
multiplication triples. Nevertheless, we leverage the fact that the input to each multiplication is a
linear combination of previous multiplications outputs, with coefficients that are publicly known, to
construct a verification circuit of degree-2. We then show how the parties can ensure, by applying
the mechanism of [9] on this verification circuit, that if cheating took place in one of the semi-
honest computations, then it will be detected with high-probability. We note that besides the
desired property of having sub-linear communication, our verification protocol is also constant-
round, thereby not increasing the round complexity of the computation.

A final issue that arises is how to run the verification protocol, given that in the private protocol
a subset of messages were dropped, which means that sharings of inputs to the verification circuit are
only known to different subsets of parties. We observe that the number of such subsets is bounded
by the depth of the program. Thus, we can run the lightweight verification a number of times that
is bounded by min(depth,

(
n
τ

)
) (where τ is the number of stragglers), obtaining communication that

(for most natural programs) is still sublinear in the size of the program.

1.3 Related Work

We mention here specific recent works relating to our second contribution, of MPC in the strong
honest majority setting achieving concrete efficiency and straggler resilience.

PRSS-based vs. interactive correlated randomness generation. In this work, we use
non-interactive PRSS to generate the double sharing required for the DN multiplication protocol.
While we improve the efficiency of PRSS dramatically (when the polynomial degree d is higher
than the corruption threshold t), the computational overhead still limits the practical use of this
method to a relatively small number of corrupted parties t. See Table 3 in Section 4 for concrete
estimates of computational cost. An alternative to the PRSS-based approach is using an interactive
protocol, but with computation that scales polynomially with the number of parties. The state-of-
the-art protocol by Goyal et al. [39] shows how to generate the double sharing with communication
of just 0.5 field element sent per party. This implies that our method requires approximately
25% less overall communication. More importantly, the method of [39] does not support straggler
resilience and applies only to gate-by-gate evaluations. While it can be easily extended to SIMD
circuits, it does not extend to general non-SIMD circuits with packed secrets. Finally, the correlated
randomness generation procedure from [39] requires interaction between all parties, which can be
prohibitive in some of the applications scenarios described in Appendix A.

MPC with strong honest majority. Concretely efficient MPC in the strong honest majority
setting has gained recent focus, including the works of Gordon et al. [38] and Beck et al. [30]. In
comparison, their protocols scale to a larger number of parties, while our approach provides better
efficiency for the regime of small corruptions t. This is due largely to our ability to generate the nec-
essary setup correlations with minimal interaction via generalized PRSS. In addition, our protocols
provide straggler resilience (yielding savings in settings with latency variance), whereas [38, 30]
assume a fully synchronous network. Finally, in these works, malicious security comes with a
multiplicative overhead, whereas in our protocol, the overhead is sublinear in the size of the circuit.

A very recent work of Goyal et al. [41] shows how to achieve asymptotic constant communication
cost per party in this setting for general non-SIMD circuits with information-theoretic security, but
with poor concrete efficiency and without stragglers resilience.
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MPC with partial synchrony. A number of works have studied MPC with various (stronger)
flavors of partial synchrony from the perspective of feasibility, without focus on concrete efficiency.
For example, the work of Zikas et al. [60] provides unconditionally secure protocols in a model where
parties can additionally be send-omission or receive-omission corrupted. Guo et al. [43] consider
a model where parties can periodically go offline and return. In Badrinarayanan et al. [3] parties
can turn non-adversarially “lazy.” Both of the latter rely on heavy cryptographic tools, such as
(multi-key) fully homomorphic encryption.

Finally, a handful of works have considered concretely efficient MPC with forms of partial syn-
chrony, with incomparable conclusions. Hirt and Maurer [47] consider a mixed model of malicious
and fail-stop adversaries, achieve perfect security, but with larger overall cost (e.g., without the
savings of share packing). The “Fluid MPC” work of Choudhuri et al. [19] builds efficient protocols
within a very different model, designed for long computations, where in each period of time, a
different set of parties carry-out the computation.

2 Preliminaries

Notation. Let P1, . . . , Pn be the set of parties and let t, `, d be integers such that d ≥ t+`−1 and
n ≥ 2d+ 1. The parameter t bounds the number of parties that can be corrupted, the parameter `
denotes the size of the block of secrets that are evaluated together, and d will be the degree of the
polynomial defined below. We use [n] to denote the set {1, . . . , n} and denote by F a finite field.

2.1 Threshold Secret Sharing

Definition 2.1 A d-out-of-n secret sharing scheme is a protocol for a dealer holding a secret value v
and n parties P1, . . . , Pn. The scheme consists of two interactive algorithms: share(v), which outputs
shares (v1, . . . , vn) and reconstruct({vj}j∈T , i), which given the shares vj , j ∈ T ⊆ [n] outputs v or
⊥. The dealer runs share(v) and provides Pi with a share vi of the secret v. A subset of users T run
reconstruct({vj}j∈T , i) to reveal the secret to party Pi. The scheme must ensure that no subset of
d shares provide any information on v, while v = reconstruct({vj}j∈T , i) for T only if |T | ≥ d+ 1.
We say that a sharing is consistent if reconstruct({vj}j∈T , i) = reconstruct({vj}j∈T ′ , i) for any two
sets of honest parties T, T ′ ⊆ {1, . . . , n}, and |T |, |T ′| ≥ d+ 1.

2.1.1 Packed Shamir Secret Sharing

In Shamir’s secret sharing scheme [55], the dealer defines a random polynomial p(x) of degree d
over a finite field F such that the constant term is the secret. Each party is associated with a
distinct non-zero field element α ∈ F and receives p(α) as its share of the secret. Since the degree
of the polynomial is d, any d + 1 points are sufficient to compute the secret. We use the notation
JxKd to denote a sharing of x via a polynomial of degree d.

Two properties of this scheme that are very useful for MPC are: (1) linear operations on secrets
can be computed locally on the shares, since polynomial interpolation is a linear operation; (2)
given shares of x and y, the parties can locally multiply their shares to obtain a sharing of degree
2d of x · y.

In this work, we use a generalization of Shamir’s sharing scheme where multiple secrets are being
encoded together, introduced by Franklin and Yung [27] and known as “packed secret sharing”.
This is achieved by storing the secrets on multiple points. Note however that if we pack ` secrets
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together on a polynomial of degree d, then the corruption threshold is being reduced to t =
d − ` + 1. Throughout this paper, we will use the notation Jx1 · · ·x`Kd to denote a sharing of
the block x1, . . . , x` using a polynomial of degree d, and assume that x1, . . . , x` are stored at points
0,−1, . . . ,−` + 1 respectively and that the share of Pi is the value at the point i. Observe that
the properties mentioned above apply to packed secert sharing as well. Namely, given a constant
α, β ∈ F and two sharings Jx1 · · ·x`Kd, Jy1 · · · y`Kd, the following are local operations over the
shares: (1) J(αx1 + βy1) · · · (αx` + βy`)Kd = α Jx1 · · ·x`Kd + β Jy1 · · · y`Kd; (2) Jx1y1 · · ·x`y`K2d =
Jx1 · · ·x`Kd · Jy1 · · · y`Kd.

We say that a sharing JxKd or Jx1 · · ·x`Kd is inconsistent if all points do not lie on the same
polynomial of degree d. Given all shares, this can be easily checked by using d + 1 points to
reconstruct the polynomial and checking whether the remaining points lie on this polynomial

2.2 Computation Model: Layered Straight-Line Programs

In this work, we present a multi-party protocol for performing arithmetic computations over a
finite field. In the MPC literature, arithmetic computations are usually represented by a circuit
or a straight line program (SLP) with addition and multiplication gates/operations. We use the
notion of SLP, but choose a slightly different representation, with one instruction, which we call
“bi-linear”, that captures the two operations together. This model will allow us a simple and more
clearer description of our protocols, and in particular, make the trick to achieve “free-addition”
easier to describe.

Definition 2.2 (Layered straight-line program (SLP)) A straight-line programs (SLP) over
F is defined by an arbitrary sequence of the following kinds of instructions:

• Load an input into memory: Rj ← xi.

• Bilinear instruction: Rj ← (
∑w

ω=1 aω ·Rω) · (
∑w

ω=1 bω ·Rω)

• Output value from memory, as element of F: Oi ← Rj.

Here x1 . . . , xn are inputs, R1, . . . , Rw are registers and a1, . . . , aw, b1, . . . , bw are public constants
in F. We define the size of an SLP to be the number of instructions. A layered SLP is an SLP
where the instructions are partitioned into sets called layers such that the inputs to instructions in
layer j were computed in layer k < j. An `-layered SLP is a layered SLP in which the number of
instructions in each layer is a multiple of `.

For simplicity, we assume in our MPC protocols for SLP that each party holds one input and
receives one output at the end. However, the protocols naturally extend to the general case of
multiple inputs or outputs per party.

Remark 2.3 (Simulating arithmetic circuits by layered SLPs) Every arithmetic circuit of
size S (counting only multiplication gates, inputs, and outputs) can be converted into an SLP of size
S by sorting its gates in an arbitrary topological order. The “`-layered” notion of SLP intuitively
corresponds to a lower bound on the circuit width. In particular, an SIMD circuit computing k ≥ `
copies of a size-S circuit C on k distinct inputs can be written as an `-layered SLP of size kS. Any
layered SLP can be converted into an `-layered one by naively adding dummy gates if needed, where
the latter adds (`− 1) times the depth in the worst case. But almost all “natural” instances of big
circuits can be compiled into `-layered SLPs with no overhead.
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2.3 MPC Security Definition

We use the standard definition of security based on the ideal/real model paradigm [15, 33] and
augment it to capture an additional “stragglers-resilience” property. We consider in this work two
types of adversaries. In Section 4, the adversary is semi-honest, which means that it follows the
specification of the protocol but may try to learn private information. In Section 5, we augment
the protocol to the more realistic model of malicious security, where the adversary can behave in
an arbitrary way. For malicious security, when we say that a protocol securely computes an ideal
functionality with abort, then we consider non-unanimous abort (sometimes referred to as “selec-
tive abort”). This means that the adversary first receives the output, and then determines for each
honest party whether they will receive abort or their correct output. It is easy to modify our proto-
cols so that the honest parties unanimously abort by running a single (weak) Byzantine agreement
at the end of the execution before the output is revealed [35], with constant communication cost;
we therefore omit this step for simplicity.

3 Generalized Pseudorandom Secret Sharing

An important resource for our main protocol is a packed secret sharing of blocks of ` secrets that
are randomly sampled from a given linear subspace. In this section, we show how the parties
can securely generate arbitrarily many such blocks of secrets without any interaction, assuming a
short setup step where they distribute seeds for a Pseudorandom Function (PRF). Subsequently,
shares are obtained by local computation on the seeds. We refer to this problem as generalized
pseudorandom secret sharing (PRSS). This primitive is useful beyond the context of this work, and
our results are useful even without any share packing (i.e., when ` = 1).

More abstractly, we can view the problem as that of efficiently realizing a linear correlation,
namely an ideal functionality that picks a random vector from a public linear space and delivers
one or more entries of this vector to each party. To be applicable in an MPC protocol, even with
a semi-honest adversary, the linear correlations must be generated securely. Loosely speaking, an
adversary should not get any information on the shares of honest parties beyond what follows from
the public linear correlation, even given the information that the adversary holds.

The ideal functionality FLinRand. We will make security arguments relative to an ideal func-
tionality FLinRand for sharing instances of linear correlated randomness. More concretely, FLinRand

is parametrized by some linear subspace, and in each invocation it picks a random vector from that
linear subspace and distributes one or more entries to each party. Both the linear space and the
assignment of which entry goes to what party are public. It is only the actual vector sampled from
the linear subspace that should remain secret.

Security is defined with respect to a static adversary who may corrupt up to t parties. Con-
cretely, the real world view of the adversary together with the outputs of honest parties should be
indistinguishable from an ideal world in which the adversary chooses the corrupted parties’ shares,
and then the honest parties’ shares are sampled from the target correlation conditioned on this
choice. This can be formally viewed as a multiparty instance of a Pseudorandom Correlation Func-
tion (PCF), recently defined by Boyle et al. [11], applied to linear correlations. The notion of PCF
naturally extends the notion of a Pseudorandom Correlation Generators (PCG) [10], analogously
to the way a standard PRF extends a standard PRG.

We are interested in t-secure realizations of FLinRand that have the following structure: (1)
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During an offline setup phase, a trusted dealer picks random and independent PRF seeds, and
distributes each seed to a subset of the parties.3 (2) Next, to realize a fresh invocation of FLinRand

with common identifier id, each party locally evaluates the PRF with each seed it owns on one or
more inputs derived from id, and outputs a fixed linear combination of the PRF outputs. (The
linear combination is fixed and does not change from one id to the next.)

3.1 Overview

Following prior work, we reduce the goal of secure realization of FLinRand to an information-theoretic
problem where the PRF seeds are replaced with true randomness. Namely, we consider locally
generating an instance of the target correlation with perfect t-security given independently random
field elements that are replicated between the parties. In the PRF-based computational realization
of FLinRand, the random field elements will be pseudorandomly sampled using the PRF. Security
under the above PCF-style definition reduces to information-theoretic security via a standard hybrid
argument.

The PRSS problem was first implicitly studied by Gilboa and Ishai [32]. Cramer, Damg̊ard, and
Ishai [21] made this notion explicit and described a simple construction for the case of generating
t-out-of-n Shamir sharing of random values. This construction is a useful building block in many
cryptographic applications.

Here we extend the notion and construction of PRSS to more general settings that are motivated
(among other applications) by MPC with strong honest majority. We show that a gap between the
degree d and the security threshold t can give rise to dramatic efficiency improvements. Concretely:

• We start by extending the standard PRSS problem to the case where the degree of the Shamir-
sharing polynomial can be larger than the security threshold t, and reduce this problem to
a well-studied combinatorial design problem. This construction can be used for example to
implement efficient distribution of packed Shamir sharing [27] of random values, and can be
useful for many other applications.

• We show how to use the above construction in a black-box fashion to get efficient imple-
mentation of the kind of “double sharing” needed for protocols that follow the approach of
Damg̊ard-Nielsen (DN) [25]. Specifically, we implement the target correlation of two secret-
sharing of the same (possibly packed) random values, one with a degree-d polynomial and
the other with a degree-2d polynomial.

• We show an extension of this technique to the harder case where we have degree-2d sharings of
random values, and degree-d sharings of arbitrary linear combinations of those random values.
This is used to generate random packed secrets that satisfy given replicated constraints, as
needed by efficient MPC protocols for general circuits based on packed secret sharing [22, 23].

We note that our techniques can be used to improve the efficiency of even more general forms of
linear correlation, but leave systematic study of their application to future work.

3.2 The Gilboa-Ishai Framework

The functionality that we want to implement distributes linearly correlated random variables over
some field F to n parties. The functionality is parameterized by a matrix C ∈ FN×K whose columns

3This setup can alternatively be implemented by a secure MPC protocol.
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span a linear code (i.e., linear subspace of FN ), and by a mapping ρ : [N ]→ [n] saying which party
gets what entry of the output vector. The functionality chooses a random vector ~v in the code (by
choosing a uniformly random ~u ← FK and setting ~v := C~u), then privately sends to each party i′

all the entries indexed by ρ−1(i′).
Implementing this functionality without any interaction (beyond pre-distribution of PRF seeds)

was studied by Gilboa and Ishai [32], in the information-theoretic setting where the PRF seeds
are replaced by true randomness. In their framework, implementation of the linear-correlation
functionality consists of:

• Input distribution, where an honest dealer draws x1, x2, . . . , xk ∈ F uniformly at random, and
distributes each xj to some subset of parties Sj ⊂ [n];

• Local output computation, where each party i locally computes and outputs its entries of ~v
from the xj ’s that it received.

The complexity measures of interest for such a solution are:

• The number of distinct subsets Sj , corresponding to the number of PRF seeds to be dis-
tributed, and

• The sum
∑k

j=1 |Sj |, corresponding to the total number of pseudorandom field elements to be
derived from these PRF seeds, across all the parties.

All the known implementations, including the ones that we describe here, rely on “small-support
codewords” and the Gilboa-Ishai security criteria: A solution is specified by a “sparse” matrix
M ∈ FN×k (typically k � K), whose columns span the same code as C. The output is computed
by choosing a random vector ~x = (x1, . . . , xk) and setting ~v := M~x, and each party gets all the
xj ’es that it needs in order to carry out this computation. Specifically, for an entry ~v[i] that belongs
to party ρ(i), we give that party the random elements xj for which M [i, j] 6= 0, making it possible
for this party to compute the inner product between ~x and the i’th row of M . Hence the sets
S1, . . . , Sk are defined

Sj = {i′ ∈ [n] : ∃i ∈ [N ], M [i, j] 6= 0 and i′ = ρ(i)}, (1)

(For example, if the mapping ρ assigns entries 1 through 10 in ~v to Party 1 then the only xj values
that are not given to this party correspond to columns of M where the top 10 entries are all zero.)
Clearly, the sparser the matrix M is, the fewer xj values that must be distributed and the smaller
we can make the sets Sj .

Gilboa and Ishai proved a necessary and sufficient criterion for security within this framework.
Fix a code which is generated by the columns of the matrix C, and a solution matrix M whose
columns span the same code. For a subset of parties T ⊂ [n], let IT be all the rows that belong to
parties in T , and JT be all the indices of xj ’s that members of T get to see. That is, with the Sj ’s
defined as in Equation (1), we have

IT =
⋃
i′∈T

ρ−1(i′), and JT =
{
j ∈ [k] : Sj ∩ T 6= ∅

}
.

Denote by CT̄ the restriction of span(C) to only the codewords that are zero in all the coordinates
IT . Also denote by M ′

T̄
the submatrix of M consisting of the rows in the complement IT̄ = [N ]\ IT

and the columns in the complement JT̄ = [k] \ JT (i.e., the ones corresponding to xj ’s that none of
the parties in T receives).
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Lemma 3.1 ([32]) Let C ∈ FN×K and M ∈ FN×k be two matrices with the same column space
(so M describes a solution to the distribution of a codeword from span(C)).

For a subset of parties T ⊂ [n], the solution specified by M is secure against a corrupted T iff
the rank of M ′

T̄
equals the dimension of CT̄ .

3.3 Technical Tool: Covering Designs

The main technical tool that we use in our construction is the following notion of covering designs:

Definition 3.2 ((n,m, t)-cover) Fix integers n ≥ m ≥ t > 0, and let C = (S1, . . . , Sk) be a
collection of k different subsets Sj ⊂ [n], all of size |Sj | = m. C is said to be an (n,m, t)-cover if
for every size-t subset T ⊂ [n], |T | = t, there is a set Sj ∈ C that covers it, T ⊆ Sj. We will refer
to an (n,m, t)-cover as a t-cover when n,m are clear from the context.

This notion is equivalent to the notion of t-immunity of Alon et al. [2], in which for every subset
T there is a set Sj in the collection such that T

⋂
Sj = ∅. The collection C is an (n,m, t)-cover

iff the complement sets [n] \ Sj form an (n, n −m, t)-immune collection. The smallest number of
subsets in an (n,m, t)-cover is also known as the hypergraph Turán number T (n, n − t, n −m) in
honor of Paul Turán who initiated the study of these objects in [57, 58].

The parameters of covering designs have been studied extensively, e.g. see [56, 28] for surveys,
but the exact value is still an open problem in the general case. The best known analytical bounds
for small values of t are summarized in a Handbook of Combinatorial Designs chapter by Gordon
and Stinson [37]. A good online resource that collects the best known bounds for concrete values
of n,m, t with t ≤ 8, including ones found via computer search, is Gordon’s covering designs web
page [1].

For general values of t, Micali and Sidney [51] proposed to construct an (n,m, t)-cover by ran-
domly choosing

(
n
t

)
/
(
m
t

)
ln
(
n
t

)
subsets of size m from [n] and used a probabilistic argument to show

that with good probability this collection is an (n,m, t)-cover. Pieprzyk and Wang [44] construct
a deterministic, greedy algorithm that achieves the same bound on the size of the collection. Both
works were motivated by variants of the PRSS problem where the seeds are stored in a replicated
form, without the compressing share conversion step from [32, 21]

A range of parameters which is especially appealing for our MPC protocol is constant t, and
m which is a linear fraction of n, e.g., m = n/3. In this case, the protocol can cope with a large
number of stragglers and reduce communication by packing. When t is constant, the constructions
in [51, 44] have collections of size O(log n).

We next describe a simple construction that achieves a constant-sized collection for t = O(1)
and m = Ω(n), when t divides m and m divides n. Denote c = n/m and partition [n] into
ct subsets R1, . . . , Rct of equal size. Let the collection S1, . . . , Sk be all the possible choices of t
subsets Ri1 ∪ · · · ∪ Rit . Obviously, each |Sj | = t(n/ct) = m and for every T ⊆ [n], |T | = t there
exists some Sj such that T ⊆ Sj . The size of the collection is

(
ct
t

)
, which for constant t and c is

constant, improving over the construction of [51, 44].
Taking for each parameter set (n,m, t) the minimal cover size between the simple construction

and the construction in [44] provides a baseline construction for t-covers. This baseline achieves
an upper bound for the cover size, which is bigger than the minimal possible size by a factor of at
most O(log n), due to a simple lower bound of

(
n
t

)
/
(
m
t

)
on this size (see, e.g., Theorem 11.19 in

[37]). Both the upper bound of the baseline construction and the simple lower bound are generally
not tight. Improved bounds for certain parameter ranges can be found in [1].

16



(n,m, t) Baseline Best known Lower bound CDI seeds PRSS seeds
cover size cover size cover size per party per party

(9, 3, 1) 3 3 3 8 7
(15, 5, 1) 3 3 3 14 11
(15, 5, 2) 49 13 13 91 48
(48, 16, 1) 3 3 3 47 33
(48, 16, 2) 15 13 13 1081 143
(48, 16, 4) 495 252 173 178365 2772
(48, 20, 4) 490 87 60 178365 1052
(48, 20, 6) 5168 1280 459 1.07 · 106 15467
(49, 24, 2) 31 7 7 1128 90
(49, 24, 4) 245 38 31 194580 484
(49, 24, 8) 12219 4498 968 3.7 · 108 57281
(72, 24, 2) 15 12 12 2485 196
(72, 24, 4) 495 180 126 971635 2940
(72, 24, 6) 18564 4998 1419 1.4 · 108 81634

Table 1: Concrete bounds for (n,m, t)-covers and generalized PRSS. The baseline cover size captures
a simple upper bound given by the minimum between

(
n
t

)
/
(
m
t

)
ln
(
n
t

)
and

(
nt/m
t

)
when applicable,

i.e. when m/t and n/m are integers. The best known cover size and the lower bound on the cover
size are given by [1]. The “CDI seeds per party” column refers to the variant of the construction
from [21] described in Footnote 2, which requires

(
n−1
t

)
seeds per party. The “PRSS seeds per

party” column refers to the PRSS given by Theorem 3.3 for the linear correlation defined by
random polynomials of degree m − 1 using the best known cover size k, namely multiplying k by
m(n−m+ 1)/n.

Table 1 includes upper and lower bounds on the cover size for useful parameters (n,m, t). In
addition, it shows the number of seeds for PRSS used to distribute random degree d polynomials,
for d = m− 1, using the construction we present next.

3.4 Generalized PRSS for Degree-d Polynomials

It is easy to see (see Theorem 3.5) that t-covers are necessary for t-secure distribution in the Gilboa-
Ishai framework, since any corrupted subset must miss at least some of the xj ’s. Here we observe
that the other direction is also useful, establishing a close connection between the size of the best
(n, d+1, t)-cover and the complexity of PRSS for distributing random degree-d polynomials between
n parties with security against t-collusions.

Theorem 3.3 (Generalized PRSS for degree-d polynomials) Fix integers n ≥ d > t > 0.
A size-k′ (n, d + 1, t)-cover can be used to construct a generalized PRSS solution for t-secure dis-
tribution of degree-d polynomials, with the following complexity measures:

• The number of distinct subsets (or PRSS seeds) is k = k′(d+ 1), and

• The total subset size (storage) is
∑

i |Si| = k′(d+ 1)(n− d) and

• The total number of PRF calls is k′(d+ 1)(n− d).
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Proof: Let C′ = (S′1, . . . , S
′
k′) be a size-k′ (n, d + 1, t)-cover, i.e. it consists of k′ subsets, each

of size d + 1, that cover all the t-subsets. We then consider all the subsets that are obtained by
removing one element from any of the S′j ’s,

C̄ =
{
S′ \ {j} : S′ ∈ C′, j ∈ S′

}
.

Clearly, there are at most k ≤ k′(d + 1) distinct subsets in C̄, each of size d. Let us denote the
subsets in C̄ by S̄1, S̄2, . . . , S̄k, and we use these subsets in the CDI construction to distribute a
random degree-d polynomial. We let PS̄j be the unique polynomial of degree d interpolated from

PS̄j (X) =

{
0 if X ∈ S̄j
1 if X = 0

As before, PS̄ is a nonzero degree-d polynomial, whose zeros are exactly all the parties in S̄j . A
random vector ~x ∈ Fk therefore defines the polynomial Q~x(X) =

∑
j xj · PS̄j (X), and each party

i ∈ [n] gets the xj ’s corresponding to the S̄j ’s that do not include i, and can compute Q~x(i) from
these xj ’s. Thus, there are k′(d + 1) distinct subsets, each of cardinality n − d. This implies that
the total stroage is k′(d+ 1)(n− d) as the theorem states. Since each seed is used once, the total
number of PRF calls is also the same.

In the language of the Gilboa-Ishai framework, the matrix M ∈ Fn×k is defined by M [i, j] =
PS̄j (i), and the distribution sets are exactly the complementing sets Sj = [n] \ S̄j (namely we

distribute each xj to the complement of some S′ ∈ C′, together with one more element). The
complexity measures are obvious.

It remains therefore to show security against a collusion of t parties, which for degree-d polyno-
mials means showing that for every t-subset T , the submatrix M ′

T̄
has rank at least d+ 1− t. Fix

a t-subset T ⊂ [n], so there is a subset S′ ∈ C′ that covers it. Consider now the sub-matrix corre-
sponding to the subsets S̄ that were obtained by removing from S′ one element which is not in T
(hence those sets S̄ still all cover T ). That is, we consider the sub-matrix MT,S′ of M [i, j] = PS̄j (i),

consisting of the rows for [n]\T and the columns for Sj = ([n]\S′)∪{j′} for all j′ ∈ S′ \T . Clearly
MT,S′ is a sub-matrix of M ′

T̄
, it has n − t rows and d + 1 − t columns (since S′ covers T ), and it

has the form

MT,S′ =



∗ ∗ · · · ∗
...

...
. . .

...
∗ ∗ · · · ∗
∗

. . .

∗


,

where the ∗’s are non-zero and everywhere else there are zeros. The top rows ∗ · · · ∗ correspond
to [n] \ S′ and the bottom rows correspond to S′ \ T . The last d + 1 − t rows of this matrix are
linearly independent, hence the rank of MT,S′ is d+ 1− t, as needed for the Gilboa-Ishai condition.

Corollary 3.4 Fix integers n ≥ d > 1. Then, the following holds for generalized PRSS solutions
for t-secure distribution of degree-d polynomials with t = 1, 2:

18



1. There exists a solution for t = 1 with
⌈

n
d+1

⌉
(d+ 1) total seeds,

⌈
n
d+1

⌉
(d+1)(n−d)

n seeds stored

by each party and
⌈

n
d+1

⌉
(d+1)(n−d)

n calls to the PRF made by each party.

2. If n ≤ 3(d+1) then there exists a solution for t = 2 with 13(d+1) total seeds, 13(d+1)(n−d)/n
seeds stored by each party and 13(d+ 1)(n− d)/n calls to the PRF made by each party.

Proof: The corollary follows directly from Theorem 3.3 by plugging the best covering designs
for t = 1, 2. If t = 1 then the best covering design is achieved by arbitrarily dividing the n parties

into enough sets of size d+ 1 to cover all the parties which leads to a cover of size k′ =
⌈

n
d+1

⌉
.

If t = 2 and n ≤ 3(d+ 1) then the best design is of size at most 13 [37].

We can also prove a nearly-matching lower bound Theorem 3.3 on the solution complexity for
t-secure distribution of degree-d polynomials, in terms of the achievable size for (n, d+ 1, t)-covers.
This naturally generalizes a similar negative result for standard PRSS from [21].

Theorem 3.5 (Necessity of cover designs) Any generalized PRSS solution for t-secure distri-
bution of degree-d polynomials that has k distinct subsets implies an (n, d+1, t)-cover of size k′ ≤ k.

Proof: Let M be a solution and C = (S1, . . . , Sk) be the distinct subsets used by that solution.
By definition, each column of M is a non-zero codeword, namely the evaluation of a non-zero
degree-≤ d polynomial at the points [n], so at most d of them are zero and the corresponding set
Sj has size at least n− d.

Fix one of the parties (say Party 1). Consider all the subsets that include that party, but remove
that party from all of them. Namely, set C′ = {Si \{1} : 1 ∈ Si}. C′ is a collection of k′ ≤ k subsets,
each of size at least n − d − 1. Let C̄ = {[n] \ S′ : S′ ∈ C′} = {S̄1, . . . , S̄k′} be the collection of
complementing subsets, so it is a collection of k′ subsets of size at most d+ 1. We now argue that
every t-subset of [n] must be contained by one of these S̄i’s.

Consider first a subset T ⊂ [n], |T | = t that does not include Party 1. If T intersects every
subset S′ ∈ C′ then Party 1 has no random value xj that is not known to the parties in T , hence
the evaluation Q(1) is known to a corrupted subset T , contradicting security. For a subset T that
includes Party 1, we note that by construction 1 /∈ S′i for all i. Hence, if T intersects every subset
S′ ∈ C′ then T ′ = T \ {1} intersects every subset S′ ∈ C′. The same argument from above implies
that the evaluation point Q(1) is known to the corrupted parties in T ′.

The combination of Theorems 3.3 and 3.5 prove that the best (n, d+1, t)-cover implies a nearly
optimal number of distinct subsets, up to a factor of at most d+ 1.

3.5 Double Shamir Sharing

A useful resource for efficient honest-majority MPC protocols is a so-called “double Shamir sharing”
of a random secret, where the parties are given two random polynomials of degrees d and 2d that
share the same random secrets. Here we consider the case of packed secret sharing. Letting
` = d − t + 1 be the packing parameter, we want to generate a random degree-d polynomial
P1, and another polynomial P2 of degree-2d which is random subject to P1(x) = P2(x) for all
x ∈ {0,−1,−2, . . . ,−`+ 1}. It is easy to see that this task reduces to generating two independent
random polynomials P1(X) of degree d and R(X) of degree 2d− `, then setting

P2(X) = P1(X) +R(X) ·X(X + 1)(X + 2) · · · (X + `− 1).
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Indeed, the polynomial on the right side is a random degree-2d polynomial, under the constraint
that its values at the points {0,−1, . . . , `+1} are 0. Since P1(x) and R(x) are random independent
polynomials, we can use the construction from the previous section in a black-box way. Specifically,
we can generate P1(x) using a (n, d+ 1, t)-cover and generate R(x) using an (n, 2d− `+ 1, t)-cover.

Theorem 3.6 (Generalized PRSS for packed double sharing) Fix integers d > t > 0 and
n > 2d and let ` = d− t+ 1. A size-k′ (n, d+ 1, t)-cover and a size-k′′ (n, 2d− `+ 1, t)-cover can
be used to construct a solution for t-secure distribution of double-Sharing of degree-d and degree-2d
polynomials, both packing the same ` elements, with the following complexity measures:

• The number of distinct subsets (seeds) is at most k ≤ k′(d+1)+k′′(2d−`+1) ≤ k′(2d+t+1);

• The total subset size (storage) is
∑

j |Sj | ≤ k′(d+ 1)(n− d) + k′′(d+ t)(n− d− t+ 1).

• The total number of PRF calls is k′(d+ 1)(n− d) + k′′(d+ t)(n− d− t+ 1).

Proof: The complexity measures follow from Theorem 3.3 and using the fact P1 is a random
polynomial of degree d and R is a random polynomial of degree 2d − ` = d + t + 1. Specifically,
by Theorem 3.5 we have: (i) the number of distinct subsets is k′(d + 1) + k′′(2d − ` + 1) ≤
k′((d+1)+(d+ t)) = k′(2d+ t+1); (ii) the subsets generated from the first cover are of cardinality
n−d, whereas the subsets generated from the second cover are of cardinality n−(2d−`) = n−d−t+1,
and so the number of seeds that are overall distributed is k′(d+ 1)(n− d) + k′′(d+ t)(n− d− t+ 1);
(iii) since each seed is used once by each party that holds it, we have that the total number of calls
to a PRF is k′(d+ 1)(n− d) + k′′(d+ t)(n− d− t+ 1) as well. Security follows since both P1 and
R are generated with t-security and their sum is also t-secure.

This construction is already strong enough to support DN-type secure computation protocols,
even while packing ` elements in each polynomial. (Hence it can be used to compute the same
circuit on ` different inputs at once, in a SIMD fashion.)

As an alternative to the above, we can use an (n, d+ 1, t)-cover to construct both polynomials,
by increasing the number of pseudorandom elements derived from each seed. This will reduce the
number of seeds stored by the parties (by some factor smaller than two), but will increase the
number of pseudorandom elements that must be derived from these seeds. For completeness, we
provide the construction in Appendix B. We use a similar idea in the construction in the next
section.

3.6 Beyond Double Sharing

In some applications, including the protocol that we describe in Section 4, we must generate double-
Shamir-sharing of linearly correlated packed values (rather than the same values twice). While we
don’t know how to use the random-polynomial construction in a black-box manner to achieve
this, we show here how to modify that construction in order to distribute this more general linear
correlation in a t-secure manner.

This extension, however, comes with some loss of efficiency. Specifically, we need to start from
covers with smaller subsets, and moreover we no longer distribute only a single random element to
each subset. Fix n > d > t > 0 and ` ≤ d− t (allowing ` < d− t is useful to mitigate the parameter
loss). The goal in this section is to share two types of polynomials:
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• m polynomials R1, . . . , Rm of degree 2d, each packing ` “free variables” (i.e. unconstrained)
in positions 0,−1, . . . ,−`+ 1.

• m′ additional polynomials U1, . . . , Um′ of degree d, each packing ` constrained variables, which
are set as some fixed linear combinations of the free variables.

Denote the positions where these values are packed by L = {0,−1, . . . ,−` + 1}, and also denote
the linear correlation above by L[n, d, `,m,m′].

Let us give the high-level ideas of the construction. The polynomials Rα are generated as the
sum of polynomials Rα,γ that pack a random value at position γ and 0 in all the other positions
(i.e., Rα,γ(γ) is random and Rα,γ(X) = 0 if X ∈ L \ {γ}). The polynomials Rα,γ are generated
similarly to Section 3.4 with the following difference: the underlying polynomials P1,S̄j ,γ

(X) are
constrained to be 1 at positions γ and 0 in all other positions (as opposed to being 1 at position 0
and unconstrained at the other positions −1, . . . , `+ 1 in Section 3.4). Then, the i-th shares Uβ(i)
of the correct polynomials Uβ(X) can be computed by the values used by party i to generate the
polynomials Rα. These shares need to be re-randomized by adding random polynomials of degree
d that pack 0 at each position −1, . . . , ` + 1. These last polynomials are generated similarly to
Section 3.4 with the following difference: the underlying polynomials P2,S̄j

(X) are constrained to
be 0 in all positions 0, . . . ,−`+ 1 and 1 at position −`.

Theorem 3.7 (Generalized PRSS for replicated packed secrets) Fix integers n ≥ d > t >
0, ` ≤ d − t, m,m′ > 1. A size-k′ (n, d − ` + 1, t)-cover can be used to construct a solution for
t-secure distribution of the linear correlation L[n, d, `,m,m′] above. The complexity is at most:

• The number of distinct subsets (seeds) is at most k ≤ k′(d− `+ 1);

• The total subset size (storage) is
∑

j |Sj | ≤ k′(d− `+ 1)(n− d+ `);

• The total number of PRF calls is at most k(n− d+ `)(m(d+ `+ 1) +m′).

Proof: Let the relation L[n, d, `,m,m′] be defined by the coefficients λβ,z,α,y where α ∈ [m],
β ∈ [m′], and y, z ∈ L, as follows:

Uβ(z) =
∑
α∈[m]

∑
y∈L

λβ,z,α,yRα(y) .

We will use a (n, d−`+1, t)-cover C = {S′1, S′2, . . . , S′k′}. As in section 3.4 we remove all possible
singletons from each S′j to get the collection

C̄ = {S̄1, . . . , S̄k} =
{
S′ \ {j} : S′ ∈ C′, j ∈ S′

}
.

As before, we have k ≤ k′(d− `+ 1) subsets, each of size d− `.
We first use the sets S̄j to generate random degree-2d polynomials, packing the unconstrained

variables. For every degree-2d polynomial Rα (α ∈ [m]) that we want to share, for every γ ∈
{0, . . . ,−d− `}, and for every subset S̄j (j ∈ [k]), the dealer distributes a random element x1,α,γ,j

to parties in the complement sets Sj = [n] \ S̄j . Next let P1,S̄j ,γ
be the unique polynomial of degree

2d interpolated from

P1,S̄j ,γ
(X) =


0 if X ∈ S̄j
0 if X ∈ {0, . . . ,−d− `} \ {γ}
1 if X = γ

,
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and set Rα,γ,j(X) = x1,α,γ,j ·P1,S̄j ,γ
(X) for all α ∈ [m] and j ∈ [k1]. This polynomial has degree 2d

as needed, and it is known fully to every party i ∈ Sj . We finally set Rα(X) =
∑

j,γ Rα,γ,j(X), for
α ∈ [m]. Note that the share Rα(i) =

∑
j s.t. i∈Sj x1,α,γ,j ·P1,S̄j ,γ

(i) of party i can be computed just

from the values x1,α,γ,j known by party i (i.e., such that i ∈ Sj). Note also that in the language of
the Gilboa-Ishai framework, each set of parties Sj would get m(d+ `+ 1) of the x1,α,γ,j (so this set
will appear m(d+ `+ 1) times in the list).

We now proceed to select the polynomials Uβ. For every degree-d polynomial Uβ (β ∈ [m′])
that we want to share, and for every subset S̄j (j ∈ [k]), the dealer distributes a random element
x2,α,j to parties in the complement sets Sj = [n] \ S̄j . For y, z ∈ L and γ ∈ {0, . . . ,−d − `}, let
Q1,S̄j ,y,z,γ

be the unique polynomial of degree ≤ d interpolated from:

Q1,S̄j ,y,z,γ
(X) =


0 if X ∈ S̄j
0 if X ∈ L \ {z}
P1,S̄j ,γ

(y) if X = z

1 if X = −`

,

and let P2,S̄2
j

be the unique polynomial of degree d interpolated from

P2,S̄j
(X) =


0 if X ∈ S̄j
0 if X ∈ L
1 if X = −`

,

and set
Uβ,j(X) =

∑
α∈[m]

∑
y,z∈L

∑
γ

λβ,z,α,yx1,α,γ,jQ1,S̄j ,y,z,γ
(X) + x2,β,jP2,S̄j

(X) ,

(the first term of the sum is used to ensure that the linear combinations are satisfied, while the
second term is used to re-randomize the polynomial Uβ without breaking the correctness) and
Uβ(X) =

∑
j∈[k] Uβ,j(X).

Since Uβ,j(i) = 0 when i /∈ Sj , Uβ(i) can be computed just from the values x1,α,γ,j and x2,β,j

known by party i.
Let us now prove that Uβ(X) actually pack the correct linear combinations of the free variables.

We remark that:

Q1,S̄,j,y,z,γ(z′) =

{
P1,S̄,j,γ(y) if z = z′

0 if z ∈ L \ {z′}
P2,S̄j

(z) = 0 .

Thus we have:

Uβ(z) =
∑
α∈[m]

∑
y

λβ,z,α,y ·
∑
z′∈L

∑
j,γ

x1,α,γ,jQ1,S̄j ,y,z,γ
(z′) +

∑
j

x2,α,jP2,S̄j
(z)

=
∑
α∈[m]

∑
y

λβ,z,α,y ·
∑
j,γ

x1,α,γ,jP1,S̄j ,γ
(z)

=
∑
α∈[m]

∑
y,z′∈L

λβ,z,α,y ·Rα(z) .
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This is what is required for correctness.
Finally, let us prove the security of construction. Fix a t-subset T ⊂ [n]. We need to prove that

the submatrix M ′
T̄

(as defined in theorem 3.1) has rank at least (2d+ 1− t)m+ (d+ 1− `− t)m′.
There is a subet S′ ∈ C′ that covers T . Let κ = d− `+ 1− t. Write S′ \ T = {i1, . . . , iκ} and let jδ
be such that S̄jδ = S′ \ {iδ}.

We remark that we can write:

Rα(iδ) =
∑
γ

x1,α,γ,jδP1,S̄jδ ,γ
(iδ) + r′α,iδ =

∑
γ

x1,S̄jδ ,γ
+ r′α,iδ

where r′α,iδ does not contain any x1,α,γ,jδ′ . Furthermore:

Rα(γ) =
∑
δ′

x1,S̄jδ′
,γ + r′α,iδ ,

where r′α,iδ does not contain any x1,α,γ,jδ′ . We can multiply M ′
T̄

to the left by a matrix without loss
of generality, as this can only decrease the rank. Doing so, we can make the rows corresponding to
Rα to correspond to evaluation points {i1, . . . , iκ, 0,−1, . . . ,−d−`} (there are 2d+2−t such points)
instead of evaluation original evaluation points {1, . . . , n}. Looking at columns corresponding to
x1,S̄jδ′

,γ′ , the resulting matrix looks like:

1 1 · · · · · · · · · 1
. . .

. . .
. . .

1 1 · · · · · · · · · 1
1 · · · 1

1 · · · 1
. . .

1 · · · 1


,

where the top part has d + ` + 1 rows and the bottom part has κ rows. Subtracting the first
column to each of the column with a one in the first row, and eliminaing all the columns with
a non-zero coefficient in the top part (except the first d + ` + 1 columns), we get the following
(d+ `+ 1 + κ)× (d+ `+ 1 + κ− 1)-matrix:

M ′α =



1
. . .

1
1 · · · 1 −1 . . . −1

1
. . .

1


This matrix has rank d+ `+ 1 + κ− 1 = 2d+ 1− t.

Finally, up to multiplication by a matrix to the left and removing some columns, the matrix
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M ′
T̄

can be written in the following form:

M ′1
. . .

M ′m
∗ . . . ∗ M ′′1
...

...
. . .

∗ . . . ∗ M ′′m′


where M ′′β is the κ× κ-identity matrix and corresponds to some of the columns x2,β,jδ′ . The rank
is thus (2d+ 1− t)m+ κm′. This concludes the proof.

Parameters. We remark that the parameters of this construction behave differently than those
of the previous constructions. For the constructions from Sections 3.4 and 3.5, increasing ` (and d)
was a double-win, not so for the current construction. Here we need to start from a (n, d− `+ 1, t)-
cover, so setting ` = d− t we hardly get any slackness in the size of the sets in our t-cover (they will
be of size only t+ 1). To improve parameters (the cover size in particular), it is better to choose a
smaller value of `, thereby working with larger subsets and hence being able to find smaller covers.
It is likely that setting ` ≈ (d−t)/2 will be a sweet spot for this construction in terms of complexity.

Remark 3.8 (Size of the field F) Note that polynomial P1,S̄j ,γ
(X) defined in the construction

of Theorem 3.7 requires n+d+ `+ 1 evaluation points. Thus, throughout the paper, we require that
|F| ≥ n+ d+ `+ 1.

4 Constructions for Semi-Honest Security

In this section, we present protocols to compute a layered straight-line program over a finite field F,
that is secure in the presence of a semi-honest adversary who controls t parties, and with straggler-
resilience. Recall that we have n ≥ 2d+ 1 parties, where d ≥ t+ `− 1.

The starting point of our constructions is the DN protocol [25], which is the fastest protocol
known to this date for n > 3 parties. We begin in Section 4.1 with recalling the baseline DN
protocol. In Section 4.2, we introduce straggler resilience and show how to adapt the DN protocol
accordingly. Then in Section 4.3 we provide our solutions for improving the communication and
computation requirements of the protocol.

4.1 Baseline Protocol (with ` = 1)

Recall that in the DN protocol [25], the parties compute linear operations without any interaction
and compute multiplication operations with small constant communication cost per party. Given
shares JxKd and JyKd, the parties compute Jx · yKd in the following way. The parties prepare random
sharings JrKd and JrK2d in an offline step which are consumed as follows. First, the parties locally
compute Jx · y − rK2d = JxKd · JyKd − JrK2d and send their shares to P1. Then, party P1 computes
x · y − r and shares the result to the parties as Jxy − rKd. Finally, the parties locally compute
Jx · yKd = JrKd + Jxy − rKd.
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As the random sharings can be generated non-interactively (in the way described in Section 3),
the communication cost is derived from parties sending one field element to P1 and P1 secret sharing
xy− r to the parties. Note that 2d shares are sufficient for P1 to reconstruct xy− r (together with
its own share). Also, it is possible to reduce communication in the second round by setting the
shares of d parties to be 0, and having P1 define its own share and the remaining n − d parties’
shares, given the value of xy−r and the d zero shares. This is possible since xy−r is not secret (P1

could send it in the clear to the parties) and since Jxy − rKd is shared via a polynomial of degree
d, and so d+ 1 points are sufficient to define it. Overall, we have that the communication cost per
party per bilinear gate is 2d+n−d−1

n = 1 + d−1
n field elements. When n > 2d + 1, it is possible to

improve this by having the parties secret sharing their inputs to 2d + 1 parties who perform the
computation. In this case, the communication cost per party per bilinear gate reduces to 2d+d

n = 3d
n

elements.
We denote by Πbase

SH the base protocol, which thus works as follows:

Protocol Πbase
SH :

The parties hold a description of a layered SLP over F. Denote by S the set of parties
P1, . . . , P2d+1

• Pre-processing: The parties call FLinRand to obtain a pair of random sharings JrKd and JrK2d

for each bilinear instruction.

• The protocol:

1. Input sharing: for each instruction Rj ← xi, party Pi run JxiKd ← share(xi) and sends the
resulting shares to the parties in S.

2. Evaluating the jth bilinear instruction Rj ← (
∑
αωRω) · (

∑
βωRω): Let JrKd , JrK2d be the

next unused pair of random sharings. Then:

(a) The parties in S locally compute JxKd =
∑w

ω=1 αω · JRωKd and JyKd =
∑w

ω=1 bω · JRωKd,
where JRωKd denotes sharing of the ω-index memory value Rω (stored from previous
operations).

(b) The parties in S locally compute Jxy − rK2d = JxKd · JyKd − JrK2d and send the result to
P1.

(c) P1 locally reconstructs xy−r and then computes a sharing Jxy − rKd such that the shares
of P2 . . . , Pd+1 are 0. Then, it sends the non-zero shares to parties Pd+2, . . . , P2d+1.

(d) The parties in S set JzKd ← JrKd + Jxy − rKd, and define JzKd as their share of the output.

3. Output reconstruction: For each instruction Oi ← Rj , the parties in S send their shares of
the value in Rj to Pi, who uses them to reconstruct the output Oi.

Security of Πbase
SH against a semi-honest adversary A controlling d parties follows from the fact

that A’s view consists of d random shares in the input sharing step, and masked intermediate values
when performing multiplication operations.

4.2 Straggler Resilience

The classical communication model for secure multi-party computation considers parties who ad-
vance in the same pace in a fully synchronous manner. However, in real world scenarios, it is
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unreasonable to assume that all messages arrive at the same time. A protocol which can proceed
without having to wait for all the parties’ messages to arrive in each round, has thus the potential
to reduce the overall latency of the execution.

We consider a model of straggler resilience, to account for the fact that communication channels
exhibit a distribution over latency times, each of which may incur long delays with small probability.
Instead of requiring parties to block and wait in every communication round until the last messages
arrive, we build into the protocol design that the computation may proceed even in the absence of a
small number of messages per round, which have not yet successfully been delivered. We say that a
protocol that terminates successfully even when τ messages are dropped in each round, is resilient
to τ stragglers. As for privacy, following the standard definition of multi-party computation [33],
we consider an adversary who controls t parties and, in addition, is allowed to choose τ messages
to be dropped in each round.

Definition 4.1 (Straggler resilience, semi-honest security) Let f be an n-party functional-
ity. We say that protocol Π computes f with t-semi-honest-security and τ -straggler-resilience if it
satisfies the following properties:

• Straggler-Robust Correctness: Π terminates successfully (i.e. each party receives its pre-
scribed output fi(~x)), even if in each communication round, τ messages, chosen adaptively by
the adversary, are not delivered.

• Semi-Honest Security with Stragglers: For every real-world semi-honest adversary A
controlling a set I of parties with |I| ≤ t and, in addition, can choose adaptively τ messages to
drop in each communication round, there exists an ideal-world simulator S such that for every
vector of inputs ~x it holds: {S(I, ~xI , fI(~x))} ≡ {viewπ

A(~x)}, where ~xI is the inputs of the parties
in I, fI(~x) is the output intended to the parties in I, and viewπ

A(~x) is A’s view in a real execution
of π.

Remark 4.2 (Straggler resilience) 1. Round vs. epoch. Our protocol constructions have a
very specific structure, common to concretely efficient n-party computation protocols (à la
DN [25]), where execution is divided into phases, or “epochs.” In each epoch, a fixed des-
ignated party sends messages to the other parties, and then receives back messages from the
parties. Within such structure, a somewhat more natural notion of straggler resilience will
correspond to a given number of dropped messages per epoch (i.e., 2 rounds). However, our
notion of τ dropped messages per round is more generally applicable, while still capturing the
setting of bounded number of messages dropped per epoch (in this case 2τ , for the two rounds).

2. Message vs. node drop. We choose to model latency behavior as embodied by failure of delivery
of individual messages. This captures settings where delays are caused by network channels,
each exhibiting some distribution of latency. This further shares similarities to the “message
omission” model, where messages sent to/from affected parties may never be delivered, as
considered in, e.g., [45, 53, 52].

An alternative approach is to consider temporary node failures per epoch (as considered in,
e.g., [54, 49, 60]). This models settings where delays are caused centrally by the node it-
self. On one hand, our model can be more fine-grained; on the other hand, failure of a
node corresponds to failure of potentially many incoming/outgoing communication messages.
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We remark that achieving straggler resilience against node failures poses a challenge within
protocols following a star-topology communication structure as in DN and successors since
failure of the designated “central” party prevents forward progression of the protocol. Seeing
as this protocol structure lies at the core of concretely efficient n-party protocols to date, it
remains an interesting open direction to explore whether such node-straggler resilience notion
can additionally be achieved with good concrete efficiency.

Observe that the DN protocol Πbase
SH from the previous section is not resilient to any straggler.

Since it chooses a set S of 2d + 1 parties in advance to carry-out the computation, and then the
server cannot proceed without all 2d messages arriving to him in each multiplication, then an
adversary who chooses to drop the messages of even one party in the set S will cause the execution
to get stuck. Note that choosing a different set S in each step will not solve the problem, since
the adversary is allowed to adaptively choose a different set in each epoch (not to mention the
communication cost incurred by resharing intermediate values to the new set of parties).

Next, consider a protocol, where we let all the parties participate in the execution and send
their 2d-degree shares of xy − r to P1, who then uses the first 2d shares it receives (together with
its own share) to compute xy − r. Then, P1 shares xy − r to the parties, with the optimization
outlined above, which allows him to send shares to n− d− 1 parties only (d shares are always 0).

Note that now the cost is n−1+n−d−1
n = 2 − d+2

n field elements sent per party. We denote

by Πsingle
SH a protocol that is identical to Πbase

SH , with the difference that the input is shared to all
the parties and multiplication operations are carried-out in the way described above. While the
communication cost of Πsingle

SH is higher than of Πbase
SH , it does allow (n − 2d − 1) messages in each

epoch to be dropped, since P1 needs only 2d shares in order to compute its message to the parties.
For the input sharing and output reconstruction steps, note that d + 1 shares suffices to compute
shared secrets, and so even if (n−2d−1) messages are dropped, there are enough shares to proceed.
We thus have:

Theorem 4.3 Let f be a n-ary functionality over a finite field F represented by a layered SLP, let
t be a security threshold, let d be a parameter such that d ≥ t, n ≥ 2d+1 and |F| > n+d+1. Then,

Protocol Πsingle
SH computes f in the FLinRand-hybrid model, with t-semi-honest-security, (n− 1− 2d)-

stragglers-resilience and communication of 2 − d+2
n field elements sent per party for each bilinear

instruction.

Observe that setting the d parameter gives rise to trade-offs between communication cost,
stragglers-resilience and storage cost. Specifically, increasing d reduces communication and also
the amount of PRSS keys needed for producing the correlated randomness (see Section 3). In
contrast, keeping d small (e.g., setting d = t) provides more room for stragglers.

4.3 Reducing Communication and Computation

In this section, we show how to reduce communication and computation cost while still providing
resilience to stragglers. This is achieved by taking the approach of packed secret sharing: encoding
` secrets over the same polynomial and evaluating ` bilinear instructions together, at the cost of
a single instruction. We begin with a construction that is designed for SIMD programs, and then
show how to extend our techniques to general programs.
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4.3.1 Computing SIMD Programs

A program which evaluates the same sub-program many times in parallel is called a SIMD (“same-
instruction-multiple-data”) straight-line program. Note that a program P which consists of `
copies of the same sub-program can be viewed as a program which evaluates each time a bundle
of ` identical instructions. Following works in this area, our idea is to store the ` inputs to each
bundle on the same polynomial, reducing both communication and computation by a factor of `.

In more details, let ΠSIMD
SH be a protocol which is defined as follows. In the pre-processing,

the parties prepare a pair of random sharings Jr1 · · · r`Kd and Jr1 · · · r`K2d for each bundle of `
bilinear instructions, where d ≥ t+ `− 1. Then, in the online protocol, for each bundle of ` input
instructions, the party who own the inputs shares it as Jx1 · · · , x`Kd. For computing a bundle
of ` bilinear instructions, let Jr1 · · · r`Kd,Jr1 · · · r`K2d be the next unused pair. The parties locally
compute Jx1 · · ·x`Kd =

∑w
ω=1 aw JRw,1 · · ·Rw,`K and Jy1 · · · y`Kd =

∑w
ω=1 bw JRw,1 · · ·Rw,`K, compute

J(x1y1 − r1) · · · (x`y` − r`)K2d = Jx1 · · ·x`Kd · Jy1 · · · y`Kd − Jr1 · · · r`K2d

and send the result to P1. Party P1 uses the first 2d shares it receives together with its own share
to compute x1y1 − r1, . . . , x`y` − r` and reshares it to the parties as J(x1y1 − r1) · · · (x`y` − r`)Kd.
Finally, the parties locally compute

Jx1y1 · · ·x`y`Kd = J(x1y1 − r1) · · · (x`y` − r`)Kd + Jr1 · · · r`Kd .

To receive a bundle of ` outputs, the parties send their shares to the party who should receive the
outputs. This party can then reconstruct the ` secrets and obtain its output.

Theorem 4.4 Let f be a n-ary functionality over a finite field F represented by a layered SIMD
straight-line program P , with bundle of instructions of size `, let t be a security threshold and let d
be a parameter, such that d ≥ t+ `− 1, n ≥ 2d+ 1 and |F| > n+d+ `+ 1. Then, ΠSIMD

SH compute f
in the FLinRand-hybrid model, with t-semi-honest-security, (n− (2d+ 1))-stragglers-resilience and
communication of 2

` −
d+2
n·` field elements sent per party for each bilinear instruction.

Security follows from the same argument as for the base protocol. For stragglers resilience,
observe that P1 can proceed as soon as it holds 2d messages, which means that n− 1− 2d can be
dropped. Finally, for each bundle of ` instructions, the parties send n− 1 + (n− 1− d) elements,
and so per a single instruction, each party sends 2n−d−2

n·` = 2
` −

d+2
n·` field elements.

Denoting the communication cost per party per instruction of Πbase
SH and ΠSIMD

SH by |Πbase
SH | and

|ΠSIMD
SH | respectively, we have

|ΠSIMD
SH | =

|Πsingle
SH |
`

+
`− 1

n · `
<
|Πsingle

SH |
`

+
1

n

which since n ≥ 5 when ` ≥ 2, implies that, for computing SIMD bilinear programs, ΠSIMD
SH improves

communication roughly by a factor of ` compared to Πsingle
SH .

4.3.2 Computing General Layered Straight-Line Programs

We next show how use packing to reduce cost when computing any straight-line program. In the
protocol, the parties will process in each round ` instructions together at the cost of evaluating a
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single instruction. For a general-structured program this clearly raises several difficulties. Recall
that an instruction in our program consists of taking a linear combination of two sets of inputs
and multiply them together. The goal is to carry-out this by packing the “left” inputs on one
polynomial and the “right” inputs on a second polynomial and multiply them together, to obtain a
polynomial encoding the outputs of ` instructions. However, it is now not clear how to proceed to
the next batch of ` instructions. In particular, when we move from one batch of instructions to the
next, the outputs should be reorganized into new blocks of inputs corresponding to the ordering of
the inputs in the next ` instructions. Moreover, it is possible that an output is used as an input to
more than one instruction in the next batch. In this case, we need to ensure that the same value
appears in several blocks and possibly in different positions. We call this ordering the “repetition
pattern” induced by the program (and define it more formally below). To overcome this challenge,
we leverage the fact that in the semi-honest multiplication protocol, party P1 sees all outputs in
the clear, masked using random values. Thus, we can ask P1 to reshare all values according the
ordering of the next batch of instructions. Moreover, to achieve free-addition, we will ask P1 to first
compute the linear combinations over the masked outputs and only then reshare it to the other
parties in blocks. The parties, who receive block of masked values, will unmask these values, using
correlated randomness they hold, and proceed to the multiplication operation.

Generating correlated randomness according to a repetition pattern. In the protocol,
we will need four types of random correlations: (I) Jr1 · · · r`K2d for the output block of each batch of
instructions; (II) Jr1, · · · , r`Kd for the left and right input block of each batch of instructions; (III)
Jr · · · rKd for masking each party’s input; and (IV) Jr · · · rKd for unmasking each party’s output.

The “repetition pattern” induces constraints on these random sharings. In particular, for type
I, the secrets in each position are unique and independent. The same applies for type III, as the
encoded secret is unique and independent from any secret defined for type I. However, for types
II and IV, the random secrets are correlated with the other two types. Specifically, at entry k
of the encoded block of type II, it must hold that rk is a linear combination of random secrets
that were already defined, according to the structure of the program. For type IV, the encoded
random secret should equal to the secret that was chosen for an entry in a block of type I that
holds the output. Fortunately, our pre-processing protocol from Section 3 can produce these types
of correlated random sharings.

Evaluating a bilinear instruction. In our protocol, the parties hold a sharing of two blocks
of ` inputs: Jx1 · · ·x`Kd and Jy1 · · · y`Kd. As in the DN protocol, they locally multiply their shares
and add shares of a random block Jr1 · · · r`K2d to obtain a sharing J(x1 · y1 + r1) · · · (x` · y` + r`)K2d.
Then, the parties send their shares to P1 who reconstructs x1 · y1 + r1, . . . , x` · y` + r`. However,
instead of sending these back to the parties, we let P1 proceed to the next batch of instructions
and compute the linear combinations of the inputs over the masked secrets. Only then P1 shares
the left block of masked inputs and right block of masked inputs to the parties, to perform the
next multiplication operation. Once the shares of the blocks of masked inputs are received from
P1, the parties unmask these by adding a block of shared random secret that correspond to the
repetition pattern. That is, if we have in the kth position of, say, the left input, a linear combination
(
∑w

ω=1 ak,ω ·Rω) and the value in Rω was masked using rω, then the parties need here a sharing
Jr‘1 · · · r‘`Kd where r‘k = (

∑w
ω=1 ak,ω · rω). As explained previously, our pre-processing protocol

from Section 3 can produce these types of random blocks. As before, P1 proceed once 2d shares
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have been received, which means that, as before, the protocol is resilient to n− 1− 2d stragglers.
We stress that our trick to let P1 compute the linear operations over the masked inputs and only
then reshare it back to parties, is crucial for achieving addition for free - a property that is not
trivial to achieve for non-SIMD circuits.

Sharing the inputs. To share the inputs at the first step of the protocol, if party Pi’s input
xi should be masked by r according to the repetition pattern, then the parties generate in the
pre-processing a sharing Jr · · · rKd and open it towards Pi. Then, party Pi sends x̂i = xi + r to
all parties, who use it to produce the shares of masked inputs in future instructions (note that we
require sending x̂i to all parties, and not only to P1, to achieve stragglers resilience in this step as
well).

Formal description and cost analysis. We formally describe our semi-honest protocol in
Protocol 4.6. Note that for each batch of ` bilinear instruction, n−1 parties send an element to P1,
whereas P1 need to share the inputs of the two inputs blocks, thus sending 2(n− 1− d) elements.

Overall, per a single instruction, each party sends n−1+2(n−1−d)
n·` = 3

` −
2d+3
n·` field elements, where

d ≥ t+ `− 1.

Theorem 4.5 Let f be a n-party functionality over a finite field F represented by a `-layered SLP,
let t be a security threshold parameter and let d be a parameter such that d ≥ t+ `− 1, n ≥ 2d+ 1
and |F| > n+ d+ `+ 1. Then, Protocol 4.6 computes f in the FLinRand-hybrid model with t-semi-
honest-security, (n− (2d+ 1))-stragglers-resilience and communication of 3

` −
2d+3
n·` field elements

sent per party for each bilinear instruction.

Proof: Stragglers resilience and communication cost are explained in the text above and thus
we move to prove that the protocol is secure in the presence of t semi-honest corrupted parties.
Let S be the ideal world adversary and let A be the real world semi-honest adversary controlling
t parties. S receives the inputs and outputs of the corrupted parties controlled by A and needs
to simulate their view in the interaction with the honest parties. S begins by choosing a random
tape for the corrupted parties from which their shares of all pre-processed data are derived (recall
that the corrupted parties choose their shares of the random sharings generated by FLinRand). The
corrupted parties’ random tapes are added to A’s view. We then consider two cases.

Case 1: P1 is corrupted. In this case, the view of the adversary consists of masked inputs, masked
shares of outputs of each multiplication operation and shares for reconstructing the outputs. Thus,
S chooses random elements in the field for the masked inputs and add them to A’s view. For the
bilinear instructions, S chooses random 2d-degree polynomials, given the corrupted parties’ shares
(known to S, since it knows the corrupted parties inputs and randomness) and adds the honest
parties’ shares to A’s view. Observe that until (and not including) the output reconstruction step,
the views of A in the real and simulated execution are identically distributed. This is due to the
randomness that we use for masking. Finally, given that all messages are identically distributed in
both executions up to the final step, it follows that the shares A holds of the outputs are distributed
the same in both executions, which means that S can choose the honest parties’ shares so that the
shares each corrupted party receives will open to the correct output.
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PROTOCOL 4.6 (Computing a layered SL Program with Semi-honest Security)

The parties P1, . . . , Pn hold a description of a layered straight-line program over F, with m bilinear
instructions partitioned to batches of ` instructions, such that the inputs to each batch depends
only on previous batches. Let φP be the repetition pattern induced by P .

• Pre-processing: The parties call FLinRand to obtain sharings Jr1 · · · r`K2d and Jr1 · · · r`Kd for
the output block and inputs blocks of each batch of bilinear instructions and Jr · · · rKd for each
input/output of P respectively. Theses sharings satisfy the correlation constraints induced
by φP .

• The Protocol: The parties emulate the program’s instructions as follows:

1. Load an input to memory : For each instruction Rj ← xi, with xi held by Pi and Jr · · · rKd
being the random sharing that was assigned to the ith input:

(a) The parties send Pi their shares of Jr · · · rKd.
(b) Party Pi reconstructs r and sends x̂i = xi + r to all parties.

2. Evaluating the jth batch of bilinear instructions:
Let (

∑w
ω=1 a1,ω ·Rω) · · · (

∑w
ω=1 a`,ω ·Rω) be the block of left inputs and let

(
∑w
ω=1 b1,ω ·Rω) · · · (

∑w
ω=1 b`,ω ·Rω) be the block of right inputs.

For each Rω for which ∃a1,ω, . . . , a`,ω, b1,ω, . . . , b`,ω 6= 0, party P1 holds Rω + rω. Then:

(a) For k = 1 to `: party P1 locally computes
∑w
ω=1 ak,ω ·(Rω+rω) and

∑w
ω=1 bk,ω ·(Rω+rω).

(b) P1 shares the block (
∑w
ω=1 a1,ω · (Rω + rω)) · · · (

∑w
ω=1 a`,ω · (Rω + rω)) and the block

(
∑w
ω=1 b1,ω · (Rω + rω)) · · · (

∑w
ω=1 b`,ω · (Rω + rω)) to the other parties via a polyno-

mial of degree d.

(c) The parties locally compute

Jx1 · · ·x`Kd =

t(
w∑
ω=1

a1,ω ·Rω

)
· · ·

(
w∑
ω=1

a`,ω ·Rω

)|

d

=

t(
w∑
ω=1

a1,ω · (Rω + rω)

)
· · ·

(
w∑
ω=1

a`,ω · (Rω + rω)

)|

d

− Jr′1 · · · r′`Kd

and

Jy1 · · · y`Kd =

t(
w∑
ω=1

b1,ω ·Rω

)
· · ·

(
w∑
ω=1

b`,ω ·Rω

)|

d

=

t(
w∑
ω=1

b1,ω · (Rω + rω)

)
· · ·

(
w∑
ω=1

b`,ω · (Rω + rω)

)|

d

− Jr′′1 · · · r′′` Kd

where Jr′1 · · · r′`Kd = J(
∑w
ω=1 a1,ω · rω) · · · (

∑w
ω=1 a`,ω · rω)K

d
and

Jr′′1 · · · r′′` Kd = J(
∑w
ω=1 b1,ω · rω) · · · (

∑w
ω=1 b`,ω · rω)K

d
were produced for these blocks in

the per-processing.

(d) The parties locally compute

J(x1 · y1 − r1) · · · (x` · y` − r`)K2d = Jx1 · · ·x`Kd · Jy1 · · · y`Kd − Jr1 · · · r`K2d

where Jr1 · · · r`K2d is the block of random shares produced for this batch in the pre-
processing step.

(e) The parties send their shares to P1 who reconstruct z1, . . . , z` where ∀k ∈ [`] : zk =
xk · yk + rk and store the result.

(f) If zk is an output of the program for some k ∈ [`], then P1 shares zk to the parties using
a d-degree polynomial. Then, the parties unmask it by locally computing Jzk · · · zkKd−
Jr · · · rKd, where r is the mask used in the output block where zk was computed.

3. Output value from memory: for each instruction Oi ← Rj , where Pi should receive Oi, the
parties send their shares of the value in Rj to Pi who reconstruct and output Oi.
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Case 2: P1 is honest. In this case, the view of the adversary during the execution consists only
of messages sent to it by P1 for the block inputs for each multiplication operation. To simulate
these, S chooses random d-degree polynomials for each input block and add the corrupted parties’
shares to A’s view. Since each secret is masked by a random element, it follows that the view is
identically distributed in both executions. For the output reconstruction step, the proof is the same
as in the previous case. This concludes the proof.

Observe that when ` ≥ 3 (i.e., packing at least 3 secrets on each polynomial), we have 3
`−

2d+3
n·` <

1, which means that each party sends less than one field element for each bilinear instruction. When
` = 2, then the cost is less than 1.5 elements sent per party. We thus obtain a protocol which provide
the best of both worlds: it achieves both minimal communication and stragglers resilience. This
is in contrast to Πbase

SH which achieves minimal communication without any resilience to stragglers,

and Πsingle
SH which can handle stragglers but at the cost of (at least) doubling the communication

cost. We provide exact cost analysis with concrete numbers below. Finally, we stress that the only
assumption that our protocol makes on the structure of program, is that it is possible to split the
program into batches of ` instructions where the input to each instruction in this batch comes from
batches that precede it (this property is reflected in the “`-layered SLP” notion). This is a mild
assumption that is satisfied by natural circuits.

4.4 Concrete Efficiency Analysis

In this section, we analyze the efficiency of our protocol, by looking at the communication cost (mea-
sured by the number of field elements sent per multiplication instruction) and storage/computation
cost (measured by the number of PRSS seeds and number of PRF invocations per multiplication
instruction).

Communication cost. We first discuss the exact communication cost of our protocols for con-
crete parameters. The exact cost depends on several parameters: the security threshold t (i.e.,
number of corrupted parties), number of stragglers τ allowed in each epoch and the packing pa-
rameter `. For this analysis, we assume d = t+ `− 1.

In Table 2 we present the total communication cost (as number of field elements) sent per
multiplication instruction/gate for different combinations of parameters. For each combination, we
present the resulted number of parties n, which equals to 2d+1+τ = 2(t+`−1)+1+τ = 2t+2`−1+τ ,
the number of total field elements sent (by all parties) and the ratio between this and the minimal
number of elements sent when no resilience to stragglers and no secret packing is considered. When
` = 1, the parties send n − 1 elements to P1 to receive back n − 1 − t elements. Thus, the total
number of elements is 2(n − 1) − t = 3t + τ . When ` ≥ 2, we use the formula from Theorem 4.5,
namely, 3n−2t−2`−1

` . For the communication cost without stragglers resilience, we use Πbase
SH from

Section 4.1 (where the parties share their inputs to a committee of 2t+ 1 parties) and so the total
number of field elements is exactly 3t.

The main observation from the table is that, as we increase the corruption threshold t and the
packing parameter `, we are able to beat the baseline protocol while also providing resilience to
stragglers. In particular, when t = 1 the baseline protocol requires less communication than our
protocol in each of the examined set of parameters. When t = 2, our protocol starts to beat the
baseline protocol when ` = 4. When t = 4, our protocol beats the baseline protocol when ` = 2
and τ = 1, and in all cases for ` = 4 and ` = 8. Observe also that the improvement upon the base
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# Corruptions
(t)

# Stragglers
(τ)

` = 1 ` = 2 ` = 4 ` = 8

1

0 n = 3: 3 n = 5: 4.0 (×1.33) n = 9: 4.0 (×1.33) n = 17: 4.0 (×1.33)
1 n = 4: 4 (×1.33) n = 6: 5.5 (×1.83) n = 10: 4.8 (×1.6) n = 18: 4.4 (×1.46)
2 n = 5: 5 (×1.67) n = 7: 7 (×2.33) n = 11: 5.5 (×1.83) n = 19: 4.8 (×1.58)
3 n = 6: 6 (×2) n = 8: 8.5 (×2.83) n = 12: 6.3 (×2.1) n = 20: 5.1 (×1.71)

2

0 n = 5: 6 n = 7: 6.0 (×1) n = 11: 5.0 (×0.83) n = 19: 4.5 (×0.75)
1 n = 6: 7 (×1.16) n = 8: 7.5 (×1.25) n = 12: 5.8 (×0.96) n = 20: 4.9 (×0.81)
2 n = 7: 8 (×1.32) n = 9: 9 (×1.5) n = 13: 6.5 (×1.08) n = 21: 5.3 (×0.88)
3 n = 8: 9 (×1.5) n = 10: 10.5 (×1.75) n = 14: 7.3 (×1.21) n = 22: 5.6 (×0.94)

3

0 n = 7: 9 n = 9: 8.0 (×0.89) n = 13: 6.0 (×0.67) n = 21: 5.0 (×0.56)
1 n = 8: 10 (×1.11) n = 10: 9.5 (×1.05) n = 14: 6.8 (×0.75) n = 22: 5.4 (×0.6)
2 n = 9: 11 (×1.22) n = 11: 11 (×1.22) n = 15: 7.5 (×0.83) n = 23: 5.8 (×0.64)
3 n = 10: 12 (×1.33) n = 12: 12.5 (×1.38) n = 16: 8.3 (×0.92) n = 24: 6.1 (×0.68)

4

0 n = 9: 12 n = 11: 10 (×0.83) n = 15: 7.0 (×0.58) n = 23: 5.5 (×0.45)
1 n = 10: 13 (×1.08) n = 12: 11.5 (×0.96) n = 16: 7.8 (×0.65) n = 24: 5.9 (×0.49)
2 n = 11: 14 (×1.17) n = 13: 13 (×1.08) n = 17: 8.5 (×0.71) n = 25: 6.3 (×0.52)
3 n = 12: 15 (×1.25) n = 14: 14.5 (×1.21) n = 18: 9.3 (×0.77) n = 26: 6.6 (×0.55)

8

0 n = 17: 24 n = 19: 18 (×0.75) n = 23: 11.0 (×0.46) n = 31: 7.5 (×0.31)
1 n = 18: 25 (×1.04) n = 20: 19.5 (×0.81) n = 24: 11.75 (×0.48) n = 32: 7.88 (×0.33)
2 n = 19: 26 (×1.08) n = 21: 21 (×0.88) n = 25: 12.5 (×0.52) n = 33: 8.25 (×0.34)
3 n = 20: 27 (×1.13) n = 22: 22.5 (×0.94) n = 26: 13.25 (×0.55) n = 34: 8.63 (×0.36)

Table 2: Total number of field elements sent per multiplication as a function of the number of
corrupted parties (t), packing parameter (`) and number of stragglers (τ). For each combination
we show: (i) the number of parties, computed as n = 2t+ 2`− 1 + τ ; (ii) total number of elements
sent per multiplication, computed via the formula 3t + τ for ` = 1 and 3n−2t−2`−1

` for ` ≥ 2; and
(iii) the ratio between (ii) and the best cost of a similar protocol with n = 2t + 1 parties and no
straggler resilience or secret packing. The latter is equal to 3t. Boldface entries are ones in which
our protocol has better concrete total communication complexity, while typically also tolerating
stragglers (when τ ≥ 1).

protocol also grows as we increase t and `, reaching a factor of approximately 2 when t = 4 and
` = 8. Finally, when t = 8, our protocol beats the baseline protocol even when ` = 2.

Storage and computation cost for SIMD circuits. We proceed to show the number of PRSS
seeds each party needs to store and the number of calls to a PRF per party to produce the double
sharing required for multiplying shared inputs in an evaluation of a SIMD circuit. In Table 3 we
present a comparison between our construction and CDI [21], for various number of corruptions
(t) and stragglers (τ), and for ` = 8 (where ` is the packing parameter, which in SIMD circuits is
also the number of sub-circuits that are being evaluated in parallel). Note that in this setting, we
have d = t + ` − 1 = t + 7 and n = 2d + 1 = 2t + 15. Note also that by Theorem 4.4, the total
number of elements sent by each party per multiplication instruction is less than 2

` , and so in our
example less than 0.25 field elements. For our construction, we use Theorem 3.6 in Section 3.5 to
compute the number of seeds and PRF calls per party. For the CDI construction, the number of
seeds is

(
n−1
t

)
. To compute the number of PRF invocations per multiplication instruction, we used

the same method as in Section 3.5, namely, to generate 2 polynomials - one with degree-d and one
with degree 2d− `- and the trick in footnote 2. This implies that the number of calls to a PRF is(
n−1
t

)
· (` + (2d − ` − t)) =

(
n−1
t

)
· (2d − t). As can be seen from the table, as t grows, we reduce

dramatically both storage costs and the computational overhead.
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# Corruptions
(t)

# Stragglers
(τ)

# Parties
(n)

Best known
cover size
(n, d+ 1, t)

Best known
cover size

(n, 2d− `+ 1, t)

Ours CDI [21]
# seeds and PRF calls

per party
# seeds

per party
# PRF calls

per party

1

0 17 2 2 20 16 240
1 18 2 2 20 17 255
2 19 2 2 21 18 270
3 20 2 2 22 19 285

2

0 19 6 5 58 153 2,448
1 20 6 6 66 171 2,736
2 21 7 6 75 190 3,040
3 22 7 6 78 210 3,360

4

0 23 31 15 283 7,315 131,670
1 24 31 18 314 8,855 159,390
2 25 47 21 455 10,626 191,268
3 26 51 24 520 12,650 227,700

8

0 31 2,628 45 22,003 5.8× 106 1.3× 108

1 32 3,302 81 28,650 7.8× 106 1.73× 108

2 33 5,211 121 46,406 1.05× 107 2.3× 108

3 34 6,613 176 60,557 1.4× 107 3.05× 108

Table 3: Storage cost (number of PRF seeds per party) and computation cost (number of calls
to PRF per party per multiplication instruction) for SIMD circuits with ` = 8 (recall that ` is
the packing parameter, which in SIMD circuits can be viewed as the number of sub-circuits that
are being evaluated in parallel), as a function of number of corrupted parties (t) and number of
stragglers (τ). The number of parties is computed by taking n = 2d + 1, where d = t + ` − 1.
The cover size, k′ for (n, d + 1, t)-covers and k′′ for (n, 2d − ` + 1, t)-covers, is taken from [1]. By
Theorem 3.6, the number of seeds per party is (k′(d+ 1)(n− d) + k′′(d+ t)(n− d− t+ 1))/n and
there is one PRF invocation per seed. The construction in Appendix B is an alternative with a
different tradeoff between storage and PRF invocations. For the CDI construction, the number
of seeds per party is

(
n−1
t

)
and number of PRF calls is

(
n−1
t

)
· (2d − t). See Table 2 for concrete

communication costs.

Storage and computation for general circuits. So far, we only considered the case where
d = t + ` − 1. When working over general (non-SIMD) circuits, this implies that each party
needs to store

(
n−1
t

)
pseudorandom seeds in order to produce the correlated randomness for our

protocol (since our PRSS construction in Section 3.6 uses a (n, d − ` + 1, t)-cover). However, we
can reduce this cost by increasing d. Specifically, given t, ` and τ , it is possible to choose d such
that d > t+ `− 1, and then we have n = 2d+ 1 + τ . In this case, the communication cost for each
multiplication instruction per party is 3

` −
2d+3
n·` according to Theorem 4.5. The amount of PRF

seeds stored by each party, according to Theorem 3.7, is k′(d − ` + 1)(n − d + `)/n, where k′ is a
size of an (n, d− `+ 1, t)-cover.

For example, consider t = 4, ` = 3, d = 18 and τ = 11. In this case, we need n = 48 parties.
The best cover size known for this setting (see Table 1) is 252, which implies that the amount of
seeds per party is 2268. The communication cost per party in this setting is just 1− 13

48 ≈ 0.73 field
elements per multiplication. On the other hand, when using d = t + ` − 1 = 6, we have n = 24.
In this case, the communication cost per party is 1− 5

24 = 0.79 elements and the storage cost per
party is 10,626 seeds.

Our analysis clearly shows the potential of all our methods together to significantly improve
the efficiency of secure computation with strong honest majority.
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5 From Semi-Honest to Malicious Security

In this section, we show how to augment our protocol from the previous section to malicious
security (with abort). Our goal is to achieve malicious security without increasing the amortized
communication cost per instruction, and while maintaining the resilience to stragglers.

We begin by defining the meaning of security and resilience to stragglers in the presence of
malicious adversaries. Note that unlike the definition with semi-honest adversaries, we no longer
guarantee a successful termination of the protocol, but rather provide security with abort. The
straggler-robust correctness, however, will still require that the protocol ends successfully if the
parties act honestly, even if in each round τ messages, chosen by the adversary, are dropped. In
addition to this requirement, we also need the protocol to be secure in the presence of an adversary
who controls t parties and, in addition, can drop any τ messages in each round of communication.

Following the standard ideal-world vs. real-world paradigm of MPC [33, 15], let A be an ad-
versary who chooses a set of parties before the beginning of the execution and corrupts them. We
assume that the adversary is rushing, meaning that it first receives the messages sent by the honest
parties in each round, and only then determines the corrupted parties’ messages in this round.
Let realfΠ,A,I(1

κ, ~x) be a random variable that consists of the view of the adversary A controlling
a set of parties I, and the honest parties’ outputs, following an execution of Π over a vector of
inputs ~x to compute f with security parameter κ. Similarly, we define an ideal-world execution
with an ideal-world adversary S, where S and the honest parties interact with a trusted party who
computes f for them. We consider secure computation with abort, meaning that S is allowed to
send the trusted party computing f a special command abort. Specifically, S can send an abort
command instead of handing the corrupted parties’ inputs to the trusted party (causing all parties
to abort the execution), or, hand the inputs and then, after receiving the corrupted parties’ outputs
from the trusted party, send the abort command, and prevent them from receiving their outputs.
We denote by idealf,S,I(1

κ, ~x), the random variable that consists of the output of S and the honest
parties in an ideal execution to compute f , over a vector of inputs ~x, where S controls a set of
parties I. The security definition states that a protocol Π securely computes f with statistical error
ε, if for every real-world adversary there exists an ideal-world adversary, such that the statistical
distance between the two random variables is less than ε.

Definition 5.1 (Straggler resilience, malicious security) Let f be an n-party functionality
and let ε = ε(κ) be a statistical error bound. We say that Π computes f with t-malicious-security-
with-abort and τ -straggler-resilience with statistical error ε if it satisfies the following properties:

• Straggler-Robust Correctness: If all parties act honestly, then Π terminates successfully
(i.e. each party receives its prescribed output fi(~x)) even if in each communication round, τ
messages, chosen adaptively by the adversary, are not delivered.

• Security with Stragglers: For every real-world malicious adversary A who controls a set
of parties I with |I| ≤ t and, in addition, can choose adaptively any τ messages to drop in each
round of communication, there exists an ideal-world simulator S, such that for every κ and every
vector of inputs ~x it holds that

SD
(
realfΠ,A,I(1

κ, ~x), idealf,S,I(1
κ, ~x)

)
≤ ε
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where SD(X,Y ) is the statistical distance between X and Y 4.

To construct a protocol that satisfies the definition, we work in two steps. First, we present a
protocol to compute the program until (and not including) the output-revealing stage, that provides
privacy in the presence of malicious adversaries. As we will see, maybe somewhat contrary to
intuition, our semi-honest protocol from the previous section may leak private data to a malicious
adversary. We thus show how to fix this without changing the communication cost or the round
complexity and whilst providing the same resilience to stragglers.

Then, we add a step, before the revealing of the output, in which the parties verify the correct-
ness of the computation, and abort with high probability if cheating took place. The properties
of this step are: (i) it has sublinear communication (in the size of the program) and so the overall
amortized communication cost per instruction remains the same, (ii) it requires a small constant
number of rounds and so does not increase the round complexity of our protocol.

We note that although the protocol we describe only guarantees security with selective abort, it
can be easily augmented to unanimous abort as required by the definition above with small constant
cost, by running a single Byzantine agreement before the end of the execution. For simplicity, we
omit this step from the description.

Before proceeding, we briefly describe two building blocks required by our protocol:

The Fcoin ideal functionality. In our protocol, the parties will sometimes need to produce fresh
random coins. The Fcoin functionality, when called by the parties, hands them such coins. To
compute Fcoin with abort, the parties can simply generate a random sharing JrKd and open it. In
the honest majority setting, there is nothing the adversary can do here beyond causing an abort.
We note that to generate any number of coins with constant communication cost, it suffices to call
Fcoin once to obtain a seed, and expand it to many pseudo-random coins.

Consistency check. To check that m sharings {Jxj,1 · · ·xj,`Kd}
m
j=1 are consistent, we use the

well-known method of taking a random linear combination of these sharings, mask the result by
adding a random sharing Jr1 · · · r`Kd, and open it. For the random linear combination, the parties
call Fcoin to obtain the random coefficients.

5.1 Privacy in the Presence of Malicious Adversaries

In this section, we show how to compute a straight-line program with privacy in the presence of a
malicious adversary. We begin by showing that DN-style semi-honest protocols which we consider
in this work, may leak private information to a malicious adversary in the strong honest majority
setting. Recall that in the semi-honest protocol, to carry-out a multiplication between shared
inputs JxKd and JyKd, the parties send Jx · y − rK2d to P1, who reconstruct x · y − r and shares it
as Jx · y − rKd to the parties. Then, the parties compute Jx · yKd = Jx · y − rKd + JrKd and obtain a
sharing of the output.

4Note that we prove statistical security of our protocol in a hybrid model where parties hold correlated randomness.
The resulting combined protocol provides computational security when this setup is instantiated using PRSS.
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The “double-dipping” attack [40]. We now describe an attack that can be carried out by a
malicious P1, when n > 2d+ 1. This attack was shown in [40] for the setting of d < n/3 and works
over two multiplication gates/instructions as follows. Assume that the parties multiply JxKd with
JyKd. Thus, after receiving the masked shares from the parties, P1 reconstructs xy−r and computes
a random sharing Jx · y − rKd. Then, P1 sends the correct shares to all parties except for Pn, to
whom it adds 1 to the intended share. Thus, all the parties, except for Pn, can compute the correct
share of x · y by adding JrKd. Denote the share of x · y held by Pi by αi. This means that Pn will
hold αn + 1. Next, assume that the parties proceed to the next multiplication, where they need to
multiply JxyKd with JzKd, and denote the share of z held by Pi by zi. Note that once P1 receives 2d
shares, it can not only reconstruct xyz− r′, where r′ is the random masking for this multiplication,
but also can compute the remaining n − 1 − 2d shares that should be sent. In particular, after
receiving shares from any subset of 2d parties that does not contain Pn, it can compute the correct
share that should be sent by Pn, i.e., αn ·zn−r′n, where r′n is Pn’s share of r′. However, Pn will send
the share (αn+1) ·zn−r′n, which means that P1 can compute (αn ·zn−r′n)−((αn+1) ·zn−r′n) = zn,
obtaining the secret share zn of Pn.

Previous solutions. The main reason for the above attack is that in the strong honest majority
setting, there is redundancy in the masking. Indeed, the solution suggested in [40] is to use as
masking the sharing JrKn−1, which means that x · y − r can be reconstructed only given the shares
of all parties. A different solution was given in [29], where a consistency check was carried-out
between each two layers of the program. This prevents the above attack, since by sending an
incorrect share to Pn, the resulting sharing of x · y becomes inconsistent. Thus, a consistency
check will detect this type of cheating and prevents P1 from proceeding with the attack to the
multiplication in the next layer. However, these solutions are not sufficient in our case, since either
they require all parties to participate, preventing any resilience to stragglers, or, double the round
complexity of the protocol.

A new solution with straggler resilience. We thus need a new solution that achieves privacy,
while allowing P1 to proceed without requiring all parties’ shares of x · y − r. Our idea is to have
a different independent masking value for each subset of 2d + 1 parties. In particular, for each
subset T of 2d + 1 parties, we want the parties to hold a pair (JrT Kd , JrT K2d) which can be used
in the multiplication protocol. This however raises a question. If each subset of parties have a
different masking, then which masking share should a party use when it sends its message to P1?
To overcome this, we add an additional constraint: the parties should hold a pair (JrT Kd , JrT K2d)
for each subset T under the constraint that each Pi’s share in JrT K2d will be identical for all subsets.
If this holds, then only one possible message exists for each Pi to send to P1 (i.e., xi · yi − ri where
ri is the random share used by Pi as a mask). We will see later how to generate such correlated
randomness in an efficient way (without requiring the parties to store

(
n

2d+1

)
different polynomials).

Assuming the parties have a way to generate such random sharings, our private protocol to multiply
JxKd and JyKd will work as follows:

Πpriv
mult:

• Inputs: Each Pi holds two inputs shares xi, yi and a random share ri.
For each subset T ⊂ {P1, . . . , Pn} such that |T | = 2d+ 1, the parties hold a sharing JrT Kd, where
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rT =
∑

j|Pj∈T

λj · rj , with λj being the corresponding Lagrange coefficient for the 2d-polynomial

qT defined such that qT (j) = rj , for each j for which Pj ∈ T .

• The protocol:

1. Each party Pi locally computes ei = xi · yi − ri and sends it to P1.

2. Let ei1 , . . . , ei2d be the first 2d messages received by P1 and let T be a subset of parties defined
as T = {P1, Pi1 , . . . , Pi2d}. Then, P1 view e1, ei1 , . . . , ei2d as points on a polynomial p of 2d-
degree such that p(1) = e1 and ∀j ∈ [2d] : p(ij) = eij and uses them to compute (via
Lagrange interpolation) the value e0 = p(0).

3. P1 chooses a new random sharing Je0Kd, under the constraint that d shares equal to 0, and
sends each party Pi, with a non-zero share, its share. In addition, it sends T to all parties.

4. The parties locally compute Jx · yKd = Je0Kd + JrT Kd.

It is easy to see that if the parties follow the protocol, then they will obtain Jx · yKd. Privacy
is achieved since now there is no redundancy in the secret sharing of the masking random element,
and each random share held by each party is independent from the other parties’ random shares.
To formally prove this, we need to show that the view of an adversary controlling up to d parties is
distributed identically, regardless of the input held by the honest parties. Let Πsingle

priv be a protocol

where the the parties compute a straight-line program as in Πsingle
SH while carry-out multiplication

operations using Πpriv
mult, namely, each party shares its inputs and then the parties traverse over the

program instruction by instruction, while additions are computed locally and multiplications using
Πpriv

mult. In addition, let viewf
A,Π,I(~v) be the view of the adversary in the execution of a protocol Π

computing a functionality f without the output revealing step, when controlling a set I of parties,
on a vector of inputs ~v.

Theorem 5.2 Let f be a n-ary functionality represented by a layered straight-line program over
a finite field F and let d be a threshold parameter (such that |F| > n + d + 1). Then, for every
adversary A, every subset I ⊂ {P1, . . . , Pn} with |I| ≤ d and for every two vectors of inputs ~v1, ~v2,

it holds that viewf

A,Πsingle
priv ,I

(~v1) ≡ viewf

A,Πsingle
priv ,I

(~v2).

Proof: The view of an adversary in Πsingle
priv consists of (up to) d shares received in the input

sharing step, and the view in the execution of Πpriv
mult. In the former, since each input is shared via a

random polynomial of degree d, then any d points look completely random regardless of the shared
secret. We thus proceed to show that for any two vector of inputs, the view of the adversary A in
Πpriv

mult is identically distributed. We consider two case.

Case 1: P1 is honest. In this case, in each execution of Πpriv
mult, A sees e0, the subset T used to

compute e0 and for each subset of parties T ′ of size 2d, it sees d shares from JrT ′Kd. Recall that

e0 = λ1 · e1 +

2d∑
j=1

λij · eij = λ1 · (x1 · y1 − r1) +

2d∑
j=1

λij · (xij · yij − rij )

= λ1 · (x1 · y1) +

2d∑
j=1

λij · (xij · yij )− rT .
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Let α = λ1 · (x1 · y1) +
∑2d

j=1 λij · (xij · yij ). Thus, A’s view consists of α − rT and d points on a
d-degree polynomial q, with q(0) = rT . Note that each vector of inputs defines deterministically the
value of α. Now, fixing a vector of inputs ~x and ~y, we have that the probability for each possible
view equals to the probability that rT = α0− e0, which is 1

|F| . This hols since rT is computed using
a completely random and independent share of at least one honest party. Since the above holds for
any vector of inputs, it follows that the theorem holds for this case.

Case 2: P1 is corrupted. In this case, A receives all the messages sent to P1. Thus, the view of
A consists of xi · yi− ri for all i. In addition, it holds d shares of rT for each subset T of size 2d+ 1.
Since d shares gives no information on the values of rT and since each ri is completely random and
independent from the others, it follows by a similar argument to the previous case, that for each
vector of inputs, A’s view is uniformly distributed over F. This completes the proof.

Efficient generation of the correlated randomness. Recall that our protocol requires that
for each multiplication, each Pi will hold a random independent ri and a sharing JrT Kd for each

subset of parties T of size 2d + 1, such that rT =
∑

j|Pj∈T

λj · rj . A simple way to achieve this, is

to let each Pi choose a random ri and share it to the other parties as JriKd. Upon holding JriKd
for each i ∈ [n], the parties can locally compute JrT Kd =

∑
j|Pj∈T

λj · JrjKd for each subset T of size

2d + 1. We note that in order to save cost, the parties can defer the last step of computing JrT Kd
until they receive the subset T from P1. This is significant since now the parties need to compute
just a single sharing of degree d and not

(
n

2d+1

)
.

To generate any number of such correlated randomness without any interaction but a short setup
step, each party Pi can distribute a set of seeds to the other parties. As explained in Section 3, it
is possible to non-interactively generate any number of Shamir’s secret sharings JriKd from these
seeds and then continue as above. Note that since Pi knows all seeds, it can locally compute ri and
use it as its mask in the multiplication operation as required.

Extending the protocol to packed secret sharing. Till now, we explained how to achieve
privacy without requiring all parties to participate in each epoch, in the single secret per sharing
case. We now explain how to extend the protocol when multiple secrets are packed together.
Recall that in this case, the parties compute each time a batch of ` bilinear instructions, in which
P1 computes addition operations over masked inputs, share two input blocks to a multiplication
operation, and then the parties interact to multiply the two blocks of ` inputs. For each such
batch of instructions, the requirements are: (i) each party Pi should hold a random independent
element ri, which will be used as a mask in his message to P1; (ii) for each input block to the
multiplication operation, the parties should hold a sharing Jr1 · · · r`Kd which satisfies some linear
constraints induced by the repetition pattern of the program. Specifically, for each k ∈ [`], it
should hold that rk =

∑w
ω=1 aω · rTω , where rTω is the masking used in some previous multiplication

operation. Note that rTω is determined on-the-fly, with T being the subset of 2d parties, whose
shares were the first to arrive to P1, when computing the batch of instructions for which rTω was
used as a mask.

Relying on the constructions from Section 3, the parties thus work as follows:

• Before the start of the computation: each party Pi distributes seeds to the other parties.
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• For the jth batch of ` instructions:

1. For each i ∈ [n], the parties convert their set of seeds from Pi to
Jrj,i0 · · · 0Kd , J0rj,i0 · · · 0K . . . , J0 · · · 0rj,iKd. Observe that Pi knows the value of rj,i.

2. Party Pi uses rj,i as its mask in the message it sends to P1: let xj,i (yj,i) be its share of the
left(right) block of ` inputs. Then, Pi sends xj,i · yj,i − rj,i to P1.

3. Let Tj be a subset of 2d+ 1 parties whose messages to P1 arrived first. Then, for each k ∈ [`]:

P1 reconstructs the value xj,k · yj,k − r
Tj
j,k, by computing

∑
i|Pi∈Tj

λi,k · (xj,i · yj,i − rj,i), where

λi,k =
∏

m6=i|Pm∈Tj

(−k + 1)−m
i−m

is the Lagrange coefficient corresponding to using points held

by parties in Tj to compute the value at the point (−k + 1). Note that this implies that

r
Tj
j,k =

∑
i|Pi∈Tj λi,k · rj,i is the mask used in this batch of instructions.

4. Unmasking input blocks: upon receiving a block Jx′1 · · ·x′`Kd from P1, let x′k =
∑w

ω=1 aω ·
(zk,ω − r

Tk,ω
k,ω ), where r

Tk,ω
k,ω was the mask used when zk,ω was computed. Assume that zk,ω

was stored in the vth position of the block when it was computed. This implies that r
Tk,ω
k,ω =∑

i|Pi∈Tk,ω λi,v · rk,ω,i. Now, using the sharing J0 · · · 0rk,ω,i0 · · · 0Kd the parties have for each

i ∈ [n], where rk,ω,i is at the kth position, they locally compute:

(a)
r

0 · · · 0rTk,ωk,ω 0 · · · 0
z

d
=

∑
i|Pi∈Tk,ω

λi,v · J0 · · · 0rk,ω,i0 · · · 0Kd.

(b)
q
0 · · · 0r′k0 · · · 0

y
d

=

w∑
ω=1

aω ·
r

0 · · · 0rTk,ωk,ω 0 · · · 0
z

d

Upon computing the above for each k ∈ [`], the parties locally compute

q
r′1 · · · r′`

y
d

=
q
r′10 · · · 0

y
d

+
q
0r′20 · · · 0

y
d

+ · · ·+
q
0 · · · 0r′`

y
d
.

Finally, they locally compute Jx1 · · ·x`Kd = Jx′1 · · ·x′`Kd + Jr′1 · · · r′`Kd . By repeating the above
for both input blocks, the parties can proceed to compute the next multiplication operation
as explained above.

Correctness. We show that if the parties act honestly, then they obtain the correct result.
Namely, we prove that ∀k ∈ [`] : xk =

∑w
ω=1 aω · zk,ω.

This holds since in the above protocol xk = x′k + r′k, where x′k =
∑w

ω=1 aω · (zk,ω − r
Tk,ω
k,ω ) and

r′k =
∑w

ω=1 aω · r
Tk,ω
k,w . Observe that the correct r

Tk,ω
k,w is used. This follows from the fact that it

was computed by taking the product of the shares of the parties in Tk,ω with the corresponding
Lagrange coefficients.

Privacy. Exactly as in the single-secret-per-block case, each party uses an independent random
mask for each multiplication operation. The only difference is that a block of several inputs is
encoded over the same polynomial. Formally, privacy can be proved by the same argument as in
Theorem 5.2 and so we omit the details.
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Efficiency analysis. The communication required by our protocol to achieve privacy in the
presence of malicious adversaries is the same as in the semi-honest protocol, with one difference:
P1 sends also the subset T that it used to compute the masked product. However, since this small
data is sent once for an entire layer of the program, the increase in the cost is insignificant.

From a computational point of view, we now have a set of distributed keys for each party, and
so computation grows by a factor of n. We stress that the vast amount of work, which is the
conversion to Shamir’s secret sharing can be done offline before the start of the actual computation
as explained in Section 3.

5.2 Verifying Correctness of the Computation

In the previous section, we showed how to prevent leakage of private data during the computation
of the program. However, nothing prevents a malicious adversary from cheating by sending false
messages, causing the output to be incorrect. In this section, we add a step to our protocol, before
the output is revealed, where the parties verify the correctness of the computation, and abort if
cheating is detected. This additional step satisfies two desired properties: (i) it is a short constant-
round protocol; (ii) it has sublinear communication in the size of the program, which means that
amortized over the program, the communication cost remains the same.

The Fvrfy ideal functionality. We begin by presenting the ideal functionality Fvrfy to verify that
multiplications were carried out correctly, and show how to compute it later. Recall that in our
protocol, the parties hold at the beginning of each multiplication protocol, a degree-d sharing of `
left inputs and of ` right inputs. In addition, they hold a degree-d sharing of each of the program’s
outputs. Fvrfy receives these from the honest parties, reconstruct the secrets and then check for
each value, that it is correct given the values held by the parties as inputs for the multiplications
that precede it. In addition, the honest parties send Fvrfy also their shares of each input, as future
shares depend on these values as well. We stress that it suffices for only the honest parties to send
their shares, since they fully define the secrets (as we will see, a consistency check is carried out
before calling Fvrfy in our main protocol and so we are guaranteed at this stage that all sharings
are consistent). The formal description appears in Functionality 5.3.

We note that Fvrfy also uses the honest parties’ shares to compute the corrupted parties’ shares
and hands them to the ideal world adversary S. This is not problematic, since these are anyway
known to the adversary in the main protocol which works in the Fvrfy-hybrid model. Also, Fvrfy

hands S the additive difference between the actual values and correct values. This is also an
information already known to the adversary, as in DN-style multiplication protocols the adversary
is even allowed to carry-out an additive attack over the output (see [50, 18, 31]).
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FUNCTIONALITY 5.3 (Fvrfy- Verify Correctness of Multiplications)
Fvrfy works with a set of honest parties and an ideal world adversary S who controls at most t
parties. Fvrfy receives as an input a layered SL program P with m bi-linear instructions. Then:

1. The honest parties sends Fvrfy their shares of all P ’s inputs {Jxi · · ·xiKd}
n
i=1

, of all P ’s outputs

{Joi · · · oiKd}
n
i=1

and of all multiplication left and right input blocks
{
Juj,1 · · ·uj,`Kd

}m/`
j=1

and{
Jvj,1 · · · vj,`Kd

}m/`
j=1

.

2. Fvrfy reconstructs all inputs xi, outputs oi and inputs to multiplication operations
u1, . . . , um, v1, . . . , vm. In addition, it computes the shares of the corrupted parties given the
honest parties’ shares, and sends them to S.

3. Fvrfy checks that each zι ∈ {u1, . . . , um, v1, . . . , vm, o1, . . . , on} is correct given the preceding
values, i.e., it checks for each ι ∈ [2m+ n] that

δι = zι −
w∑
ω=1

αω · (µι,ω · νι,ω) = 0

where µι,ω, νι,ω ∈ {1, x1, . . . , xn, u1, . . . , um, v1, . . . , vm} according the structure of the pro-
gram P . If not, it sends reject to the honest parties and S. Otherwise, it sends accept to S
and waits for S to send back out ∈ {accept, reject}. Then, Fvrfy sends out to the honest parties
and halts. In addition, it sends δι for each ι ∈ [2m+ n] to S.

The Boneh et al. [9] distributed verification protocol. We begin with describing the sub-
linear verification protocol from [9] for Shamir sharings encoding a single secret. At the beginning
of the protocol, the parties hold for each multiplication k, sharings JxkKd and JykKd of the inputs
and JzkKd of the output.

The idea is to define a verification circuit C which takes {xk}mk=1, {yk}mk=1 and {zk}mk=1 as well
as random public coefficients {βk}mk=1, and outputs

∑m
k=1 βk · (zk − xk · yk). Clearly, if ∀k ∈ [m] :

zk−xk ·yk = 0, then the output of C will be 0, whereas if ∃k ∈ [m] : zk−xk ·yk 6= 0, then the output
will be 0 only with probability 1

|F| . The main observation towards the protocol described next is
that, the parties can locally compute a 2d-degree sharing of the output of c. However, a degree-2d
sharing has no robustness and so we cannot let the parties simply open it and check equality to 0,
since the corrupted parties could open it to any value they wish. Instead, the idea is to convert the
2d-degree sharing into a d-degree sharing, verify that the conversion was done correctly, and then
let the parties open the robustly shared output and check its equality to 0.

To this end, the parties split the circuit C into M identical g gates. Each g gate takes a
random linear combination of L = m/M multiplication triples, and then C takes a random linear
combination of the g gates’ outputs. Thus, the circuit C takes 3m inputs and each g gate takes 3L
inputs (note that the random public coefficients can hardwired into the circuit)

Next, the parties define 3L polynomials f1, . . . , f3L as follows: fj(u) is the jth input to the
uth g-gate. In addition, the parties generate an additional random g gate by taking random
sharings as its input. Each of the 3L inputs to this gate is the free term of an f polynomial.
Thus, each f polynomial is defined by M + 1 points (since there are M copies of g gates in the
circuit C and an additional random g gate). Next, the parties define another polynomial Q(x) as
Q(x) = g(f1(x), . . . , f3L(x)). It follows from this definition, that for each x ∈ {0, . . . ,M}, Q(x) is
the output of the xth g-gate. Note however that Q(x) has degree 2M , since each f has degree M
and the g gate is of degree 2. This means that the parties need to compute M additional points
on Q in order to fully define it. This is done by computing shares of the inputs for M additional
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g-gates via local interpolation and then having each party locally computing the 2d-degree sharing
of their outputs as above. At this point, the parties holds a d-degree sharings of M + 1 points
on the f polynomials, and a 2d-degree sharing of 2M + 1 points on the Q polynomial. Next,
the parties convert their shares of 2d-degree polynomial into shares over a d-degree polynomial by
secret sharing each share via a d-degree polynomial. In [9], the authors considered only the case
where n = 2d + 1, which means that the parties can simply sum the obtained shares to hold a
secret sharing of degree d of Q(1), . . . , Q(M) (since their 2d-degree shares can be locally converted
to additive shares of the secret). In this work, we assume that n > 2d + 1. The parties thus first
convert the 2d-degree sharings to additive sharings by locally adding J0Kn−1, and then share their
additive shares and continue as above. Then, they can take a linear combination of these shares
and open the result to check equality to 0. Here the adversary cannot open to other values since
the shares held by the honest parties uniquely determine the secret. However, this is not enough. A
corrupted party can share an incorrect value and not its true additive share. In order to check that
the parties shared the correct value, it suffices to check that Q is defined correctly. This is carried
out by sampling a random point r ∈ F \ {0, . . . ,M} and checking that Q(r) = g(f1(r), . . . , f3L(r)).
To perform the check, the parties locally compute a d-degree sharing of f1(r), . . . , f3L(r) and Q(r)
via interpolation, open the obtained sharings, and check that Q(r) = g(f1(r), . . . , f3L(r)). As
before, the adversary can cause nothing beyond an abort, since all sharings are robustly shared
using a d-degree polynomial.

The final crucial point is that by setting M = L =
√
m, we have that the overall communication

cost in the above protocol is roughly 5n2√m+ 2n2 field elements (each party shares 2
√
m secrets

and open 3
√
m+ 2 sharings) which is sublinear in the size of the original program.

The cheating probability of the above protocol is at most 2M+1
|F|−M . This holds since if cheating

took place, then the verification protocol can end successfully if one of two events occur: (1) the
random linear combination yields an output of 0; (2) Q(r) = g(f1(r), . . . , f3L(r)) for the sampled
r even though Q(x) 6= g(f1(x), . . . , f3L(r)). The first event happens with probability 1

|F| , whereas

the second happens by the Schwartz-Zippel lemma with probability 2M
|F|−M . This implies that the

overall cheating probability is bounded by 2M+1
|F|−M .

Adapting the verification protocol to packed secret sharing. In order to use the Boneh et
al. verification method described above, observe first that the parties in our protocol do not hold a
sharing of each multiplication’s output. Rather, the parties hold a sharing of a linear combination
of these outputs. Thus, the subcircuits for which the parties wish to verify equality to 0, are of the
form zι −

∑Jι
j=1 αι,j · (µι,j · νι,j) = 0 where zι is an input value for the ιth multiplication operation

or an output value of the program, and should be the result of computing a linear combination
of Jι values (values for which αι,j 6= 0), and each such value is a result of multiplying two values
µι,j and νι,j . Note that the latter holds if the jth value in the summation came from a preceding
multiplication. For the case that it is a program’s input, we can simply let µι,j be the input and
set νι,j = 1. Note that there are m multiplications and n outputs, and so ι ∈ [2m+ n] (since each
zι is one of two inputs to a multiplication operation or an output value). Taking a random linear
combination of the m+ n sub-circuits, we have that the parties wish to verify that

2m+n∑
ι=1

βι ·

zι − Jι∑
j=1

αι,j · (µι,j · νι,j)

 = 0 (2)
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where the random coefficients β1, . . . , βm+n ∈ F will be chosen jointly by the parties at the beginning
of the verification protocol by calling Fcoin.

Next, recall that each multiplication between two values can appear several times in Eq. (2).
We thus can rewrite Eq. (2) as

n∑
i=1

βi · oi +
2m∑
ι=1

βι · zι −
m∑
j=1

γj · (uj · vj)−
n∑
i=1

γi · xi = 0 (3)

where oi is the ith output, for each j ∈ [m]: uj and vj are the left and right inputs for the jth
multiplication, xi is the ith input, and the coefficients γj and γi are obtained by summing the
coefficients of the jth multiplication and the ith input respectively, from all its appearances in (2)

(i.e., γj =
∑

ι: µι,j=uj∧νι,j=vj

βι · αι,j).

We thus have a circuit that takes 4m+ 2n inputs and outputs 0 if no cheating took place in the
private computation of the program.

The next step would be to split the circuit into identical g gates and apply the above mechanism.
However, this raises a problem. Recall that each input to the verification circuit is shared as part
of a block of ` secrets. This means that each input is encoded at a different entry (i.e, a different
point on the encoding polynomial). Now, when defining the f polynomials over the circuit’s inputs,
we need all the values that define a f polynomial to be encoded at the same entry, as otherwise
interpolation to compute additional points will not be possible. Our solution to this is to organize
the inputs such that the eth input to each g gate will be encoded at the same entry. We remark
that for the program’s inputs and outputs this is not an issue, as they are handled in a different
way as explained below.

Let M be the number of g gates and let L be the number of inputs to each g gate. Setting

L = 4`
√
m and M =

√
m
` , we define a g gate as

g
(
{βι · zι}2`

√
m

ι=1 , {(γj · uj , vj)}`
√
m

j=1

)
=

2`
√
m∑

ι=1

(βι · zι)−
`
√
m∑

j=1

((γj · uj) · vj). (4)

Note that each gate takes L inputs. Note also that we consider the coefficients γj as part
of the input, so that all g gates in our verification circuit will be identical. This is possible since
multiplication with a public value is a local operation for our secret sharing scheme. Next, given that
the size of the block is ` and since each g simply performs additions and linear product operations
which are insensitive to the order of the inputs, we thus can reorder the inputs such that the ιth zι
input is encoded in the [ι mod `] position of a block. Similarly, the jth multiplication pair of inputs
are positions in the [j mod `] entry of a block. By ordering the inputs for the g gates in this way,
we obtain the property that the eth input to each g gate is positioned at the same entry and so
the f polynomials are properly defined. Once the g gates are defined, we can apply the machinery
of [9]. Recall that the parties need to locally compute an additive sharing of each g gate’s output.
For each multiplication operation between uj and vj , the parties locally multiply their shares, add
a random sharing J0 · · · 0Kn−1 to the result, and then use Lagrange coefficients, corresponding to
the position of uj · vj in the block, to convert it to an additive sharing of uj · vj . For each zι, the
parties will add a fresh new sharing J0 · · · 0Kn−1 to the shared block of where zι is encoded, and
then convert it to an additive sharing of zι, using the appropriate Lagrange coefficients.

We note that the linear combination of the program’s inputs and outputs is added at the end,
after the parties verify that they hold a correct sharing of each g gate’s output. This is possible
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since we can view the sharings Jxi · · ·xiKd and Joi · · · oiKd simply as JxiKd and JoiKd. Finally, when
the parties have a d-degree sharing of (3), they can open the result and check equality to 0.

Formally, the verification protocol thus works as follows:

Πverify: At the beginning of the protocol, the parties hold sharings of all P ’s inputs {Jxi · · ·xiKd}
n
i=1,

of all P ’s outputs {Joi · · · oiKd}
n
i=1 and of all multiplication left and right input blocks

{
Juj,1 · · ·uj,`Kd

}m/`
j=1

and
{
Jvj,1 · · · vj,`Kd

}m/`
j=1

.

From this point on, the parties view each sharing of an input and output value as JxiKd and JoiKd
respectively. For each yι ∈ {u1, . . . , um, v1, . . . vm}, the parties view the sharing Jy1 · · · y`Kd, where

yι is encoded at the kth entry as JyιK
(k)
d (i.e., a sharing of yt via a d-degree polynomial, where yι is

encoded at the point −k + 1).

Let L = 4`
√
m and M =

√
m
` . The parties work as follows:

• Pre-processing: The parties call FLinRand to receive 4m sharings of the form J0 · · · 0Kn−1 and
L sharings of the form Jr1 · · · r`Kd.

• Round 1:

1. The parties call Fcoin to obtain random β1, . . . , β2m+n ∈ F .

2. The parties locally compute for each j ∈ [m] and i ∈ [n] the coefficients γj and γi in Eq. (3)
as explained in the text, according to the program structure. Then, ∀ι ∈ [2m]: set z′ι = βι · zι
and ∀j ∈ [m]: set u′j = γj · uj .

3. The parties define M copies of a g gate as in Eq. (4). The parties order the inputs such that
the eth input to all g gate are encoded at the same position k as explained in the text.

4. The parties define L polynomials f1, . . . , fL ∈ F[x] of degree M such that ∀e ∈ [L]: (i)
∀h ∈ [M ], fe(h) is the eth input to hth g gate; (ii) fe(0) is a random element. For (ii), the
parties utilize the next unused Jr1 · · · r`Kd. If the points defined for fe are encoded at the kth

entry, then the parties interpret Jr1 · · · r`Kd as JrkK
(k)
d .

5. For each e ∈ [L]: given Jfe(0)K(ke)
d , . . . , Jfe(M)K(ke)

d , the parties locally compute

Jfe(M + 1)K(ke)
d , . . . , Jfe(2M)K(ke)

d via Lagrange interpolation.

6. Let p(x) = g(f1(x), . . . , fL(x)) a 2M -degree polynomial. The parties locally compute additive
shares of p(0), . . . , p(2M) by computing Eq. (4) for each p(h) with h ∈ {0, . . . , 2M} in the
following way:

(a) For each ι ∈ [2`
√
m]: compute Jz′ιK

(kι)
d + J0 · · · 0Kn−1 and convert it to an additive sharing

of z′ι using Lagrange coefficients. Denote the share held by Pi by z′ι,i

(b) For each j ∈ [`
√
m], the parties locally multiply

r
u′j

z(kj)

d
·JvjK

(kj)
d +J0 · · · 0Kn−1 and convert

the result to an additive sharing of u′j · vj using Lagrange coefficients. Denote the share
held by Pi by (u′j · vj)i.

(c) Each party Pi locally computes

2`
√
m∑

t=1

z′ι,i −
`
√
m∑

j=1

(u′j · vj)i.
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7. Denote the shares of p(0), . . . , p(2M) held by party Pi by p(0)i, . . . , p(2M)i, Then, each party
Pi generates sharings

q
p(0)i

y
d
, . . . ,

q
p(2M)i

y
d

(these are standard Shamir sharings of degree
d where the secret is encoded at the point 0) and distributes the shares to the other parties.

• Round 2: The parties run a consistency check to all sharings receives in the previous step. If it
fails, then the parties abort. Otherwise, each party sums its shares to obtain Jp(0)Kd , . . . , Jp(2M)Kd.

• Round 3:

1. The parties call Fcoin to sample r ∈ F \ {0, . . . ,M}.

2. The parties locally compute Jf1(r)K(k1)
d , . . . , JfL(r)K(kL)

d and Jp(r)Kd using Lagrange interpola-
tion.

3. The parties open these sharings by sending the shares to each other. If there exists a party for
which the opening fails due to inconsistency, then this party sends abort to the other parties
and aborts. Otherwise, each party checks that p(r) = g(f1(r), . . . , fL(r)). If the equality
holds, then the parties proceed to the next step. Otherwise, they output reject and halt.

• Round 4:

1. The parties locally compute JbKd =
M∑
h=1

Jp(h)Kd +
n∑
i=1

βi · JoiKd −
n∑
i=1

γi · JxiKd .

2. The parties open JbKd by sending their shares to each other. If any party receives inconsistent
shares, then it sends abort to the other parties and aborts. Otherwise, each party checks that
b = 0. If this does not hold, then the parties output reject. Otherwise, the parties output
accept.

Communication cost. For sharing its additive shares of p(0), . . . , p(2M), each party sends (n−
1) · (2M + 1) field elements. For opening f1(r), . . . , fL(r), p(r) and b, each party sends (n − 1) ·
(L + 2) elements. Since L = 4`

√
m and M =

√
m
` the overall communication cost per party is

(n− 1) · (2M + L+ 3) = (n− 1) · (2
√
m
` + 4`

√
m+ 3) field elements, which is sublinear in the size

of the program m (note that ` will typically be a small constant in instantiations of our protocol).

Security. We next prove that our protocol realizes the Fvrfy ideal functionality.

Lemma 5.4 Protocol Πverify securely computes Fvrfy with abort and with statistical error 2M+1
|F|−M

in the (FLinRand,Fcoin)-hybrid model, in the presence of malicious adversaries controlling up to t
parties.

Proof: Let S be the ideal world adversary and let A be the real world adversary. S is invoked by
Fvrfy which sends it all the corrupted parties’ shares in the sharings of P ’s inputs {Jxi · · ·xiKd}

n
i=1,

of P ’s outputs {Joi · · · oiKd}
n
i=1 and of multiplications left and right input blocks

{
Juj,1 · · ·uj,`Kd

}m/`
j=1

and
{
Jvj,1 · · · vj,`Kd

}m/`
j=1

. In addition, Fvrfy sends S the additive differences dι for each ι ∈ [2m+n].
In the simulation, S plays the role of Fcoin, thus choosing and handingA random β1, . . . , β2m+n ∈

F and r ∈ F \ {0, . . . ,M}. In addition, by playing the role of FLinRand in the pre-processing, the
simulator S knows all shares held by the corrupted parties of any random sharing (this holds
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by the definition of FLinRand). Note that this (together with the shares received from Fvrfy) al-
lows S to compute all the additive shares p(0)i, . . . , p(2M)i for each corrupted party Pi and so
it knows at the end of the first round whether A shared the correct values or not (S can recon-
struct it from the honest parties’ shares sent to him by A and compare it to what should have

been sent). For each j ∈ {0, . . . , 2M}, define ∆j =
∑

i: Pi corrupt

(αi − p(j)i), where αi is the ac-

tual secret that was shared by each corrupted party Pi. Thus, defining the 2M -degree polynomial
q(x) = p(x) − g(f1(x), . . . , fL(x)), we have that ∀j ∈ {1, . . . , 2M} : q(j) = ∆j and so S can
compute any points it wishes on q. In addition, since S knows all the dι values and ∆1, . . . ,∆M , it
can compute b (the output of the verification circuit) by taking b =

∑2m+n
ι=1 βι · dι +

∑M
j=1 ∆j .

Based on the above, S works as follows:

• For each honest party Pi, the simulator S sends t random shares for p(0)i, . . . , p(2M)i to A.
Since t shares can open to any value, this messages are distributed the same as the in real world
execution.

• For simulating the opening of b, the simulator S computes the corrupted parties’ shares of b and
then chooses random shares to the honest parties, given the corrupted parties’ shares and under
the constraint that they will open to b (computed as above). Observe that the simulation in this
step is in fact perfect.

• For simulating the opening of f1(r), . . . , fL(r), the simulator S computes the corrupted parties’
shares, chooses random elements for these values and chooses random shares for the honest
parties’ given the chosen values and the corrupted parites’s shares. Note that since the constant
term of each polynomial is completely random, then the distribution is again the same as in the
real world execution.

• Finally, S needs to simulate the opening of p(r). For this, S computes g(f1(r), . . . , fL(r))
and q(r) and set p(r) = q(r) + g(f1(r), . . . , fL(r)). Then, it computes the corrupted parties’
shares and chooses the honest parties’ shares, given these shares, and under the constraint that
they will open to p(r). Note that p(r) in the simulation is random under the constraint that
q(r) = p(r)− g(f1(r), . . . , fL(r)), exactly as in the real world execution.

• If A sends inconsistent shares to an honest party Pj , then S sends abortj to Fvrfy. Otherwise, if
or one of the two tests in the protocol did not pass, then S sends reject to Fvrfy. If out = reject
and the two tests passed successfully (meaning that the honest parties in the simulation output
accept), then S outputs fail and halts. Otherwise, it outputs whatever A outputs.

Observe that the only difference between the simulation and the real world execution is the event
that S outputs fail. This event happens when S receives reject from Fvrfy (meaning that ∃ι : δι 6= 0)
but the honest parties in the simulation outputs accept since b = 0 and p(r) = g(f1(r), . . . , fL(r)).
The former can happen with probability 1

|F| (the random coefficients cause the additive differences

to cancel each other) whereas the latter happens if q(r) = 0, i.e., with probability 2M
|F|−M (by the

Schwartz-Zippel lemma, since q is of degree M and r is chosen from F\{1, . . . ,M}). Thus, Pr[fail] is
identical to the probability of the event where the honest parties output accept in the real execution
when cheating took place. Thus, the statistical error is exactly as allowed by the theorem. This
concludes the proof.
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5.3 Putting It All Together - The Main Protocol

We are now ready the present our main protocol with security against malicious adversaries. The
protocol works by having the parties run the private protocol to compute the program, and then,
before revealing the output, call the ideal functionality Fvrfy to verify that the sharings they obtained
throughout the execution, are correct. Since Fvrfy requires the sharings it receives to be consistent,
then the parties run a batch consistency check before calling Fvrfy.

Stragglers Resilience. We now show what resilience our protocol guarantees:

• Input sharing step: In this step, we require the parties to send a masked input x̂i = xi + r
to all parties and not only to P1. Looking on an epoch that consists of parties sending their
masked input to the other parties, and then sending messages to P1 in the first layer of bi-linear
instructions, it is easy to see that even if n− (2d+ 1) messages are lost, party P1 will receive 2d
messages and will be able to proceed to the next epoch.

• Private computation of the program: Our new protocol in Section 5.1 can handle n − (2d + 1)
dropped messages in each epoch.

• Verification step: A subtle issue that arises here is the effect of stragglers existence in the private
protocol, on the consistency check and Fvrfy. Specifically, if different subset of parties participate
in each epoch, then the sharings used in the consistency check and Fvrfy are held by different
subset of parties, which seems problematic. Nevertheless, we observe that the number of such
subsets is bounded by the depth of the program. Hence, we have three possible solutions. If the
depth of the program is low, then the parties can run these two steps for each subset separately
(recall that each such subset is of size 2d+ 1 and so an honest majority required by the protocols
is guaranteed). Since the cost in these final steps is anyway low and sublinear in the size of
the program, we can afford running them several times. If the depth is larger than the number
of possible subsets

(
n
τ

)
(with τ being the number of stragglers), then we can simply go over all

possible subsets. Alternatively, if the program is very deep, then one can simply assume that
all messages that were delayed during the computation, arrive by the time the parties reach the
final steps. While this seems as a slight weakening of our stragglers-resilience model, note that
even with this assumption, our protocol has a huge advantage over protocols with no resilience to
stragglers, where the parties need to wait for all messages to arrive when computing each layer,
and not only at the end of the entire computation.

Note that in the former solution we need to assume that no messages are dropped inside this
step, since in each subset of 2d+1 parties, if a message is lost, we might lose the honest majority
and hence the security guarantees. Since this step is a short constant-round protocol, this seems
as a mild assumption.

• Output Reconstruction: If 2d+1 shares arrive to each party, then at least d+1 shares are sent by
honest parties and so are correct. This implies that the party can either reconstruct its correct
output or abort if cheating took place. Thus, this step can also withstand n− (2d+1) stragglers.

The formal description appears in Protocol 5.6. We thus obtain a maliciously-secured protocol,
with the same (amortized) communication cost and same stragglers resilience as for semi-honest
adversaries (with a small caveat for the short verification step). This is summarized in the following
Theorem:
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Theorem 5.5 Let F be a finite field, let f be a n-party functionality represented by a `-layered
straight-line program over F with S bilinear instructions, let t be a security threshold parameter
and let d be a parameter such that d ≥ t + ` − 1, n ≥ 2d + 1 and |F| > n + d + ` + 1. Then,
Protocol 5.6 computes f in the (FLinRand,Fcoin,Fvrfy)-hybrid model with t-malicious-security-with-
abort, (n − (2d + 1))-stragglers-resilience, with statistical error 1

|F| , and communication cost of(
3
` −

2d+3
n·`
)
S + o(S) field elements sent per party.

The protocol has statistical error of 1
|F| due to the consistency check that may fail. As explained

above, for small fields the error can be reduced by repeating the check with independent randomness.
Proof: We construct an ideal world simulator S that interacts with a real world adversary
A. In the execution, S will play the role of the trusted party computing the ideal functionalities
FLinRand and Fcoin and the honest parties. Note that by playing the role of FLinRand, S knows all
the randomness being used throughout the execution. The simulation works as follows:

• Input sharing step: For the honest parties’ inputs, S uses the input ‘0’ and simulates honest
behavior. Once receiving xi + r from A for each corrupted party Pi, the simulator S uses its
knowledge of r to extract the corrupted parties’ shares. If A sent different values to the honest
parties or if it causes an abort in the comparison of views, then S simulates the honest parties
aborting the protocol, sends abort to the trusted party computing f and outputs whatever A
outputs. A crucial point here is that S knows at the end of this step not only the inputs
themselves but also all shares held by A, since it knows the random shares every party holds.

• Computing the program: The simulator plays the role of the honest parties. If it plays the role
of P1, then it receives the masked shares sent by the corrupted parties to P1. Since it knows
the corrupted parties’ shares of the inputs to each multiplication and its randomness, it knows
exactly whether A cheats or not. If P1 is corrupted, then S computes in his head the shares that
should be sent by P1 to the honest parties, and uses them to detect cheating. By Theorem 5.2,
we have that the view of the adversary in this step is distributed identically to its view in the
real execution.

• Consistency Check : S plays the role of the Fcoin handing all αs to A and the role of the honest
parties. If the execution ends with the honest parties aborting, then S sends abort to the trusted
party computing f , outputs whatever A outputs and halts. If the shares that were dealt by a
corrupted party were not consistent, but the honest parties did not detect it in the execution of
the check, then S outputs fail and halts. Otherwise, the simulation proceeds to the next step.

• Verification of multiplications: In this step, S plays the role of Fvrfy. If cheating took place
during the emulation of the computation, then S sends reject to A, simulates the honest parties
aborting in the real execution, sends abort to the trusted party computing f and outputs whatever
A outputs. The same applies for the case where no cheating took place, S sends accept to A, but
A decides to change the output to reject (which is allowed by the definition of Fvrfy). Otherwise,
S proceeds to the next step.

• Outputs: S receives the output of the corrupted parties’ from the trusted party computing f .
Then, it chooses new shares for the honest parties, given the output and the shares held by the
corrupted parties. Then, it sends them to A. For each output intended to a honest party Pj , if A
sent inconsistent shares, then it sends abortj to the trusted party. Otherwise, S sends continuej
to the trusted party. Finally, S outputs whatever A outputs.
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Observe that when the event that S outputs fail does not occur, then the only difference between
the simulation and the real execution is in the input sharing step and the output reconstruction.
However, by the privacy of the secret sharing scheme, the shares A sees are distributed identically
in both executions. Next, as explained in the text, S outputs fail with probability 1

|F| (this is

the probability that a random combination of inconsistent sharings will be consistent). This is
exactly the statistical error allowed by the theorem. It follows that the only difference between the
simulation and the real execution is the event that S outputs fail which happens with probability 1

|F| .

This concludes the proof.
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PROTOCOL 5.6 (Computing a layered SLP with Malicious Security)

The parties P1, . . . , Pn hold a description of a layered straight-line program over F, with m bilinear
instructions partitioned to batches of ` instructions, such that the inputs to each batch depends
only on previous batches. Let φP be the repetition pattern induced by P .

• Pre-processing: The parties call FLinRand to obtain random sharings Jr · · · rKd for
each input/output of P , and to obtain for the jth bilinear instruction sharings
Jrj,i0 · · · 0Kd , . . . , J0 · · · 0rj,iKd, where rj,i is known to Pi, for each ı ∈ [n].

• The Protocol:

1. The parties emulate the program’s instructions as follows:

(a) Load an input to memory : For each instruction Rj ← xi, with xi being held by party
Pi and Jr · · · rKd being the random sharing that was assigned to the ith input:

i. The parties send Pi their shares of Jr · · · rKd.
ii. If the shares are inconsistent, then party Pi sends abort to all the other parties

and outputs ⊥. Otherwise, it reconstructs r and sends x̂i = xi + r to all parties.

iii. The parties compare their view of x̂i. If any party received a different x̂i from the
one it received from Pi, then it sends abort to all the other parties, outputs ⊥ and
halts.
Remark : Note that this check can be performed with small constant cost for all
inputs together by using a collision-resistant hash function and having each party
sending a hash of all masked inputs or by taking a random linear combination of
the masked inputs.

iv. The parties locally compute Jxi · · ·xiKd = x̂i − Jr · · · rKd.
(b) Evaluating the jth batch of “multiply two linear combinations” instructions: Run the

private protocol described in Section 5.1.

2. Consistency check : Let
{
Jvj,1 · · · vj,`Kd

}2m
j=1

all sharings dealt by P1 during the execution.

The parties work as follows:

(a) The parties call Fcoin to receive α1, . . . , α2m ∈ F and call FLinRand to receive Jr1 · · · r`Kd.
(b) The parties locally compute Jz1 · · · z`Kd =

∑2m
j=1 αj · Jvj,1 · · · vj,`Kd + Jr1 · · · r`Kd.

(c) The parties open Jz1 · · · z`Kd by sending their shares to all the other parties. If any
party received inconsistent shares, then it sends abort to all parties, outputs ⊥ and
halts.

3. Verifying correctness: The party call Fvrfy by sending their shares of all inputs
{Jxi · · ·xiKd}

n
i=1

, of all outputs {Joi · · · oiKd}
n
i=1

and of all multiplication left input blocks{
Juj,1 · · ·uj,`Kd

}m/`
j=1

and right input blocks
{
Jvj,1 · · · vj,`Kd

}m/`
j=1

.

If Fvrfy sends reject, then the parties output ⊥ and halt. Otherwise, they proceed to the
next step.

4. If any party received abort in any of the previous steps, then it outputs ⊥ and halts.

5. Emulating “output value from memory” instructions: for each instruction Oi ← Rj , where
Pi should receive Oi, the parties send their shares of the value in Rj to Pi. If the shares are
inconsistent, then Pi sends abort to the other parties, outputs ⊥ and halts. Otherwise, Pi
reconstructs and outputs Oi.
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A Other Applications of Generalized PRSS

While our new PRSS results are presented in the context of general MPC, they can be used to
obtain similar resilience-efficiency tradeoffs for a variety of other cryptographic applications. One
class of such applications discussed by Cramer et al. [21] is to threshold cryptosystems. Here we
briefly discuss simpler applications related to distributed storage or secure aggregation.

Consider the task of secure distributed storage. For instance, suppose that a client wants to
distribute a password or digital currency s between multiple cloud servers by communicating a share
si to each server. A standard secret-sharing scheme requires the shares si to be distinct. Using
PRSS, following a one-time setup phase in which replicated keys are distributed to the servers,
the client can just send to all servers the same masked secret s + r, where r is a pseudorandom
secret which is locally computed from the PRSS keys. The servers can then convert their local
Shamir-shares of r into local Shamir-shares of s by adding the mask s+ r. Since sending the same
message is typically much cheaper than sending multiple messages (e.g., using multicast protocols,
gossip, or simply by posting on a social network), this PRSS-based solution is more practical.

The above distributed storage application can be easily extended to simple MPC applications
that use linear secret sharing for secure summation or aggregation; see, e.g., [20, 8, 46] for some use
cases. In such applications, clients share their secret inputs between the servers, and the servers
aggregate the client values by summing up the shares received from the clients.
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Unlike our main motivating application of MPC with strong honest majority, the above appli-
cations of PRSS are meaningful even when the polynomial degree satisfies n/2 ≤ d < n. When
d = n − 2 this is isomorphic to additive shares of 0, for which an optimal solution for arbitrary t
was given in [32]. Our generalized PRSS construction is relevant to the case where d < n−2, which
is useful in the context of the above applications for adding robustness or straggler resilience.

Micali and Sidney [51] use a similar kind of cover designs for reducing the amount of replicated
keys compared to the baseline

(
n
t

)
solution. Our generalized PRSS approach has the advantage of

compression: following the one-time PRSS setup, the servers only need to store or communicate
a compact Shamir-shares of each secret. This comes at a minor increase in the number of seeds
induced by our transformation from (n,m, t)-cover to PRSS of degree-(m− 1) polynomials.

B Generating Double Shamir Sharing - A Second Approach

In this section, we present an alternative to the construction of Section 3.5, which reduces the
number of seeds (by a factor of less than 2) at the cost of increasing the number of calls to a PRF.
Recall that the goal is to generate two random polynomials of degree d and 2d which store the
same ` random secrets.

Theorem B.1 Fix integers d > t > 0 and n > 2d and let ` = d − t + 1. A size-k′ (n, d + 1, t)-
cover can be used to construct a solution for t-secure distribution of double-Sharing of degree-d and
degree-2d polynomials, both packing the same ` elements, with the following complexity measures:

• The number of distinct subsets (seeds) is at most k ≤ k′(d+ 1).

• The total subset size (storage) is
∑

j |Sj | ≤ k′((d+ 1)(n− d)).

• The total number of PRF calls is k′(d+ 1)((n− d) + (n− d)(d− `+ 1)).

Proof: We proceed to the alternative construction. Let C′ = (S′1, . . . , S
′
k′) be a size-k′ (n, d+1, t)-

cover. As in the previous section, we consider the set C̄ which contains all the subsets that are
obtained by removing one element from any of the S′j ’s. There are at most k ≤ k′(d + 1) distinct

subsets in C̄, each of size d. Denote the subsets in C̄ by S̄1, S̄2, . . . , S̄k. We generate the polynomial
P1(x) from these subsets exactly as in the Theorem 3.3. Next, we show how to generate R(x) from
these subsets. For each γ ∈ {−d + `, . . . , 0}, let Rγ,S̄j be the unique polynomial of degree 2d − `
interpolated from

Rγ,S̄j (X) =


0 if X ∈ S̄j
0 if X ∈ {−d+ `, . . . , 0} \ {γ}
1 if X = γ

Now, letting R(x) =
∑

j

∑
γ xγ,j · Rγ,S̄j , where xk,γ is a random element given to all parties that

are not in S̄j , yields a random polynomial which is well-defined (i.e., the parties have enough
information to compute it) and of degree 2d− ` as required.

Let M be the matrix defined by M [i, (γ, j)] = Rγ,S̄j (i). To prove security against a subset of

t parties, we need to show that for every subset T of size t, the submatrix M ′
T̄

has rank at least
2d− `− t+ 1. To see this, we fix a subset T ⊂ [n] of size t, and denote the subset in C′ that covers
it by S′. Consider the submatrix MT̄ ,S′ of M ′

T̄
consisting of columns for [n] \ S′∪{j′ : j′ ∈ S′ \ T}.
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This matrix corresponds to the evaluation points in [n] \ T . However, we will look at a different
matrix that corresponds to the evaluation points {j′ : j′ ∈ S′ \ T} and {−d+ `, . . . , 0}. Since this
matrix is generated by taking linear combinations of rows in MT̄ ,S′ , this can only decrease the rank.
The matrix we obtain has (d+ 1− t) + (d− `+ 1) = 2d− `− t+ 2 rows and (d− `+ 1)(d+ 1− t)
columns, and it looks like this:

1 1 · · · · · · · · · 1
. . .

. . .
. . .

1 1 · · · · · · · · · 1
∗ · · · ∗

∗ · · · ∗
. . .

∗ · · · ∗


,

where the d − ` + 1 first rows correspond to the evaluation points {−d + `, . . . , 0} and the later
d+ 1− t correspond to the points j′ in S′ \ T (and ∗ are non-zero elements). Now, by subtracting
the first column from each of the columns with ’1’ in the first row, and eliminating all the columns
with a non-zero coefficient in top row except for the first d − ` + 1 columns, we get the following
matrix: 

1
. . .

1
∗ · · · ∗ −∗ . . . −∗

∗
. . .

∗


This matrix has rank 2d− `− t+ 1 as required.

Finally, observe that we have here k′(d+ 1) distinct subsets. Each subset is of cardinality n−d,
and so the number of seeds that are distributed is k′(d + 1)(n − d). Finally, from each seed one
pseudorandom element is derived for generating P1(x) and d− `+ 1 for generating R(x). Overall,
the number calls to a PRF is thus k′(d+ 1)((n− d) + (d− `+ 1)) as required. This concludes the
proof.
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